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Abstract 

This paper utilizes local volatility surface to price FX one touch barrier options for 

currency pair USD/SEK. A functional surface based on discrete market data for the 

implied volatility surface is created. The data is further used to compute the local 

volatility surface based on the famous Dupire (1994) model. The paper further 

investigates the pricing discrepancies between options prices under implied 

volatility surface using the analytical pricing formula for one touch barrier options 

proposed by Reiner & Rubenstein (1991) with the finite discretization method by 

Crank & Nicholson (1947) using local volatility surface. We found that the 

discrepancies are small between the analytical and numerical priced barrier.  
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Chapter 1 

Introduction 

Options today are widely used by financial institutions and corporate for different 

purposes, to hedge, speculate or used to structure different solutions for advanced 

trading strategies.  As the financial markets develop, more advanced option types 

are created to satisfy client needs, mainly referred as exotic options. The market for 

exotic options has expanded dramatically in the past decades with increased 

volume and liquidity. The prices are becoming two-way observable in the market 

and the bid-ask spread is constant tightening. This paper focuses one type of exotic 

option, barrier option.  

Barrier options are mainly traded OTC and preferred by practitioners due to it is 

cheaper compared to vanilla options. A barrier option is similar to a vanilla option, 

but has a barrier level set. Set accordingly to client preferences, the option can 

become active or worthless when the underlying stock price hits the barrier level. 

There are several pricing formulas or approaches for the pricing of barrier options. 

However they all require that the volatility for the underlying asset is known. The 

volatility is the only Black & Scholes (1973) input that is not directly inspected 

from the market, but can be implied by the market quoted vanilla option prices. 

Dupires (1994) argues that if the Black & Scholes (1974) model were perfect, the 

implied volatility would be constant for all maturities and strikes. But this is not the 

case. Implied volatility varies with maturities and strikes. The shape is often like a 

smile, hence sometimes referred as the “volatility smile”.  

Currently, the market convention for pricing exotic options is to compute the price 

under normal Black & Scholes environment using the implied volatility for at-the-

money vanilla options (Jex, Henderson & Wang, 1999). However there exist a 

notable discrepancy between their traded value and the theoretical one. Also, given 

the market liquidity for vanilla options are only set to limited certain maturities, 

OTC-traded exotic options sometimes need to be complying and not perfectly 

tailored. In this paper we create new set of volatilities using Dupire (1994), 

conventionally referred as local volatilities, to price options and exotics that is 

compatible with the market for an arbitrarily given maturity and strike. We will be 

using barrier options based on currency pair USD/SEK and investigate how 

Dupire’s model complies with FX options by comparing the options priced under 

implied volatility with the local one. In addition, it is also of interest to measure the 

pricing discrepancies between the barrier call prices, priced analytically respective 

numerically using finite difference method. 
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Chapter2 

2.1 Volatility 

The Black & Scholes (1973) has two fundamental assumptions. It first assumes a 

risk neutral valuation, that is, the value of the priced contingent claim does not 

depend on investors risk preferences, hence preference-free. This implies that a 

stock option (or options based on any other underlying asset such as FX rates and 

commodities) is valued based on the underlying asset presumes a risk free return. 

The second feature is the stochastic process governed by the asset price evolves 

log-normally, followed by a constant volatility σ. The process is described by the 

following stochastic equation:  

  
 ⁄   ( )                                                 (   )                                            

Where  ( ) is the risk free drift and   is a stochastic process with mean zero and 

variance   . Unfortunately, market prices of options are not exactly consistent with 

the theoretical computed prices from Black & Scholes (1973). This is due to the 

existence of a volatility varying with strikes and maturities, often referred as the 

volatility smile. The volatility smile can be regarded as adjustment for second order 

effects where the Black & Scholes model insufficiently ignores. But due to the 

extensive success of the Black & Scholes pricing formula, option traders and 

market makers today quote volatilities so that the resulted price equal to the 

theoretical one, causing an effect commonly referred as “the wrong number in the 

wrong formula to get the right price.” (Rebonato, 1999). 

