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Abstracts

During the last two decades the electricity market has gone through overwhelming
changes. From monopoly to market orientation and exchange markets, where contracts are
traded on the spot market not only daily contracts but also forward and futures contracts.
This development has made risk management an important part of the utility companies
with hydroelectric assets. It is in this area that this thesis a�ects and it gives the
development of risk management a push, which leads to higher net revenues for utility
companies. The contribution of this thesis is to prove that the new formulation of CVaR
implemented in Stochastic Dynamic Programming (SDP)/Stochastic Dual Dynamic
Programming (SDDP), which are state-of-the-art in algorithms for mid-term hydroelectric
assets operation optimization, is the best risk measure for minimizing the risk of a real
electric system. The new CVaR formulation is proven to be more e�cient in the sense that
it gives higher value net revenues.
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1. Introduction

During the non-competitive market period in the industry, the electricity sector was con-
sidered a natural monopoly, which was not subjected to the rules of competition in the EU
treaties. The development of the electricity market in most developed countries have gone
through a reform evolving from public-monopoly to a competitive de-regulated environment.
Among all the EU states,the UK, the Nordic countries and Germany were able to develop
functioning competitive markets. These market changes have lead to the development of
the exchange markets where in the beginning it was just daily contract but later on forward
and futures contracts were introduced. Which gives the means to further understand the
reason of existence of the problem that is analyzed in this thesis and identi�cation of the
emergence of electricity �nancial markets in the various countries. The roll of the exchange
market is of great importance because of the possibility of hedging against loss or low rev-
enues. This exchange market has become centralized in regions and has help to develop
a healthy competition between market players. One example of such market is the nordic
NordPool. Hence, on the free competitive market the electricity industry had to adapt to the
same rules that other industries had, but there are one di�erence and that is the property
of electricity which aren't the same as other products.

With the liberalization, every energy utility company are seeking to maximize their net
revenues by operate their hydroelectric assets' portfolio in a time dynamic way that is by
deciding their reservoir operation and trading volume in the exchange market. The whole
optimization are subject to their de�ned �nancial risk pro�le. One of the latest contribu-
tions to area is the state-of-the-art algorithm in mid-term hydroelectric optimization, the
SDP/SDDP, with the implemented risk control process of CVaR (see [Iliadis et al.(2008)]).

It should also be mentioned that the majority of risk management models used in the
industry today, measure today's risk for the entire time horizon a sum of the net revenues
during the horizon. This approach leaves the company exposed to attain prohibitive levels
of low net revenues during this period. A process to cope with the non-static nature of risk
and avoid missing any information about the risk of a portfolio is by measuring it in various
periods.

In [Iliadis et al.(2008)] it was shown that the theory and the new de�nition of CVaR worked
for a single hydroelectric power plant. The question is, will it work in a more realistic system
of hydroelectric and thermal power plants like it is in a real utility companies. We set up a
more realistic system but a bit smaller than it is in reality (see �gure 1) and for this system
we will try to prove that the new formulation of CVaR implemented in SDP/SDDP gives
us the best revenues compare to other risk measures. In this thesis, we apply the �nancial
risk control-processes in the optimization algorithm for a single period constraining the sum
of net revenues scenario at the end of the time horizon, this is done without any loss of
generality or precision. We will also focus on hydroelectric assets, having access to spot and
forward physical markets. The company is a price taker in our model.

The hydroelectric asset operation optimization subjected to �nancial risk, is characterized
as a large-scale and stochastic problem, with two stochastic variables; water in�ows and
electricity spot prices. The later problem can be solved by using the hybrid Stochastic Dy-
namic Programming (SDP) / Stochastic Dual Dynamic Programming (SDDP) algorithm
(see [Pereira et al. (1991)] and [Gjelsvik et al. (1996)]). An important property of the
electricity is that the produced electricity has to be consumed simultaneously. This raises
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an important management task, how to maintain balance in production/consumption at
all times. This property leads to the electricity markets' net revenue distribution have the
characteristics of skewness (larger number of upsides than downsides represented by lognor-
mal distributions) and kurtosis ("heavy tails" resulting from "price spikes"), (see [Clewlow
et al. (2000)]). The latter characteristics have to be considered when applying a �nan-
cial risk control process within this context. Through the developments made, we make
use of risk control processes such as Rmin (see [Fleten (2000)], [Mo et al. (2001)b] and
]Kristiansen (2004)]), VaR (see [Roy (1952)], [Markowitz (1959)] and [Bava (1978)]) and
CVaR (see [Rockafellar et al. (2000)]). The widely used risk indicators in academia and
industry are VaR and, its enhanced extension, CVaR. These two indicators had not been
directly implemented as risk control processes in SDP/SDDP, until [Iliadis et al. (2008)]
implemented CVaR in SDP/SDDP. Instead, companies use the already implemented non-
probabilistic1 risk control process, Rmin, as a proxy to simulate the risk control on the net
revenue distribution of VaR and CVaR. Nevertheless, there are portfolio optimality issues
that arise when Rmin is used as a proxy. The nature of the SDP/SDDP algorithm does not
allow the direct implementation of all types of risk control-processes because of its complex
mathematical formulation. Therefore, it is necessary to select one of risk control-processes
that is appropriate for the electricity industry, one that can be implemented e�ciently in
the optimization algorithm and yield coherent results. CVaR, although is appropriate for
the electricity industry, it has a multistate2 and multistage3 nature, thus making its imple-
mentation directly into SDP/SDDP algorithm not possible. So, in order to overcome this
problem [Iliadis et al (2008)] proposed a mathematical formulation that makes the imple-
mentation of CVaR in SDP/SDDP possible. To develop the theory further it is important
to prove it, for a more realistic system with the di�erent parts of electricity production in
a utility company. In [Iliadis et al. (2008)] it was shown for a single hydro electric power
plant. Hence, this model will be expanded to prove that the theory still works.

In this thesis we are going to explain how the SDP, SDDP and SDDP/SDP works, but
the prove we are searching for are derived from optimization in a Mixed Integer Linear
Programming (MILP).

1The non-probabilistic nature of Rmin, renders it a non-applicable risk control process when used directly
on its own

2We de�ne the constraints that involve state variables across the stage as multistate
3We de�ne the constraints that involve state variables across the entire horizon and in a non sequential

order as multistage
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2. Background and Theory

We will try to explain the general property of the operational research techniques such
as SDP, SDDP and SDDP/SDP and the di�erent risk measure. To see the formulation of
CVaR implemented in the SDDP/SDP we refer to [Iliadis et al. (2008)] were the problem are
presented and implemented. The main problem in this thesis is to prove that the new CVaR
formulation works for bigger system (that is system bigger than only one hydroelectric plant)
compared to VaR and Rmin, therefore we only will explain the theory of the operational
research techniques and the risk measures.

2.1 Operational Research techniques

Because of the complexity of optimizing the operation of hydroelectric assets and the direct
relation between their operation and their hedging strategy, also as a result of the appli-
cation and implementation of risk control process, the computation of a hedging strategy
should be made jointly with the operation. Therefore, to get a greater understanding of
the optimization, we present the theory of SDP (see [Bellman R. (1957)]) and discuss it's
usability for solving the mid-term hydroelectric operation optimization problem. Due to the
large size of the problem examined in this thesis, we refer to the limitations of SDP and
hence present and discuss SDDP and then SDP/SDDP, which is suitable for this problem
class. But to begin with some background information will be presented.

The problem (60)-(76) could be solved as a large LP calculating all the decision variables at
one stage. However, the actual scheduling problem can involve a planning horizon of several
years, several hydroelectric plants in di�erent cascades and a large number of joint water
in�ow and spot market price scenarios. Due to the exponential increase of in�ow branches
with time, the resulting stochastic optimization problem quickly becomes computationally
infeasible. This computational infeasibility has motivated the development of solution pro-
cesses based on a state-space formulation described next.
To reduce the dimension, we solve this large optimization problem by decomposing it in
time stages. More speci�cally, we solve smaller sub-problems using the Bellman principle of
optimality (see [Bellman (1957)]), which states that:

"No matter in what state of what stage one may be, in order for a policy to be optimal, one

must proceed from that state and stage in an optimal manner."

