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Abstract 

 

In this thesis we have considered three different market graphs; one solely based on 

stock returns, another one based on stock returns with vertices weighted with a liquidity 

measure and lastly one based on correlations of volume fluctuations. Research is 

conducted on two different markets; the Swedish and the American stock market. We 

want to introduce graph theory as a method for representing the stock market in order to 

show that one can more fully understand the structural properties and dynamics of the 

stock market by studying the market graph. We found many signs of increased 

globalization by studying the clustering coefficient and the correlation distribution. The 

structure of the market graph is such that it pinpoints specific sectors when the 

correlation threshold is increased and different sectors are found in the two different 

markets. For low correlation thresholds we found groups of independent stocks that can 

be used as diversified portfolios. Furthermore, the dynamics revealed that it is possible 

to use the daily absolute change in edge density as an indicator for when the market is 

about to make a downturn. This could be an interesting topic for further studies. We had 

hoped to get additional results by considering volume correlations, but that did not turn 

out to be the case. Regardless of that, we think that it would be interesting to study 

volume based market graphs further. 

  



 

 

Sammanfattning 

 

I denna uppsats har vi tittat på tre olika marknadsgrafer; en enbart baserad på 

avkastning, en baserad på avkastning med likvidviktade noder och slutligen en baserad 

på volymkorrelationer. Studien är gjord på två olika marknader; den svenska och den 

amerikanska aktiemarknaden. Vi vill introducera grafteori som ett verktyg för att 

representera aktiemarknaden och visa att man bättre kan förstå aktiemarknadens 

strukturerade egenskaper och dynamik genom att studera marknadsgrafen. Vi fann 

många tecken på en ökad globalisering genom att titta på klusterkoefficienten och 

korrelationsfördelningen. Marknadsgrafens struktur är så att den lokaliserar specifika 

sektorer när korrelationstaket ökas och olika sektorer är funna för de två olika 

marknaderna. För låga korrelationstak fann vi grupper av oberoende aktier som kan 

användas som diversifierade portföljer. Vidare, avslöjar dynamiken att det är möjligt att 

använda daglig absolut förändring i bågdensiteten som en indikator för när marknaden 

är på väg att gå ner. Detta kan vara ett intressant ämne för vidare studier. Vi hade 

hoppats på att erhålla ytterligare resultat genom att titta på volymkorrelationer men det 

visade sig att så inte var fallet. Trots det tycker vi att det skulle vara intressant att 

djupare studera volymbaserade marknadsgrafer. 
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1 Introduction 

In this chapter we introduce the reader to the subject and present the purpose and the 

outline of the thesis. 

 

In today‟s world of seemingly endless information, one often faces challenges of 

dealing with large sets of data when trying to solve different problems. In many cases, 

these massive data sets can be represented by large network structures, or graphs. These 

graphs have specific properties and attributes which, if studied properly, provide us with 

a lot of information about the applications they portray. Using graphs to represent real 

world dynamics is common in many different fields such as military systems and 

technology, ecology, telecommunications, medicine and biotechnology, astrophysics, 

geographical systems and finance. An example of a data set which can be represented 

by a graph is telecommunications traffic data. In that graph, the vertices are telephone 

numbers which are connected through edges if a call has been made from one number to 

another. Other examples of graph representations are the Internet and the human brain 

(1). 

 

In this thesis we will concentrate our efforts on a graph representation of the stock 

market, called the market graph. Since the stock market lacks physical connections 

between stocks it is not at all obvious how the market can be represented. Nonetheless, 

a somewhat intuitive representation of the stock market can be based on the correlations 

of stock price movements. Another approach that we will introduce later on in the report 

is the correlations of volume fluctuations between stocks. Hence, a market graph can be 

constructed by letting each stock be represented by a vertex and let two vertices be 

connected by an edge if the correlation coefficient of the stock pair exceeds a pre-

specified threshold. We want to introduce graph theory as a method for representing the 

stock market in order to show that one can more fully understand the structural 

properties and dynamics of the stock market by studying the market graph. 

 

Being inspired by the article „Statistical analysis of financial networks’ (2), we mainly 

want to construct two market graphs; both of which are based on stock returns but with 

the difference that one has vertices which are weighted with a liquidity measure. After 

having presented the theory that will be used throughout this thesis in chapter 2, we will 

analyze the characteristics of both the unweighted and the weighted graph in chapter 3. 

In order to get more reliable results we will consider two markets with distinguishable 

difference in size, namely the Swedish market and the American market. Chapter 4 is 

about the structure of the market graph where we implement means of data mining 

using optimization algorithms to find clusters within the graphs. By splitting our data 

into different time periods we get more dynamics in our research which is presented in 

chapter 5. This way we can extract information about the dynamics of the market graphs 
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by studying some of their properties and structures. This chapter will also contain an 

analysis of the market graph based on volume correlations since it has to our knowledge 

not yet been investigated. We hope that the information obtained from it might help us 

understand the market from another point of view. We will conclude the thesis in 

chapter 6 where we will summarize our results and have a brief discussion and also 

mention how this subject can be studied further. 
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2 Theoretical study 

Important parts from the field of graph theory as well as the mathematical algorithms 

used are presented in this part of the thesis. 

 

2.1 Basic definitions and notations 

 

A graph         consists of a nonempty vertex set   and an edge set  . If     is 

an edge and       are different vertices such that        , then   and   are said 

to be adjacent i.e. two vertices are adjacent if they share a common edge. Similarly, two 

edges are adjacent if they share a common vertex. The degree of a vertex   in a 

graph  , denoted by  , is the number of edges of   incident with  , each loop counting 

as two edges. If    is an even number then   is said to be an even vertex; if   is odd the 

vertex is said to be odd, and if     then   is called an isolated vertex. (3) 

 

For every integer number   one can calculate the number of vertices      with degree 

equal to   and then get the probability that a vertex has degree   as      
    

 
, where 

  is the total number of vertices and the function      is referred to as the degree 

distribution of the graph (4). 

 

Edge density if defined as the number of edges of a graph divided by the total number 

of possible edges in the graph:  
               

        
, where   is the number of vertices of the 

graph    

 

2.2 Weighted graph 

 

A weighted graph         is a graph in which each vertex   is assigned a 

nonnegative real number      called the weight of  . The weight of the graph  , 

denoted by     , is the sum of the weights of all vertices. Weighted graphs are often 

used when practical problems are modeled with means of graph theory. Throughout this 

thesis the weights will be represented by the liquidity of the stocks. (3) 
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2.3 Power-law and scale invariance property 

 

A quantity   obeys a power-law if it is drawn from a probability distribution 

 

         

 

or equivalently, 

 

               

 

where   is a constant parameter of the distribution known as the exponent or scaling 

parameter (5). 

 

Power laws have different properties and the main one is perhaps the scale invariance 

property 

 

             

 

where   is a constant. That is, we get a proportional relationship where the original 

power-law relation is multiplied by the scaling factor    . 