There have been numerous attempts to amend this and to extend the Black & 

Scholes formula to account for the volatility smile. One approach proposed by Hull 

and White (1987) imposes a random process for the volatility itself. Another 

approach by Merton (1976) takes account of the discontinuities, or jumps, of the 

underlying asset development. These methods do not retain the completeness 

feature of the model, which is of importance as it allows for arbitrage pricing and 

hedging.  

The concept of local volatility model was originated by Derman & Kani (1994) 

with discrete time steps. The model was further brought into a continuous-time 

equation by Dupire (1994). The idea is to have a spot model that conceals the 

completeness and yet is compatible with the market observed prices. 

Mathematically, we want to find a risk neutral process for the spot in the form of  

  
 ⁄   ( )     (   )                                            (   )                                        
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The above model should be built upon arbitrage free prices of European call 

prices  (      ). It was shown since Breeden & Litzenberger (1973) that a risk-

neutral probability distribution can be extracted by market quoted European option 

prices. This is important because of the Black & Scholes model assumes a log-

normal probability distribution with a constant volatility. But the presence of 

volatility smiles implicates that market implied probability distribution deviates 

from being log-normal, as shown by European options with different strikes are 

dependent upon which implied probability distribution a certain maturity imposes 

(Jex, Henderson & Wang, 1999).   

We will now show that there is a unique spot process consistent with the market 

extracted probability distribution function and that the unique state-dependent 

diffusion coefficient  (   )is the local volatility, compatible with market European 

option prices. Assume that the risk-neutral process for   is given by equation 2.2, 

then we have the following:  

Theorem 2.1, Dupires local volatility formula.  

Given that the underlying asset is governed by stochastic differential equation (2.2), 

the local volatility  (   ) is: 

 (   )  {
  

  
  ( ( )   ( )) 

  

  
  ( ) }   {

 

 

   

     }           ⁄ (   )                           

Proof.   

We write the European call option price  (      ) as the following: 

 (      )   ∫ (   ) (        )                        
 

 
(   )                     

Here  (        ) is the probability density of the underlying asset at maturity 

satisfying the Fokker-Plank equation and   is the deterministic discount factor: 

  

  
 

 

 

  

   
      

 

  
( ( )   ( ))                            (   ) 

                                                   { ∫   ( )  
 

 

}                                          (   ) 

We will now show that we can use equation (2.5) and (2.6) to write the local 

volatility  (   ) in terms of partial derivatives of a standard European call option 

price.   

Differentiating  (      ) with respect to   gives: 
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Differentiating  (      ) with respect to   twice and using (2.7) gives: 

   

   
    (        )                                            (   ) 

Notice that equation (2.8) states that given market prices of European call options, 

we have recovered the risk-neutral probability density.  

Differentiating (2.4) with respect to   and using Fokker-Planck equation (2.5) 

yields: 

  

  
   ( )  ∫ (   ) {

 

  
 (        )}    
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       (   )  

Integrating by parts twice and using equation (2.7) & (2.8) yields: 
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   ( )  
    

 

   

   
 ( ( )   ( )) (   

  

  
)          (    ) 

In which we can rearrange to get Dupires equation. For a more detailed derivation 

of this proof, including full integration and the Fokker-Planck equation, we refer to 

Kohn (2000) and Derman & Kani (1994). 

Equation (2.4) derives local volatility in terms of partial derivatives of European 

call option prices. However, as FX call option prices are quoted in implied 

volatility, it may be more practical to relate local volatility directly to implied 

volatility. 

Let      represent the implied volatility, reversed by the Black & Scholes model, 

and then we have the following: 

 (      )      (           )                                (    ) 

It is no surprise that the partial derivatives of a European option can be analytically 

formulated. Hence given equation (2.11), the local volatility can also be related 

directly to market implied volatility. 

Corollary 2.1, Dupires local volatility formula in terms of implied volatility 

Given that the underlying asset is governed by stochastic differential equation (2.2), 

assuming that the local volatility  (   ) is differentiable with respect to T and 

twice differentiable with respect to K,  (   )  can be represented as: 

 (   ) 

 

    

    ( ( )   ( )) 
     

  
  

     

  

  {
      

      √ (
     

  
)
 

 
 

    
(

 

 √ 
   

     

  
)
 

}

                      (    ) 

    
  .