The elusive principle can be reformulated as maximizing the sum of immediate bene�ts
(IB) plus expected future bene�ts (FB) at each stage t. Immediate bene�ts (IB) take into
account sales on the spot market and costs in buying from the spot market. Future bene�ts
(FB) are the cumulated immediate respective bene�ts from the stage t + 1 until the end
of the planning horizon T . Since these future bene�ts are stochastic due to the price and
hydrologic uncertainties, we take their expected value. For every stage, the FB and IB are
represented by their respective functions (see Figure 1).
The derivative of the FB function (FBF), for the dimension of water volume reservoir and FB,
represents the future water value and the derivative of the IB function (IBF) the immediate
water value. Hence, according to the decision variable that we are interested in calculating
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its sensitivity with respect to the objective function, we calculate its derivative. Therefore,
for the water reservoir volume decision variable, the water values, inform on the change in
the total net revenues that would result from a small change in the availability of water in
the reservoir. At the optimal solution of each sub-problem, the immediate and expected
future water values are equal (see Figure 1). This is the optimal trade-o� between the
immediate and future use of water in an uncertain environment. Based on the problem

Figure 1: Water values at the optimal solution - example with the release decision for a
single reservoir.

formulated in (3)-(19), given the initial storage vt(i), the in�ow at stage t, at(i), where
through its stochastic in�ow model is conditioned from the value at stage t− 1, at−1(i), the
spot sell price at stage t, Πs

t , the spot buy price at stage t, Πb
t , where through its stochastic

price model is conditioned from the value at stage t − 1, Πs
t−1 and Πb

t−1, and the (FBF)
βt+1(vt+1(i), at(i),Πs

t ,Π
b
t), the one stage hydroelectric dispatch problem is formulated as:
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βt(vt(i), at−1(i),Πs
t−1,Π

b
t−1) = max[RSst − CSbt −

K∑
k=1

gt(k)c(k) + βt+1(vt+1(i), at(i),Πs
t ,Π

b
t)]

(1)

subject to:

vt+1(i) = vt(i)− ut(i)− wt(i) + at(i)tsds +
∑
j⊂U(i)

(ut(j) + wt(j))} for i = 1, ..., I (2)

vt+1(i) > 0 for i = 1, ..., I (3)

at(i) > 0 for i = 1, ..., I (4)

ut(i) > 0 for i = 1, ..., I (5)

wt(i) > 0 for i = 1, ..., I (6)

vt+1(i) 6 vmax(i) for i = 1, ..., I (7)

ut(i) 6 umax(i) for i = 1, ..., I (8)

gt(k) 6 gmax(k) for k = 1, ...,K (9)

et(i) = ρ(i)ut(i)
tsdh
tsds

for i = 1, ..., I (10)

et(i) > 0 for i = 1, ..., I (11)

RSst = Πs
te
s
t (12)

CSbt = Πb
te
b
t (13)

I∑
i=1

et(i) + ebt +
K∑
k=1

gt(k) = est + dt for i = 1, ..., I, k = 1, ...,K (14)

The variables vt(i), at−1(i) and Πt−1 in the equations above are the state variables of the
SDP recursion. The function βt(vt(i), at−1(i),Πt−1) represents the expected operational cost
from stage t to the �nal stage T , assuming that the initial storage vector in stage t is vt(i),
the observed in�ow vector in the previous stage is at−1(i) and the observed price in the
previous stage is Πt−1.
Thus, the major problem becomes the calculation of the FBF for every stage as accurately
as possible. For that reason, we have recourse to the discreet state and space representation
of the problem using Stochastic Dynamic Programming.

2.1.1 SDP algorithm

In SDP, we use discrete reservoir volume values and solve the problem for each stage and
state. Each solution represents a point in the FBF. Using interpolation techniques such
as SP-lines we can de�ne the function passing through these points (see [Tejada-Guilbert
Johnson et al. (1993)] and [Johnson et al. (1993)]).
We describe the SDP recursion steps for the case of net revenue maximization. We consider
for each stage and state as state variable the initial reservoir volume at this stage (equal
to the ending volume of the previous stage), the water in�ow and spot market price of the
previous stage. For dimensionality reasons and illustration purposes, the steps presented
refer to a single reservoir. That means that the �gures used for the description of the SDP
Recursion steps are for a single reservoirs. These steps are:
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1. for each stage (t) (typically a week or month) de�ne a set of system states indexed by
m = 1, . . . ,M , for example, reservoir levels at 100%, 90%, etc. until 0%. The following
�gure (see Figure 2) illustrates the system state (nodes) de�nition for a single reservoir.
Note that the initial state (i.e. storage levels at the beginning of the �rst stage) is
assumed to be known.

Figure 2: De�nition of System States in SDP recursion.

2. start with the last stage, T , and solve the one-stage hydroelectric dispatch problem
using the previous stage's in�ows and prices to calculate the actual ones assuming that
the initial reservoir storage corresponds to the �rst storage level selected in step (1) -
for example, 100%. Because we are at the last stage, assume that the future bene�t
function is zero4. The procedure is illustrated in Figure 3.

Figure 3: Optimal Strategy Calculation - Last Stage.

3. Calculate the expected operational bene�t associated to storage level 100%. This is the
�rst point of the expected future bene�t function for stage T−1 i.e. βT (vT (i), aT−1(i),ΠT−1).
Repeat the calculation of expected operation bene�ts for the remaining states in stage
T . Interpolate the future bene�ts between calculated stages, and produce the FBF
βT (vT (i), aT−1(i),ΠT−1) for stage T − 1, as illustrated in Figure 4.

4. The process is then repeated for all selected states in stage T − 1, as illustrated in
Figure 5. Note that the objective is now to maximize the immediate operation bene�t
in stage T − 1 plus the expected future bene�t, given by the previously calculated
FBF.

4This consideration is only occurring in the beginning. This however does not mean that the dam is
empty, but the horizon ends there. Using as initial conditions the reservoir level of the beginning and the
end of the horizon, we proceed to the system optimization. In addition, in order not to in�uence the optimal
reservoir level of the initial and �nal stage we use bu�er years before and after the year that we will analyze.
This way the e�ects of the initial conditions are smoothed out.
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Figure 4: Calculation of the FBF for Stage T-1.

Figure 5: Calculation of Operation Bene�ts for Stage T-1 and FBF for stage T-2.

5. Repeat the procedure of step (3) and step (4) for the remaining stages T − 2, T − 3
etc.

The SDP scheme is straightforward to implement and has been used widely in most hydro-
dominated countries. However, as seen above, the SDP recursion requires the enumeration
of all combinations of initial storage values with previous water in�ows and spot market
prices. Consequently, computational e�ort increases exponentially with the number of reser-
voirs, known as "curse of dimensionality" of DP (see [Pereira et al. (1985)] and [Pereira et
al. (1991)]). For this reason, it has became necessary to develop computationally feasible
state-space schemes. The traditional process has been to reduce system dimensionality by
the aggregating system reservoirs into one reservoir that represents the energy production
capability of the cascade.
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2.1.2 SDDP algorithm

In order to solve the problem of dimensionality, an extension of the SDP algorithm called
Stochastic Dual Dynamic Programming (SDDP) was developed by [Pereira et al. (1991)].
The basic idea of SDDP is to construct an approximation of the FBF that does not rely on
interpolation techniques to determine the value of the functions between the grid points, as
in SDP, but on extrapolation based on a point and its slope (see Figure 6). Hence, as the
FBF is described by a piecewise linear function (see Figure 7), the concavity of the described
FBF has to be guaranteed5. The slope coe�cient calculation consists on the partial deriva-
tive of the objective function at optimal solution, with respect to the state variable we wish
to calculate the slope coe�cient. Through the calculation of the abovementioned derivative
and the application of chain rule, we can identify the value of the Lagrange multipliers6.Our
proposed process is to discretize the reservoir volume values state variable, as in the tradi-
tional SDP scheme, and apply the SDDP scheme while using the other state variables.

Figure 6: It illustrates, for a single reservoir (for reasons of dimensionality and illustration),
the Dual DP calculation of expected operation cost and FBF slope for the last stage, initial
state = 100% of reservoir level (step (3) of the traditional DP procedure).

5The process of a non-concave (or non-convex) function is not possible since the monotonicity is not of
the same sign for the whole function. Hence, try to process a function for which the monotonicity sign
changes then we cannot guarantee an envelope of piecewise linear approximation for this function.

6It equal the partial derivative of the objective function in the optimal solution with respect to the right-
hand-side (RHS) of the constraints associated with the state variable for which we wish to calculate the
slope for. This is the explanation for the use of the word "Dual" in SDDP, where the solutions comes from.
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The last-stage dispatch problem is shown below (note that the future bene�t function in
this stage, βT+1(vT+1(i), aT (i),Πs

T ,Π
b
T ), is set to zero):

WT = max[RSsT − CSbT −
K∑
k=1

gT (k)c(k)] (15)

subject to:

vT+1(i) = vT (i)− uT (i)− wt(i) + aT (i)tsds +
∑
j⊂U(i)

(ut(j) + wt(j))} for i = 1, ..., I

(16)

vT+1(i) > 0 for i = 1, ..., I (17)

aT (i) > 0 for i = 1, ..., I (18)

uT (i) > 0 for i = 1, ..., I (19)

wT (i) > 0 for i = 1, ..., I (20)

vT+1(i) 6 vmax(i) for i = 1, ..., I (21)

uT (i) 6 umax(i) for i = 1, ..., I (22)

gT (k) 6 gmax(k) for k = 1, ...,K (23)

eT (i) = ρ(i)uT (i)
tsdh
tsds

for i = 1, ..., I (24)

eT (i) > 0 for i = 1, ..., I (25)

RSsT = Πs
T e

s
T (26)

CSbT = Πb
T e

b
T (27)

I∑
i=1

eT (i) + ebT +
K∑
k=1

gT (k) = esT + dT for i = 1, ..., I, k = 1, ...,K (28)

It is well known from Linear Programming (LP) theory that there is a set of Lagrange
multipliers associated to the set of constraints, and so is the case with the abovementioned
problem. The multipliers associated to the water balance equation, λLT (i), represent the
derivative of WT with respect to a variation in initial storages vT (i):

λLT (i) =
∂WT

∂vT (i)
for i = 1, ..., I (29)

We see in Figure 7 that the expression above corresponds to the slope of the FBF for stage
T − 1. Figure 8 shows the calculation of operation net revenue and FBF slopes for each
state in stage T for a single reservoir (for reasons of dimensionality and illustration). We
see that the FBF βT (vT (i), aT−1(i),ΠT−1) for stage (T ) corresponds to the piecewise net
revenue surface produced by taking the linear segment with the highest revenue value in
each state (concave hull).