 

In our case, where   is the number of nodes with degree  , the power-law graph model 

       is according to (1) defined as,  

 

        

 

or equivalently 

 

             

 

2.4 Clusters, cliques, quasi-cliques and independent sets 
 

Clusters are groups of data such that objects within a cluster have high similarity in 

comparison to one another, but are very dissimilar to objects in other clusters. Since we 

in this thesis define vertices as stocks, we consider vertices to be “more similar” the 

higher the correlation is between them. Often, one distinguishes to which cluster a 

specific vertex belongs by measuring its distance to the rest of the vertices in the cluster; 

in this case however, distance can be substituted by correlation. (6) 
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A clique is a fully connected graph; i.e. a subset of a graph‟s vertices     such that 

every two vertices in the subset are connected by an edge (see Figure 2). Considering the 

market graph, a clique would characterize a group of highly correlated and interrelated 

stocks such as a specific industry. Moreover, a clique is referred to as being maximum if 

the graph contains no larger clique and it is called maximal if the clique cannot be 

extended to a larger clique. We will in this thesis only focus on maximum cliques (MC). 

Another set of interest is the maximum independent set (MIS). It is defined as a set of 

vertices no two of which are connected. More formally, it can be depicted as a clique in 

the complementary graph   . Since this basically is the complete opposite of a clique, 

seeing as the vertices are negatively correlated, it is natural to interpret the set as a 

possible diversified portfolio. (3) 

 

 

 

 

Figure 1. A graph with 9 vertices. 

 

 

Quasi-cliques are special kinds of clusters that either have a constraint on minimum 

vertex degree or minimum edge density. Hence, a quasi-clique can be defined in two 

different ways. With a constraint on minimum vertex degree, a quasi-clique is defined 

in the following way: Let                be the set of vertices of the subgraph    

we wish to find. Then, the set of vertices S is a γ-quasi-clique                  

                   i.e. a sub-graph that satisfies the user-specified minimum 

vertex degree bound          . As a special case, a γ-quasi-clique is a fully 

connected graph, or a clique, when γ   . (7) 
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If on the other hand one would consider a γ-quasi-clique as being a cluster with a 

minimum constraint on edge density, the definition would be the same as above but 

with the constraints that the graph    has to be connected and            
 
 
 , i.e. the 

number of edges of the graph    has to be greater than some number dependent on   

and the number of vertices in the graph (8). 

 

 

 

 

Figure 2. A fully connected sub-graph, or clique, within a graph, highlighted in red. 

 

2.5 Liquidity 

 

Most people have an intuitive feeling about what liquidity is but not many can state how 

it should be mathematically defined. Linguistically, liquidity can be defined as “the 

probability that an asset can be converted into an expected amount of value within an 

expected amount of time” (9). In the context of this thesis however, a more suitable 

definition of liquidity is “the ability to convert shares into cash (and the converse) at 

the lowest transaction costs” (10). There is no consensus in the academic community 

exactly how to mathematically quantify the aforementioned definitions, but two 

common measures are the bid-ask spread and the turnover rate. The bid-ask spread is 

simply the difference between the bid price, the price people are willing to sell a 

specific share for at time  , and the ask price, the price people are willing to buy a 

specific share for at time  . The second most common measure, the turnover rate, is 

defined as 
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The notion is that investors expect a higher rate of return when investing in illiquid 

assets since the transaction costs for them are higher than for their more liquid 

counterparts. This price premium is evident in markets in the form of the bid-ask spread 

where the prices include premiums for immediate buying and immediate selling (11). 

Therefore, the bid-ask spread can be regarded as the price one pays for liquidity and 

hence, the lower the spread the more liquid the asset is considered to be. The situation is 

the converse in the case of the turnover rate, meaning that a higher turnover rate implies 

a higher liquidity. 

 

There are many articles that analyze different proxies for liquidity and also the 

relationship between liquidity and stock returns, but unfortunately their results are not 

conclusive. One of the bigger reasons for that is because the different researchers use 

different measures, or proxies, in their attempts to quantify liquidity. (11), (12) and (10) 

have all conducted empirical investigations in the matter and found that the bid-ask 

spread measure has yielded inconclusive results as a proxy for liquidity while the 

turnover rate measure, although not as prevalently used, has led to more stable and 

uniform results. This is especially true for quote-driven markets such as the NYSE, 

NASDAQ and OMX.  In light of that evidence we will in this thesis use the turnover 

rate as defined above as our proxy for liquidity. 

 

2.6 Maximum weighted clique- and Maximum weighted independent 

set problem 
 

We use the following formulation for the MWC-problem (13): 

 

Max      
 
    

Subject to: 

                   

 

                 

where: 

    
                                     

            
  

 

As a special case, if the graph is unweighted, we set all the weights     . The 

maximum weighted independent set (MWIS) problem is equivalent to the MWC 

problem in the complementary graph and solving it will give the independent set with 

largest weight for a given graph. 
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2.7 Constructing the market graph 

 

The construction of the market graph is quite simple. We let each vertex represent a 

stock and for any pair of vertices   and  , an edge is connecting them if the 

corresponding correlation coefficient            , based on the returns of instruments 

  and  , is greater than or equal to a specified threshold          . Now, let       

denote the price of the instrument   on day  . Then 

 

         
     

       
  

 

defines the logarithm of the return of instrument   over the one-day period from       

to  . The correlation coefficient between instruments   and   is calculated as 

 

    
                  

               
, 

 

where       is the average return of stock   over   days, i.e.       
 

 
      
 
   . 

 

2.8 Algorithms 

2.8.1 NP-hard 

 

That a problem is NP-hard means, among other things, that it cannot be solved exactly 

using in polynomial time. All exact algorithms therefore have exponential runtimes 

which makes the solution process that much more difficult (2). However, algorithms for 

the maximum clique problem utilize the clique‟s downward closure property, i.e. the 

fact that every subset of a clique also is a clique. This piece of information makes it 

possible to construct efficient algorithms for the maximum clique problem. 

Unfortunately though, the downward closure property does not hold for finding 

maximum quasi-cliques (MQC) which means that the algorithms for finding exact 

solutions are much less efficient. 

 

2.8.2 Heuristic algorithm 

 

In order to get good starting points for the exact solution method used, we implemented 

a fast heuristic method to get approximate solutions to the MC-problem. A heuristic 

algorithm will usually not produce the optimal solution. However, a close to optimal 

solution is often found within a fraction of the time it takes to run an exact algorithm. 
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The heuristic algorithm used in this thesis is called the Vertex Support Algorithm (14). 

It is designed to solve the minimum vertex cover problem, which actually is equivalent 

to solving the MC- or MIS-problem. A vertex cover is defined as a set of vertices such 

that each edge of the graph is incident to at least one vertex in the set. A minimum 

vertex cover is a vertex cover of smallest possible size.  

 

The algorithm works in the following way: First we calculate the degree and support of 

every vertex in the graph. The support of a vertex is defined as the sum of the degrees of 

its neighbors. The vertex with the largest support is then added to the vertex cover and 

is subsequently removed from the graph. If two or more vertices have equivalent 

maximum support we add the one with the largest degree to the vertex cover. This 

continues iteratively and when no edges between the vertices are left we have found our 

minimum vertex cover. The MIS or MC, depending on if you look at the graph or its 

complement, is then the vertices which are not in the minimum vertex cover. 

