
Real Options in Energy Investments

Erik Johansson

August 7, 2010

Contents
1 Introduction 1

1.1 Background . 1
1.2 Problem description . 1

2 Literature Study 3

3 Preliminaries 5
3.1 Mathematical modeling . 5

3.1.1 The problem model . 5
3.1.2 Modeling prices with stochastic processes 5
3.1.3 Modeling the running costs 7

4 Solution approaches 9
4.1 Simulation . 9
4.2 Fast Fourier transform . 10
4.3 ROA: The Copeland-Antikarov approach 11

4.3.1 General concepts . 11
4.3.2 Switching options . 12

4.4 The Brekke-Oksendal approach 13
4.4.1 The numerical solution 15
4.4.2 Power station implementation 17

5 The binomial tree method 19
5.1 Overview . 19
5.2 Step one: Monte Carlo simulation 21

5.2.1 Theory . 21
5.2.2 Application . 21

5.3 Step two: Probability density estimation 23
5.3.1 Theory . 23
5.3.2 Application . 25

5.4 Step three: Binomial trees . 30
5.4.1 Theory . 30
5.4.2 Application . 31

6 Results 35
6.1 Paul Fackler’s framework . 35

6.1.1 Geometric brownian motion 35
6.1.2 Geometric Ornstein-Uhlenbeck processes 35

6.2 Binomial tree method . 37

7 Conclusions 39

Appendices 45

A GBMISE.m 45

B GBMSimOnly.M 48

C GBMVec.m 50

D GBMVecKernM.m 54

E KernAnalysis.m 56

F CBMultiKDrO.m 57

G GBMSimOnlySB.m 58

H osGBM.m 61

I osGOU.m 62

J turbine.m 63

K turbineGOU.m 63

Abstract

While the net present value method is becoming increasingly un-
popular due to its inflexible nature, the concept of real options has
slowly but surely been gaining academic ground. To be able to prop-
erly valuate a gas fired turbine, it is absolutely essential to take into
account the real option associated with the freedom to, at all times,
switch the turbine on and off. This thesis mainly provides analysis of
a binomial tree method that is used to correctly valuate a gas fired
turbine. Additionally, a framework for optimal switching problems
developed by Paul Fackler is applied to the problem.

It is concluded that the binomial tree method very accurately, with
a relative error of up to 1.5%, solves the valuation problem if switching
can be done without a cost. For problem settings in which region
switching is associated with a fixed cost, the application of Fackler’s
framework is more suitable. Depending on energy price modeling, it
is shown that the introduction of switching costs lower the real option
value by up to 30%.

Zusammenfassung

Während die Kritik zur Kapitalwertmethode immer lauter wurde,
hat die Idee der Real Option - Betrachtung langsam aber sicher einen
festen Platz in akademischen Zirkeln eingenommen. Um das Gewinn-
potenzial einer gasbefeuerten Turbine richtig bewerten zu können, ist
es unumgänglich die Möglichkeit, zu jeder Zeit den Betrieb abzubre-
chen bzw. wieder aufzunehmen, als Real Option in Betracht zu ziehen.
Die vorliegende Diplomarbeit behandelt hauptsächlich Binomialbau-
mansätze zur korrekten Validierung gasbefeuerter Turbinen. Zusätz-
lich wird Paul Facklers Beitrag zu Optimal Switching Problemen auf
den vorliegenden Forschungsgegenstand angewandt.

Es stellt sich dabei heraus, dass Binomialbaumansätze bei kosten-
freien Zustandsänderungen der Turbine sehr zufriedenstellende Lösun-
gen mit einem relativen Fehler von bis zu 1.5% liefern. Für Problem-
stellungen, in denen oben genannte Kosten anfallen, liefert Fackler’s
Arbeit die bessere Herangehensweise. Abhänging von den jeweils ge-
wählten Energiepreismodellen wird gezeigt, dass die Einführung von
Zustandsänderungskosten den Optionswert um bis zu 30% reduziert.

Sammanfattning

I takt med att kritiken blivit allt hårdare mot net present value-
metoden har analys av så kallade reella optioner vunnit allmänt erkän-
nande i den akademiska världen. För att kunna bestämma värdet hos
en gaseldad turbin på ett riktigt sätt är det av yttersta nödvändighet
att ta hänsyn till den reella option som existerar till följd av att
turbinen kan slås av och på vid vilken tidpunkt som helst. Det här
examensarbetet syftar huvudsakligen till att analysera huruvida en
metod baserad på binomialträd kan tillämpas för att på ett korrekt
sätt utvärdera en gaseldad turbin. Därutöver appliceras en metod ut-
formad för optimering av kontrollbeslut utvecklad av Paul Fackler på
problemet.

Slutsatsen är att metoden baserad på binomialträd löser, med ett
relativt fel på högst 1.5%, problemet under förutsättning att växling av
turbinläge kan genomföras kostnadsfritt. För de fall där en fixkostnad
måste betalas för att växla turbinläge kan Facklers metod användas för
att med stor noggrannhet lösa problemet. Det visar sig att, beroende
på hur prisprocesserna för ström och gas modelleras, den reella optio-
nen förlorar upp till 30% av sitt värde om växlingskostnader införs.

1 Introduction

1.1 Background

The most commonly used method for evaluation of possible investment op-
portunities is the net present value method (NPV). However, for situations
in which flexibility plays a role the method systematically underestimates
the investment value since it does not take into account that actions such
as expanding or contracting a project or company could be a possibility.
Naturally, if a project does better than expected, one would consider the
possibility to expand the project and thus profit even more. The net present
value method can not be used to valuate such possibilities, which is exactly
why it fails to properly determine the value of projects with high flexibility.

This is where real option analysis comes into the picture. It provides tools to
take possibilities such as expansion, contraction, abandonment and exchange
into account.

1.2 Problem description

This thesis deals with the problem of properly evaluating power stations
driven by gas fired turbines. Attempting to solve the problem with traditional
methods such as the net present value method does in many cases result in
an underestimation of the power station value, which indeed may result in
the loss of a business opportunity.

The reason why the net present value fails to correctly evaluate the power
station is because it does not capture the flexibility provided by the option
to turn the turbine on and off. To assume that the turbine always would be
operating is much too strong, since that would mean that one would let the
turbine run even on days on which the cost of the gas that needed to supply
the turbine would exceed the profit made by selling the generated electricity.

Thus, to be able to correctly determine the power station value, one needs
to evaluate the switching option embedded in the investment opportunity,
which is essentially what this thesis attempts.

In particular, the aim of the thesis is to study the binomial tree method. This
is the case for two reasons; mainly because an analysis of the method allows
us to be able to determine if it can be used to solve the power station problem

1

when switching costs are present, but also because a modified version of it
could be used to quickly give an approximate solution to the problem if data
from only a single time series is available.

The fact that switching costs might be present when a gas fired turbine is
switched on and off is often neglected in many analyses of power stations,
but might of course play a role if they are large enough.

The latter reason, the fact that the method could give a fast approximate
solution, is of great interest when one is considering to invest in a power
station, since a fast approximate solution can be used as a test to determine
whether a more extensive analysis of the investment opportunity could be
worthwhile.

2

2 Literature Study

Even though a recently introduced concept, there are numerous texts avail-
able on the subject of real options.

Comprehensive introductions to the theme of real options include the texts
by Copeland and Antikarov (2003), Schwartz and Trigeorgis (2003), Dixit
and Pindyck (1994) and Brennan and Trigeorgis (2000).

In their book, Copeland and Antikarov discuss valuation techniques of several
types of real options. They also present computer methods which can be
used to valuate real options numerically. The binomial tree method which
is discussed in later sections is inspired by ideas presented in the chapter on
switching options.

Similarly, the text books by Trigeorgis and Schwartz and Trigeorgis and Bren-
nen provide robust introductions along with an extensive set of examples.

Dixit and Pindyck discuss, among other topics, dynamic optimization and
the solution of optimal stopping problems, which indeed are closely related
to optimal switching problems.

The concept of using Monte Carlo simulations to valuate real options is
discussed in several mathematical papers. One example is The Real Option
to Fuel Switch in the presence of Expected Windfall Profits under the EU
ETS by Luca Taschini and Simon Urech. Here, a Monte Carlo method is
used to evaluate a hybrid power station while taking the European Union
Emission Trading Scheme (EU ETS) into account. Some emphasis is given
to the modeling of energy price processes.

In Dempster and Hong (2000), a fast Fourier transform method is proposed
for valuation of spread options. This theory is applicable to the power station
problem.

In their paper Optimal Switching in an Economic Activity under Uncertainty,
Brekke and Oksendal derive general solution conditions to optimal switching
problems. However, these conditions can not be solved explicitly for general
switching problems. Paul Fackler (2004) propose a numerical method to solve
these methods in his paper Solving Optimal Switching Models.

Due to their importance for this thesis, the texts by Copeland and Antikarov
(2003), Dempster and Hong (2000), Paul Fackler (2004) and Brekke and
Oksendal (1994) are discussed in greater detail in the later sections.

3

3 Preliminaries

3.1 Mathematical modeling

Of course, in order to be able to deal with the problem mathematically, we
first need to model it. The following subsections discuss the problem model
and price process models.

3.1.1 The problem model

We are considering a power station which requires k m3 of gas to generate
1 kWh of electricity. The profit Y at time t, t being measured in days, can
then be expressed by the model

Y (t) = N
(
Pe(t)− kPg(t)

)
−OPC(t)

Where Pe(t) is the price of 1 kWh of electricity at time t, Pg(t) the price of
1 m3 of gas at time t and OPC(t) the operating costs of the power station
at time t. N denotes the number of kWh of electricity that can be produced
per day by the turbine. For simplicity, N will be set to 1 throughout this
thesis since it only rescales the profit and therefore does not have an impact
on the choice of solution method.