 
 /  . ( )   ( )  

 
     

 / 

    √ 
                           (    ) 

           √                                              (    ) 

 

 

 



10 
 

2.2 Functional form of volatility  

Given that we can connect local volatility directly to implied volatility using 

equation (2.12), we need to find a functional form for the implied volatility. To do 

this, we extract real market quoted implied volatility and then fit the data to a well-

chosen function using least square minimization.  

Below is the market implied volatilities for USD/SEK currency pair dated 2009-

11-26, extracted from real financial platform. The rates are hence used by traders 

when quoting for option prices. This table will be used later to construct the 

implied volatility surface.  

 

Table 2.1 – Implied volatility in terms of delta for USD/SEK, 2009-11-26 

As we can see, the y-axis represents the maturity date for different call / put options 

based on this currency pair. However one would expect the x-axis to be the strike 

of different options, but this is not the case. As for currency options, the implied 

volatility surface extract is quoted in delta. In order to convert it to strikes, we use 

the following formula for call and put options. 

                     

     (  )                                                     (    ) 

                    

     (  )                                                  (    ) 

Worth to mention is the risk free rate associated when pricing European options 

based on currency pairs. Generally when dealing with options based on equities, 

only one risk free rate is involved. However when the underlying equity pays 

10D Put USD

Exp Bid Ask Bid Ask Bid Ask Bid Ask Bid Ask

1D 15.595 22.288 15.676 24.125 14.386 22.901 13.115 29.01 10.679 26.888

1W 14.74 17.27 15.106 18.264 14.143 17.347 14.63 20.388 12.908 18.775

2W 15.08 16.965 15.551 17.894 14.572 16.963 15.442 19.698 13.7 18.06

3W 15.445 16.94 16.009 17.861 14.995 16.895 16.173 19.53 14.341 17.797

1M 15.535 16.725 16.175 17.645 15.087 16.603 16.527 19.185 14.552 17.306

2M 16.1 17.26 16.924 18.344 15.734 17.219 17.665 20.23 15.502 18.203

3M 16.735 17.92 17.751 19.192 16.462 17.986 18.902 21.498 16.543 19.317

6M 17.155 18.195 18.33 19.572 16.965 18.313 19.834 22.064 17.333 19.789

1Y 17.36 18.27 18.624 19.686 17.259 18.451 20.437 22.333 17.935 20.115

18M 16.68 17.93 17.913 19.347 16.586 18.234 19.549 22.103 17.039 20.059

2Y 16.29 17.655 17.458 19 16.159 17.964 18.941 21.684 16.525 19.84

3Y 15.59 16.985 16.798 18.337 15.367 17.218 18.404 21.128 15.601 19.007

5Y 13.68 15.115 15.059 16.603 12.993 14.895 16.574 19.294 12.672 16.17

7Y 13.673 15.026 15.098 16.501 13.237 15.034 16.75 19.203 12.844 16.149

ATM 25D Call USD 25D Put USD 10D Call USD
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dividend, it will have an effect on the underlying equity price, which in turn will 

have an effect on the option pricing. For this reason, the dividend rate is also 

accounted when pricing equity options paying dividend. When dealing with FX 

currency options, there is always a domestic risk free rate as a foreign risk free rate. 

Both of them need to be accounted. The similarity in computational concern 

involves replacing the dividend rate with the foreign risk free rate. In this case, the 

Swedish currency SEK is the domestic currency. Therefore the corresponding 

LIBOR for SEK is used, whilst LIBOR for USD is used as the foreign risk free rate. 

 

Table 2.2 Libor for USD and SEK respectively 

Using the above formula with correct risk free rates and corresponding maturities, 

one could extract the strikes,     Notice that the ATM strike doesn’t necessarily 

need to be exact as the current spot rate due to the value of these options at a 

certain time before maturity (Wilmott, 2007). The transformed table is represented 

by strikes: 