 

2.8.3 Algorithm for Maximum clique and Maximum weighted clique  

 

To solve the MC-, MIS-, MWC- and MWIS-problem, Pardalos‟ and Carraghan‟s exact 

algorithm was used (15). However, to speed up the algorithm, we implemented a 

preprocessing procedure which utilizes the results from the heuristic algorithm. Since 

we know that the exact solution for the MC-problem is larger than or equal to the 

heuristic result, we can remove all vertices in the graph which has degree smaller than 

the heuristic MC size since they obviously cannot be a part of the MC. This will 

significantly reduce the problem size and speed up the calculations. The exact algorithm 

works in the following way: 

 

We start with one vertex,   , and we look for all vertices adjacent to it. When those 

nodes are found, we look for all nodes adjacent to the ones we just found that were 

adjacent to   . This is done iteratively until we find all cliques containing   and then we 

simply pick out the largest clique containing that vertex and save it as our current best 

clique. Next, we remove   from the graph and go through the same procedure with the 

next node,   . Since this algorithm uses brute force to find the MC it would not be 

efficient unless some pruning strategies were implemented. The pruning strategies help 

to speed up the search in two ways. First of all, every time a new clique is found it is 

compared to the current best clique in order to find out if it is larger. If it is, we save the 

new clique as the current best clique and discard the old one. Say that we are about to 

evaluate a new vertex at some step in the search and our current best clique consists of 

ten vertices. If the vertex we are about to evaluate only has 9 neighbors or less, we 

know that it cannot be part of a clique larger than our current best one since the largest 

clique it can be a part of is of size ten. Therefore we skip that vertex altogether and go 
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on to the next. Furthermore, suppose that we have a graph containing 100 vertices, that 

we at the moment have searched through 70 of them and that our current best clique is 

of size 32. Now we only have 30 vertices left to go through, since we remove every 

evaluated vertex from the graph, and hence there is no possibility that we will find a 

clique larger than our current best one which is of size 32. Because of that, we will not 

look through the last 30 vertices and we have found the MC. The weighted counterpart 

of the algorithm works in the same way except that it prunes based on the weight and 

not the degree of the remaining vertices. For the interested reader, VB code for the two 

algorithms can be found on the internet (16). 

 

2.8.4 Quasi-clique algorithm 

 

The exact optimization problem for finding MQC is very difficult, as well as 

computationally challenging, to solve. The main problem is one concerning memory 

and computational time. To be able to run the optimization on a single desktop 

computer one would have to write a very efficient program, where as little memory as 

possible is needed in every step of the calculation. In addition, the time it would take to 

find a globally optimal solution is too long because of two reasons; first of all since the 

problem is more complex than the MC-problem, which is NP-hard, and secondly 

because it doesn‟t satisfy the same closure property as the MC-problem does. Therefore, 

a greedy randomized adaptive search procedure (GRASP) with a local search algorithm 

will be used instead of an exact algorithm. GRASP is an iterative method that constructs 

a random solution, i.e. a clique, at each iteration, and then searches for a locally optimal 

solution in the neighborhood of the created clique (17). This way one cannot know how 

good QC one obtains. However, this is not a problem since the goal is not to find exact 

solutions but rather to identify different sectors and find larger independent sets.  

 

In the beginning of the algorithm, a vertex is randomly chosen from a list of vertices 

that all have degrees greater than some threshold. This vertex will serve as the start of 

the clique. The next vertex to be added to the clique is chosen based on a similar list 

wherein all vertices are adjacent to the first chosen vertex whilst their degrees are 

greater than some new threshold. This procedure is repeated until no more candidates 

can be found and then we have a found a solution. Now we implement a local search 

procedure in order to improve the solution. The local search creates a better solution by 

randomly choosing a vertex from the previously obtained solution, removing it from the 

clique, and then adding two or more new vertices that are connected to all vertices in the 

remaining clique. This continues as long as it is possible to find such vertices that, if 

they are removed, can be replaced by two or more other vertices to improve the 

solution.  
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The only difference between our algorithm for MQC and the one explained above for 

cliques is that the constraint on the vertices one adds is relaxed. Instead of demanding 

that they are connected to all the other vertices it is sufficient that they are connected to 

at least           of the vertices in the clique. This will furthermore guarantee that 

the new solution‟s edge density is at least 

 

   
 
 
                                            . 

 

Since there is a constraint on the degree of each vertex, instead of on the edge density, 

no undesirable QC with high edge density but including vertices with only one 

connection to the rest of the QC will be found. Therefore, we are ensured to only find 

MQC of good quality. 
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3 Characteristics of the market graph 

In this part of the thesis we explore and analyze some traits of the market graph. 

 

3.1 Data 
 

In order to present some characteristics of the market graph and study its dynamics we 

have used stock returns from October 20, 2008 to October 15 2010. Research will be 

conducted on two different markets; the Swedish stock market OMX and the American 

stock market consisting of NASDAQ, AMEX and NYSE. This will give us the 

possibility to compare the different markets as well as get better and more reliable 

results. 266 stocks have been collected for the Swedish market for 500 consecutive 

trading days and 5700 stocks for the American market for 502 consecutive trading days, 

the two additional days being due to differences in holidays. Although there is a loss in 

the amount of American securities, since data was not available for some of them, we 

believe that we have enough data to get reliable and consistent results. 

 

3.2 Clustering coefficient 

 

The clustering coefficient is a probability measure that quantifies the probability that the 

nodes adjacent to a single node   are connected. In other words, it gives us a measure of 

how well nodes in a graph tend to cluster together and thus, how well connected the 

neighborhood of a node is. Let us look at node    which is of degree   . Then we get the 

clustering coefficient    for that node by taking the ratio of the number of edges    that 

actually exist between its    neighbors and the total number of edges            that 

could exist in the neighborhood of    , i.e. 

 

   
   

        
           

 

The entire graph‟s clustering coefficient is simply the mean of the individual clustering 

coefficients of the nodes that have degree greater than two. 

 

When calculating the clustering coefficient for different values of the correlation  , we 

found that the clustering coefficient is higher for large and positive   in comparison to 

small and negative   in the complementary graph, where the clustering coefficient 

turned out to be very close to 0. We suggest that this is a sign of globalization, meaning 

that more and more stocks are dependent on each other and that the market movements 

are less random. For instance, with      , the Swedish market has almost the same 
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edge density in the original graph as in the complementary graph with        . 

However, the corresponding values of the clustering coefficients are        and   

      . This result is analogous in the American market graph where        for 

      and        for       . Consequentially, we expect to find significantly 

larger MC than MIS in both market graphs. This result corresponds to the findings in 

(2). The fact that the clustering coefficient is much higher than the edge density is a 

typical characteristic for power-law graphs. 

 

3.3 Correlation distribution 

 

As one of the characteristics of the market graph, the correlation distribution provides 

information about how the stocks are correlated to one another, thus telling us what type 

of market structure we are dealing with. Figure 3 shows the correlation distribution of 

the Swedish stock market where the red curve is a normal distribution fitted to the data. 

Obviously, the correlations between stocks at OMXS are not normally distributed. The 

data lacks symmetry and the heavy tail on the right will not be encompassed by a 

normal curve. Moreover, the mean value   is       and the standard deviation 

  is     . With that in mind and the fact that the correlation of most stocks are greater 

than zero, i.e. the stock prices tend to move in the same direction, we get yet another 

indication that the modern stock market is affected by globalization. 

 

Figure 4 is the corresponding plot for the American stock market with         and 

         In contrast to OMXS; both tails of the correlation distribution of the 

American stocks are almost entirely covered by the fitted normal distribution. However, 

the shape of the correlation distribution and the shape of the normal distribution do not 

match. Thus, a normal fit is not appropriate. Similar to the Swedish market, the 

American stocks also mainly exhibit positive correlations which further corroborate the 

theory of increased globalization. 

