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Abstract

Hong and Stein (1999) explained the initial underreaction and the
subsequent overreaction of prices to news as the outcome of the inter-
action between two groups of traders: news watchers and momentum
traders. The news watchers have proprietary ways of interpreting pub-
lic news and trade based on their interpretation. The true meaning
of the news becomes gradually known to the crowd of news watch-
ers and this creates the market underreaction. Underreaction makes
momentum strategies pro�table. Eventually, the momentum traders
push the price too far and the market corrects. We test how well
the model explains index and individual stock price behavior around
earnings announcements. To remove ambiguity in the interpretation
of the earnings news we proxy the news by the price change on the
day of the announcement. Plots of the autocorrelation and the partial
autocorrelation function suggest that the market reaction di�ers from
that predicted by the model. There is an overreaction on the day of
the announcement, a correction that lasts for 5-10 days and overshoots
the price in the opposite direction and eventually a long trend with the
same sign as the initial overreaction. To test the statistical signi�cance
of this observation we devise a trading strategy. Out-of-sample tests
show some support for this observation. To explain the initial overreac-
tion, presumably caused by very active momentum traders that trade
during the announcement day, the model of Hong and Stein needs to
include this group of traders and be applied on high frequency data
during the announcement day.
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1 Introduction

Hong and Stein (1999) proposed a model to explain underreaction, mo-
mentum trading and overreaction in asset markets. Their model assumes
two groups of traders: news-watchers and momentum traders. Every news-
watcher observes some private information, but fails to see the information
given to other news-watchers. Thus news di�uses gradually across the popu-
lation resulting in an underreaction of the asset price in the short run. This
underreaction in the short run means that the momentum traders can pro�t
from trend chasing strategies. However, if they only use a simple strategy,
forecasting tomorrow's return based on yesterday's return, their actions will
lead to an overreaction in the long run.

The existence of the news-watchers, who upgrade their views as they
continuously receive more information, is motivated by evidence that stocks
experience post-news drift in the direction the stock moved on the day of
the news release, see Bernard (1992). Our �ndings suggest that this picture
can be embellished by an initial short-term move in the opposite direction.

Commodity Trading Advisors (CTAs) are hedge funds that use momen-
tum as their trading tool. These strategies are pro�table as returns tend
to exhibit positive correlation at three to twelve months' time horizons, see
Jegadeesh and Titman (1993). DeBondt and Thaler (1985) �nd negative
correlation between stock returns at time horizons beyond twelve months:
at some point the trend loses steam and the price corrects towards its fun-
damental value.

The rest of the thesis is organized as follows. In Chapter 2, we explain
how the model is constructed. We �rst introduce the news-watchers and
show that the di�usion of information to these traders leads to underreac-
tion. Next, we add momentum traders to the model. These traders pick up
the price change and arbitrage away the underreaction left behind by the
news-watchers. However, since the momentum traders use a simple trading
strategy they create an overreaction.

In Chapter 3, we explain with stylized examples how to determine the
model parameters. We �nd that the parameters in the model can be deter-
mined by di�erent correlations plots.

In Chapter 4, we apply the model to reality. We produce the key cor-
relation plots for stock indices and individual stocks. These plots do not
resemble the plots of the stylized examples. This indicates that the model
does not describe reality accurately. A di�erent pattern emerges: the mo-
mentum traders are smart enough to not only condition on price change but
also on the date of the news releases. They trade actively on the announce-
ment day and cause the price to overreact. Hong and Stein (1999) mention
that their model is intended to describe the price dynamics in response to
private news. Then the momentum traders have no idea whether they are
buying early in the cycle (generating pro�t) or late in the cycle (making a
loss). When the news is public, the momentum traders are smart enough
to re�ne their strategy: they make their strategy time-dependent and trade
aggressively in the period just after the public announcement. To test the
validity of this observation, we develop a trading strategy and test its per-
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formance out of sample. This trading strategy notes the sign of the return
on the day of the news release, takes the opposite position for the next �ve
days and reverses the position and keeps it for the following year.
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2 The Model Construction