The hydroelectric dispatch for the stage T − 1 is represented as a LP problem:
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Figure 7: Calculation of a Piecewise FBF for Stage T-1.

βT−1(vT−1(i), aT−2(i),Πs
T−2,Π

b
T−2) = max[RSsT−1 − CSbT−1 −

K∑
k=1

gT−1(k)c(k)

+βT (vT (i), aT−1(i),Πs
T−1,Π

b
T−1)] (30)

subject to:

vT (i) = vT−1(i)− uT−1(i)− wT−1(i) + aT−1(i)tsds +
∑
j⊂U(i)

(ut(j) + wt(j))}

for i = 1, ..., I (31)

vT (i) > 0 for i = 1, ..., I (32)

aT−1(i) > 0 for i = 1, ..., I (33)

uT−1(i) > 0 for i = 1, ..., I (34)

wT−1(i) > 0 for i = 1, ..., I (35)

vT (i) 6 vmax(i) for i = 1, ..., I (36)

uT−1(i) 6 umax(i) for i = 1, ..., I (37)

gT−1(k) 6 gmax(k) for k = 1, ...,K (38)

eT−1(i) = ρ(i)uT (i)
tsdh
tsds

for i = 1, ..., I (39)

eT−1(i) > 0 for i = 1, ..., I (40)

RSsT−1 = Πs
T−1e

s
T−1 (41)

CSbT−1 = Πb
T−1e

b
T−1 (42)

I∑
i=1

eT−1(i) + ebT−1 +
K∑
k=1

gT−1(k) = esT−1 + dT−1 for i = 1, ..., I, k = 1, ...,K (43)

βT ≤ τmT + κmT (i)vT (i) + εmT (i)aT (i) for m = 1, ...,M (44)

where:
τmt (i): intersection of segment m of the hyper-plane with the y-axis at stage t - [kEUR]
κmt (i): Slope coe�cient of the segment m for the vt(i) state variable at stage t for reservoir
i - [-]
εmt (i): Slope coe�cient of the segment m for the at(i) state variable at stage t for reservoir
i - [-]
m: number of linear segments of the FBF - [-]
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In the FBF described above, we should have also included a term for the price state variable.
Nevertheless, as it will be shown in the following paragraph, the price cannot be accounted
for a state variable but it will be transformed to a parameter. The FBF is represented by
the scalar variable βT andM linear constraints βT ≤ τmT +κmT (i)vT (i)+εmT (i)aT−1(i), where
m is the number of linear segments. As shown in Figure 13, for the dimension of vT (single
reservoir) the inequalities βT ≤ τmT + κmT (i)vT (i) + εmT (i)aT−1(i) represent the piecewise
characteristic of this function (for any vT , the segment with the lowest value κmt vt + τmt will
always be binding).

Figure 8: Piecewise linear (envelop) of the future bene�t function for a single reservoir.

Hence, summarizing the algorithm, the main steps would be:

1. Start with some lower bound of the FBFs.

2. Backward optimize7 (improve FBF and �nd upper bound of the problem).

3. Make forward simulation8 (realistic state space, �nd lower bound of the problem).

4. Iterate (2) and (3) until stochastic convergence of the upper with the lower bound.

The results are the FBFs (operating policies) and the operating decisions per stage.

7The word backward optimization is used for the process of the policy calculation. Since in dynamic
programming the policy is calculated through the backward recursion, for that reason the word backward is
used.

8The forward simulation is the process where, the in�ow and price scenarios are used in the calculated
policy of the backward optimization, and calculate the optimal solution for each scenario.
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2.1.3 Hybrid SDP/SDDP algorithm

The development of SDP/SDDP began with experimentation with nested Benders' decom-
position (see [Benders (1962)]) in electricity models this was used and developed further by
([Pereira et al. (1985)], [Jacobs et al. (1995)] and [Morton (1996)]). The problem is that the
SDDP scheme cannot be applied directly to the net revenue maximization recursion because
the FBF βt+1(vt+1(i), at(i),Πt) is saddle-shaped (see [Cvatal (1983)]), i.e. concave on the
dimensions for storage and past in�ows, and convex on the dimension of spot price9. Hence,
the approximation of this multidimensional surface using Bender's cuts (hyper-planes) is
not possible anymore. The problem being considered as such, we have to calculate the La-
grangian multipliers for a function that is convex for one variable (prices) and concave for
the other (volume of the reservoir) forming a saddle shaped point. Therefore, we would have
to process simultaneously a surface from its upper and lower part. In order to overcome
the latter problem the price were transformed from a state variable to a parameter, dis-
cretizing thus the problem on the price component. The discretization process is in practice
the application of the SDP algorithm for the dimension of price while still maintaining the
application of the SDDP algorithm in the dimension of reservoir volume and the other state
variables. The latter method applied is called hybrid SDP/SDDP, where we transform the
electricity spot market prices to a discrete state variable equivalent to a parameter to the
problem. In the new problem, price is the discrete state variable of an SDP algorithm in
which each sub-problem for the volume state variable of the latter algorithm is solved by
SDDP (see [Gjelsvik et al. (1996)], [Fosso et al. (1999)] and [Pereira et al. (2000)]).
Hydroelectric operation optimization models are very sensitive to the way electricity price
forecasting and water in�ow forecasting are calculated. More speci�cally, the in�ow process
is multidimensional and has strong seasonal components. Forecasting the in�ows and cap-
turing the structure of the process and their degree of predictability is of vital importance
to hydroelectric scheduling models (see [Tejada-Guilbert Johnson et al. (1995)]). Inside
the SDP/SDDP algorithm, the water in�ow uncertainty is captured using an autoregressive
(AR) model of variable lag for each stage and incremental in�ow point, taking into consid-
eration spatial cross correlation. The AR(P) model is calibrated using the historical in�ow
series that we enter as input in order to generate the synthetic forecasted scenarios. In the
formulation below the in�ows will be considered through an autoregressive model of order
1, that is AR(1) model:

at(i) = ω1t(i)at−1(i) + ω2t(i)ξ + ω3t(i) (45)

where, ω1t(i), ω2t(i) and ω3t(i) are model parameters, and ξ is a random variable. As there
is one in�ow model for each stage of the year (month/week), the index t of the parameter
ω is related to the model at stage t.

The electricity prices inside SDP/SDDP model is input in scenarios, which are calculated
externally using sophisticated price-forecasting models (see [Mo et al. (2001)] and [Haugstad

9The fact that the FBF in the dimension of prices is convex and in the dimension of volumes is concave
comes directly form the theory of LP (see [Cvatal (1983)]). Since the prices are a part of the objective
function, when they vary, the resulting function is convex. On the contrary, the initial reservoir volumes are
on the RHS (right-hand-side) of the constraints and when they vary, the resulting function is concave.
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et al. (1998)]). Since the price process is represented using an SDP formulation and discreet
prices, we have to guarantee that the prices follow the stochastic process between two stages.
Inside the model, the price uncertainty is perceived via a Markov chain process (autoregres-
sive of order 1). In order to calculate the transition probabilities of two consecutive stages
we use a clustering method and calculate price clusters for every stage (t), for the electricity
prices scenarios. Out of the joint scenarios, we detach the price scenarios and we cluster
them. The objective functions described by β, FBF, at each stage, are constructed during
the SDDP algorithm iterations for each price cluster (see [Iliadis et al. (2008)]). At the
same time all features of the SDDP algorithm such as piecewise functions are still applicable
and the overall computational e�ort is not a�ected by the representation of the spot price
state variable. It should also be mentioned that the spot price does not increase the number
of combinations as it is considered as a parameter and not as a state variable (the reason
for that is the assumption of the number of price clusters are smaller than the number of
hydrological scenarios).

As described, the SDP/SDDP algorithm o�ers the possibility of taking into account the
stochastic water in�ows and electricity prices, and considering all technical details of the
system while solving the problem within acceptable computational times. The importance
of considering a stochastic model can be seen directly in the operation results. Although
schedulers might feel more comfortable with deterministic models, the solutions reached
underestimate the true operating pro�ts and the risk of spilling water. Deterministic models
do not see any value di�erence between waiting and releasing water in order to learn more
about future in�ows and prices (see [Araripe Neto et al. (1985)] and [Philbrick et al. (1999)]).
Other reason why hydroelectric optimization is computed through the complex algorithm of
SDP/SDDP is to tackle problems with large number of hydroelectric assets. In lately, the
algorithm based on SDP/SDDP has been applied in several countries10, and more and more
are using it.