Moreover, the turbine may be switched on and off at any time time ti, ti ∈ N,
i ∈ N. Switching the turbine on is done at an additional cost c. The life time
of the power station is denoted with T .

The possibility to switch the turbine on and off can be identified as a real
option.

3.1.2 Modeling prices with stochastic processes

Since Pe(t), Pg(t) and even OPC(t) are random as seen from today, we need
to find proper stochastic models to capture their behavior. The following
discussion is based on information from Geman (2005).

5

By considering historical data of commodity prices, one will find that the
price of most commodities do not have a strong drift, but rather tend to fluc-
tuate around some rough mean value. Gas and electricity are no exceptions
here, but their volatilities are higher than most other commodities. Naturally,
the prices need also be non-negative at all times. Two different stochastic
processes will be used to model the price processes in this thesis; the ge-
ometric brownian motion and the geometric Ornstein-Uhlenbeck stochastic
process. The geometric brownian motion will be the process of choice to
evaluate the binomial tree method, while the geometric Ornstein-Uhlenbeck
process will be subject to the alternative methods.

To truly be able to capture the real dynamics of gas and electricity prices,
more complex stochastic processes with stochastic volatility, stochastic cor-
relation, seasonality, and jumps are required. Such models, however, will not
be treated in this thesis.

Geometric brownian motion

The geometric brownian motion serves as a rough but reasonable model; it
is described by the following stochastic differential equation

dS(t)

S(t)
= µdt+ σdW (t)

Where σ is the volatility and µ the expected value of the daily returns. Since
the processes are not expected to have drifts, µ will be set to 0, and by setting

f
(
S(t), t

)
= ln

(
S(t)

)
it follows from Itô’s lemma that

df
(
S(t), t

)
=
(∂2f(S(t), t

)
∂S(t)2

σ2

2

)
dt+

∂f
(
S(t), t

)
∂S(t)

σdW (t) = −σ
2
dt+ σdW (t)

and thus S(t) with the analytical solution

S(t) = S0e
−σ

2

2
t+σW (t)

where S0 is the initial price will be a martingale.

6

Proof. Set m(t) := S0e
−σ

2

2
t+σW (t) . We want to show that E[m(t)|F(s)] =

m(s), s < t. F(s) denotes the natural filtration associated with W (t).

E[m(t)|F(s)] = E[S0e
−σ

2

2
t+σW (t)e−σW (s)eσW (s)|F(s)]

= S0E[eσWt−seσW (s)|F(s)]e−
σ2

2
t

= S0E[eσWt−s]e−
σ2

2
teσW (s)

= S0e
−σ

2

2
t+σW (s) 1√

2π(t− s)

∫ ∞
−∞

eσx−
x2

2(t−s)dx

= S0e
−σ

2

2
t+σW (s) 1√

2π(t− s)

∫ ∞
−∞

e
[x−σ(t−s)]2+σ2(t−s)2

2(t−s) dx

= S0e
−σ

2

2
t+σW (s)+

σ2(t−s)2
2(t−s)

1√
2π(t− s)

∫ ∞
−∞

e
[x−σ(t−s)]2

2(t−s) dx︸ ︷︷ ︸
1

= m(s)

Geometric Ornstein-Uhlenbeck process

The properties mentioned above are well captured by the geometric Ornstein-
Uhlenbeck stochastic process which can be expressed in terms of the following
stochastic differential equation

dS(t)

S(t)
= h(m− S(t))dt+ σdW (t) σ, m ∈ R, k ∈ R+

Where m is the mean value, h the rate at which the process reverts to its
mean and σ the volatility of the price.

3.1.3 Modeling the running costs

Even though the future running costs of the power station are random as seen
from today, their dynamics are much simpler than the stochastic processes
describing the energy prices. Indeed, the assumption that the running costs
would follow a continuous stochastic process is like a GBM or GOU is too
strong. Depending on the power station and the turbine, the daily running

7

costs may follow several distributions, for example the uniform distribution
or the log-normal distribution. The possibility even exists that the running
costs are deterministic. For the mathematical analysis however, the running
costs will not be of importance and therefore no particular model will be
discussed.

8

4 Solution approaches

This section will discuss already existing, as well as recently suggested ideas
of how to solve the power station problem. Emphasis will be given to the
Copeland-Antikarov real options analysis (ROA) approach since the theoret-
ical part of this thesis mainly deals with the binomial tree solution method
which is based on the principles of ROA.

4.1 Simulation

A first naive way to go about solving the power station problem is to assume
that the total costs associated with switching the turbine on and off are
much smaller than the expected profit of the power station. Then, by simply
setting the switching cost, c, to zero, it is possible to use straightforward
Monte Carlo simulation to solve the problem.

Let P k
g (t), P k

e (t) and OPCk(t), denote the gas price, electricity price and
the running costs at time t, t ∈ 1, . . . , T of the k:th, k ∈ 1, . . . , n, n ∈ R+

realization, respectively.

Then the expected value of the total profit of the power station including the
flexibility to turn the turbine on and off is simply expressed by

E[Profitflex] =
1

n

n∑
k=1

T∑
t=1

[
max

[
P k
e (t)− P k

g (t), 0
]
−OPCk(t)

]
e−rf

t
250

and the expected profit without flexibility is expressed by

E[Profit] =
1

n

n∑
k=1

T∑
t=1

[
P k
e (t)− P k

g (t)−OPCk(t)
]
e−rf

t
250

and hence the switching option would have the value

Option value = E[Profitflex]− E[Profit]

However, the above approximation is of course only valid if the switching
cost is low compared to the profit of the turbine, and if the dynamics of the
price processes do not cause the time intervals for which the turbine switched
on to be too short.

9

Furthermore, a Monte Carlo simulation will be very time consuming if T
is large and if a large number of simulations are required to get a decent
approximation of the option value.

The concept of Monte Carlo simulation is explored further in the binomial
tree method section.

4.2 Fast Fourier transform

Dempster and Hong (2000) have developed a method for spread option pric-
ing which can be used in the power station problem setting if the same
assumptions are made as in the above section. The method aims to evaluate
the following expression

V (K,T) = EQ
[
e−rT [S1(T)− S2(T)−K]+

]
using a fast Fourier transform (FFT) method. In the above expression, Q
is the unique risk-neutral measure. It is unique since it is assumed that the
market is complete. T the time to maturity, K the strike, and S1, S2 the
underlying asset prices.

The FFT-method can be used in problem settings in which the joint charac-
teristic function of the underlying assets is known.

By setting K = 0, S1(T) = Pe(T) and S2(T) = kPg(T), the expected total
profit including the flexibility offered by the option to turn the turbine on
and off is expressed by

E[Profitflex] =
T∑
t=1

V (0, t)

To calculate the value of the switching option, we also need the expected
value of the total profit without flexibility. As discussed in the previous
sections, the stochastic processes that model the prices of gas and electricity
are often martingales, and if that is the case it holds that

E[Profit] =
T∑
t=1

E[Pe(t)− Pg(t)] =
{
Pe, Pg martingales

}
= T (P 0

e − P 0
g)

where P 0
e and P 0

g denote the initial prices of electricity and gas, respectively.

10

The switching option price is thus expressed by

Option value = −T (P 0
e − P 0

g) +
T∑
t=1

V (0, t)

Note that the running costs OPC(t) has been left out in the above equations
since they cancel out in the option value expression. The expression is of
course only valid if the energy price processes are martingales. Note however,
that even though any mean reverting stochastic process without a drift is not
a martingale, it has a permanent expected mean value which means that the
above holds given that the initial values coincide with the expected values.

The reason why the FFT-method is superior to Monte Carlo simulation is
because it significantly faster delivers more accurate results. Moreover, the
computation time does not increase noteworthy if stochastic volatility or
stochastic correlation are implemented to the model, which is a great ad-
vantage over Monte Carlo simulation. The fact that that stochasticity very
easily can be added to the volatilities and correlations is extremely useful in
the energy switching option problem setting since the stochastic processes
ideally have these properties.

Thus, if the problem model requires advanced stochastic dynamics and the
turbine is to be evaluated over a long period of time the FFT-method can
significantly increase the option pricing time. However, since the joint char-
acteristic function must be known analytically the method is not always
applicable.

4.3 ROA: The Copeland-Antikarov approach

Since this thesis only deals with the evaluation of a switching option, no
emphasis will be given to the details of evaluation of any other real option.
However, to give some insight into the basic principles of real option analysis
the following section gives a brief overview of the real option evaluation
techniques presented by Copeland and Antikarov.

4.3.1 General concepts

To be able to determine the value of real options such as expanding, con-
tracting, switching or abandoning a project, one needs to first consider the

11

underlying dynamics of the project without the flexible options. By trying to
model the uncertainties involved in the project and by looking at the differ-
ent possible paths its value may progress through in the future, it is possible
to analyze the these dynamics.

Proposed by Copeland and Antikarov (2003), the above concept can be uti-
lized by constructing a binomial tree containing the possible present project
values determined by the modeling. The different levels of the tree corre-
spond to discrete time points in the future and the probabilities describe
how likely it is that certain jumps in the tree will occur.

......

......

......

PV

p

1-p

t = 1 2 3 4 n

Figure 1: Binomial tree and one possible path the project value may take

Now, having constructed a binomial tree, it is possible to compare the node
values without flexibility with the corresponding node values with flexibility.
Any values in the binomial tree that are lower than the corresponding flexible
value would be replaced by the latter. Thereafter the present project value
with flexibility can be computed by reducing the tree, which is done differ-
ently depending on what kind of real option it is that should be evaluated.
The value of the real option is then simply calculated as PV0,f lexibility - PV0.

4.3.2 Switching options

The Copeland and Antikarov (2003) evaluation approach of a switching op-
tion is done roughly as described above, but with the difference that two
binomial trees are constructed based on the free cash flows generated by the
different operation modus. Thus, two models of possible future cash flows
for the two modus are required in order to construct the trees.