USD SEK

s/n-o/n 0.00186 s/n-o/n 0.00230

1w 0.00215 1w 0.00353

2w 0.00222 2w 0.00358

1m 0.00234 1m 0.00358

2m 0.00244 2m 0.00400

3m 0.00254 3m 0.00490

4m 0.00308 4m 0.00568

5m 0.00392 5m 0.00635

6m 0.00476 6m 0.00705

7m 0.00565 7m 0.00800

8m 0.00665 8m 0.00860

9m 0.00749 9m 0.00930

10m 0.00833 10m 0.00960

11m 0.00915 11m 0.00990

12m 0.01003 12m 0.01013
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Table 2.3 – Implied volatility in terms of strikes for USD/SEK, 2009-11-26 

As the above table shows, the market prices of European options do not appear as a 

nice and continuous function, but rather as discrete data points, with only a few 

strikes corresponding to a certain 10-delta, 25-delta and ATM represented. In order 

to implement Dupires equation, whether in the form of (2.3) or (2.12), a smooth 

interpolation between market data points is needed to find the functional form of 

the implied volatility surface. For this, the formula proposed by Duma & Whaley 

(1998) is used:  

    (   )            
         

                  (    )             

where   is defined as moneyness,     
 

  (   )  .  

The corresponding derivatives, with respect to strike  , and time to maturity  , 

can either be computed analytically or numerically. Using lsqcurvefit in Matlab, 

fitting the data to the above nonlinear equation in a least square sense, yields the 

following result: 

[
 
 
 
 
 
  

  
  

  
  

  ]
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      ]

 
 
 
 
 

 

 

We plot the original discrete points implied volatility surface as shown in Figure 

2.1, the functional implied volatility surface in Figure 2.2 and using equation (2.12) 

to implement a local volatility surface, shown in Figure 2.3.  

7.011755 7.018202 7.660313 7.714898 6.465716 6.431922 8.413183 8.605003 5.993472 5.87493

Bid Ask Bid Ask Bid Ask Bid Ask Bid Ask

1D 15.60% 22.29% 15.68% 24.13% 14.39% 22.90% 13.12% 29.01% 10.68% 26.89%

1W 14.74% 17.27% 15.11% 18.26% 14.14% 17.35% 14.63% 20.39% 12.91% 18.78%

2W 15.08% 16.97% 15.55% 17.89% 14.57% 16.96% 15.44% 19.70% 13.70% 18.06%

3W 15.45% 16.94% 16.01% 17.86% 15.00% 16.90% 16.17% 19.53% 14.34% 17.80%

1M 15.54% 16.73% 16.18% 17.65% 15.09% 16.60% 16.53% 19.19% 14.55% 17.31%

2M 16.10% 17.26% 16.92% 18.34% 15.73% 17.22% 17.67% 20.23% 15.50% 18.20%

3M 16.74% 17.92% 17.75% 19.19% 16.46% 17.99% 18.90% 21.50% 16.54% 19.32%

6M 17.16% 18.20% 18.33% 19.57% 16.97% 18.31% 19.83% 22.06% 17.33% 19.79%

1Y 17.36% 18.27% 18.62% 19.69% 17.26% 18.45% 20.44% 22.33% 17.94% 20.12%

18M 16.68% 17.93% 17.91% 19.35% 16.59% 18.23% 19.55% 22.10% 17.04% 20.06%

2Y 16.29% 17.66% 17.46% 19.00% 16.16% 17.96% 18.94% 21.68% 16.53% 19.84%

3Y 15.59% 16.99% 16.80% 18.34% 15.37% 17.22% 18.40% 21.13% 15.60% 19.01%

5Y 13.68% 15.12% 15.06% 16.60% 12.99% 14.90% 16.57% 19.29% 12.67% 16.17%

7Y 13.67% 15.03% 15.10% 16.50% 13.24% 15.03% 16.75% 19.20% 12.84% 16.15%

Strike
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Equation (2.12), the relationship between local and implied volatility was hard to 

implement in practice. In addition, calculating partial derivatives for fitted 

functional form of the implied volatility makes the local volatility sensitive for the 

choose of functional form for implied volatility and the interpolation method. For 

interested readers in this field, we refer to Dumas & Whaley (1998) and Sehgal & 

Vijayakumar (2008). However, once the implementation is complete, we can price 

path-dependent options in a way consistent with the market observed vanilla option 

prices. In addition, the local volatility makes it possible to hedge these exotic 

options, given that we know the volatility to use. Although the hedging aspect of 

implementing local volatility is not discussed in this paper, the subject area is of 

high interest for practitioners and interested readers may look into Carr & Chou 

(1997).  