 

By studying the evolution of the correlation distribution of the American market graph 

over time, one can show that it remains stable. Consequently, the degree distribution 

will remain stable over time and a plot can be approximated by a straight line (in a 

logarithmic scale), which means that it can represent the power-law distribution. For a 

more stringent analysis see (4). We will later on in the report study the evolution of the 

Swedish market graph over different time periods. 
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Figure 3. Distribution of correlation coefficients in the Swedish stock market with a fitted 

normal distribution. 

 

Figure 4. Distribution of correlation coefficients in the American stock market with a fitted 

normal distribution. 
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3.4 Edge density 

 

Edge density is a ratio obtained by dividing the numbers of edges in a graph with the 

maximum possible number of edges,           where   is the number of vertices in 

the graph. Changing the value of the correlation threshold will affect the edge density, 

and by doing so one can construct market graphs with different degrees of correlation 

between stocks. This can be used to alter sizes of cliques and independent sets in a 

graph. Figure 5 shows the edge density for the Swedish stock market for different 

values of the correlation threshold. It is clear that the edge density decreases with 

increasing threshold values. This result is not surprising since we expect to find fewer 

stocks that behave similarly as we increase the correlation threshold. Also, higher edge 

density is linked to lower correlation between stocks, which is in line with the notion 

that a portfolio with a larger amount of stocks is better diversified. Figure 6 shows the 

edge density of the American stock market and it is easy to see that it almost has the 

exact same shape as the Swedish. One can expect similar shapes for any stock market in 

the world. 

 

In (4) the authors studied the edge density and its change during different consecutive 

time periods. By setting the value of the correlation threshold to    , they made sure 

that they got edges that corresponded to those stocks which were significantly 

correlated with each other. It turned out that the edge density was approximately 8.5 

times higher in the last period than the first which, according to the authors, was an 

indication of the increasing globalization of the modern stock market. 
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Figure 5. Edge density of the Swedish market graph for different values of the correlation 

threshold. 

 

Figure 6. Edge density of the American market graph for different values of the correlation 

threshold. 
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4 Structure of the market graph 

In this chapter we utilize the earlier described algorithms in order to find differences 

and similarities between stocks in the graphs.  

 

4.1 Maximum clique and Maximum independent set 

 

As we already have mentioned, the MC is the largest cluster in which all nodes are 

connected to every other node, thus making it a complete graph. The MIS is the 

corresponding complete graph in the complementary market graph. Keeping in mind 

that we are looking at return correlations between stocks, the MC will represent the 

maximum number of stocks whose price fluctuations exhibit similar behavior. 

Correspondingly, the MIS represents the maximum set of stocks whose price returns are 

the most uncorrelated, and thus constitutes the largest diversified portfolio. 

 

In the previous chapter we mentioned that it is easier to find a MC in the original graph 

than a MIS in the complementary graph. By looking in Appendix I and Appendix II, 

one quickly realizes that this is also the case. The MIS for                 are 

smaller than the MC for             . Moreover, the MIS size becomes even smaller 

for         which is consistent with the results we got from Figure 3 and Figure 4, 

namely that globalization has a strong affect on the market. The fact that the MIS are 

small, and hence contain too few stocks to choose from when considering building a 

portfolio, we are led to search for alternate methods which can assist us in finding good, 

diversified portfolios. This method will be explored in chapter 4.3. 

 

Comparing Appendix I to Appendix II, we clearly see that the Swedish market yields 

smaller MIS than the American market. One way to decrease unsystematic risk is to 

hold a portfolio consisting of many uncorrelated stocks. Therefore, it is favorable to 

invest in the MIS in markets of larger size.  

 

At       for the Swedish market graph, the MC includes stocks from the industrial 

and the material sectors. With higher values of   , one can expect to get a clique 

consisting of stocks from only one sector. However, the result is still satisfying since the 

industrial and the material sector are highly correlated. This is quite obvious since the 

manufacturing industry depends on the companies supplying their materials in order to 

function and conduct business properly. Another interesting observation is that three 

financial companies appear in the same MC. This is due to the large positions that the 

financial companies have in the other companies from the same clique. Consequently at 

       the MC will neither include the financial company INDU nor will it include 

the industrial companies SAND and VOLV, the two of which INDU has large positions 
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in. The same behavior is found in the American market. According to Appendix B, the 

MC at        only consists of companies from the basic materials industry, more 

specifically silver and gold companies. Unlike the Swedish market, these companies do 

not emerge in other cliques and must therefore be very strongly correlated which is 

something one can anticipate from both silver and gold securities. 

 

An interesting observation is that as   decreases, the algorithm either adds stocks from 

sectors already existing in the MC or stocks belonging to companies that in some other 

way are highly dependent on the ones already in the MC. An interesting difference 

between the two markets is that the cliques in the Swedish market are based on some of 

the biggest companies while the cliques in the American market are built strictly around 

specific sectors. 

 

4.2 Maximum weighted clique and Maximum weighted independent 

set 
 

By adding weights to the stocks we get solutions to the MWC- and MWIS-problem 

which not only considers the price fluctuations between the stocks, but also the 

liquidity. This will provide us with information about the stock market from another 

perspective that we can compare to the unweighted case. 

 

The cliques in the weighted case behave very similarly to the unweighted ones except 

for a few notable differences. Instead of pinpointing gold and silver companies, the 

algorithm for the MWC-problem generates cliques consisting of market indices for 

               in the American market. This means that not only are the indices 

highly correlated with each other, but they are also highly liquid. The Swedish market 

on the other hand is unaltered since we only included stocks from OMX. All stocks 

included in the Swedish MC and MWC are, unsurprisingly, from OMX Large Cap. 

Thus, they are the most correlated and most liquid stocks at the same time.  We 

furthermore found that the industrial and the material sectors appear in the weighted as 

well as in the unweighted case and we therefore draw the conclusion that these stocks 

are the most correlated as well as the most liquid. Moreover, it is preferable to choose 

diversified portfolios from the weighted graphs since their liquidity risk is lower, even 

though their sizes are a bit smaller than the diversified portfolios in the unweighted case 

(see Appendix III and Appendix IV). 
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4.3 Maximum quasi-clique and Maximum quasi-independent set 
 

Since the MIS for      are small in both markets, we look for MQIS in order to find 

larger independent sets. By calculating MQIS, we reduce the requirements in the sense 

that we no longer demand complete graphs. Stocks can be a part of MQIS even though 

they are not connected to all other stocks in the same MQIS. Thus, we can expect larger 

MQIS for the price of less diversification. For instance, in the American graph at     

and      , a MQIS consisting of 21 stocks, i.e. about 60 % larger than the 

corresponding MIS, is found (see Appendix V). Also, a MQIS in the Swedish market 

graph at        and       will generate a quasi clique consisting of 33 stocks, 

which is a significantly larger diversified portfolio than in the earlier cases (see 

Appendix VI). However, each stock within the MQIS only needs degree     

          and not 32 in order to be accepted as a part of the QIS. Investing in such 

a portfolio would be riskier since the information about how the stocks are correlated 

i.e. exactly how diversified the portfolio really is, is somewhat incomplete. The MQC 

does however provide us with useful information which, if utilized appropriately, 

increases our chances of building a large, well diversified portfolio. 

  



26 

 

5 Dynamics of the market graph 

Here we study how the interaction between stocks in the market change as time goes by. 

 

5.1 Data 
 

Earlier we studied and analyzed static market graphs but will now shift our focus to how 

some of the previously studied features change over time. The hope is to learn more 

about how those features evolve and what, if anything, that says about the market as 

time goes by. The data used for this part of the study is the same as the Swedish data 

used earlier but with a longer time span, namely between April 20, 2008 and October 

15, 2010. We then split our data into four equally large periods which resulted in four 

data sets, each consisting of 155 observations of daily returns. Out of those sets of data 

we constructed four market graphs and computed their correlation distribution and edge 

density. This can be seen in Figure 7 and in Figure 8. 