12

FCF

i = 1

i = 1

i = 1

i = 2

i = 3

i =2

t = 1 t = 2 t = 3

Figure 2: Binomial tree describing the free cash flows of modus A

If the cost for switching is zero, the switching option value can be determined
by comparing the trees, and constructing a third tree that has node values
equal to the higher of the corresponding node values of the two cash flow
trees. The flexible value is then obtained by summing the expected values
for all times t.

Let FCF i
n(t) be the i:th possible state, i ∈ 1, 2, 3, . . . , t at time t, t ∈

1, 2, 3, . . . , T for operation modus n, n ∈ A,B and let pit, be the proba-
bility that the process is in state i at time t. By the above argument the
flexible project value can be expressed as

PV0,f =
T∑
t=1

t∑
i=1

pit max[FCF i
A(t), FCF i

B(t)]e−rf
t

250

However, if modus switching only can be done at an additional cost, an
optimization problem has to be solved in order to know when to switch
between the cash flow trees.

4.4 The Brekke-Oksendal approach

A more general setting of the switching option problem is treated in the
paper by Brekke and Oksendal (1994). Namely, a setting in which a set of n
discrete operation modus are available. The rate of returns for the different
modus are given by a set of reward functions {fk} which may be stochastic.
Furthermore, a set of costs associated with switching between the operation
modus are introduced.

The power station problem is clearly a special case of the above problem

13

with n = 2, reward functions equal to f1 = 0, f2 = Pe(t) − kPg(t), and an
appropriate set of switching costs.

Here follows the somewhat simplified definitions leading up to the main result
of [6] :

Define
Z(t) ∈ {z1, . . . , zm}

to be the state of the system at time t. z1, . . . , zm denote indicator vectors

z = (a1, . . . , ak)

where each ai represents a state of the system. For example, for problems
with two states, ai ∈ {0, 1}

Let the U(t) denote the stochastic process in Rn determining the values of
the assets involved in the problem.

dU(t) = b(t, U(t), Z(t))dt+ σ(t, U(t), Z(t))dB(t)

where B(t) denotes an m-dimensional Brownian motion.

The system is expressed by the stochastic process

X(t) =

 t
U(t)
Z(t)

Let

w = (θ1, θ2, . . . , θk, . . . ; ζ1, ζ2, . . . , ζk, . . .)

denote an impulse control where θ1, . . . are stopping times and ζ1, . . . the
new states entered at the corresponding stopping times.

Let
H(x, ζ) > 0

denote the cost associated with switching from state x to state ζ.

Define the value function as

Jw(x) = Ex
[∫ ∞

s

f(X(t)(w))dt−
∞∑
j=1

H(X(θj−), ζj)
]

14

where f(x) denotes the system returns for state x. The value function can
be thought of as the total profit of the system.

Brekke and Oksendal have formulated a set of solution conditions in terms of
the value function that must be satisfied in order to solve the problem. The
solution conditions can be solved explicitly for certain problems in which
geometric brownian motions determine the asset prices, but generally the
conditions can not be solved explicitly. In the next section, these conditions
are presented and solved using numerical methods proposed by Paul Fackler
(2004).

4.4.1 The numerical solution

Paul Fackler (2004) has proposed a numerical solution approach that copes
with the fact that the general solution conditions presented by Brekke and
Oksendal cannot always be solved explicitly.

The rough idea behind the method is to rewrite the optimal value function
conditions to be able to formulate them as an extended vertical linear comple-
mentary problem (EVLCP). To be able to to that, the optimal value function
needs to be approximated by a family of basis functions. The EVLCP is then
solved by a smoothing newton method proposed by Qi and Liao (1999).

To quickly summarize the contents of [3]; according to Brekke and Oksendal
it holds that the optimal value function V (S,R)1 satisfies

ρ(S)V (S,R) ≥ f(S,R) + µ(S,R)VS(S,R) +
σ2(S,R)

2
VSS(S,R)

and
V (S,R) ≥ V (S, x)− CRx ∀x 6= R

with one of the conditions satisfied with equality. Here, ρ denotes the risk-free
interest rate.

The conditions are rewritten as

0 = min
(
β(S,R)− f(S,R),min

x 6=R
V (S,R)− V (S, x) + CRx

)
1Note that the notation differs between the papers. Fackler’s definition of S(t) corre-

sponds to U(t) with dS = µ(S,R)dt + σ(S,R)dW (t), Cij corresponds to H(x, ζ), and R
corresponds to the system state variable.

15

where

β(S,R) = ρV (S,R)− µ(S,R)VS(S,R)− σ2(S,R)

2
VSS(S,R)

Let V (S, i) be approximated by φ(S)θi with φ representing a set of n basis
functions. θi denotes the coefficient vector associated with the i:th modus.

Define
β(S, i) = ρφ(S)− µ(S, i)φ

′
(S) +

σ2(S, i)

2
φ
′′
(S)

after what the conditions can be written as

β(S, i)θi − f(S, i) ≥ 0

and
φ(S)θi − φ(S)θj + Cij(S) ≥ 0,∀j 6= i

After finding θi for a set nodal state values of S, it is possible to define
matrices Φ and Bi in which the functions φ(S) and β(S, i) are evaluated.
Let fi denote f(S, i) evaluated at the nodal state values.

The EVLCP can now be formulated as

m∏
i=1

wi = 0

with
wi = Miz + qi ≥ 0 i = 1, . . . ,m

and
Mi = eie

T
i ⊗Bi +

(
Im − 1me

T
i

)
⊗ Φ

qi =

C1i1n
...

Cmi1n

− [ei ⊗ fi]

The above framework and the smoothing newton method is implemented in
a matlab program written by Paul Fackler. The code is available at [7], and
in the next section an implementation of the power station case is discussed.

16

4.4.2 Power station implementation

Fackler’s framework is used to find optimal switching boundaries for the
two cases where the energy prices follow geometric brownian motions and
geometric Ornstein-Uhlenbeck processes. The matlab code that was used to
implement the models and present the results can be found in the appendix.

Figure 3 and 4 show the approximate switching boundaries for price processes
modeled as geometric brownian motions and geometric Ornstein-Uhlenbeck
processes, respectively.

0 20 40 60 80 100 120
0

20

40

60

80

100

120
Approximate Switching Boundaries

kPg

P
e

Figure 3: Optimal switching boundaries for a GBM

The blue and red curves represent the regions where the turbine optimally
should be switched off and on, respectively. The dashed blue line is simply
the function y(x) = x, which is plotted to emphasize the positions of the
switching boundaries.

The area between the two curves grow larger when the price volatilities in-
crease, since more stochasticity is added. A larger switching cost also increase
the gap between the two curves due to the fact that is suboptimal to immedi-
ately switch the turbine off if the difference between Pe(t) and kPg(t) would
become negative.

17

0 20 40 60 80 100 120
0

20

40

60

80

100

120
Approximate Switching Boundaries

kPg

P
e

Figure 4: Optimal switching boundaries for a GOU

Due to the fact that geometric Ornstein-Uhlenbeck processes are mean-
reverting, it is generally optimal to delay the option to switch the turbine off
since it is expected that the processes return to their mean values. Therefore,
if the rate of mean reversion is increased, the gap between the two switching
boundaries become greater. Note that the red switching boundary crosses the
dashed line representing y(x) = x at around x = 70. This is a consequence
of the fact that the approximate solution is somewhat inaccurate.

To compute the value of the switching option, a Monte Carlo simulation
applying the optimal decision strategy obtained by the above solution is
used. To do this, polynomials are calibrated to fit the approximate switching
boundaries.

All results are presented in the results section.

18

5 The binomial tree method

This section will present the binomial tree solution idea along with the solu-
tion steps leading to the final results.

5.1 Overview

To avoid ambiguity, we define the project value as the present value of all
future cash flows associated with the power station excluding the option to
power it down. The flexible project value is defined analogously but includes
the option to switch the power station on/off at any time t, t ∈ 1, . . . , T . We
denote the project value PV0 and the flexible project value PV0,f,c where c
denotes the cost for switching.

We can state that since the running costs OPC(t) associated with the power
station always are present irrespective of whether the power station is pow-
ered down or not they will not play a significant role in the mathematical
analysis of the problem. To account for the running costs, we just have to
subtract their total expected value from the project value and the flexible
project value, respectively. Thus, by setting

G(t) := Ps(t)− kPg(t) EO :=
T∑
t=1

E[OPC(t)]e−rf
t

250

we have

PV0 =
T∑
t=1

E[G(t)]e−rf
t

250 − EO

PV0,f,0 =
T∑
t=1

E
[

max[G(t), 0]
]
e−rf

t
250 − EO

PV0,f,0 will be used in later calculations.

The value of the switching option is denoted V (c), and now we have

V (c) = PV0,f,c − PV0

Since we have got stochastic models of the electricity and gas prices, a rel-
atively accurate approximation of PV0 can be found easily using a Monte

19

Carlo simulation. The expected value of the total running costs is found by
the same argument.

The major difficulty presented by the power station problem is clearly finding
PV0,f,c. This will be done by considering a switching option as presented in
the Copeland-Antikarov approach with G(t) and a zero process as underly-
ings. Thus, to be able to solve the problem, we need to construct a discrete
model of G(t).

PV0,f,c will be obtained through the following steps.

Step 1: Use a Monte Carlo simulation to draw random samples
of G(t)

Step 2: Use the kernel density method to estimate the proba-
bility distribution of G(t)

Step 3: Use the kernel density estimate to construct binomial
trees describing the discrete dynamics of G(t)

Step 4: Use the binomial trees to solve an optimization problem
to find PV0,f,c

The above steps are treated theoretically and practically in the following
sections.