Once more we repeat the main steps and calculate the Upper and Lower bound (see [Pereira
et al.(1985)] and [Pereira et al.(1991)]):

1. Start with some lower bound of the FBFs.

2. Backward optimize (improve FBF and �nd upper bound of the problem). In the Dual
DP scheme, the piecewise linear segments can be used to extrapolate the FBF values,
i.e. it is not necessary to use all combinations of points to obtain a complete (although
approximate) FBF. Moreover, if a smaller number of initial storage values are used, a
smaller number of linear segments will be generated. As seen in Figure 8, the resulting
FBF, which is based on the maximum value over all segments, will then be an upper
bound to the "true" function.

3. Make forward simulation (realistic state space, �nd lower bound of the problem). A
lower bound can be obtained by the forward simulation of the system operation, using
the set of FBF produced by the recursion scheme. This is because the only FBF that
can result in the optimal expected operation net revenue is the optimal function itself;
all others, by de�nition, have to result in lower operation revenues.

10in South and Central America, USA, New Zealand, Spain and Norway
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4. Iterate (2) and (3) until stochastic convergence of the upper with the lower bound. If
the lower bound and the upper bound do not satisfy the convergence criteria de�ned
by the user for the approximation of the FBF, then the backward recursion is executed
again with an additional set of state variable values. The natural candidates for the
new values are these produced by the forward simulation step. We should note that
the linear segments calculated in the previous iteration are retained, because the piece-
wise FBF is given by the maximum over all segments. In other words, it is possible to
improve gradually the FBFs representation.

2.2 Risk Measures

For further understanding, of the di�erent risk control processes, we present the properties
of the di�erent risk measures (3.1.1. Rmin, 3.1.2. VaR and 3.1.3. CVaR).

2.2.1 Rmin

The risk control process Rmin (see [Fleten (2000)], [Mo et al. (2001)b] and [Kristiansen
(2004)]) is characterized by the minimum acceptable net revenue imposed on a probabilistic
distribution of scenarios. Rmin implies that all the scenario revenues that are under the
desired level will have to be improved in order to get as much as the imposed level of Rmin
or higher. This can be achieved through the simultaneous optimization of the reservoir
operation and contracting decisions. If it is implemented as a hard constraint11, it might
lead to an unfeasible solution of the problem due to the impossibility of guaranteeing the
desired minimum revenues for a set of scenarios. Moreover in the industry, the minimum
net revenue with probability P=1 is neither interesting nor realistic to be achieved12. In
any case where a minimum net revenue level has to be guaranteed for all scenarios, the
designed hedging policy will be costly due to the high-risk aversion of the portfolio and
therefore excessive hedging in the market. Thus, in order to allow the Rmin constraint to be
violated in certain occasions and, 1) to avoid the above-mentioned feasibility problems, and
2) to simulate a probabilistic risk control process, such that P 6= 1, a relaxation technique is
applied. In this case, instead of using the hard constraint we use a violation decision variable
13, which takes into account the di�erence between the imposed level and the solution level
(if not achieved). The new constraint including the violation decision variable is relaxed
using a Lagrangian Relaxation where the constraint is inserted in the objective function
and multiplied by a penalty coe�cient. This can be seen as a risk control process using a
penalization technique (see [Haneveld Klein et al. (2003)]).
Until now Rmin was the only risk control process that was implemented in SDP/SDDP, and
used by the utility companies. Through the description of Rmin we have observed that Rmin
is neither a true risk control process nor a probabilistic one. Thus through the Rmin level
and the penalization coe�cient adjustments, probabilistic constraints such as VaR and its
enhanced extension, CVaR, can then be simulated, in the case were SDP/SDDP optimization

11Hard constraints represent absolute limitations imposed on a system
12In this case, the level of the risk aversion is equivalent to imposing a V aR100 equal to a speci�c level
13A violation decision variable is used to represent the di�erence between the RHS (Right Hand Side) and

the LHS (Left Hand Side). Relaxing a decision variable, we allow to the constraint to be violated. According
to the severity of the penalty coe�cient of the Lagrangian Relaxation, we can increase or reduce the level
of the constraint violation
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algorithm is used. Hence, the transformation of the hard constraint into a relaxed one
inside the objective function using a penalty coe�cient aims at making it the simulation of
probabilistic constraints. This process is fastidious and computationally consuming process
to yield results when used as a proxy. It is not appropriate to be used as a proxy to simulate
the VaR risk control process for the net revenues distribution. In the same context it does
not guarantee an optimal portfolio, when used as a proxy to simulate the CVaR risk control
process on the revenues distribution with respect to the desired CVaR level. This occurs
mainly because the two-abovementioned risk control-processes have not been implemented
yet in the SDP/SDDP algorithm. The use of Rmin as a risk control process might lead
to exceedingly risk adverse portfolios involving costly hedging programs. In [Iliadis et al.
(2006)], a series of results, using the tool mentioned in the paragraph above, placing in
evidence the weaknesses of the Rmin 14 risk control process and its optimality issues when
applied in mid-term hydroelectric assets portfolio operation optimization.

2.2.2 Value-at-Risk

We now introduce the widely used risk measure known as Value-at-Risk (VaR), which is
recommended by (see [Basel Committee on Banking Supervision (2004)]). In [Hult and
Lindskog (2007)], the Value-at-Risk is de�ned as such:
De�nition:Given a loss L and a con�dence level α ∈ (0, 1), V aRα(L)is given by the smallest

number l such that the probability that the loss L exceeds l is no larger than 1− α, i.e.

V aRα(l) = inf{l ∈ R : P (L > l) 6 1− α}
= inf{l ∈ R : 1− FL(l) 6 1− α}
= inf{l ∈ R : FL(l) > α} (46)

The VaR is de�ned as the α:th percentile of the portfolio return. In the mid-term hydro-
electric portfolio operation optimization imposing a level of VaR for an α probability, leads
to guarantying that the net revenues scenarios situated in the upper part of the distribution
(belonging to the α:th percentile interval) are higher than the desired level de�ned. That
is, VaR measures the worst expected loss of a portfolio to a speci�c con�dence level during
a given period of time under normal market conditions. VaR is widely used as risk manage-
ment indicator, it has become a standard (see [Risk Metrics (1996)] and [Jorion (2000)]).
The reason for this is its simple interpretation and allows the user to focus its analytic
resources on "normal market conditions" (see [Basak et al. (2001)]). In addition, [Wang
(1999)] shows that VaR can be applied in multi-period optimization of �nancial portfolios.
Hence, the latter is very important since hydroelectric portfolio optimization has to be con-
sidered in a multi-period way.

14Rmin stands for minimum revenues and is a risk control process that guarantees a desired level of
minimum revenues in the portfolio's net revenues distribution. Rmin was the �rst approach of implementing a
risk control process within the SDP/SDDP algorithm. Rmin is implementing using a Lagrangian Relaxation
through a penalty coe�cient in the objective function of the model. The nature of its implementation
allows the use of Rmin as a proxy for other similar risk control process, which are not at all or not directly
implementable in the algorithm of SDP/SDDP
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For a maximization problem where we seek to maximize pscCxsc subject to a VaR level the
formulation is:

Max
SC∑
sc=1

pscCxsc (47)

s.t.ascxsc 6 bsc (48)

ascxsc − bsc +Mχsc > ηV aR (49)

SC∑
sc=1

pscχsc 6 (1− α) (50)

χsc ∈ {0, 1} (51)

Where psc is the probability for each scenario, xsc is a decision variable for the weight of
each scenario, C, is a coe�cient matrix of the di�erent scenarios, in (kEUR), χsc is a binary
decision variable for the selection of each scenario, asc and bsc are coe�cients for each
scenario, M is a very large number, ηV aR is a number representing the imposed level of VaR,
and α is a probability. As observe, the implementation of VaR in a problem formulation
requires MILP (Mixed Integer Linear Programming).
The information of how much the loss will be if we �nd ourselves outside the speci�ed
probability is not given. In this case, these events can lead to an undesirable stretch of the
lower part of the distribution exceeding VaR. This lack of information is crucial because
the characteristics of the electricity markets are skewness and heavy-tailed distribution. In
addition, when VaR is used as a risk control process in electricity markets, the resulting
portfolio remains exposed to risk as this risk indicator does not control the lower part of
the revenues distribution (see [Larsen et al. (2001)]). VaR has also been criticized for its
lack of sub-additivity and lack of convexity (see [Artzner et al. (1999)]). The lack of sub-
additivity can be problematic in the consideration of a set of portfolios inside a company.
A very wide example is in the consideration of a VaR over a department and the individual
portfolios of every asset manager. The lack of convexity makes the implementation of VaR
as a risk control process in various algorithms using LP, such as SDP/SDDP, not possible. In
addition, VaR requires MILP in all the algorithms where it is implemented, increasing thus
the overall computational time due to the nature of the solving process while constraining
our modeling capabilities. The implementation of the VaR for non-normal distributions, is
showing that the resulting scenarios under VaR are riskier (see [Rockafellar et al. (2002)]
and [Du�e et al. (1997)]). , hence resulting in lower scenarios than in the initial case,
where expected net revenues are not constraint by a risk control process 15. The latter
characteristic is inherent to VaR risk control process.