 

 

Figure 7. Price correlation density for the Swedish stock market for different time periods. 
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Figure 8. Edge density for the Swedish stock market for different time periods. 

 

5.2 Correlation distribution and edge density 
 

From Figure 7 and Figure 8 we instantly see that the four periods are quite different. 

Even though periods 1 and 3 appear to be fairly similar it is obvious that they 

significantly differ from the other two periods. Most importantly, the right tails in 

periods 1 and 4 (see Figure 7) are greater than for the other two periods and that has an 

impact on the edge density as well (see Figure 8). This indicates that one would find 

larger cliques and smaller independent sets if one was looking in period 1 instead of in 

any other period. Furthermore, we learn that a single market graph constructed using 

combined data from all the four periods, as was done earlier, is considerably different 

from the four market graphs constructed with the periodically divided data. Since the 

market and its structure constantly changes it is important to visualize and keep in mind 

what impact that can have on the final results. Lastly, this provides more evidence 

strengthening the hypothesis that negative returns tend to correlate more than positive 

returns. This is apparent since the first period in our data consists of the last six months 

of the downturn in the recent financial crisis and that period is also by far the most 

positively correlated and has the highest edge density of all four measured periods. 
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5.3 Evolution of the market graph over time 

 

Now that we have seen how much the market graph can vary depending on the choice 

of time period, we think it would be interesting to make a more in-depth study of how 

its characteristics evolve during our two and a half years of data. In order to do so we 

create market graphs for all 100-day and 20-day periods in our data, i.e. one graph for 

day 1-100, one for 2-101, one for 3-102 etc. and we analyze how their properties change 

over time. 

 

We begin by considering the evolution of the market graph with a correlation threshold 

of 0.5 and 100-day intervals. We calculate the mean correlation coefficient, edge 

density, clique number and clustering coefficient for each period and compared them to 

the OMXSPI, which is representative of our data. This is done in order to find out if we 

can acquire new knowledge about the market. 

 

 

 

Figure 9. Mean correlation in the Swedish market graph plotted vs. the OMXSPI for continuous 

100-day periods. 
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Figure 10. Edge density of the Swedish market graph plotted vs. the OMXSPI for continuous 

100-day periods. 

 

Figure 11. Clique number generated from the Swedish market graph plotted vs. OMXSPI for 

continuous 100-day periods. 
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The first observation we make is that the green curves in Figure 9, Figure 10 and Figure 

11 look quite similar whilst being negatively correlated with the OMXSPI. We find that 

this is true since the edge density and the mean correlation have a correlation of about 

0.96 with each other and –0.5 with the index. It is also interesting to see that the clique 

number follows the pattern of the mean correlation and the edge density. This is because 

the clustering coefficient never drops below 0.65 for the entire period, and as explained 

earlier, a high clustering coefficient leads to graphs with denser clusters since new 

edges tend to be added to already dense areas of the graph. However, even though we 

find that the edge density and mean correlation is strongly negatively correlated with the 

market, we cannot really use the information from Figure 9, Figure 10 and Figure 11 for 

anything useful since the 100-day period is far too long in order for us to be able to 

detect swift changes in market movements. We will therefore divert our attention to the 

shorter time period we have intended to study, which is the 20-day period with 

correlation threshold 0.2. The reason we chose to lower the correlation threshold in the 

20-day period case is because we wanted a higher edge density in order to get more 

observations and thus better results. Still, 20-day correlations are not entirely reliable 

because of the small number of observations but if one wants to be able to catch quick 

market movements using correlation we believe that the only way is to shorten the time 

period. 

 

 

Figure 12. Edge density of the Swedish market graph plotted vs. the OMXSPI for continuous 

20-day periods. 
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Figure 13. Change in edge density larger than 0.05 of the Swedish market graph plotted vs. the 

OMXSPI for continuous 20-day periods. 

 

 

Comparing the 20- day edge density (see Figure 12) with the analogous one for the 100-

day period (see Figure 10) we find that the latter is much more volatile. It is however 

difficult to draw any more conclusions by only studying Figure 10 which is why we 

calculated the days on which the edge density increased by more than 5 percentage 

points (see Figure 13). Interestingly, with only two exceptions, it seems as if the edge 

density only increases by 5 percentage points or more when the market is about to make 

a sharp downturn. This implies that there is a possibility to use the daily absolute 

change in edge density as an indicator for when the market is about to go down.  

 

When significant upward or downward jumps occur in the market it is natural to expect 

that, just as in the case with return correlations, the correlation between different assets‟ 

trading volume increase at the same time. To test this hypothesis we construct a market 

graph using volume correlations instead of price correlations to see if we get similar 

results. In contrast to the results for the return based market graph, Figure 14 and Figure 

15 clearly indicate that the volume correlation and the edge density for the different 

periods are very similar to one another. Moreover, we can see in Figure 16 that the 

peaks of the absolute change in edge density do not pinpoint any distinct downturns in 

the market index in the same way they do for the price based market graphs.  
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Figure 14. Volume correlation density in the Swedish market graph for different time periods. 

 

Figure 15. Edge density for the Swedish market graph based on volume correlations for 

different time periods. 
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Figure 16. Change in edge density larger than 0.05 of the Swedish market graph based on 

volume correlations plotted vs. the OMXSPI. 
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6 Conclusion 

The results are summarized and topics for future research are proposed. 

 

In this thesis we have considered three different market graphs; one solely based on 

stock returns, another one based on stock returns with vertices weighted with a liquidity 

measure and lastly one based on correlations of volume fluctuations. Research was 

conducted on two different markets; the Swedish stock market OMX and the American 

stock market consisting of NASDAQ, AMEX and NYSE.  

 

We found that the clustering coefficient, in both market graphs, was higher for large 

positive correlations in comparison to small and negative correlations in the 

complementary graphs. This implies that the MC we found were larger than the MIS 

which is an effect of globalization. Further, the correlation distributions turned out to 

lack symmetry and have heavy tails to the right, i.e. the correlations of most stocks are 

greater than zero. This is yet another sign of the increased globalization making it 

harder to find diversified portfolios with time.  

 

Solving the MC-problem, we managed to pinpoint specific sectors for higher values of 

the correlations threshold. For the Swedish market we ended up with the industrial and 

the material sector, two industries that are highly dependent on each other. The basic 

material industry, more specifically silver and gold companies, was pinpointed for the 

American market graph. When we decreased the correlation threshold we found that the 

algorithm mainly added stocks from the same sector. One of the differences between the 

two markets was that the cliques in the Swedish market were based on some of the 

biggest companies while the cliques in the American market were built strictly around 

specific sectors. Also, in both market graphs, the MIS we found were significantly 

smaller than the MC. 