20

5.2 Step one: Monte Carlo simulation

As mentioned, Monte Carlo simulations are used to get samples of the random
variables G(t) to determine PV0 and certain probability distributions. All
MATLAB code used to produce the results discussed in this section can be
found in the appendix.

5.2.1 Theory

The underlying concept behind using a Monte Carlo simulation is to be
able to solve problems that otherwise would be near to impossible or even
impossible to solve analytically. The basic idea is to model the problem, draw
random samples from the domain of feasible inputs and let them run through
the model until some conclusion can be drawn from the output, often using
arguments involving the law of large numbers. It can be considered a brute
force computational algorithm to be used only if no explicit solution can be
found. Depending on the complexity of the problem model, a Monte Carlo
simulation can be very time consuming.

5.2.2 Application

In the case of simulating G(t), the feasible domain of inputs would equal all
realizations of the stochastic processes modeling the prices of electricity and
gas.

First, we simulate n realizations G1(t), . . . , Gn(t) of G(t), t = 0, . . . , T , thus
drawing n paths of G(t) from the domain of feasible paths. Analogously we
draw OPC1(t), . . . , OPCn(t).

Taking the arithmetic average of the present values of the cash flows calcu-
lated from each of the realized paths of G(t) results in an approximation of
the present project value at time 0 by the following argument. Here PV i

0

denotes the i:th simulated value of PV0. By setting CF i
t := Gi(t)−OPCi(t)

we have

1

n

n∑
i=1

PV i
0 =

T∑
t=1

n∑
i=1

1

n

CF i
t

(1 + r)t
n→∞−−−→

T∑
t=1

E[CFt]

(1 + r)t
= PV0

The limit in the above calculation takes use of the law of large numbers.

21

In the following section, the n realized paths of G(t) will also be used to find
estimations of the probability distributions of G(1), . . . , G(T)

22

5.3 Step two: Probability density estimation

Since we need to estimate the distribution of G(t), the following section
discusses the kernel density estimation method.

5.3.1 Theory

There are many methods available for density estimation. The reason why
the kernel density estimation method is chosen is because it estimates the
density with several normally distributed kernels. The fact that the ker-
nels follow a normal distribution will be used later in the solution when the
binomial trees are constructed.

Kernel density estimation

The kernel density estimation of a probability density function f(x) is gen-
erally defined as

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
with

∫ ∞
−∞

K(x)dx = 1 and K(x) ≥ 0 ∀ x ∈ R

First, we can state that for normally distributed kernels f̂ is a probability
density function since

K(x) ≥ 0 ∀x ∈ R

and ∫ ∞
−∞

f̂(x)dx =

∫ ∞
−∞

1

nh

n∑
i=1

K

(
x−Xi

h

)
dx

=
1

nh

n∑
i=1

∫ ∞
−∞

K

(
x−Xi

h

)
dx =

1

nh

n∑
i=1

∫ ∞
−∞

1√
2π
e
−(x−Xih)

2

2 dx

=
1

nh

n∑
i=1

1√
2π

∫ ∞
−∞

e
(x−Xi)

2

2h2 dx =
1

n

n∑
i=1

1√
2πh

∫ ∞
−∞

e
(x−Xi)

2

2h2 dx︸ ︷︷ ︸
1

=
1

n

n∑
i=1

1 = 1.

In the estimation f̂ , X1, . . . , Xn denote the set of n samples drawn from the
random variable X. The function K, the kernel, is any non-negative function

23

integrating to unity over R. The idea behind kernel density estimation is
to center kernels around all data points and then sum them to obtain the
probability density function. Specifically, a histogram is closely related to
a kernel density estimation with kernels equal to "boxes". Thus, if K is
any continuous function the kernel density estimate can be viewed upon
as continuous version of a histogram characterized by the choice of kernel
function.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

Kernel density estimate, normally distributed kernels

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

re
la

tiv
e

fr
eq

ue
nc

y
de

ns
ity

Histogram

Figure 5: Kernel density estimate and corresponding histogram

The parameter h ≥ 0 is called the window width, and it determines the width
of the kernels. The choice of kernel is highly dependent on the density that
is to be estimated, but common choices are normally distributed kernels Kn

and Epanechnikov kernels Ke.

Kn(x) =
1√
2π
e−x

2/2 ∀x ∈ R

Ke(x) =

{
3

4
√
5
(1− 1

5
t2) −

√
5 ≤ x ≤

√
5,

0 otherwise.

24

For a normally distributed kernel, h corresponds to its standard deviation
and Xi, the kernel position, corresponds to its expected value.

Optimally choosing h is a problem that has been confronted by many math-
ematicians. The main difficulty presented by the problem is that the optimal
choice of h is dependent of the true density, which indeed is unknown. How-
ever, a general recommendation by Silverman (1998) is choosing

h = 0.9 min(σ,
IQ

1.34
)n−

1
5

where n, σ and IQ are the sample size, standard deviation and interquantile
range, respectively.

5.3.2 Application

This thesis will only take use of normally distributed kernels for density esti-
mation due to the fact that binomial distributions can approximate normal
distributions very well. For X ∼ B(n, p) with np, n(1 − p) ≥ 5 it can be
shown that X approximately follows N(np, np(1− p)).

The reason why the above fact is useful when trying to discretisize G(t) is
best explained by a simple example which then can be extended to the actual
problem setting.

Let G(0) = k. Assume that G(1) would follow a normal distribution with
mean 0 and standard deviation σ (which would be the case if G(t) were an
arithmetic brownian motion). That is, if the daily changes of G were to be
independent and normally distributed, the distribution of G(n), n ∈ N would
also be normally distributed with mean k and standard deviation

√
nσ since

G(n) could be written G(0) +
∑n

k=1Gk(1) where Gk(1) denotes the k:th
draw of the random variable G(1). The above argument uses the the fact
that a sum of normally distributed variables is again normally distributed.

Gk(1) ∼ N(0, σ2)⇒
n∑
k=1

Gk(1) ∼ N(0, nσ2)

Thus G(n) ∼ N(k, nσ2). Now, if we construct an arithmetic binomial tree
B with up-and down movements equal to σ having probabilities p = 0.5 and
1−p = 0.5 for up-and down movements respectively, we can easily show that

25

the n:th level of the tree has expected value k and variance nσ2. Then, by
the de Moivre-Laplace theorem, we have that the n:th level approximately
follows N(k, nσ2) which means that the binomial tree B discretisizes G. The
above arguments are discussed in greater detail in the next section.

In our case, the true density of G(1) is estimated by a sum of m normally dis-
tributed kernels, and therefore, our goal is to generalize the above argument
to construct m binomial trees discretisizing G.

To do that, we first, using the samples obtained from the Monte Carlo sim-
ulation, approximate the probability density function of G(1) with a large
number n of kernels, n ≥ 10000 and an optimal window width hopt to get the
best possible density estimate. hopt is chosen as suggested by Silverman.

ĝ1(x) :=
1

nhopt

n∑
i=1

K

(
x−Gi(1)

hopt

)
Trying to discretisize the density using n kernels, and thus n binomial trees,
will be computationally too demanding, and thus we seek to approximate
the the optimal estimate with an m-kernel estimate 5 ≤ m ≤ 100.

Let G1(1), . . . , Gn(1) denote the n draws of G(1) obtained through Monte
Carlo simulation, sorted by increasing value.

G1(1) ≤ G2(1) . . . ≤ Gn(1)

The positions µ1(1), . . . , µm(1) of the m kernels are chosen as

µk(1) =
m

n

k n
m∑

i=(k−1) n
m
+1

Gi(1)

and the kernel window widths σ1, . . . , σm are chosen as

σ1 = σ2 = . . . = σm = ht

Thus, the m-kernel estimate of the probability density function of G(1) is
defined as

ĝm1 (x) :=
1

mht

m∑
i=1

K

(
x− µi(1)

ht

)
where ht is chosen such that the integrated square error of ĝm1 (x)

ISE =

∫ ∞
−∞

(ĝ1(x)− ĝm1 (x))2dx

26

is minimized.

This is done numerically. Figure 6 shows the integrated square error as a
function of h. Since ISE(h) is a convex function there is a unique solution
ht to the minimization problem.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

0.5

1

1.5

2

2.5

3
x 10

−3

h

In
te

gr
at

ed
 s

qu
ar

e
er

ro
r

ht

Figure 6: ISE(h)

Using the parameters µ1(1), . . . , µm(1) and ht obtained above, it is possi-
ble to construct m binomial trees discretisizing G. However, by studying
µ1(t), . . . , µm(t) where µk(t) is defined as

µk(t) =
m

n

k n
m∑

i=(k−1) n
m
+1

Gi(t)

for t ∈ 1, . . . , T one will find that

µk(i) 6= µk(j) i, j ∈ 1, . . . , T i 6= j k ∈ 1, . . . ,m

Indeed, figure 7 shows that the kernels drift away from their starting positions
nonlinearly with time. The kernels seem to drift faster the further away from
G(0) = 10 they start.

27

0 5 10 15 20 25 30 35 40
−40

−20

0

20

40

60

80

Figure 7: Kernel positions as function of time

To account for the changes in the kernel positions, we introduce linear drifts
d1, . . . , dm to the m kernels, hence setting

µ̂k(t) = µk(1) + (t− 1)dk

If one were to use a different set of drifts for each time step, the resulting
binomial trees would no longer recombine their branches, thus causing the
number of branches to increase at the rate m2t which would result in ex-
tremely time consuming computations. Therefore, we are required to find
one set of drifts d1, . . . , dm to approximate the average drifts of the kernels.
This will be done by linear regression.

We are looking for a set of linear functions yk(x) = dkx+ lk with parameters
dk and lk chosen such that

Fk(dk) =
T∑
x=1

(
yk(x)− µk(x))2

is minimized for k = 1, . . . ,m.