2.2.3 Conditional Value-at-Risk

Conditional VaR (CVaR) is a more recent extension of VaR that gains steadily appreciation
in the industry. The enhanced extension of VaR is de�ned as following, [Hult and Lindskog
(2007)]:
De�nition:For a loss L with continuous loss distribution function FL the expected CVaR at

15In the case of VaR and for a non-normal distribution there is no control for the lower part of the
distribution because of lack of symmetry. This characterizes VaR as a risk control process where the losses
are not already incorporated in it
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con�dence level α ∈ (0, 1) is given by

CV aRα(L) = E(L|V aRα(L)) (52)

Hence, CVaR measure the conditional expected value of the distribution lower the VaR
level. More speci�cally, CVaR is a non-symmetrical risk control process and it controls the
lower part of the VaR of the revenues distribution (accounting for the skewness and kur-
tosis). Unlike VaR, CVaR has the desired property of focusing on the size of the loss and
not just the probability that the loss will not exceed a certain level. Therefore it is possible
to penalizes large and less probable losses, which is a desired characteristic for a �nancial
risk control process applied in the electricity market. Also, for its capacity to account for
distribution skewness and asset optionality. The latter is a result of the nature of hydro-
electric assets, which is directly related to the existence of a reservoir and their capacity
to store water and use it according to the system operation optimization. The skewness
in the distribution of pro�t and loss caused by the price spikes and the options built into
any electricity contract needs an asymmetric risk control process that can really penalize
extreme events, that is why CVaR is interesting. In addition, the CVaR is characterized
as a multi-period coherent risk indicator (see [Artzner et al. (2004)]) which is important in
the electricity asset portfolio operation optimization for the cases of multi-period portfolio
optimization, coherence includes qualities such as convexity and sub-additivity. Another
property of CVaR is that, it has a multistate and multistage nature, thus making it's im-
plementation in SDP/SDDP algorithm impossible. Hence, in order to overcome the latter
problem [Iliadis (2008)] proposed a mathematical formulation that makes the implementa-
tion of CVaR in SDP/SDDP possible.

In comparison of VaR and CVaR constraints on portfolio selection, for a given con�dence
level, a CVaR constraint is tighter than a VaR constraint, if the CVaR and VaR bounds
coincide (see Alexander et al. (2004)). Furthermore, the formulation of CVaR when solved
(optimal solution) provides us with the information about the level of VaR (ηCV aR decision
variable) for the probability that was de�ned. Hence bounding CVaR with the objective to
control VaR is possible but not optimal.

Until [Rockafellar et al. (2000)] and [Rockafellar et al. (2002)], CVaR had to be considered
through the calculation of VaR and hence involving MILP. The latter involvement made it
laborious and often impossible to utilize CVaR in several optimization algorithms. Through
the development of [Rockafellar et al. (2000)], a signi�cant contribution was made by propos-
ing a practical technique of optimizing CVaR applied as a constraint and the corresponding
VaR is calculated, at the same time. [Uryasev (2000)] proposed that a CVaR minimization
process can be easily handled using LP optimization techniques . This advantage comes
from the fact that CVaR is convex thus making the calculations through LP feasible. Based
on [Rockafellar et al. (2000)], [Krokhmal et al. (2001)] showed that this process can also
be used for maximizing expected returns under CVaR constraints, as opposed to minimiz-
ing CVaR for a speci�c level of returns. Moreover, it is possible to impose many CVaR
constraints with di�erent con�dence levels and shape the net revenue (or loss) distribution
according to the preferences of the decision-maker. For a maximization problem where we
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seek to maximize the expected value of pscCxsc subject to a CVaR level the formulation is:

Max
SC∑
sc=1

pscCxsc (53)

s.t.Cxsc 6 bsc (54)

Cxsc − bsc − ηCV aR > ysc (55)

ηCV aR +
∑SC

sc=1 pscysc
1− α

> ΨCV aR (56)

ysc 6 0 (57)

Where psc is the probability for each scenario, xsc is a decision variable for the weight of
each scenario, C, is a coe�cient matrix of the di�erent scenarios, in [kEUR], ysc are auxiliary
decision variables to CVaR, for each scenario, ηCV aR is an auxiliary decision variable asso-
ciated to the CVaR constraint, bsc is a coe�cient for each scenario related to constraints,
ΨCV aR is a number representing the imposed level of CVaR, and α is a probability. As we
can observe from the formulation above, the way CVaR is formulated makes it possible to
implement it in an optimization algorithm that uses LP.
Hence, hydroelectric assets have to be modeled within an algorithm, so that the implemen-
tation of a risk control process is possible, and which is stochastic, time-dependent and
sequential, in order to account for the speci�cities of hydroelectric assets. At the same time
the features of CVaR through LP, the convexity and tractable computational, do indeed
strengthen its position in terms of implementation to an optimization algorithm. One such
optimization algorithm is SDP/SDDP, which can accommodate risk measures that are based
in LP and that are convex.

The nature of the SDP/SDDP algorithm does not allow the direct implementation of all
types of risk control processes because of its mathematical formulation complexity. There-
fore, it is necessary to select the appropriate risk control process for the electricity industry,
one that can be implemented e�ciently in the optimization algorithm and yield coherent
results. The property of CVaR with its multistate and multistage nature, thus making
it's implementation in SDP/SDDP algorithm impossible. To overcome the problem with
multistate and multistage nature of CVaR, [Iliadis (2008)] proposed a mathematical formu-
lation that makes the implementation of CVaR in SDP/SDDP possible. As a solution to
the multistate problem, a Lagrangian Relaxation (see [Held et al. (1970)] and [Held et al.
(1971)]) were used for the speci�c CVaR constraint components that could not be formu-
lated when using SDP/SDDP. These components will be entered into the objective function
with a penalty coe�cient. We observe that the calibration of the latter coe�cient is a simple
process and possible to automate due to its scalar nature. As a solution to the multistage
problem, we will insert a series of additional state variables in the FBF of the SDP/SDDP
algorithm that will account for their information throughout the whole horizon. Hence, in
every stage the FBF will include all the information needed in order for the algorithm to
take into account the impact of the state variable for the current stage to the future state
variables.

We can observe in �gure (Figure 9) the positioning of the three risk control-processes in a
distribution. Rmin is represented here as a soft constraint that can take any position (dashed
orange line) on the distribution curve, and according to the level of the penalty coe�cient,
controls the lower-than-the-imposed Rmin level of the distribution. VaR controls the upper
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part of the distribution according to the probability and the level that is imposed. CVaR
corresponds to the expected value of the part under the probability and level of VaR. As a
risk control process, it controls the expected value of the distribution's lower part according
to the probability and the level imposed and by constraining CVaR we immediately create
a lower bound for VaR. The CVaR risk control process is very similar in it's risk approach
to the Rmin from a distribution control perspective, that is both the CVaR and the Rmin
control the lower part of this percentile. Compared to VaR, CVaR is in a maximization
problem always smaller than VaR and by

Figure 9: Representation of the Rmin, VaR and CVaR for a given cumulative distribution.
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3. The Model

3.1 Geographic Topology

In [Iliadis et al. (2008)] it was proven that the risk measure CVaR implemented in the state-
of-the-art algorithm in mid-term hydroelectric optimization, SDP/SDDP, gave the highest
revenues. In this case, it was only proven for a single hydroelectric plant and for three stages.
In this thesis we are going to prove that the theory also works for a more extended model.
Figure 10 shows the schematic diagram of a hydroelectric plant (i) where v(i) , in [m3], is the
total volume of the reservoir and h(v(i)) , in [m], is the height of the reservoir as a function
of the volume. In the Figure 11, the illustrations of the Hydroelectric model are presented
numerically and with its geographic topology. We will use a system with two independent
cascades and two independent in�ow points and two thermal units, one nuclear power plant
as a baseload unit and one Open Cycle Gas Turbine (OCGT) as a peak load unit. The two
in�ow points present a correlation among them due to their proximity and similarity of soil.
In the �rst cascade there are two reservoirs and in the second cascade one reservoir. Each
cascade has one hydroelectric unit. In the table 1, the characteristics of the energy system
model are presented. The total time horizon considered is 8 months divided into one-month
time stages. A time stage at the end of the horizon is used as a bu�er where the �nal
reservoir level conditions will be imposed. Each hydroelectric system is characterized by
the installed capacity of its generator, its production coe�cient, the capacity of its reservoir
and its maximum water release (see Figure 11 and table 1). Each thermoelectric unit is
characterized by its installed capacity and its marginal cost of operation.

Figure 10: Schematic diagram of a hydroelectric plant.