 

The cliques for the weighted case behaved very similarly to the unweighted except for a 

few notable differences. Instead of pinpointing gold and silver companies, the algorithm 

for the MWC-problem generated cliques consisting of market indices in the American 

market, telling us that the indices are highly correlated at the same time as they are very 

liquid. The Swedish market on the other hand turned out to be unaltered since we only 

included stocks and no indices from OMX. If one ought to invest in a diversified 

portfolio, it is clearly preferable to do so from the weighted graphs due to their lower 

liquidity risk. In order to increase the size of the diversified portfolio we also calculated 

MQIS which gave us independent sets consisting of a larger number of stocks. The 

price we had to pay was that such a portfolio would be riskier since the information 

about how the stocks are correlated, i.e. how well diversified the portfolio really is, is 

somewhat incomplete. 
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When we split the data into four equally long time periods we found that the price 

correlations and edge density were quite different. We discovered that one would find 

larger cliques and smaller independent sets by looking in period 1 instead of in any 

other period. Furthermore, we learnt that a single market graph constructed using 

combined data from all four periods is considerably different from the four market 

graphs constructed with the periodically divided data. This provided more evidence 

strengthening the hypothesis that negative returns tend to correlate more than positive 

returns.  

 

The 20-day edge density presented a quite interesting behavior. It seems as if it 

increases by 5 percentage points or more every time the market is about to make a sharp 

downturn. This implies that there is a possibility to use the daily absolute change in 

edge density as an indicator for when the market is about to go down. Obviously this 

has to be studied further but it is nonetheless an interesting result which maybe even can 

become a tool in predicting market declines. 

 

Using volume correlations instead of price correlations did not add any new results. 

Unlike return correlations, the volume correlation distribution and its edge density are 

very similar to each other for the different time periods. Moreover, we found that the 

peaks of the change in edge density do not pinpoint any distinct declines in the market 

index. We had hoped to get additional results by considering volume correlations, but 

that did not turn out to be the case. Regardless of that, we think that it would be 

interesting to study volume based market graphs further and perhaps try to find 

interesting properties which do not exist in the price based graph. 

  



36 

 

Bibliography 
 

1. Boginski, Vladimir, Butenko, Sergiy and Pardalos, Panos M. On structural properties of the 

market graph. [book auth.] Anna Nagurney. Innovations in financial and economic networks. 

Northampton : Edward Elgar Publishing Inc., 2003, pp. 29-45. 

2. Statistical analysis of financial networks. Boginski, Vladimir, Butenko, Sergiy and Pardalos, 

Panos M. 2004, Computational statistics & data analysis, Vol. 48, pp. 431-443. 

3. Bondy, Adrian and Murty, U.S.R. Graph Theory. Emeryville : Springer, 2008. 

4. Mining market data: A network approach. Boginski, Vladimir, Sergiy, Butenko and Pardalos, 

Panos M. 2006, Computers & Operations Research, pp. 3171-3184. 

5. A brief history of generative models for power law and lognormal distributions. Mitzenmacher, 

Michael. 2004, Internet Mathematics Vol. 1, No. 2, pp. 226-251. 

6. Han, Jiawei and Kamber, Micheline. Data mining: concepts and techniques. San Francisco : 

Morgan Kaufmann Publishers, 2001. 

7. Coherent Closed Quasi-Clique Discovery from Large Dense Graph Databases. Zeng, Zhiping, et 

al. Philadelphia, PA : ACM, 2006. Proceedings of the 12th ACM SIGKDD international conference 

on Knowledge discovery and data mining. pp. 797-802. 

8. Massive Quasi-Clique Detection. Abello, James, Resende, Mauricio G.C. and Sudarsky, 

Sandra. [ed.] Sergio Rajsbaum. New York : Springer-Verlag Berlin Heidelberg, 2002. Latin 2002: 

theoretical informatics. pp. 598-612. 

9. Mainelli, Michael. Liquidity: Finance in motion or evaporation? Gresham College. [Online] Sep 

05, 2007. [Cited: Nov 03, 2010.] http://www.gresham.ac.uk/event.asp?PageId=45&EventId=640. 

10. Liquidity and stock returns: Evidence from a pure order-driven market using a new liquidity 

proxy. Marshall, R. Ben. 2006, International review of Financial Analysis 15, pp. 21-38. 

11. Liquidity and Stock Returns. Amihud, Yakov and Mendelson, Haim. 1986, Financial Analysts 

Journal Vol. 42 No. 3, pp. 43-48. 

12. Liquidity and stock returns: An alternative test. Datar, T. Vinay, Naik, Y. Narayan and Robert, 

Radcliffe. 1998, Journal of Financial Markets 1, pp. 203-219. 

13. Bomze, Budinich I.M., Pardalos, Panos M. and Pelilio, M. The maximum clique problem. 

[book auth.] Dingzhu Du and Panos M. Pardalos. Handbook of combinatorial optimixation: 

Supplement, Volume 1. Dordrecht : Kluwer Academic Publishers, 1999, pp. 1-74. 

14. A Simple Algorithm to Optimize Maximum Independent Set. Balaji, S, Swaminathan, V and 

Kannan, K. 1, 2010, Advanced Modeling and Optimization, Vol. 12, pp. 107-118. 

15. An exact algorithm for the maximum clique problem. Carraghan, Randy and Pardalos, Panos 

M. 6, 1990, Operations Research Letters, Vol. 9, pp. 375-382. 

16. Kumlander, Deniss. [Online] 2007. [Cited: Dec 15, 2010.] http://www.kumlander.eu/graph/. 



37 

 

17. On maximum clique problems in very large graphs. Abello, J, Pardalos, Panos M and Resende, 

M G.C. Providence : American Mathematical Society, 1999. External Memory Algorithms: Dimacs 

Workshop External Memory and Visualization. pp. 119-130. 

18. Luenberger, David G. Investment science. New York : Oxford university press, 19989. 

19. A random graph model for power law graphs. Aiello, William, Chung, Fan and Lu, Linyuan. 

2001, Experiment. Math. Volume 10, Issue 1, pp. 53-66. 

 

  



38 

 

Appendix  
 

I – Cliques and independent sets in the Swedish market  

 
Correlation 

threshold    

Number of 

stocks 

 
Stocks 

     
– 0.05 

 
3  ACOM ICTA-B SAS 

     
0 

 
5  ACAN-B DGC NOVE RROS SAS 

     

0.05 
 

14 
 ARTI-B BALD-B CEVI FEEL GVKO-B KARO 

MSON-B NOTE NSP-B ORTI-B PSI-SEK RROS 

SAEK WAFV-B 

     

0.2 
 

76 

 AAK ABB ALFA ALIV-SDB AOIL-SDB ASSA-B 

ATCO-A ATCO-B AZA BBTO-B BEF-SDB BEGR 

BINV BOL CAST ECEX ELUX-B ERIC-A ERIC-B 

FABG GETI-B HEXA-B HOGA-B HOLM-B HUSQ-
A HUSQ-B IJ INDU-A INDU-C INVE-A INVE-B 

JM KINV-B KLED KLOV KNOW LIAB LUMI-

SDB LUND-B LUPE MEDA-A MIC-SDB MTG-B 

NCC-A NCC-B NDA-SEK NISC-B NOBI ORES 

ORI-SDB PEAB-B RATO-B SAAB-B SAND SCA-A 

SCA-B SCV-A SCV-B SEB-A SEB-C SECU-B SHB-

A SHB-B SKA-B SKF-A SKF-B SSAB-A SSAB-B 

STE-R SWED-A TEL2-B TLSN WIHL VNIL-SDB 

VOLV-A VOLV-B 

     