Since we want µ1(1), . . . , µm(1) to be the kernels’ starting positions we set
lk = µk(1) and translate the x-coordinates by setting x′ = x− 1 to form

Fk′(dk) =
T−1∑
x′=0

(
yk(x

′)− µk(x′ + 1))2 =
T−1∑
x′=0

(
dkx

′ + µk(1)− µk(x′ + 1))2

28

which is to be minimized for k = 1, . . . ,m.

Seeing that {Fk′(dk)} is a set of convex functions, the solutions d∗1, . . . , d∗m to
the equations

∂Fx′(dk)

∂dk
= 2

T−1∑
x′=0

(
dkx

′ + µk(1)− µk(x′ + 1)
)
x′ = 0 k = 1. . . . ,m

will minimize F1′(d1), . . . , Fm′(dk) respectively. Some simple algebra yields

d∗k =

T−1∑
x′=1

(
µk(x

′ + 1)− µk(1)
)
x′

T−1∑
x′=1

x′
2

which is the optimal linear kernel drift.

Note that

T−1∑
x′=1

m∑
k=1

(
µk(x

′ + 1)− µk(1)
)
x′ =

T−1∑
x′=1

(m∑
k=1

µk(x
′ + 1)︸ ︷︷ ︸

→mG(0)

x′ −
m∑
k=1

µk(1)︸ ︷︷ ︸
→mG(0)

x′
)
→ 0

as the number of simulations n→∞, which means that

m∑
k=1

d∗k → 0 as n→∞

The above is the case since G(t) is a martingale. The fact that

m∑
k=1

µk(·)→ mG(0) as n→∞

follows directly from the definition of µk. In the next section the m binomial
trees are constructed based on the parameters µ1(1), . . . , µm(1), d∗1, . . . , d∗m
and ht.

29

5.4 Step three: Binomial trees

In the following sections, the proper parameters for the binomial trees are
calculated.

5.4.1 Theory

m arithmetic binomial trees will be used to discretisize G(t). We define Bi,t,k

to be the value of the i:th, i ∈ 0, . . . , t− 1 node of the t:th, t ∈ 0, . . . , T − 1
level in the k:th, k ∈ 1, . . . ,m binomial tree. The numbering convention that
is used for the nodes and levels is shown in figure 8. It holds that

Bi,t,k = Bk,0 − t(Dk) + i(Uk +Dk) + tdk

where Bk,0 is the initial value of the k:th tree. Uk and Dk are the up- and
down movements of the k:th binomial tree, respectively. dk represents the
drift of the k:th tree.

t,i = 0

t = 1 t = 2 t = 3

i = 0

i = 1

i = 1

i = 0

i = 1

i = 0

i = 2

i = 2

i = 3

B + U + dk,0 kk

Bk,0

B + 2dk,0 k

Figure 8: Arithmetic binomial tree with drift

30

5.4.2 Application

As discussed in the previous section, it is desired that the distribution of the
process value at level t in tree k approximates a normal distribution with
expected value µk(1) + td∗k and variance th2t . To achieve that, Uk, Dk, dk and
Bk,0 need to be chosen in a proper way. The following calculations justify
the choice Uk = Dk = ht, dk = d∗k and Bk,0 = µk(1). The process value at
level t in tree k is expressed by the following random variable

B(t, k) := Bk,0 − tDk +X(Uk +Dk) + tdk

where
X ∼ Bin

(
t, p = 0.5)

By the de Moivre-Laplace theorem we have that

X ∼ Y where Y ∼ N
(
tp, tp(1− p)

)
asymptotically as t → ∞. But for t, tp ≥ 5 the above holds as a reasonable
approximation. Therefore we approximate

B(t, k) ≈ Bk,0 − tDk + Y (Uk +Dk) + tdk

Some simple algebra yields

B(t, k) ∼ N
(
Bk,0 + tdk +

t

2
(Uk +Dk)− tDk,

t

4
(Uk +Dk)

2
)

By setting Uk = Dk = ht, dk = d∗k and Bk,0 = µk(1) we obtain the desired
result.

B(t, k) ∼ N
(
µk(1) + td∗k, th

2
t

)
Hence,

Bi,t,k = µk(1)− tht + 2iht + td∗k

which means that the discretization is done.

Note that
1

m

m∑
k=1

µk(1) =
1

m

m∑
k=1

B0,0,k → G(0)

and that
m∑
k=1

d∗k → 0

31

as the number of simulations n→∞, which means that the discrete version
of G(t) also is a martingale.

The binomial trees allow us to calculate PV0,f,0 which is to be compared with
the simulated value of PV0,f,0, but more importantly, they allow us to solve
the optimization problem and hence calculate PV0,f,c.

k = 1

k = 2

k = 3

k = 4

Figure 9: Calculating P̂ V 0,f,0

We let P̂ V 0,f,0 denote the value of PV0,f,0 calculated using the discrete version
of G(t), while PV0,f,0 denotes the true value simulated from G(t).

We define

P̂ V 0,f,0 :=
1

m

m∑
k=1

T−1∑
t=0

t−1∑
i=0

(
t

i

)
0.5t max[Bi,t,k, 0]e−rf

t
250

32

Figure 9 displays the way P̂ V 0,f,0 is calculated. First all negative node values
are replaced with zeros. Then each node value inside of each box is weighted
with the probability of being in the state corresponding to the node value.
Thereafter, for each box, the average of the value contribution of each tree is
taken. We call that average value the box value. Finally the box values are
summed.

The binomial trees can be used as a framework to solve the problem of
finding PV0,f,c. This will however not be done in this thesis, see Conclusions
for further details.

33

6 Results

6.1 Paul Fackler’s framework

In the following examples, the switching costs were set to 20. That is, switch-
ing the turbine on, or off, costs 20.

6.1.1 Geometric brownian motion

Using the model parameters k = 1, σe = 0.05, σg = 0.02, Se,0 = 40 and
Sg,0 = 30 for two geometric brownian motions we get approximate switching
boundaries which are estimated by the following two linear functions

yon = 1.0862x+ 1.6178 yoff = 0.93609x− 1.4759 x ≥ 0

After implementing these functions into a matlab program which performs a
Monte Carlo simulation, the switching option value 1.8677 ·103 was obtained.
This value is to be compared with value obtained when switching costs are
set to zero, namely 1.9845 · 103. Thus, the option is worth roughly 6% more
if switching can be done without a cost.

By performing the same procedure, but with volatilities σe and σg varied
according to the table, the following results for V (0)

V (c)
were obtained.

σe \σg 0.01 0.02 0.03
0.01 1.0303 1.0009 1.0105
0.02 1.1618 1.0013 1.0450
0.03 1.2144 1.1378 1.0078

6.1.2 Geometric Ornstein-Uhlenbeck processes

The following values for V (0)
V (c)

were obtained by setting k = 1, σe = 0.02,
σg = 0.02, me and mg = 30 and varying he and hg according to the table.

he \hg 0.0001 0.0002 0.0003
0.0001 1.2439 1.3222 1.0729
0.0002 1.1113 1.2060 1.2500
0.0003 1.0840 1.1031 1.0836

35

1
1.5

2
2.5

3 1
1.5

2
2.5

3

0.6

0.8

1

1.2

1.4

σgσe

V
(0

)/
V

(c
)

Figure 10: V (0)
V (c)

for price processes modeled as geometric brownian motions

11.522.531

1.5

2

2.5

3
0.8

1

1.2

1.4

1.6

he

hg

V
(0

)/
V

(c
)

Figure 11: V (0)
V (c)

for price processes modeled as geometric Ornstein-Uhlenbeck
processes

36

6.2 Binomial tree method

The following relative errors, calculated as

|P̂ V 0,f,0 − PV0,f,0|
PV0,f,0

were obtained using 20 kernels, 10000 simulations, T = 365, rf = 0, k = 1,
Se,0 = 40, Sg,0 = 30 and by varying the volatilities σe and σg according to
the table.

σe \σg 0.01 0.02 0.03 0.04
0.01 0.01014 0.00002 0.00052 0.00341
0.02 0.00727 0.00520 0.00450 0.00527
0.03 0.00803 0.00913 0.00012 0.00721
0.04 0.00429 0.00020 0.00657 0.00098

1
2

3
4

1
2

3
4
0

0.01

0.02

σg
σe

R
el

at
iv

e
er

ro
r

Figure 12: The relative error as a function of σe and σg

Using 10 kernels, T = 365, rf = 0, k = 1, Se,0 = 40, Sg,0 = 30, and fix values
for σe = σg = 0.02 we consider the relative errors obtained when the number
of simulations, n is varied.

n Relative error
5000 0.01529
20000 0.01468
50000 0.01273
100000 0.01176

By setting n = 5000, T = 365, rf = 0, k = 1, Se,0 = 40, Sg,0 = 30,
σe = σg = 0.02 and varying the number of kernels, the following relative
errors were obtained.

37

#Kernels Relative error
5 0.02197
20 0.00652
50 0.00308
100 0.00017

38

7 Conclusions

It is very clear that the level of difficulty associated with solving the power
station problem increases dramatically if switching costs are present. When-
ever switching can be done without a cost, the problem is easily solved by
Monte Carlo methods, or, if the calculation time is an issue, by fast Fourier
transform methods. The latter methods have a great advantage if complex
stochastic dynamics such as stochastic volatility, stochastic correlation or
jumps are added to the model.

Due to the fact that the problem is significantly more difficult to solve when-
ever switching costs are present, it can be very time saving to simply approxi-
mate that the switching costs are zero. This is of course reasonable whenever
the switching costs are very low compared to the profit of the power station.