 

Figure 2.1 -  Implied volatility surface  



14 
 

 

Figure 2.2 – Functional form of implied volatility surface 

 

Figure 2.3 – Local volatility surface 
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Chapter 3 

3.1 Barrier options  

Barrier options are path-dependent options that can appear in different complex 

forms and settings. Although they are all represented by the common property that 

the option is either knocked-out, i.e. the option becomes worthless when the asset 

price hits the barrier, or knocked-in, meaning the option becomes active when the 

underlying option hits the barrier.  In this paper we focus on basic single one touch 

barrier option, i.e. options that is either knocked-in or knocked-out the first time the 

underlying asset price hits the barrier.  

Given that the call and put settings are available for each of the groups, we have a 

total of eight different kinds of one-touch barrier options. In addition to the exotic 

setting of barrier levels, barrier options can sometimes carry a rebate, which is paid 

out to the holder of the contract when a barrier is reached. In this paper we do not 

involve any rebates, although they can easily be integrated into the pricing 

formulas, whether analytically or numerically.  

The one-touch barrier options can be divided into following groups: 

Up-and-in options: barrier levels are set above the initial underlying asset price, 

and the option becomes active when the underlying asset price hits the barrier and 

attains the feature of a vanilla option. If the barrier is not hit during the entire time 

horizon, the options mature without payoff.  

Up-and-out options: barrier levels are set above the initial underlying asset price, 

and the option becomes worthless when the underlying asset price hits the barrier, 

giving the holder zero payoff. If the barrier is not hit during the entire time horizon, 

the options matures with the payoff as a vanilla option. 

Down-and-in options: barrier levels are set beneath the initial underlying asset 

price, and the option becomes active when the underlying asset price hits the 

barrier and attains the feature of a vanilla option. If the barrier is not hit during the 

entire time horizon, the options mature without payoff. 

Down-and-out: barrier levels are set beneath the initial underlying asset price, and 

the option becomes worthless when the underlying asset price hits the barrier, 

giving the holder zero payoff. If the barrier is not hit during the entire time horizon, 

the options mature with the payoff as a vanilla option. 
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This paper has chosen to price down-and-out options for the result analysis. The 

local volatility implemented in Chapter 2 will be used for the numerical 

computation of barrier options using finite difference methods. In addition, we 

calculate the barrier prices by analytical formulas, using implied volatility, acting 

as a comparison object for the numerical computed prices.  For interested readers, 

there are also other ways to compute a barrier option price, such as using a Monte 

Carlo algorithm or replicating a barrier using a static portfolio of vanilla options 

(Carr & Chou, 1997).  

The analytical pricing formulas for up-and-out call options are derived in the next 

section. The proofs are similar for all single one touch barriers.  
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3.2 Analytical formula  

We will be pricing down-and-out call options based on the analytical formula 

presented by Rubinstein & Reiner (1991) and finite difference methods. Before we 

do that, we will first deliver a full proof of the analytical formula for a down-and-

out call. The proof for other one-touch barrier options can be derived in a similar 

manner. Beforehand, we need some mathematical tool. Please note that the all 

proofs are standard and can be found in Björk (2009). 

Definition 3.1   

                                                       

 (   )     *       ( )   +                                (   )  

                                           

  ( )   (   )                                                 (   ) 

                                            ( )      ( )              

  ( )      ( )                                          (   ) 

  ( )      ( )                                          (   ) 

 

Let’s first consider a general down-and-out contract. The contract has payoff   in 

maturity, if the underlying asset price stays above a barrier H during the entire 

contract period up to the time of maturity. H is set in a way such that       . 

However if the asset price at some time point before maturity hits the barrier  , 

then the contract becomes lifeless and nothing is paid to the holder of the contract. 

Let’s denote the contingent claim as following:  

    ( ( ))                                                  (   ) 

In addition, the pricing function is represented by   (       ) . Then we can 

define the down-and-out type of this claim as following: 

Definition 3.2.  