We start the model construction with the news-watchers, who trade a risky
asset paying a single dividend at some later time T , the ultimate value of
the dividend DT = D0 +

∑T
j=0 εj , where εj is i.i.d normally distributed with

mean zero and variance σ2. Here we make the assumption that every εj
can be decomposed into z independent parts, each with the same variance.
At time t, information about εt+z−1 begins to spread and has at this time
been seen by a fraction 1

z of the total group of news-watchers. At the later
time t+ 1 the information about εt+z−1 has been seen by a fraction 2

z of the
news-watchers, at time t + 2 it has been seen by a fraction 3

z and so forth.
This continues until εt+z−1 has been seen by everyone, which happens at
time t+z−1. The parameter z can be interpreted as the rate of information
�ow; a high value of z indicates a slow di�usion while a low value indicates
a more rapid di�usion. Given this setup the price at time t, becomes;

PNews−watcherst = Dt +
z − 1

z
εt+1 + ...+

1

z
εt+z−1, (1)

Next, we add the momentum traders to the model. We assume that at time
t a momentum trader takes a position, which he holds for exactly j periods,
until time t + j. Momentum traders submit quantity orders; the price is
then determined by the competition against the news-watchers. They try to
predict (Pt+j − Pt) to determine the size of their orders. They use a simple
univariate forecasting strategy only looking at the previous price change
∆Pt−1 ≡ Pt−1 −Pt−2. One could allow the momentum traders to use n lags
of price changes instead and give a di�erent weight to each lag n. This would
be a more realistic model of the behaviour of the trend-followers. However,
we use the simplest model possible and assume that they do not have the
computational horsepower to run a complicated multivariate strategy. So
each momentum trader has an order �ow of Ft at time t;

Ft = φ∆Pt−1,

where φ is an elasticity parameter and he holds this position until time t+j.
The demand from momentum traders added together with the demand from
news-watchers results in the following price at time t;

Pt = Dt +
z − 1

z
εt+1 + ...+

1

z
εt+z−1 +

j∑
i=1

φ∆Pt−i, (2)

Figure 1 shows that the momentum traders decrease the time of the under-
reaction in the beginning and trigger the overreaction.
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Figure 1: How the market reacts to one piece of news. The blue line repre-
sents the model with only the news-watcher (equation 1), while in the red
line the momentum traders have been added (equation 2).

This model of Pt results in that ∆Pt can be written in the following way;

∆Pt = Pt − Pt−1 =

Dt +
z − 1

z
εt+1 + ...+

1

z
εt+z−1 +

j∑
i=1

φ∆Pt−i

−(Dt−1 +
z − 1

z
εt + ...+

1

z
εt+z−2 +

j∑
i=1

φ∆Pt−i−1) =

= D0 + ε0 + ...+ εt +
z − 1

z
εt+1 + ...+

1

z
εt+z−1 + φPt−1 − φPt−j−1

−(D0 + ε0 + ...+ εt−1 +
z − 1

z
εt + ...+

1

z
εt+z−2 + φPt−2 − φPt−j−2) =

=

∑z−1
i=0 εt+i
z

+ φ∆Pt−1 − φ∆Pt−(j+1),

This is an ARMA(p,q) model, where p=j+1 and q=z-1.
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3 Stylized examples

In order to increase our understanding of this model, we investigate some
stylized examples. We do this in several stages. In the �rst stage we examine
the reaction of only the news-watchers part when the news appears once.
We then consider news that arrives every twenty days and �nally when news
appears daily. We �nd how to determine the parameter z. Finally, we add
the momentum traders and investigate how to identify the parameters j and
z.