If, however, the dynamics of the energy price processes are such that switch-
ing often becomes a reasonable option, and if the costs associated with
switching are high, the switching costs can not simply be neglected. In
these cases the problem can be solved very accurately by using Fackler’s
numerical solution to the general solution conditions presented by Brekke
and Oksendal. Fackler’s numerical solution provides approximate switching
boundaries which can be used to calculate a very exact option value by Monte
Carlo simulation.

A bottleneck in Fackler’s numerical solution is that a smoothing newton
method must be used to solve the EVLCP which in some problem settings
ends up running in an infinite loop. However, this problem can often be
bypassed by changing the basis functions approximating the optimal value
function, or by slightly changing the model parameters.

Furthermore, if it is impossible to express the approximate switching bound-
aries in closed form the Monte Carlo implementation can be tedious to per-
form.

As for the results obtained using Fackler’s framework, it can be observed
that the ratio V (0)/V (c) decreases as the volatilities increase. This can be
explained by the fact that the real option becomes more valuable when the
price processes have high volatilities. Thus, both V (0) and V (c) increase,
therefore causing the ratio V (0)/V (c) to decrease. For geometric Ornstein-
Uhlenbeck processes, the same effect can be observed as the rates of reversion
are changed. Low rates of reversion does in some sense correspond to more

39

volatile processes, and as can be seen in figure 11, V (0)/V (c) decreases for
smaller values of he, hg.

Concerning the binomial tree method; It is clear that the number of kernels is
the main factor influencing the relative error. With an increasing number of
kernels, the relative error rapidly decreases. Naturally, if the number of simu-
lations is increased, the approximation also gets better. However, increasing
the number of simulations significantly increases the simulation time. Due to
the fact that the generated realizations must be sorted, the simulation time
increases as n log n under the assumption that an n log n sorting algorithm is
used. More noteworthy is that the runtime hardly is changed if the number
of kernels is increased. Using only n = 5000 simulations and 100 kernels
yields a relative error of 0.017%, which is extremely low. Hence, a low num-
ber of simulations can be sufficient to obtain a very accurate discretization
if the number of kernels is large enough. It also seems like the quality of
the approximation is independant of the specific combination of volatilities
that is chosen. However, dispite that fact that the discretization of G is very
accurate, it is not possible to directly use the binomial trees to find PV0,f,c
since they do not share nodes.

An idea worth exploring is to find an algorithm that merges the binomial
trees together into one discrete structure. Figure 13 shows the principles of
above idea; each cluster of nodes marked with blue circles are replaced by
one node, and thus the binomial trees are merged into one discrete structure.

Exactly how the merging should be done in order to achieve optimal results
could be a subject of further research.

Suppose however that such an algorithm would exist and that it has been
used to merge the binomial trees into a discrete structure in which all nodes
are connected. In that case, the discrete structure could be used to find
PV0,f,c through an optimization method suggested by Copeland and An-
tikarov (2003).

One of the major drawbacks of the binomial tree method is that it to some
extent fails to recognize that for many choices of the stochastic processes Pe(t)
and Pg(t), the dynamics of G(t+ s) not only depends on G(t) but rather on
the exact values of Pe(t) and Pg(t). Looking at geometric brownian motions,
the absolute change of G(t) between two time points t and t+ s is expected
to be much larger if the processes have high values at the time t.

For example, if G(t) = 0, one is only given the information that Pe(t) =
Pg(t), but nothing about the exact values of the processes. Therefore, it

40

Figure 13: Merging algorithm

is essentially impossible to say something about the dynamics of G(t + s)
given only G(t). However, it is sometimes essential to know the dynamics of
G(t+ s) to be able to answer the question of whether the turbine should be
powered down or not at a certain point in time.

At a first glance, the above might look like a very big problem. Yet, it is very
hard to say something about the quality of the potential final results of the
binomial tree method, since these would be very dependent of the algorithm
used to merge the binomial trees.

Furthermore, if the binomial tree parameters can be estimated reasonably
well using the data of a time series of energy prices, the binomial tree method
can be used to give an extremely fast approximate option value. Note that

41

no Monte Carlo simulations and no exact assumptions about the stochastic
processes would have to be made. This use of the binomial tree method is
currently a subject of research.

To summarize, the real option is very valuable under essentially any reason-
able model assumptions. Under the model assumptions used in this thesis,
the option does in many cases increase the total profit by more than 50%.
Even if one assumes that the gas price has a higher expected value than the
electricity price, the power station can be a profitable investment if the real
option is considered. Only in rare cases in which the switching-and running
costs are very high and the energy price volatilities very low does the power
station become unprofitable. Generally, the option becomes more valuable if
the energy price volatilities are high, and of course, if the gap between the
expected values of the electricity and gas prices is large.

For the binomial tree method, the only source of error is the Monte Carlo
method. However, it is easily verified that the error becomes very small
as the number of simulations n becomes large. The absolute error of the
Monte Carlo method decreases as 1√

n
. In the problem settings discussed in

this thesis, the error becomes insignificant (≤ 1%) if n is chosen larger than
10000.

The results produced using Fackler’s framework have three sources of error;
the newton method, the polynomial fitting of the switching boundaries and
the Monte Carlo method. The newton method has quadratic convergence
and the polynomial fitting can be done arbitrarily well if higher order poly-
nomials are chosen. Therefore, the bottleneck is the Monte Carlo method.
As discussed above however, the error can be kept very low if the number of
simulations is chosen large enough.

As for the mathematical modeling, the models assumed in this thesis can, as
discussed in previous sections, be extended with jump dynamics and stochas-
tic correlation to more properly imitate reality, but should serve as a reason-
able starting point of analysis.

42

References

[1] Copeland, T. & and Antikarov, V. (2003). Real Options: A Practitioners
Guide, Cengage Learning, New York

[2] Silverman, B.W. (1998). Density Estimation for Statistics and Data
Analysis, Chapman & Hall, Boca Raton

[3] Fackler, P. (2004) Solving Optimal Switching Models,
http://sisla06.samsi.info/fmse/ci/switch.pdf : 31/7/2010

[4] Geman, H. (2005). Commodities and Commodity derivatives: Modeling
and Pricing for Agriculturals, Metals, and Energy, John Wiley & Sons
Ltd, Chichester

[5] Dempster, M.A.H. & Hong, S.S.G. (2000) Spread Option Valuation and
The Fast Fourier Transform,
http://www.jbs.cam.ac.uk/research/working_papers/2000/wp0026.pdf,
31/7/2010

[6] Brekke, K.A. & Oksendal, B. (1994) Optimal Switching in an Economic
Activity under Uncertainty, SIAM Journal of Optimization , 32, pp 1021-
1036

[7] Fackler, P. http://www4.ncsu.edu/ pfackler/ : 31/7/2010

[8] Taschini, L. & Urech, S. (2009) The Real Option to Fuel Switch in the
presence of Expected Windfall Profits under the EU ETS, The Journal
of Energy Markets, Vol. 3, No. 1, pp. 1-21

[9] Dixit, A.K. & Pindyck, R.S. (1994) Investment under Uncertainty,
Princeton University Press, Princeton

[10] Brennan, M.J. & Trigeorgis, L. (2000) Project Flexibility, Agency, and
Competition: New Developments in the Theory and Application of Real
Options, Oxford University Press, New York

[11] Schwartz, E.S. & Trigeorgis, L. (2001) Real Options and Investment
under Uncertainty: Classical Readings and Recent Contributions, MIT
Press Books, The MIT Press, edition 1, volume 1, number 0262693186,
June.

[12] Qi, H-D. & Liao, L-Z. (1999) A Smoothing Newton Method for Extended
Vertical Linear Complementarity Problems Journal of Matrix Analysis
and Applications, 21, pp 45-66

43

Appendices

A GBMISE.m

Contents of GBMISE.m which is used to calculate ht:

clear all
clf
% number of timesteps
n = 365;
% number of realizations in the monte carlo simulation
m = 30000;

nkernels = 50;%number of kernels

%window width span
h_test_a = 0.1;
h_test_b = 0.6;

%number of timesteps per day
timestep = 1;

%electricity price drift per day
n1 = 0;

%gas price drift per day
n2 = 0;

%electricity price volatility (per day)
sg1 = 0.02;

%gas price volatility (per day)
sg2 = 0.02;

r = 0; %risk−free interest rate
% electricity price GBM
s1 = (1:n+1);
% gas price GBM
s2 = (1:n+1);

s1(1) =40;
s2(1) =30;

%perform monte carlo simulation

45

for (k = 1:m)

s1(1) = 40;
s2(1) = 30;

N1 = randn(1,n);
N2 = randn(1,n);

N1 = sqrt(timestep)*N1;
N2 = sqrt(timestep)*N2;
% construct two regular brownian motions for the GBM
for (i = 2:n+1)

t1(1,i) = sum(N1(1,1:i−1),2);
end
% construct two regular brownian motions for the GBM
for (i = 2:n+1)

t2(1,i) = sum(N2(1,1:i−1),2);
end

% construct the electricity price GBM
for (i = 2:length(s1))

s1(i) = s1(1)*exp((n1−sg1^2/2)*i*timestep+sg1*t1(1,i));
end
% construct the gas price GBM
for (i = 2:length(s2))

s2(i) = s2(1)*exp((n2−sg2^2/2)*i*timestep+sg2*t2(1,i));
end

CF1(k) = s1(2)−s2(2);

%calculate the PV without flexibility
PVk0(k) = 0;

for (i = 2:length(s1))
PVk0(k) = PVk0(k) + (s1(i)−s2(i))/(1+r)^((i−1)/360);

end

%calculate the PV with flexibility

PVk0F(k) = 0;

for (i = 2:length(s1))
if ((s1(i)−s2(i)) > 0)

PVk0F(k) = PVk0F(k) + (s1(i)−s2(i))/(1+r)^((i−1)/360);
end

end
PVk0F(k);