0.3 
 

54 

 ABB ALFA ALIV-SDB AOIL-SDB ASSA-B ATCO-

A ATCO-B BEGR BOL CAST ECEX ELUX-B 

FABG GETI-B HEXA-B HOLM-B HUSQ-A HUSQ-

B IJ INDU-A INDU-C INVE-A INVE-B JM KINV-B 

KLED LIAB LUND-B LUPE MTG-B NCC-B NDA-

SEK ORI-SDB PEAB-B RATO-B SAND SCA-B 

SCV-A SCV-B SHB-A SHB-B SKA-B SKF-A SKF-

B SSAB-A SSAB-B STE-R SWED-A TEL2-B TLSN 

WIHL VNIL-SDB VOLV-A VOLV-B 

     

0.4 
 

38 

 ABB ALFA AOIL-SDB ASSA-B ATCO-A ATCO-B 

BEGR BOL ECEX ELUX-B HEXA-B INDU-A 

INDU-C INVE-A INVE-B JM KINV-B LUPE MTG-

B NCC-B NDA-SEK PEAB-B RATO-B SAND SCA-

B SCV-B SHB-A SHB-B SKA-B SKF-B SSAB-A 

SSAB-B SWED-A TEL2-B TLSN VNIL-SDB 
VOLV-A VOLV-B 

     

0.5 
 

25 

 ABB ALFA ASSA-B ATCO-A ATCO-B BOL 

ELUX-B INDU-A INDU-C INVE-A INVE-B JM 

KINV-B LUPE MTG-B NCC-B NDA-SEK SAND 

SCV-B SKA-B SKF-B SSAB-A SSAB-B TEL2-B 

VOLV-B 

     

0.6 
 

15 

 ABB ALFA ATCO-A ATCO-B BOL INDU-C 

INVE.-A INVE-B KINV-B SAND SKF-B SSAB-A 

SSAB-B VOLV-A VOLV-B 

     
0.7 

 
8 

 ALFA ATCO-A ATCO-B INVE-A INVE-B SKF-B 

SSAB-A SSAB-B 
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II – Cliques and independent sets in the American market  
 

Correlation 

threshold    
Number of stocks 

 
Stocks 

     
– 0.05 

 
6 

 BNC NEFOI HMNA MEDQ SNFCA 

VSCP 

     
0 

 
12 

 ALLB AMTC ARCW CO DD-PA GJJ 

IMS QADI RGCO SSE UNAM WBNK 

     

0.05 
 

35 

 AERL ANX BDCO BDL CALL CFBK 

CO EDCI EDS FFDF GAI GJK GJL 

GLOI GSLA INV JCDA KGJI LSBI 

NBXH NFEC NFSB NPBCO OGXI 

PDEX PSBH RDIB ROIAK RPTP 

SKH SPRO UBOH ULCM WWIN 

ZANE 

     

0.65 
 

57 

 ACC AIV AKR AMB ARE AVB BFS 

BRE BXP CLI CPT DCT DEI DLR 

EGP ELS EPR EQR ESS EXR FRT 

FSP HCN HCP HIW HME HR HST 

IRC JLL KIM KRC LRY MAA NHP 

NNN O OFC OHI PCH PCL PKY PPS 

PRFZ PSA REG RYN SKT SNH SPG 

SSS TCO UDR VNO WRE WRI VTR 

     

0.7 
 

41 

 ACC AMB ARE AVB BFS BRE BXP 

CLI CPT DCT DEI DLR ELS EPR 

EQR FRT HCN HCP HIW HME HR 

KIM KRC LRY MAA NNN O OFC 

OHI PCH PSA REG SNH SPG SSS 

TCO UDR VNO WRE WRI VTR 

     

0.75 
 

31 

 AVB BRE BXP CLI CPT DCT ELS 

EQR FRT HCN HCP HIW HME HR 

KIM LRY MAA NHP NNN O OHI 

PCH PSA REG RYN SPG TCO UDR 

VNO WRE WRI 

     

0.8 
 

16 

 BRE BXP CLI CPT ELS EQR FRT 

HCP HIW LRY NNN O PSA REG 

SPG VNO 

     
0.85 

 
5  ABX AEM AUY GG KGC 
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III – Weighted cliques and independent sets in the Swedish market 
 

Correlation 

threshold    
Number of stocks 

 
Stocks 

     
– 0.05 

 
2  ENRO ORTI-A 

     
0 

 
2  HEBA-B LUMI-SDB 

     

0.05 
 

12 
 ARTI-B BALD-B DORO ENRO HQ LUXO-

SDB MSC MULQ ORTI-A RROS RTIM SAS 

     

0.2 
 

76 

 AAK ABB ALFA ALIV-SDB AOIL-SDB 

ASSA-B ATCO-A ATCO-B AZA BBTO-B 

BEF-SDB BEGR BOL CAST ECEX ELUX-B 

ERIC-A ERIC-B FABG GETI-B HEXA-B 

HOGA-B HOLM-B HUSQ-A HUSQ-B IJ 

INDU-A INDU-C INVE-A INVE-B JM 

KINV-B KLED KLOV KNOW LIAB LUMI-

SDB LUND-B LUPE MEDA-A MIC-SDB 
MTG-B NCC-A NCC-B NDA-SEK NISC-B 

NOBI ORES ORI-SDB PEAB-B RATO-B 

SAAB-B SAND SCA-A SCA-B SCV-A SCV-

B SEB-A SEB-C SECU-B SHB-A SHB-B 

SKA-B SKF-A SKF-B SSAB-A SSAB-B 

STE-R SWED-A TEL2-B TLSN WIHL 

VNIL-SDB VOLV-A VOLV-B 

     

0.3 
 

52 

 ABB ALFA ALIV-SDB AOIL-SDB ASSA-B 

ATCO-A ATCO-B BEGR BOL ECEX 

ELUX-B FABG GETI-B HEXA-B HOLM-B 

HUSQ-A HUSQ-B IJ INDU-A INDU-C 

INVE-A INVE-B JM KINV-B KLED LIAB 

LUMI-SDB LUPE MTG-B NCC-B NDA-

SEK ORI-SDB PEAB-B RATO-B SAND 

SCA-B SCV-A SCV-B SECU-B SHB-A SHB-

B SKA-B SKF-A SKF-B SSAB-A SSAB-B 

SWED-A TEL2-B TLSN VNIL-SDB VOLV-

A VOLV-B 

     

0.4 
 

34 

 ABB ALFA AOIL-SDB ASSA-B ATCO-A 

ATCO-B BEGR BOL ECEX ELUX-B 

HEXA-B INDU-A INDU-C INVE-A INVE-B 

JM KINV-B LUMI-SDB LUPE MTG-B NCC-

B NDA-SEK PEAB-B RATO-B SAND SCA-

B SKA-B SKF-B SSAB-A SSAB-B SWED-A 
TEL2-B VNIL-SDB VOLV-A VOLV-B 

     

0.5 
 

25 

 ABB ALFA ASSA-B ATCO-A ATCO-B BOL 

ELUX-B INDU-A INDU-C INVE-A INVE-B 

JM KINV-B LUPE MTG-B NCC-B NDA-

SEK SAND SCV-B SKA-B SKF-B SSAB-A 

SSAB-B TEL2-B VOLV-B 

     

0.6 
 

15 

 ABB ALFA ATCO-A ATCO-B BOL INDU-C 

INVE.-A INVE-B KINV-B SAND SKF-B 

SSAB-A SSAB-B VOLV-A VOLV-B 

     
0.7 

 
8 

 ALFA ATCO-A ATCO-B INVE-B SAND 

SKF-B SSAB-A SSAB-B 
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IV – Weighted cliques and independent sets in the American market 

 
Correlation 

threshold 

  
 