3.2 The optimization model

The stochastic element is considered through joint scenarios of electricity prices, water in-
�ows and load contract demand with a random correlation between them. If the market
is hydro-dominated and there is correlation between prices and in�ows, then the price and
in�ow scenarios can be combined accordingly. The electricity price scenarios considered,
represent the spot market. From these scenarios and the transition probabilities between
the stages, the forward price for each node can be calculated. The load contract demand
represents a load obligation that has to be supplied under any conditions. We assume that
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System Model Characteristics

Number of Water Cascades: [-] 2

Number of Water In�ow Points: [-] 2

Number of Water Reservoirs: [-] 3

Hydroelectric Units: [-] 2

Thermoelectric Units: [-] 2

Time Horizon: [months] 8

Time stage length: [months] 1

Total Time stages: [-] 7+1

Total Scenarios: [-] 128

Hydroelectric System
System 1 System 2

Generator installed capacity: [MW] 600 440

Production coe�cient: [MW/m3/s] 20 20

Number of Reservoirs: [-] 2 1

Water Reservoirs capacity: [hm3] R1: 25 R3: 70 R2: 80

Unit maximum release: [m3/s] 30 22

Initial Reservoirs Volume: 50% 50%

Final Reservoirs Volume: 20% 20%

Thermoelectric System
Unit 1 Unit 2

Unit Type: Nuclear participation Small Open Cycle Gas
Turbine

Generation intalled capacity: [MW] 100 30

Operation Marginal Cost: [EUR/MWh] 25 65

Table 1: Hydroelectric model for numerical illustrations.

the power generation company is a price-taker agent in a liberalized competitive electricity
environment. Hence, prices are considered as an exogenous input in the scenarios. This
market has a functioning and liquid electricity spot and forward market prices. However,
in order to correctly represent the reality and consider the market �nancial risk premium,
a spread of 3 [EUR/MWh] is assumed between the buy and the sell spot market prices.
For the forward market, an additional transaction fee of 1 [EUR/MWh] is considered. This
transaction fee re�ects the cost that incurs a company that builds-up and maintains a trad-
ing �oor. The outputs of the model are the operating decisions of the hydroelectric plant,
and the contracting decisions to the spot and forwards market.
The model is formulated as a multistage Stochastic Mixed Integer Linear Program that uses
joint scenarios of water in�ows, electricity spot market prices and load contract demand.The
stochastic demand in the load contract will be implemented only in the part were we want
to test the risk measure in the tree formulation, and not in the decomposed version and
SDP/SDDP. The latter occurs because of the speci�c development required which is beyond
the scope of this thesis. The stochastic nature of the model is structured by using a tree
representation, as shown in Figure 1116.

We present the formulation for each of the problems corresponding to the risk control-
processes that we have mentioned above. We start by stating the formulation of the basic

16In this �gure, the stochastic tree for a multistage problem is depicted
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Figure 11: Hydroelectric model for numerical illustrations.

problem and then we mention, for each particular risk-control process formulation, the ex-
pressions that have to be modi�ed relatively to this reference case. We present the general
formulation of the mid-term hydroelectric operation optimization problem without consid-
ering any risk control process to begin with and then present risk control process constraints.

We let:

• tn be the node we are considering

• t'n' be the parent node of tn from a previous stage

• t�n� be the descendent node of tn in a next stage

• (t'n') be the set of parent nodes of tn that belong to the same scenario

• (t�n�) be the set of descendent node of tn in a next stage
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Figure 12: Representation of the tree structure of the stochastic model.

• t be the stage we are considering

• t' be the parent stage of tn from a previous stage

The �rst set of variable, in the forward contracting decision variable, indicates the node
where the decision variable is calculated (that is, t stands for the stage and n stand for
the node in stage t). The second variables, in the forward contracting decision variable,
indicates the stage and the node, where the decision is accounted for. Hence, EF (t′n′; tn),
is de�ned as the: forward contracted energy that is calculated in a previous stage node t′n′

but is accounted for in node tn of stage t.
In the forward market price state variables, the �rst set of variables indicates the node where
the state variable is conditioned from and the second set of variables, in the forward market
state variables, indicates the node, or the stage and the node, where it is de�ned for. Hence,
fs(t′n′; tn), is de�ned as the forward price as perceived from the node t′n′ of a previous
stage, and will be accounted for in node tn of stage t.

Before going through the model it is of importance that some stu� are being pointed out
and clearly de�ned. One to be de�ned is the occurrence probabilities which is a time-
homogeneous Markov chain ([Enger and Grandell (2003)]) from the initial node to the node
that we are looking for. Hence, Ptn, of a node tn, the product of transition probabilities,
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ptn, from node 11 to the node tn.

Ptn =
tn∏
11

ptn (58)

Another thing is the the forward contract. The forward market prices are calculated as
the expected value of the spot market prices from each speci�c state that is linked through
the tree branches to a future stage. In case of a foreseen distortion between the expected
spot market price and the actual forward market price, the forward market prices can be
input exogenously into the model. Nevertheless, in this case a pure arbitrage between the
expected spot price and the forward market prices might be of an issue.

The forward price fs(t′n′; tn) de�nition consists of the product of the interest rate times the
time di�erence (stage di�erence), from the node t′n′ to the node tn (that is, from stage t′

to stage t) and the spot price Πs
tn, of the node tn ([Bjork (2004)]).

Hence, we have:

fs(t′n′; tn) = er(t−t
′)Πs

tn (59)

We can observe from equation (59), that the forward market prices are equal (see Figure
13).

Figure 13: Example of forward price perception from node 11 for nodes 21, 22 and 31, 32,
33, 34. Circled nodes have equal forward market prices as perceived from node 11.

The model to be presented will prove that CVaR risk-control process in terms of higher
revenues. The new formulation of CVaR that [Iliadis (2008)] presented will be used in this
model now.
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Objective function
The objective function maximizes the net revenues in [kEUR]. This consists of the summation
of the net revenues of every node tn considering the occurrence probability, Ptn, of each
node. More speci�cally, the latter summation consists of the revenues from selling in the
spot market, RSstn, the revenues from selling in the forward market, fΠt′n′(t)tnEFt′n′(t)tn,
the cost for buying in the spot market, CSbtn, and the cost of operations of the thermal
assets, gtn(k)c(k).

max{
∑
∀tn

Ptn[(RSstn − CSbtn) +
∑

t′n′∈(t′n′)

(f s(t′n′; tn)EF (t′n′; tn))−
K∑
k=1

gtn(k)c(k)]}(60)

Water Balance constraints
The water balance constraints consist of the �nal reservoir water volume of node tn, which
is de�ned as the initial water reservoir volumes of all nodes t + 1 n′′ that belong to the
set (t + 1 n′′), where all descendent nodes t + 1 n′′ of tn belong, vt+1n(i), in [m3], of the
initial storage of water, vtn(i), in [m3], in the reservoir, the volume of water in�ows, atn(i),
in [m3/s], entered the reservoir, during the time, tsds, in [s], of the stage t, the volume of
water, utn(i), in [m3], used to produce electricity, and the volume of water spilled, wtn(i),
in [m3], and the volume of water and spillage from a set U(i) of upstream plants j, utn(j),
and wtn(j), in [m3]. Each water balance constraint is applied at every node tn.

vt+1n′′(i) =vtn(i) + atn(i)tsds − utn(i)− wtn(i) +
∑
j∈U(i)

(utn(j) + wtn(j))}

for all nodes t+ 1 n′′ ⊂ (t+ 1 n′′) & for i = 1, ..., I, for all nodes tn (61)

vt+1n′′(i) >0 for i = 1, ..., I, for all nodes t+ 1 n (62)

atn(i) >0 for i = 1, ..., I, for all nodes tn (63)

utn(i) >0 for i = 1, ..., I, for all nodes tn (64)

wtn(i) >0 for i = 1, ..., I, for all nodes tn (65)

Technical characteristic constraints
The technical characteristic constraints consist of the maximum volume of the water, vmax(i),
in [m3/s], that can be contained in the reservoir and the maximum volume of the water,
umax(i), in [m3/s], that can be used to produce electricity, and the maximum generation
capacity, gmax(k), in [MWh], which is generated by the thermal assets. Each technical
characteristic constraint is applied at every node tn.

vtn(i) 6 vmax(i) for i = 1, ..., I, for all nodes tn (66)

utn(i) 6 umax(i) for i = 1, ..., I, for all nodes tn (67)

gtn(k) 6 gmax(k) for i = 1, ..., I, for all nodes tn (68)

Hydro generation constraints
The hydroelectric generation constraints consist of the energy generated, etn(i), in [MWh],
the coe�cient of production, ρ(i), in [MW/m3/s], the volume of the water, utn(i), in [m3/s],
that will be used to produce electricity, the time of each stage duration, tsdh(i), in [h], and
the time of each stage duration, tsds(i), in [s]. Each hydroelectric generation constraint is
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applied at every node tn for every reservoir i.

etn(i) = ρ(i)utn(i)
tsdh
tsds

for i = 1, ..., I, for all nodes tn (69)

etn(i) > 0 for i = 1, ..., I, for all nodes tn (70)

Spot Market Revenue constraints
The constraints of revenue from selling to the spot market, RSstn, in [kEUR], consist of the
product of the spot market price, Πs

tn, in [EUR/MWh], and the electricity that will be sold
in the spot market, estn, in [MWh]. Each spot revenue constraints is applied at every node
tn.