3.1 News-watchers

With only the news-watchers, the return ∆PNews−watcherst turns out to be a
MA(z-1)-process since;

∆PNews−watcherst = PNews−watcherst − PNews−watcherst−1 =

= Dt +
z − 1

z
εt+1 + ...+

1

z
εt+z−1 − (Dt−1 +

z − 1

z
εt + ...+

1

z
εt+z−2) =

=

∑z−1
i=0 εt+i
z

,

A well-known technique (see e.g. Chapter 3 in Brockwell and Davis (1991)),
to identify the parameter q in a MA(q)-process is to look at the autocorre-
lation function. The autocorrelation is de�ned as;

Autocorrelation at lag i ≡ Corr(∆Pk,∆Pk+i) k = 1, 2, 3, ..., L

where the Corr stands for the correlation which is de�ned as;

Corr(∆Pk,∆Pk+i) ≡
cov(∆Pk,∆Pk+i)√

V ar(∆Pk)
√
V ar(∆Pk+i)

Figure 2: The autocorrelation function is plotted with only the news-
watchers when the news appears once, all εi is equal to zero except one,
with the parameter z set equal to 10.
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Figure 3: The autocorrelation function is plotted with only the news-
watchers when news arrives every twenty days, every twenty εi is normal
distributed N(0, 1), with the parameter z set equal to 10.

Figure 4: The autocorrelation function is plotted with only the news-
watchers when news appears daily, every εi is normal distributed N(0, 1),
with the parameter z set equal to 10.

In Figure 2, Figure 3 and Figure 4 the last positive value in the auto-
correlation plots are at 9, with z equal to 10. This is in accordance with
our model, since news is being spread until time z − 1, thus it should be a
positive and decreasing correlation up to that point.

3.2 News-watchers and Momentum traders

With the momentum traders added, the model is not a MA(z-1)-process
anymore; instead it is an ARMA(j+1,z-1) model. From statistical theory
(see e.g. Chapter 3 in Brockwell and Davis (1991)) we know that the pa-
rameter p in a AR(p)-process is determined from the partial autocorrelation
function. The partial autocorrelation function is de�ned as;

φkk = Corr(Xt−P (Xt|Xt+1, ..., Xt+k−1), Xt+k−P (Xt+k|Xt+1, ..., Xt+k−1)),

where, P (W |Z) is the best projection of W on Z. The interpretation of
this is that it is the autocorrelation between Xt and Xt+k with the linear
dependence from Xt+1 to Xt+k−1 removed.
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In a causal auto regression model, AR(p);

Xt = Zt + φ1Xt−1 + ...+ φpXt−p, Zt ∼WN(0, σ2),

the partial autocorrelation is zero for all lags k when k>p. By de�nition;

P (Xk+1|X2, ..., Xk) =

p∑
j=1

φjXk+1−j ,

if Y is a linear combination of {X2, ..., Xk}, then by causality Y is a linear
combination of {Zj , j ≤ k}, and

〈Xk+1 −
p∑
j=1

φjXk+1−j , Y 〉 = 〈Zk+1, Y 〉 = 0,

and this implies that

φkk = Corr(Xk+1 −
p∑
j=1

φjXk+1−j , X1 − P (X1|X2, ..., Xk)) =

= Corr(Zk+1, X1 − P (X1|X2, ..., Xk)) = 0,

3.2.1 News appears once

We choose the parameters j, z and φ in an arbitrary way but make sure
that the model remains stable (a large value of φ would result in unstable
and oscillating time series). They are set to z=5, j=20 and φ=0.37 at this
initial stage. The autocorrelation of the returns is plotted in Figure 5 and
the partial autocorrelation in Figure 6. It is not that easy to see the size of z
as it was for the MA(q)-process in the autocorrelation plot. Neither can the j
parameter be determined by the partial autocorrelation plot, which was the
case in a pure AR(p)-process. However, it turns out that the autocorrelation
of returns contains all the necessary information. The autocorrelation plot
has a decreasing positive correlation until z-1, like the pure MA-process.
However, in addition to the pure MA-process, we have an auto regression
part clearly seen for the �rst time at j+1-z and peaking at j+1.