Take as given a contract      ( ( )) with maturity T,    is defined by: 

    {
 ( ( ))     ( )               ,   -

                                ( )                ,   -
        (   ) 
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To be able to price    , we will need the function   ( ). This function can be 

thought as the original claim function  ( ) cut off below the level  . 

Definition 3.3 

For a fixed function  , the function   is defined by 

  ( )  {
 ( )    

     
      ( )   ( )   (   )          (   ) 

It is worth notifying that the pricing function  (       )  follows linearity in 

terms of  -argument. In addition, function (3.7) is also linear. Indeed, we state 

these qualities as a lemma.  

Lemma 3.1  

                                                            

 (           ) = a  (       )    (       )                 (   ) 

(     )                                                (   ) 

Proof  

For the pricing function  , the linearity follows from the risk-neutral valuation 

with the linearity of the expectation operator. The linearity for the payoff function 

is obvious.   

With the help of above introductions, we now have the main result of our analytical 

pricing formula. The formula insists that the price for the down-and-out version of 

our claim  ( ( ))  reduces to the pricing of the claim   ( ( ))  without 

implications of a barrier.  Reversely, if we know how to price a standard European 

claim with contract function    ( ( )) , then we can price the down-and-out 

version of the contract  ( ( )). One can think of barrier option as a type of path-

dependent option. It is essential for the trader to have a knowledge regarding the 

path of the underlying asset movement to a certain point. In the case of barrier 

option, we are only interested of the asset dynamic up till a time where it hits the 

barrier. Hence we need to assign a distribution for this process. With the help of 

our earlier presented mathematical results, we make a proposition for the dynamic 

of the underlying process absorbed at a point  : 

Proposition 3.1  

The density function   (     )of the absorbed process   ( )is 
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  (     )   (        √ )

    ( 
  (   )

  ) (           √ )                       (    ) 

The support of this density is in the interval (   )  if     and (    )  if   

     Here  (     ) denotes the density of a normal distribution with mean   

and variance    and  ( )follows the stochastic dynamics given by equation (2.1). 

We are now ready for the pricing theorem. 

Theorem 3.1  (Pricing down-and-out contracts)  

Consider a claim at maturity paying    ( ( )) , the corresponding down-and-

out pricing function, with barrier     is denoted by    (       ) has the price 

at time  : 

   (     )    (      )  (
 

 
)

  
    

  (  
  

 
   )         (    ) 

Proof  

We set, without loss of generality,      ( )   . Let    denote our underlying 

asset dynamic with the possibility to be absorbed at H. Then we use the brute force 

of risk neutral valuation, with   denoting the martingale measure guaranteeing the 

arbitrage free property 

   (     )          
 ,   -          

 
[ ( ( ))   *         ( )   +] 

         
 

[  (  ( ))   *         ( )   +]          
 

[  (  ( ))]   (    ) 

The last expectation  

    
 

[  (  ( ))]  ∫   ( ) ( )                         (    )
 

 
                                

where we have used the notation  ( ) as density for the stochastic process    ( ). 

In order to evaluate the right hand side of above equation, we log our stochastic 

process which is governed by 

 ( )   
(    .  

 
 
   /    ( )))

   ( )                          (    ) 

  ( )  (  
 

 
  )                                       (    ) 

and equation (3.13) becomes 
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[  (  ( ))]  ∫   (  ) ( )  
 

   

                          (    ) 

Here,  ( ) denotes the density for the stochastic process     ( ), which we can 

use proposition 3.1 to evaluate as 

        ( )   (  (  
 

 
  )       √ )
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)

  
    

 (  (  
 

 
  )    (

  

 
)   √ )                   (    ) 

Hence,  
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  )       √ )  
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∫   (  ) (  (  
 

 
  )    (

  

 
)   √ )  

 

   

 ∫   (  ) ( )  
 

   

 ∫   (  ) (  (  
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∫   (  ) (  (  
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)   √ )   

 

  

     
 

[  ( ( ))]  (
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[  ( ( ))]                      (    ) 

which gives us the desired result.  

Given the linearity of the pricing function   and our claim, it is natural for the 

pricing function    to be linear. For a down-and-out-call,   is calculated using the 

classical Black & Scholes formula.  