RSstn = Πs
tne

s
tn for all nodes tn (71)

RSstn > 0 for all nodes tn (72)

Spot Market Cost constraints
The constraints of cost from buying from the spot market, CSbtn, in [kEUR], consist of the
product of the spot market price, Πb

tn, in [EUR/MWh], and the energy that will be bought
in the spot market, ebtn, in [MWh]. Each spot revenue constraints is applied at every node
tn.

CSbtn = Πb
tne

b
tn for all nodes tn (73)

CSbtn > 0 for all nodes tn (74)

Energy Balance constraints
The energy balance constraints consist of the energy generated, etn(i), in [MWh], for the sum
of reservoirs i, the energy bought from the spot market, ebtn(i), in [MWh], the energy sold
in the spot market, estn(i), in [MWh], the energy produced by the thermal assets gtn(k), in
[MWh], the energy required from the load contract dtn, in [MWh], and the energy contracted
EFt′n′(t)tn, in [MWh] from all the nodes t′n′ to the node tn of stage t that belong to the
set (sc tn), where all nodes t′n′ of the same scenario belong with tn. Each energy balance
constraint is applied at every node tn. The energy delivered in node (11) is null since there
are no parent nodes to contract energy for node 11. Nevertheless, we could consider, if
required, already contracted energy in the forward market.

I∑
i=1

etn(i) + ebtn +
K∑
k=1

gtn(k) = estn +
∑

t′n′⊂(t′n′)

EF (t′n′; tn) + dtn for all nodes tn

(75)

EF (t′n′; 11) = 0 (76)

Risk measures - Financial Risk Control constraints
The risk measure constraints, both the non-relaxed version and the relaxed version, will
here be presented. It should be mentioned now that in order for CVaR to be implemented
SDP/SDDP it has to be relaxed, more about this later on (also for more information please
see [Iliadis et al. (2008)]). With the relaxation, the objective function is being changed
therefore we will write out the objective function for each time.

Rmin constraints
This formulation contains the Rmin risk control process as hard constraint. When consid-
ering the Rmin risk control process, the problem formulation becomes, in the non-relaxed
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formulation, the objective function remains the same as in the basic problem formulation.

max{
∑
∀tn

Ptn[(RSstn − CSbtn) +
∑

t′n′∈(t′n′)

(fs(t′n′; tn)EF (t′n′; tn))−
K∑
k=1

gtn(k)c(k)]}(77)

The constraints describing the core of the problem remain the same as in the basic problem
formulation. Subject to:
(61)− (76)

The �nancial risk control process constraints consist of the sum of net revenues, the im-
posed level of minimum revenue, Rmin , in [kEUR], and the decision violation variable, zsc,
in [kEUR], applying to each node tn that pertains in a scenario sc. We de�ne as scenario
each branch of the tree starting from the �rst node, (11), and ending at one of the last nodes
of the tree.
In addition the decision violation variables, zsc, must be greater or equal than zero for all
scenarios in order to force the net revenues to be greater or equal than the imposed level of
minimum net revenue Rmin. We have formulated the �nancial risk control constraints using
a decision violation variable in order to prepare the ground for the next formulation that
will use a Lagrangian relaxation.

∑
∀tn∈(sc)

[(RSstn − CSbtn) +
∑

t′n′∈(t′n′)

(fs(t′n′; tn)EF (t′n′; tn))−
K∑
k=1

gtn(k)c(k)]−Rmin > zsc

for all scenarios sc (78)

zsc > 0 for all scenarios sc (79)

Relaxed Rmin constraints
This formulation contains the Rmin �nancial risk control process as constraints, which is
achieved by penalization inside the objective function. The latter is implemented by relaxing
the constraint (78) using Lagrangian Relaxation (see [Held M. et al. (1970)] and [Held M.
et al. (1971)]).
In the relaxed formulation, the objective function consists of the net revenues of all nodes tn,
the unconditional probability, Ptn, and the probability occurrence, psc of each scenario, the
penalty coe�cient αRmin , without units, and the decision violation variable, zsc, in [kEUR].
The penalty coe�cient de�nes the severity of the constraint ("hardness") where if it is set
to zero, then the Rmin level is not ful�lled, hence the constraint is violated, and if it is set
to in�nity (large number that depends on the problem), then the Rmin level is fully ful�lled
as if it was a hard constraint. All intermediate values of the penalty coe�cient are used in
order to achieve the desired �nancial risk level by simulating a probabilistic �nancial risk
control process. Hence, as an example, in a case where one hundred scenarios of net revenues
exist and we wish that ninety percent out of them shall be greater than a Rmin level, then
we should experiment with various values of penalty coe�cients until we succeed with the
desired result.

max{
∑
∀tn

Ptn[(RSstn − CSbtn) +
∑

t′n′∈(t′n′)

(fs(t′n′; tn)EF (t′n′; tn))−
K∑
k=1

gtn(k)c(k)] +
∑
∀sc

pscαRminzsc}(80)
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The constraints describing the core of the problem remain the same as in the basic problem
formulation. Subject to:
(61)− (76)

The constraint (78) is the same as in the case of non-relaxed formulation. As we can ob-
serve the constraint that was relaxed and inserted in the objective functions have changed
the constraint (79). Nevertheless, as the objective is maximized, in some cases the zsc vari-
able can take positive values and that way degrading the solution by leading to non-optimal
solutions (forward contracting when not needed). Hence, the variables have to be bound in
it's negative part through the additional constraint (81) for all scenarios sc.∑

∀tn∈(sc)

[(RSstn − CSbtn) +
∑

t′n′∈(t′n′)

(fs(t′n′; tn)EF (t′n′; tn))−
K∑
k=1

gtn(k)c(k)]−Rmin > zsc

for all scenarios sc (81)

zsc 6 0 for all scenarios sc (82)

VaR constraints
The objective function remains the same as in the basic problem formulation.

max{
∑
∀tn

Ptn[(RSstn − CSbtn) +
∑

t′n′∈(t′n′)

(f s(t′n′; tn)EF (t′n′; tn))−
K∑
k=1

gtn(k)c(k)]}(83)

The constraints describing the core of the problem remain the same as in the basic problem
formulation. Subject to:
(61)− (76)

In order to formulate the VaR risk control process in the optimization problem we use
MILP17. The �nancial risk control process constraints consist of the net revenues, the bi-
nary variable, χsc, a large positive number, M , and the desired level of VaR, ηV aR, in
[kEUR], for each node tn that pertains to a scenario sc and for all scenarios sc.
The probabilistic selection of scenarios that should satisfy the desired level of VaR is imple-
mented through the constraint (84) that consists of each scenario's occurrence probability,
psc, the binary variable of each scenario χsc and the percentile 1−αV aR of the scenarios that
will have a lower net revenue value than the desired VaR. Hence through the maximization
of the problem the binary variable, corresponding to the percentile of the scenarios that will
not satisfy the desired VaR, will equal to one and thus these scenarios will take any value.
The constraint (84) de�nes the χsc as a binary variable for all scenarios sc.∑

∀tn∈(sc)

[(RSstn − CSbtn) +
∑

t′n′∈(t′n′)

(fs(t′n′; tn)EF (t′n′; tn))−
K∑
k=1

gtn(k)c(k)]−Mχsc > ηV aR

for all scenarios sc (84)∑
∀sc

pscχsc 6 (1− αV aR) (85)

χsc ∈ {0, 1} for all scenarios sc (86)

17The large number M is part of the formulation of the "Big M" technique [Wolsey L.A. (1998)] used
typically in binary MILP.
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CVaR constraints
This formulation contains the CVaR risk control process as a hard constraint using its LP
formulation. In the non-relaxed formulation, the objective function remains the same as in
the basic problem formulation.

max{
∑
∀tn

Ptn[(RSstn − CSbtn) +
∑

t′n′∈(t′n′)

(fs(t′n′; tn)EF (t′n′; tn))−
K∑
k=1

gtn(k)c(k)]}(87)

The constraints describing the core of the problem remain the same as in the basic problem
formulation. Subject to:
(61)− (76)

The �nancial risk control constraints, consist of net revenues per scenario sc, the deci-
sion variable, ηCV aR, in [kEUR], and the scenario decision variable, ysc, in [kEUR], for each
scenario sc. The latter decision variable is used as an auxiliary variable for the transforma-
tion of the CVaR formulation from MILP to LP. At the end of the optimization and if an
optimal solution is found, the decision variable is equal to the level of VaR for this problem.
The constraint (88) consists of the decision variable, ηCV aR, each scenario's probability
psc, the scenario auxiliary decision variable, ysc, for all scenarios sc, and the inverse of the
probability of the scenarios that will have a higher net revenue expected value than the
desired CVaR, ψ, in [kEUR]. The constraint (89) de�nes the ysc as a negative variable for
all scenarios sc. Hence forcing the latter decision variable being negative, the constraint (88)
guarantees that all scenarios that satisfy it, will belong to the percentile of the scenarios
with the expected value of the net revenues that is greater or equal to the desired CVaR
level.