Number of stocks 

 

Stocks 

     
– 0.05 

 
4  CLRO REE SCKT TORM 

     
0 

 
9 

 ALRN CBIN FCAP MTSL OPTC 

PKT RITT SCKT TORM 

     

0.05 
 

25 

 AMIE BTC BWOW CLSN CNYD 

COBK CZFC DJSP EONC GJI ISRL 

KENT KRY KSW LEO LONG LSBI 

NMRX RITT SAVB TORM TRNS 
TZF USATP ZAGG 

     

0.65 
 

43 

 AA ACI ACWX ADRE AKS APA 

ATW BTU BUCY CAM CNQ CNX 

COP DRQ ECA FCX HAL JOYG 

MEE MRO MUR NBL NBR NE 

NOV OII OIS OXY PBR PDE PRFZ 

PTEN QQQQ RDC SCCO SLB SU 
TLM UNT VALE WFT WLT 

     

0.7 
 

17 

 ACI AKS ATI BTU BUCY CLF 

CNX FCX JOYG MEE NUE QQQQ 

SCCO STLD VALE WLT X 

     
0.75 

 
6 

 ADRE ONEQ PRFZ QQEW QQQQ 

QTEC 

     
0.80 

 
4  ONEQ QQEW QQQQ QTEC 

     
0.85 

 
2  QQQQ QTEC 
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V – Quasi-cliques and independent sets in the Swedish market 

 
Correlation 

threshold 

  

 Degree 

threshold   

 
Number of 

stocks  
Stocks 

       

0.05 
 

0.5  59 

 ACAN-B AERO-B ARTI-B 

ATEL AZN BALD-B BTS-B 

CATE CEVI DAG DGC 

DIOS DORO DUNI DV 

ELEC ELGR-B ELUX-A 

FEEL GVKO-B HAV-B HQ 

ICTA-B ITAB-B KABE-B 

KARO LJGR-B LUXO-SDB 

MOBY MSC-B MSON-A 

MSON-B MTG-A MTRO-

SDB-A MTRO-SDB-B 
MULQ NAXS NCAS NOTE 

NOVE OEM-B ORTI-A 

ORTI-B PHON PREC PROB 

PSI-SEK RROS RTIM-B 

SAEK SAGA-PREF SAS 

SOBI TILG TRAC-B WAFV-

B VITR VRG-B XANO-B 

       

0.05 
 

0.6  46 

 AERO-B ARTI-B AZN 

BALD-B BTS-B CATE CEVI 

DAG DGC DORO ELEC 

ELGR-B FEEL GVKO-B 

HAV-B HEBA-B HMS HQ 

ICTA-B LAMM-B LUXO-

SDB MOBY MODL MSC-B 

MSON-A MSON-B MTG-A 

MTRO-SDB-A MULQ NAXS 

NCAS-B NSP-B ORTI-A 

ORTI-B PHON PROB PSI-
SEK RROS RTIM-B SAEK 

SAGA-PREF SAS SOBI 

TILG WAFV-B VITR 

       

0.05 
 

0.7  33 

 ARTI-B BALD-B CATE 

CEVI DORO ELGR-B FEEL 

GVKO-B HMS HQ ICTA-B 
KARO MSC-B MSON-B 

MTG-A MTRO-SDB-A 

MULQ NOTE NSP-B ORTI-

A ORTI-B PHON PREC 

PROB PSI-SEK RROS RTIM-

B SAEK SAS SOBI TILG 

TRAC-B WAFV-B 

       

0.05 
 

0.8  26 

 ARTI-B BALD-B CEVI 

DORO FEEL GVKO-B HQ 

ICTA-B KARO LUXO-SDB 

MSC-B MSON-B MULQ 

NOTE NSP-B ORTI-A ORTI-

B PHON PSI-SEK RROS 

RTIM-B SAEK SAS SOBI 

TILG WAFV-B 

       
0.05 

 
0.9  18 

 ARTI-B BALD-B DORO 

ENRO ICTA-B KARO 
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LUXO-SDB MSC-B MULQ 
NOTE ORTI-A ORTI-B 

PHON PREC RROS RTIM-B 

SAEK SAS 

       

0 
 

0.5  14 

 DGC HEBA-B HOLM-A 

ICTA-B MOBY MSC-B 

MSON-B NSP-B ORTI-A 

ORTI-B PSI-SEK RROS SAS 
TRAC-B 

       

0 
 

0.6  8 

 ARTI-B CEVI HAV-B 

MSON-B ORTI-A SAS SOBI 

WAFV-B 

       

0 
 

0.7  8 

 ACAN-B DGC MSON-B 

ORTI-A ORTI-B PSI-SEK 

RROS SAS 
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Correlation 

threshold   

 Degree 

threshold   

 Number of 

stocks  
Stocks 

       

0.6 
 

0.5  23 

 ABB ALFA ASSA-B 

ATCO-A ATCO-B BOL 

ELUX-B INDU-A INDU-C 

INVE-A INVE-B KINV-B 

NCC-B RATO-B SAND 
SCV-B SHB-A SKA-B 

SKF-B SSAB-A SSAB-B 

VOLV-A VOLV-B 

       

0.6 
 

0.6  19 

 ABB ALFA ATCO-A 

ATCO-B BOL INDU-A 

INDU-C INVE-A INVE-B 
KINV-B NDA-SEK SAND 

SHB-A SKA-B SKF-B 

SSAB-A SSAB-B VOLV-A 

VOLV-B 

       

0.6 
 

0.7  19 

 ABB ALFA ATCO-A 

ATCO-B BOL INDU-A 
INVE-A INVE-B KINV-B 

NCC-B RATO-B SAND 

SCV-B SKA-B SKF-B 

SSAB-A SSAB-B VOLV-A 

VOLV-B 

       

0.7 
 

0.5  11 

 ALFA ATCO-B INDU-C 
INVE-A INVE-B KINV-B 

SAND SKA-B SKF-B 

SSAB-A SSAB-B 
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VI – Quasi-cliques and independent sets in the American market 

  
Correlation 

threshold   

 Degree 

threshold   

 Number of 

stocks  
Stocks 

       

0 
 

0.6  21 

 BDL BTI CART CIZN 
CYCCP EEI EMCF FFDF 

HAVNP IVA KENT KGJI 

MYF PBHC PCBS PFIN 

RDIB RIVR SGRP TORM 

TRCI 

       

0 
 

0.7  14 

 ADTN BDL CLRO CWBC 
EOSPN GIA IVA KGJI 

LPTH NRB SGRP TRCI 

VMEDW WWIN 

       

0.8 
 

0.5  27 

 BRE BXP CLI CPT DCT 

ELS EQR FRT HCN HCP 

HIW HME HR LRY MAA 
NNN O PCH PSA REG 

SNH SPG TCO UDR VNO 

WRE WRI 

       

0.8 
 

0.6  24 

 BRE BXP CLI CPT ELS 

EQR FRT HCN HCP HIW 

HME HR LRY MAA NNN 
O PCH PSA REG SNH SPG 

TCO UDR VNO 

       

0.8 
 

0.7  21 

 BRE BXP CLI CPT EQR 

FRT HCP HIW HME LRY 

MAA NNN O PCH PSA 

REG SPG TCO UDR VNO 
WRI 

       

0.8 
 

0.8  19 

 BRE BXP CLI CPT ELS 

EQR FRT HCP HIW HME 

LRY MAA NNN O PCH 

PSA REG SPG VNO 

 
 