How does the situation look if j = 5, z = 20 while φ remains the same?
Now the autocorrelation function (see Figure 7) fails to give us the informa-
tion it gave us in the previous case. This is due to the fact that the two
processes, the AR(p) and MA(q) gets "mixed up" with each other. A way to
understand this is to think what the �rst case with z=5 and j=20 actually
means in our model. It means that the news are completely spread at time
t=5 and that simpli�es things since the e�ect of j=20 (−φ∆Pt−(j+1)) �rst
come into e�ect at t=j-z=15. While in the other case with j = 5, z = 20
both the momentum traders and the news-watchers are trading at the same
lags, which complicates the picture of the autocorrelation function. It turns
out that the partial autocorrelation function holds the information about j
and z. However, it is not as simple as in the previous case.

From a rigorous inspection of the plots of the partial autocorrelation,
it is clear that for our model the partial autocorrelation takes the value
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Figure 5: The autocorrelation of an impulse signal of one at time=1, when
z=5, j=20 and φ=0.37

Figure 6: The partial autocorrelation of an impulse signal of one at time=1,
when z=5, j=20 and φ=0.37.

Figure 7: The autocorrelation of an impulse signal of one at time=1, when
z=20, j=5 and φ=0.37
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Figure 8: The partial autocorrelation of an impulse signal of one at time=1,
when z=20, j=5 and φ=0.37

zero after z+1 lags and has a positive peak at j+2 if and only if z ≥ j.
We conclude that if 2z ≤ j the parameters can be determined from the
autocorrelation plots while if z ≥ j the parameters can be determined by
the partial autocorrelation. However, the values when 2z > j > z remains
uncertain. We will return to this case later.

3.2.2 News arrives every twenty days

When the news-watchers receive news every twenty days, every ε20k for every
integer k will be normally distributed with mean 0 and variance 1. This is
illustrated in a plot of the price with and without the news-watchers in Figure
9.

Figure 9: How the price responds from receiving news every 20 days, in this
case j = 20, z = 5 and φ = 0.37. The blue line is without the momentum
traders and the red line is with them.
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In the same way as with the impulse signal, we plot the autocorrelation
function in Figure 10 in order to determine j and z. The plot is almost
identical to the one with the impulse signal.

Figure 10: The autocorrelation function when news appears every twenty
days, with z = 5, j = 20 and φ = 0.37.

Then, we switch z and j in the same way as in the previous section so
that j=5 and z=20. This is illustrated in Figure 11. The plot is almost
identical to the one with the impulse signal. However, when it comes to the
partial autocorrelation, there are some di�erences. Instead of turning zero
after z+1, it begins to repeat itself with a decreasing factor for every period.
Every period is exactly z lags long and there is a peak at j+2 in the same
way as for the impulse signal.

Figure 11: The autocorrelation and the partial autocorrelation function when
news appears every twenty days, with z=20, j=5 and φ=0.37.

How do we determine z and j if 2z > j > z? We assume that ε20i are
released at day 20i for all integers i. We plot the correlation

Correlation from news distributed at time 20i = Corr(ε20i,∆P20i+p),

where p is the numbers of lags. Figure 12 shows this correlation when z=15
and j=20. The plot can intuitively be understood as follows. While the
news is still being spread the correlation remains high. But once the news is
completely spread, the correlation falls. However, it does not fall below zero.
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The equation for ∆Pt shows the φ∆Pt−1 will still give a positive result if no
other term is involved. At time point j+2 it will fall to a negative value,
since −φ∆Pt−(j+1) will react to what happened at time point 1. From this
analysis the parameters z and j can be determined when 2z > j > z.

Figure 12: The correlation between the news (ε20i) and the price change
(∆P20i+p), when z=15, j=20 and φ=0.37.

3.2.3 News appears daily

We compute the same plots when news appears daily, every εt is normally
distributed with mean 0 and variance 1. The analysis is the same as when
news arrives every twenty days, see Figure 13-15

Figure 13: The autocorrelation function when news appears daily, with z=5,
j=20 and φ=0.37.
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Figure 14: The autocorrelation and the partial autocorrelation function when
news appears daily, with z=20, j=5 and φ=0.37.

Figure 15: The correlation between the news (εi) and the price change
(∆Pi+p), when z=15, j=20 and φ=0.37.