46

end

%PV without flex
PV0 = sum(PVk0)/m
%PV with flex
PV0F = sum(PVk0F)/m

%%%% For the manual estimation with #nkernels

%sort the contents of CF1

for (j = 2:length(CF1))
for (i = 2:length(CF1)−j+2)

if (CF1(i−1) > CF1(i))
tmp = CF1(i−1);
CF1(i−1) = CF1(i);
CF1(i) = tmp;

end
end

end

for (j = 2:length(CF2))
for (i = 2:length(CF2)−j+2)

if (CF2(i−1) > CF2(i))
tmp = CF2(i−1);
CF2(i−1) = CF2(i);
CF2(i) = tmp;

end
end

end

%creates intervals and assigns #nkernels kernels

dens = length(CF1)/nkernels;
for (i = 1:nkernels)

kernEV(i) = CF1(dens/2+(i−1)*(dens));
end

%estimate the density with optimal bandwidth
[bw,den,xmesh] = kde(CF1,2^12,4,16);

%choose bandwidth for the #nkernels

%Grid for the density estimates
z = 4:((16−4)/(2^12−1)):16;

%−−− ISE analysis

num = 100;

47

grid = h_test_a:(h_test_b−h_test_a)/(num−1):h_test_b;
for (j = 1:num)

h_test = h_test_a+(j−1)*(h_test_b−h_test_a)/(num−1);

for (i =1:length(kernEV)) %construct #nkernels kernels
K(:,i) = 1/(sqrt(2*pi)*nkernels*h_test)

*exp(−power((z−kernEV(i))/h_test,2)/2);
end

T=sum(K,2); %sum the kernels

ISE(j) = sum(power((den−T),2)*(16−4)/(2^12−1));
end
%−−−

plot(grid,ISE)

B GBMSimOnly.M

Contents of GBMSimOnly.m which is used to perform Monte Carlo simula-
tions and hence calculate PV0,f,0:

clear all
clf
% number of timesteps
n = 365;
% number of realizations in the monte carlo simulation
m = 50000;

%number of timesteps per day
timestep = 1;

%electricity price drift per day
n1 = 0;
%gas price drift per day
n2 = 0;

%electricity price volatility (per day)
sg1 = 0.02;

%gas price volatility (per day)
sg2 = 0.02;

%risk−free interest rate

48

r = 0;

% electricity price GBM
s1 = (1:n+1);
% gas price GBM
s2 = (1:n+1);

s1(1) =40;
s2(1) =30;

%perform monte carlo simulation

for (k = 1:m)

s1(1) = 40;
s2(1) = 30;

N1 = randn(1,n);
N2 = randn(1,n);

N1 = sqrt(timestep)*N1;
N2 = sqrt(timestep)*N2;

% construct two regular brownian motions for the GBM
for (i = 2:n+1)

t1(1,i) = sum(N1(1,1:i−1),2);
end

% construct two regular brownian motions for the GBM
for (i = 2:n+1)

t2(1,i) = sum(N2(1,1:i−1),2);
end
% construct the electricity price GBM
for (i = 2:length(s1))

s1(i) = s1(1)*exp((n1−sg1^2/2)*i*timestep+sg1*t1(1,i));
end
% construct the gas price GBM
for (i = 2:length(s2))

s2(i) = s2(1)*exp((n2−sg2^2/2)*i*timestep+sg2*t2(1,i));
end

%calculate the PV without flexibility

PVk0(k) = 0;

for (i = 2:length(s1))
PVk0(k) = PVk0(k) + (s1(i)−s2(i))/(1+r)^((i−1)/360);

end

49

%calculate the PV with flexibility

PVk0F(k) = 0;

for (i = 2:length(s1))
if ((s1(i)−s2(i)) > 0)

PVk0F(k) = PVk0F(k) + (s1(i)−s2(i))/(1+r)^((i−1)/360);
end

end

PVk0F(k);
end

%PV without flex
PV0 = sum(PVk0)/m
%PV with flex
PV0F = sum(PVk0F)/m

%%%%

%price processes
p1 = plot (s1);
hold on
p2 = plot (s2);
hold on
set(p1,'Color','red','LineWidth',1)

C GBMVec.m

Contents of GBMVec.m which is used to calculate {µk}:

clear all
clf
% number of timesteps
n = 365;

% number of realizations in the monte carlo simulation
m = 20000;

%number of kernels
nkernels = 50;

%window width
h_test =0.2162;

50

%number of timesteps per day
timestep = 1;

%electricity price drift per day
n1 = 0;

%gas price drift per day
n2 = 0;

%electricity price volatility (per day)
sg1 = 0.01;

%gas price volatility (per day)
sg2 = 0.03;

%risk−free interest rate
r = 0;

% electricity price GBM
s1 = (1:n+1);

% gas price GBM
s2 = (1:n+1);

s1(1) =40;
s2(1) =30;

%perform monte carlo simulation
for (k = 1:m)

s1(1) = 40;
s2(1) = 30;

N1 = randn(1,n);
N2 = randn(1,n);

N1 = sqrt(timestep)*N1;
N2 = sqrt(timestep)*N2;

% construct two regular brownian motions for the GBM
for (i = 2:n+1)

t1(1,i) = sum(N1(1,1:i−1),2);
end

% construct two regular brownian motions for the GBM
for (i = 2:n+1)

t2(1,i) = sum(N2(1,1:i−1),2);
end

51

% construct the electricity price GBM
for (i = 2:length(s1))

s1(i) = s1(1)*exp((n1−sg1^2/2)*i*timestep+sg1*t1(1,i));
end

% construct the gas price GBM
for (i = 2:length(s2))

s2(i) = s2(1)*exp((n2−sg2^2/2)*i*timestep+sg2*t2(1,i));
end

CF1(k) = s1(2)−s2(2);

%calculate the PV without flexibility
PVk0(k) = 0;

for (i = 2:length(s1))
PVk0(k) = PVk0(k) + (s1(i)−s2(i))/(1+r)^((i−1)/360);

end

%calculate the PV with flexibility

PVk0F(k) = 0;

for (i = 2:length(s1))
if ((s1(i)−s2(i)) > 0)

PVk0F(k) = PVk0F(k) + (s1(i)−s2(i))/(1+r)^((i−1)/360);
end

end
PVk0F(k);

end

%PV without flex
PV0 = sum(PVk0)/m
%PV with flex
PV0F = sum(PVk0F)/m

%%%% For the manual estimation with #nkernels

%sort the contents of CF1

for (j = 2:length(CF1))
for (i = 2:length(CF1)−j+2)

if (CF1(i−1) > CF1(i))
tmp = CF1(i−1);
CF1(i−1) = CF1(i);
CF1(i) = tmp;

end

52

end
end

for (j = 2:length(CF2))
for (i = 2:length(CF2)−j+2)

if (CF2(i−1) > CF2(i))
tmp = CF2(i−1);
CF2(i−1) = CF2(i);
CF2(i) = tmp;

end
end

end

%creates intervals and assigns #nkernels kernels

dens = length(CF1)/nkernels;
for (i = 1:nkernels)

%kernEV(i) = sum(CF1((1+(i−1)*dens):i*dens))/dens;
kernEV(i) = CF1(dens/2+(i−1)*(dens));

end

%estimate the density with optimal bandwidth
[bw,den,xmesh] = kde(CF1,2^12,4,16);

%choose bandwidth for the #nkernels

%Grid for the density estimates
z = 4:((16−4)/(2^12−1)):16;

%construct #nkernels kernels

for (i =1:length(kernEV))
K(:,i) = 1/(sqrt(2*pi)*nkernels*h_test)

*exp(−power((z−kernEV(i))/h_test,2)/2);
end

%sum the kernels
T=sum(K,2);

%−−− ISE analysis

%ISE = sum(power((den−T),2)*(16−4)/(2^12−1));

%−−−

%plot kde estimation
kdeplot = plot(xmesh,den);
set(kdeplot,'Color','red','LineWidth',1)

53

hold on

%Plot n−Kernel estimation
plot(z,T);
hold on
%−−−

%{
% single kernels
plot(z,K);
hold on
%}

D GBMVecKernM.m

Contents of GBMVecKernM.m which gathers data through Monte Carlo sim-
ulation. The data is used to calculate {d∗k}:

clear all
clf
% number of timesteps
n = 365;
% number of realizations in the monte carlo simulation
m = 20000;

%number of kernels
nkernels = 50;

%window width
h_test =0.3;

%for the normal distribution
EVn = 10;
sgn = 1.65;

%number of timesteps per day
timestep = 1;

%electricity price drift per day
n1 = 0;

%gas price drift per day
n2 = 0;

54

%electricity price volatility (per day)
sg1 = 0.02;
%gas price volatility (per day)
sg2 = 0.02;

r = 0; %risk−free interest rate

% electricity price GBM
s1 = (1:n+1);
% gas price GBM
s2 = (1:n+1);

s1(1) =40;
s2(1) =30;

%perform monte carlo simulation
for (kn = 5:10:365)

for (k = 1:m)

s1(1) = 40;
s2(1) = 30;

N1 = randn(1,n);
N2 = randn(1,n);

N1 = sqrt(timestep)*N1;
N2 = sqrt(timestep)*N2;

% construct two regular brownian motions for the GBM
for (i = 2:n+1)

t1(1,i) = sum(N1(1,1:i−1),2);
end

% construct two regular brownian motions for the GBM
for (i = 2:n+1)

t2(1,i) = sum(N2(1,1:i−1),2);
end

% construct the electricity price GBM
for (i = 2:length(s1))

s1(i) = s1(1)*exp((n1−sg1^2/2)*i*timestep+sg1*t1(1,i));
end

% construct the gas price GBM
for (i = 2:length(s2))

s2(i) = s2(1)*exp((n2−sg2^2/2)*i*timestep+sg2*t2(1,i));
end

%
CF1(k) = s1(kn)−s2(kn);
% −−

55

end

%%%% For the manual estimation with #nkernels

%sort the contents of CF1

CF1 = sort(CF1);