Corrollary 3.1  

                                                            

   (           ) = a    (       )      (       )     (    ) 
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3.3 finite difference methods  

Any contingent claim with underlying asset   will have a value function  (   ) 

satisfying the Black & Scholes differential equation 

  

  
 (   ) 

  

  
 

 

 
    

   

   
                            (    ) 

with value function  

 (   )   (   )                                                 (    ) 

In the case for a standard European Call, the payoff function is  

 (   )     (      )                                      (    ) 

Obviously, a European call satisfies the Black & Scholes differential equation. 

However, when dealing with exotic options, the payoff sometimes is path-

dependent, for example in an Asian option and barrier option. Hence an analytical 

solution to the differential equation is hard to derive and may not even exist. It is 

then plausible to compute option prices numerically, by approximating the above 

partial derivatives with finite differences. The method is generally referred as finite 

difference method. 

Let suppose that the life of the option is  , we can then divide it into   equally 

spaced intervals of length    =    . We can do the same for the underlying asset 

price, by dividing it into    steps, each with interval     (         )  . 

Equation (3.20) can now be approximated by 

           

    
 (   )   

               

     
 

 

 
(   )   

               

   
    

                                                                                                       (    ) 

For           and          .  

Equation (3.23) represents the approximated equation (3.22) when we want to use 

the implicit finite difference method, as we can solve for        implicitly using 

                   . The reverse holds for explicit finite difference method, where we 

solve for      using                          . Note that explicit method is easier to 

implement, as we solve (3.23) using recursion, whilst we must solve     

equations simultaneously for the implicit finite difference method. In this paper, we 

use the Crank & Nicholson (1947) approach, which uses the average of explicit and 

implicit method. The Crank-Nicholson method is unconditionally stable, produces 

least error compared to the implicit and explicit methods (Morton & Mayers 2005).  
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Solving equation (3.20) for options valuations, boundary conditions are needed. 

For a down-and-out call, with      as the down-and-out barrier, the boundary 

conditions are  

        (            )                          (    ) 

                                                                                      (    ) 

                                                                      (    ) 

 

Equation (3.24) follows immediately from the payoff function from a call option at 

maturity, equation (3.25) gives the option value at barrier and equation (3.26) 

follows from that for large values of  , the payoff is at most linear (Wilmott, 2007). 
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3.4 The result 

For the results, we have priced a down-and-out barrier call and a vanilla call. The 

down-and-out barrier call is priced using both the analytical formula, introduced by 

Rubenstein & Reiner (1991), and the finite difference method by Crank-Nicholson. 

The vanilla call is priced using the classical Black & Scholes formula. 

The volatility used in pricing the barrier option and vanilla option analytically is 

implied volatility, whilst the local volatility surface is used for the finite difference 

approach. The implied volatility surface used is the same as in Chapter 2, dated 23 

November 2009 for USD/SEK. The spot price at this date was         . We 

price the options with in the money strike 6 up and include out of the money strike 

8. For barrier options, the barrier level   is set to 5.9. The maturities used vary 

from 1 week up to 1 year. For the risk free rates, we use Libor for USD and SEK, 

each one with maturities shown in table 2.2. 

The results are shown in the following figures. 
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Figure 1 – Vanilla call prices, computed using Black & Scholes formula 

 

Figure 2 – Analytical down-and-out barrier call prices using implied volatility 
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Figure 3 – Crank-Nicholson down-and-out barrier call prices using local volatility 

Intuitively, we expect the price of the down-and-out barrier call to be lower than 

the vanilla call. To confirm this, we plot the price discrepancies and the 

discrepancies in percent in the following figures, using  
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Figure 4 – Price discrepancies between vanilla call and barrier call (analytical) 

 

Figure 5 – Price discrepancies (%) between vanilla call and barrier call (analytical)  
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Picture 4 and 5 confirms the intuition and indicate an overall lower price for the 

barrier option for all strikes and maturities. The biggest difference was found with 

strikes near barrier and longer maturities. For shorter time to maturities, the prices 

were similar. We investigate whether this is the same for barrier call computed 

numerically. The discrepancies between the vanilla call and the down-and-out 

barrier call, computed using Crank-Nicholson discretization, are found in figure 6. 