∑
∀tn∈(sc)

[(RSstn − CSbtn) +
∑

t′n′∈(t′n′)

(fs(t′n′; tn)EF (t′n′; tn))−
K∑
k=1

gtn(k)c(k)]− ηCV aR > ysc

for all scenarios sc (88)

ηCV aR +
∑
∀sc pscysc

(1− αCV aR)
> ψ (89)

ysc 6 0 for all scenarios sc (90)

Relaxed CVaR constraints
The formulation of this problem is implemented using Lagrangian Relaxation. The reason
for relaxing this constraint is to expose the similarity with the Rmin formulation. Moreover,
we use the formulation with relaxation of the constraint, in order to prepare the ground for
the formulation of CVaR inside the SDP/SDDP algorithm. At this level, we can observe
that the superiority of CVaR comes from its directly probabilistic formulation.
In the relaxed formulation, the objective function consists of the net revenues of all nodes tn,
their respective occurrence probability, Ptn, and the penalty function. The penalty functions
consists of the constraint (88) and the penalty coe�cient, υ, in [kEUR/kEUR]. The penalty
coe�cient de�nes the severity of the constraint ("hardness") where if it set to zero, then the
CVaR level, ψ, is not ful�lled, hence the constraint is violated, and if it is increased, then we
achieve respectively higher values of CVaR level, ψ, for the de�ned probability level. The
intermediate values until achieving the desired CVaR level, in contrast with Rmin, result
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in optimal portfolios in terms of expected value and CVaR. Hence, a calibration must take
place. The important di�erence between the calibration process of CVaR and Rmin is that
for the latter we have to achieve a level of CVaR for a de�ned probability, using two non-
probabilistic parameters, where in the CVaR formulation, the probabilistic level is explicitly
set and hence we have to calibrate only one coe�cient.

max{
∑
∀tn Ptn[(RSstn − CSbtn) +

∑
t′n′∈(t′n′)(f

s(t′n′; tn)EF (t′n′; tn))−
∑K

k=1 gtn(k)c(k)]

+υ(ηCV aR +
∑
∀sc pscysc

(1−αCV aR)
− ψ)} (91)

The constraints describing the core of the problem remain the same as in the basic problem
formulation. Subject to:
(61)− (76)

The constraint (91) and (92) are the same as in the case of non-relaxed formulation. As
we can observe the constraint that was relaxed and inserted in the objective function is
no longer present. In this case, the decision variable ηCV aR, representing the VaR in the
optimal solution, can not take any feasible values and render the constraint negative. This
can be explained by the de�nition of VaR and CVaR where VaR is always greater than or
equal CVaR.

∑
∀tn∈(sc)

[(RSstn − CSbtn) +
∑

t′n′∈(t′n′)

(fs(t′n′; tn)EF (t′n′; tn))−
K∑
k=1

gtn(k)c(k)]− ηCV aR > ysc

for all scenarios sc (92)

ysc 6 0 for all scenarios sc (93)
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4. Results

To get a better understanding of the newly formulated CVaR we have implemented it in a
MILP, the reason is that the possibility of implementing VaR also (that is not possible with
SDP/SDDP).

In Tablet 2 the expected net revenue are presented together with the values of V aR0.99 and
CV aR0.99 with no risk constraint involved.

E[Net revenue]: 119340

V aR0.99: 13173.9

CV aR0.99: 13042.5

Table 2: The result from the model without any risk constraint, in [Euro]

The Results in Table 3 presents the system optimization using a VaR constraint and Table
4 presents the system operation optimization considering the Rmin risk control process as
a proxy to achieve the desired VaR constraint. Using a series of combinations of Rmin and
penalty coe�cients, we have achieved the desired level of VaR that was imposed.

E[Net revenue]: 119064

VaR0.99: 13956.8

Table 3: The result from the model with V aR0.99 risk constraint, in [Euro]

We can observe that the expected net revenues, in the case of applying directly the VaR
risk control process (see Table 3), are lower than the net revenues in the case without any
�nancial risk constraint (see Table 2). This occurs because of the approach of VaR to control
risk, leaving that way the distribution's lower part uncontrolled.

E[Net revenue]: 118962

VaR0.99: 13956.8

Table 4: The result from the model with Rmin risk constraint used as a proxy instead of
the V aR0.99, in [Euro]

As we can see in Table 4, the desired V aR0.99 = 13956.8 [EUR] is achieved using Rmin
as a proxy to simulate VaR through the combination of (Rmin, αRmin) = (13956.8, 1.5).
Nevertheless, the latter example results in a lower portfolio expected net revenues value,
when compared to Table 3.
In the same way we compared the values of CVaR and a Rmin proxy of CVaR. By comparing
the Table 5 (direct CVaR implementation)and Table 6 (Rmin as a proxy to simulate CVaR).
It was stated before that there is equivalence between the Rmin and the CVaR control-
processes problems formulation in terms of control of the distribution. Nevertheless, similar
results in risk levels in terms of CVaR measures, can yield di�erent portfolio expected net
revenues, when we use Rmin as a proxy to simulate CVaR.

Comparing Table 6 with Table 5, we observe in all the examples the same CVaR level is
achieved. Nevertheless, in Table 6, where we use Rmin, through the parameters combi-
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E[Net revenue]: 119317

CVaR0.99: 13131.4

Table 5: The result from the model with CV aR0.99 risk constraint, in [Euro]

E[Net revenue]: 119281

CVaR0.99: 13131.4

Table 6: The result from the model with Rmin risk constraint used as a proxy instead of
the CV aR0.99, in [Euro]

nation of (Rmin, αRmin) = (13131.4, 5.5), as a proxy to simulate the desired CVaR level,
the portfolio expected net revenues is lower than in Table 5, where the CVaR risk control
process is directly applied. Hence, we deduct that the solution of the example in Table 6 is
not optimal with respect to the CVaR desired level and the portfolio net revenue expected
value. The optimal solution can be obtain for a portfolio subjected directly to the CVaR
risk control process, using the Rmin risk control process as a proxy through an adjustment
of (Rmin, αRmin) parameters. In the best case, the adjustment of (Rmin, αRmin) can give
the same expected net revenues as the case where CVaR control process is directly applied.
However, what is important, is the fact that more than one combinations of (Rmin, αRmin)
parameters, when using the Rmin risk control process as a proxy to simulate CVaR, might
lead to a portfolio with the desired CVaR but with a di�erent net revenue expected values.
Hence, although the same level of CVaR and percentile are simulated, the resulting expected
net revenues can be lower in one example. Furthermore, the process of obtaining the orig-
inal CVaR solution through (Rmin, αRmin) adjustments requires an uncertain number of
iterations with no guarantee of success.

As seen, the results from our function aren't as big as (see [Iliadis et al. (2008)]) proposed
due to my input values. By changing the input values we were able to get a lot of results in
the expected net revenues. The Tables above is one of the examples of values we got.
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5. Conclusion

In order to compare the three risk control-processes, [Iliadis et al. (2008)] formulated ac-
cordingly, and we implemented each one of them in the context of mid-term hydroelectric
assets portfolio operation optimization problem. The hydroelectric assets have to be mod-
eled within an algorithm that the implementation of a risk control process is possible, and
which is stochastic, time-dependent and sequential, in order to account for the speci�cities
of hydroelectric assets.
The new formulation of CVaR has been proven that it work �rst for one hydroelectric plant
(see [Iliadis et al. (2008)]) and now by me for a small but realistic model. CVaR is an
appropriate risk measure in the electricity market for its capacity to account for distribution
skewness and asset optionallity. The skewness in the distribution of pro�t and loss caused
by the price spikes and the options built into any power contract makes an asymmetric
risk measure that can really penalize extreme events, such as CVaR, interesting. The char-
acteristics of distribution skewness and asset optionality are even more pronounced in the
operation optimization of hydroelectric assets. The latter is a result of the nature of hy-
droelectric assets, which is directly related to the existence of a reservoir and their capacity
to store water and use it according to the system operation optimization. The convexity
and tractable computational features of CVaR through LP do indeed strengthen its position
in terms of implementation to an optimization algorithm. More speci�cally, as described
in the paragraphs above of this chapter, hydroelectric optimization is computed through
the complex algorithm of SDP/SDDP in order to tackle problems with large number of
hydroelectric assets and with the stochastic variables of water in�ows and prices. The lat-
ter algorithm can accommodate risk measures that are based in LP and that are convex.
These two conditions are obligatory since SDP/SDDP is based on the approximation of the
FBF and hence MILP and lack of convexity would lead to incoherent results. Moreover,
because of the complexity of optimizing the operation of hydroelectric assets and the direct
relation between their operation and their hedging strategy, as a result of the application
of risk control process, the computation of a hedging strategy shall be made jointly with
the operation. Hence, it is imperative the risk control process to be implemented in the
operation optimization algorithm. To se the real formulation and and implementation we
refer to [Iliadis et al. (2008)] where he has written it out.
we also want to point out that my only assignment in this thesis was to try to prove that the
new formulated CVaR works in real life system. By the result we proved above we showed
that was the case!
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