%creates intervals and assigns #nkernels kernels

dens = length(CF1)/nkernels;
for (i = 1:nkernels)

kernEV((kn+5)/10,i) = sum(CF1((1+(i−1)*dens):i*dens))/dens;
%kernEV((kn+5)/10,i) = CF1(dens/2+(i−1)*(dens));

end
end

E KernAnalysis.m

Contents of KernAnalysis.m which is used to calculate {d∗k}:

load('20kKE2−250.mat');

KE = kernEV;

load('mu(2)20k2−250.mat');

mesh(KE);

i = (1:37);
j = (i−1)*10+3;

for(st = 1:50)
drifts(st) = (KE((1:37),st)'*j(1:37)'
−kernEV(st)*sum(j(1:37)))/(j(1:37)*j(1:37)')

end

56

F CBMultiKDrO.m

Contents of CBMultiKDrO.m which is used to construct binomial trees and
to calculate P̂ V 0,f,0.

warning('off','MATLAB:nchoosek:LargeCoefficient')
T = 365;

load('mu(2)20k2−250.mat');
load('drifts20k2−250.mat');
drifts = drifts − sum(drifts)/length(drifts);
B = [1:(T*(T+1)/2)];
u=0.2162;
d=0.2162;
drift = drifts;
p = 0.5;
S = kernEV;
EV_Flex = 0;
EV = 0;
for (nk = 1:length(S))

%Construct the tree, Tree(i,k) ≤> B((i−1)i/2+k)
for (i = 1:T)

for (k = 1:i)
B((i−1)*i/2+k) = S(nk)+drift(nk)*(i−1)−(i−1)*d+(k−1)*(u+d);
%calc bin coefs
binc(i,k) = nchoosek(i−1,k−1)*p^(k−1)*(1−p)^(i−k);

end
end
%replace negative entries
for (i = 1:T*(T+1)/2)

if (B(i) < 0)
C(i) = 0;
%C(i) = −B(i);

else
C(i) = B(i);
%C(i) = 0;

end
end
%calculate EV of cash flows
%with flex
tmp = 0;
for (i = 1:T)

for (k = 1:i)
tmp = tmp + (1/length(S))*binc(i,k)*C((i−1)*i/2+k);
%tmp = tmp + binc(i,k)*C((i−1)*i/2+k);

end
EV_Flex = EV_Flex + tmp;

57

tmp = 0;
end
%without flex
%{
tmp = 0;
for (i = 1:T)

for (k = 1:i)
tmp = tmp + (1/length(S))*nchoosek(i−1,k−1)

p^(k−1)(1−p)^(i−k)*B((i−1)*i/2+k);
end
EV = EV + tmp;
tmp = 0;

end
%}
nk

end
EV
EV_Flex

G GBMSimOnlySB.m

Contents of GBMSimOnlySB.m which is used to calculate the flexible project
value when switching boundaries are known.

clear all
clf
% number of timesteps
n = 365;
% number of realizations in the monte carlo simulation
m = 10000;

%switching boundaries

a_on = 1.0862;
b_on = 0;
c_on = 1.6178;

a_off = 0.93609;
b_off = 0;
c_off = −1.4759;

scost_on = 20;
scost_off = 20;

58

%number of timesteps per day
timestep = 1;

%electricity price drift per day
n1 = 0;

%gas price drift per day
n2 = 0;

%electricity price volatility (per day)
sg1 = 0.05;
%gas price volatility (per day)
sg2 = 0.02;

%risk−free interest rate
r = 0;

% electricity price UOP
s1 = (1:n+1);

% gas price UOP
s2 = (1:n+1);

s1(1) =40;
s2(1) =30;

absscost = 0;

%perform monte carlo simulation
for (k = 1:m)

running = 1;
scost_tot = 0;

s1(1) = 40;
s2(1) = 30;

N1 = randn(1,n);
N2 = randn(1,n);

N1 = sqrt(timestep)*N1;
N2 = sqrt(timestep)*N2;

% construct two regular brownian motions for the GBM
for (i = 2:n+1)

t1(1,i) = sum(N1(1,1:i−1),2);
end

59

% construct two regular brownian motions for the GBM
for (i = 2:n+1)

t2(1,i) = sum(N2(1,1:i−1),2);
end

% construct the electricity price GMB
for (i = 2:length(s1))

s1(i) = s1(1)*exp((n1−sg1^2/2)*i*timestep+sg1*t1(1,i));
end

% construct the gas price GBM
for (i = 2:length(s2))

s2(i) = s2(1)*exp((n2−sg2^2/2)*i*timestep+sg2*t2(1,i));
end

%calculate the PV without flexibility
PVk0(k) = 0;

for (i = 2:length(s1))
PVk0(k) = PVk0(k) + (s1(i)−s2(i))/(1+r)^((i−1)/360);

end

%calculate the PV with flexibility
t_off = zeros(1,length(s1));
t_on = zeros(1,length(s1));

PVk0F(k) = 0;

for (i = 2:length(s1))
if (running == 0 && s1(i) ≥ (a_on*s2(i)+b_on*s2(i)^2+c_on))

running = 1;
t_on(i) = 1;
scost_tot = scost_tot + scost_on;

end

if (running == 1 && s1(i) ≤ (a_off*s2(i)+b_off*s2(i)^2+c_off))
running = 0;
t_off(i) = 1;
scost_tot = scost_tot + scost_off;

end

if (running == 1)
PVk0F(k) = PVk0F(k) + (s1(i)−s2(i))/(1+r)^((i−1)/360);

end
end

PVk0F(k) = PVk0F(k) − scost_tot;
absscost = absscost + scost_tot;
scost_tot = 0;

60

end

%PV without flex
PV0 = sum(PVk0)/m
%PV with flex
PV0F = sum(PVk0F)/m

H osGBM.m

Contents of osGBM.m which uses Fackler’s framework to find approximate
switching boundaries for price processes modeled as geometric brownian mo-
tions.

mu=0.01;
sigma=0.01;
rho=0.04;
h=2;
k=1;
C12=20;
C21=20;

clear model
model.func='turbine';
model.params={mu,sigma,rho,h,k};
model.C=[0 C12;C21 0];

% solve as a two dimensional problem
fspace=fundefn('spli',[41 41],[0 0],[120 100]);
[cv,snodes,x]=ossolve(model,fspace);
z=getboundaries(snodes,x);
z12=z{1,2};
z21=z{2,1};
z12(:,2)=−z12(:,2); z12=sortrows(z12,[1 2]);z12(:,2)=−z12(:,2);
z21(:,2)=−z21(:,2); z21=sortrows(z21,[1 2]);z21(:,2)=−z21(:,2);

figure(1);
plot(z12(:,1),z12(:,2),'−r',z21(:,1),z21(:,2),'−k')
hold on
x = [0:0.1:120];
plot(x,x,'−−')
title('Approximate Switching Boundaries')
xlabel('kP_g')

61

ylabel('P_e')

xlim([0 120])
ylim([0 120])

figure(1)

I osGOU.m

Contents of osGOU.m which uses Fackler’s framework to find approximate
switching boundaries for price processes modeled as geometric Ornstein-
Uhlenbeck processes.

mu=0.01;
sigma=0.1;
rho=0.04;
h=30;
k=0.01;
C12=20;
C21=0;

clear model
model.func='turbinegou';
model.params={mu,sigma,rho,h,k};
model.C=[0 C12;C21 0];

% solve as a two dimensional problem
fspace=fundefn('lin',[20 15],[0 0],[70 70]);
[cv,snodes,x]=ossolve(model,fspace);
z=getboundaries(snodes,x);
z12=z{1,2};
z21=z{2,1};
z12(:,2)=−z12(:,2); z12=sortrows(z12,[1 2]);z12(:,2)=−z12(:,2);
z21(:,2)=−z21(:,2); z21=sortrows(z21,[1 2]);z21(:,2)=−z21(:,2);

figure(1);
plot(z12(:,1),z12(:,2),'−r',z21(:,1),z21(:,2),'−k')
hold on
x = 0:0.01:120;
plot(x,x,'−−')
title('Approximate Switching Boundaries')
xlabel('kP_g')
ylabel('P_e')

62

xlim([0 120])
ylim([0 120])

figure(1)

J turbine.m

Contents of turbine.m which defines the geometric brownian motion model.

function out=turbine(flag,s,x,mu,sigma,rho,h,k)
switch flag

case 'f'
out=(s(:,2)−s(:,1)).*(x==2);

case 'mu'
out=[zeros(size(s,1),1) zeros(size(s,1),1)];
%out=[mu*s(:,1) mu*s(:,2)];
%

case 'sigma'
out=[2*sigma*s(:,1) zeros(size(s,1),2) 5*sigma*s(:,2)];
%zeros(size(s,1),3)

case 'rho'
out=rho;

case 'c'
out=zeros(size(s,1),2);
if x==1, out(:,2)=20; else, out(:,1)=20; end

end

K turbineGOU.m

Contents of turbineGOU.m which defines the geometric Ornstein-Uhlenbeck
model.

function out=turbinegou(flag,s,x,mu,sigma,rho,h,k)
switch flag

case 'f'
out=(s(:,2)−s(:,1)).*(x==2);

case 'mu'
out=[k*(h−s(:,1)).*s(:,1) k*((h+10)−s(:,2)).*s(:,2)];
%out=[mu*s(:,1) mu*s(:,2)];

63

%
case 'sigma'

out=[5*sigma*s(:,1) zeros(size(s,1),2) 2*sigma*s(:,2)];
%zeros(size(s,1),3)

case 'rho'
out=rho;

case 'c'
out=zeros(size(s,1),2);
if x==1, out(:,2)=5; else, out(:,1)=2; end

end

64