Compared to figure 3 and 4, we can see that the discrepancy between the vanilla 

call and the barrier call, computed using Crank-Nicholson discretization method, is 

as heaviest when dealing with out of money strikes and strikes near the barrier. In 

addition, the discrepancies reveal an increasing effect when time to maturity is 

increased. The largest discrepancies in percent were found for out-of-the money 

strike around      where both of the options exhibit a price near zero.  Once 

again, the vanilla call priced higher than the barrier call in general except for 

shorter time to maturities, where the barrier call priced similar to the vanilla one. 

This is intuitive, as the barrier feature of the barrier call diminishes, i.e. it is less 

likely for the barrier to be hit when time to maturity decreases, hence priced much 

more similar as a vanilla call.  

 
Figure 6 – Price discrepancies between vanilla call and barrier call (Crank-

Nicholson)  
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Figure 7 – Price discrepancies (%) between vanilla call and barrier call (Crank-

Nicholson)  

Finally we plot the discrepancies between the analytically computed barrier call 

and the Crank-Nicholson method computed barrier call, using  

                   (         )            (          ) 

                 
       (         )           (          )

       (         )
 

The discrepancies are found in figure 8 and figure 9. The overall discrepancies are 

small, especially for strikes near the barrier. Once again the largest discrepancies 

were found for large out of the money strikes, where the options have prices near 

zero.  
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Figure 8 and 9 – Price discrepancies and discrepancies in (%) between barrier call 

(analytical) and barrier call (Crank-Nicholson).  
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The implementation of vanilla and barrier calls using the analytical formula in 

practice was easier and more time efficient than the numerical method by Crank-

Nicholson. Before the implementation of Crank-Nicholson, we also tried to 

compute the prices using the implicit and explicit discretization method, which are 

both easier to implement.  However we experienced severe stability issue with the 

explicit method and customizations had to be made for boundary conditions, time 

and asset steps settings. Yet the effect was not satisfying to gain a descent result.  

The implicit method showed had impaired stability when performing the 

computation over more steps, but required less time than the Crank-Nicholson 

method.  
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Conclusion 
 

This paper has priced barrier options using analytical formula and numerically 

implementing finite difference method. For the implementation of finite difference 

method, we needed a volatility that is consistent with the observed market prices of 

vanilla options and attains completeness of the underlying asset model. This 

ensures an arbitrage free price and creates foundation for hedging purposes. Dupire 

(1994) proposed such a model choice, relating the market implied volatility, market 

observed vanilla price to what is called local volatility. For the implementation of 

local volatility, a functional form of the implied volatility is presumed. For this, we 

used the observed discrete implied volatility by the vanilla options for USD/SEK, 

and fitted the data into a functional form proposed by Duma & Whaley (1998).  

The implemented local volatility is then used for the computation of down-and-out 

barrier calls, using Crank-Nicholson discretization method with finite difference 

approach. We compared the Crank-Nicholson barrier prices with barrier options 

calculated analytically, using implied volatility. In addition, we added vanilla 

option prices into our study.  

Overall, the pricing discrepancies between the numerical and the analytical barrier 

prices are small except for strikes for which we have set as our upper limiting 

strike,    . When comparing with vanilla calls, both the numerically and 

analytically computed barrier call prices were lower, as expected, except for 

religions with short maturities, where the barrier call priced similar as a vanilla call, 

explained by a diminishing barrier feature for the barrier call, reflected by the 

underlying price has less time for dynamic and hitting the barrier eventually.  

We found that the Dupires formula, equation (2.3), were hard to implement in 

practice, sensitive for the discrete data points and functional model choice.  

Regarding the pricing implementation using finite difference methods, the stability 

played a prominent factor. We found that Crank-Nicholson were the most stable 

one compared to explicit and implicit discretization, although this stability is paid 

back in computation time. The process from local volatility implementation to 

option pricing using Crank-Nicholson discretization method was much more 

complicated than implementing the analytical formula for barrier options. However, 

it produced a price close to the analytical one, it should be the model to take, as the 

local volatility produces arbitrage free prices and making static hedging possible, 

which is very important from a risk management perspective.  
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