3.3 Summary of the stylized example

When the news-watchers are the only group of traders in the model, the z
parameter is easy to identify by looking at the autocorrelation plot. How-
ever, when momentum traders are added, it becomes harder to identify the
parameters from the autocorrelation plot, especially for 2z > j. When z ≥ j
an additional plot is required, namely the partial autocorrelation plot. When
2z > j > z a correlation plot between the actual news and the price change
the days following the news announcement is necessary. The methodology
for identifying the model parameters is independent of the frequency of the
news release.
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4 Application to real market data

4.1 What constitutes news?

There are two main types of news: private news and public news. The
public news, e.g. earnings announcements, is simultaneously observed by all
investors. Private news is only observed by a fraction of the investors. The
interpretation of the model is that the ε represents private news gradually
di�using across the population. When we apply the model to real market
data, we are forced to use public news as our ε. Hong and Stein (1999)
argue that even if the announcement itself is public, private information and
judgment are required to evaluate the announcement.

When the news is public, smart momentum traders re�ne their strategy,
they make their strategy time-dependent and trade aggressively in the period
just after the public announcement. They exploit the pro�table early stages
of the trend. However, for now we will assume that the momentum traders
are not that sophisticated. We will see that price patterns suggest that
momentum traders are smart indeed.

How do we judge an earnings announcement? In previous papers, two
di�erent methods have been used to establish the market surprise of earnings
announcement. Livnat and Mendelhall (2006) estimate the market surprise
as the actual earnings minus the mean of the past six earnings �gures. The
idea behind this method is that past announcements in some sense are a
good estimate of what will happen next. Chang, Jegadeesh and Likonishok
(1996) look instead at how the market reacts on the day of the earnings
announcement and take the price change that day as their market surprise.
We follow this approach here, since we think that the best measurement of
market surprise is the price reactions. The downside with using this method
is that we cannot apply the model to the announcement day, we can apply
it only to the following days. So our news can be written as;

εt+i = sδ0(i)∆Pt+i−z, i = 0, 1, ..., z − 1,

where δ0(i) indicate a Dirac delta function which takes the value zero if no
news has been published the period i otherwise one and s is a scaling factor.

4.2 Equity futures

Index return data for the last 15 years are retrieved from Bloomberg for
four di�erent markets: the S&P 500 (SPX, USA), the FTSE (UKX, United
Kingdom), the Topix (TPX, Japan) and the ESTOXX (SXXE , Europe).

4.2.1 Autocorrelation and partial autocorrelation functions

If our model were true, the parameters z and j would be identi�able in the
same way as in our stylized example. At �rst, we plot the autocorrelation
function and the partial autocorrelation function for all the four markets,
see Figure 16-19. These plots show none of features we observed in our
stylized examples. This indicates that our model cannot capture the reality
accurately. We will look at possible reasons for this.
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Figure 16: The autocorrelation and the partial autocorrelation function plots
for the SPX daily returns.

Figure 17: The autocorrelation and the partial autocorrelation function plots
for the SXXE daily returns.
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Figure 18: The autocorrelation and the partial autocorrelation function plots
for the UKX daily returns.

Figure 19: The autocorrelation and the partial autocorrelation function plots
for the TPX daily returns.
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4.2.2 Correlation with the news

We retrieved from Bloomberg the dates of the earnings announcements for
each company in the index for the last quarter of 2010. We then took the
earnings season to be the period with the highest concentration in earnings
announcements. These periods span between 4-6 weeks and are presented
in Table 1. As noted in the table, the companies of SPX are the �rst to
announce, while announcements in the three remaining indices lag by a few
weeks. Finally we assumed that quarterly earnings seasons have been recur-
ring over the past 15 years. This means that the SPX earnings seasons were
from the second Monday of January to the second Friday of February, from
the second Monday of April to the second Friday of May, from the second
Monday of July to the second Friday of August and from the second Mon-
day of October to the second Friday of November every year. During these
periods the Dirac delta function takes the value one, otherwise zero in:

εt+i = δ0(i)∆Pt+i−z, i = 0, 1, ..., z − 1,

Index Start date End date

SPX Second Monday of January Second Friday of February

SXXE Fourth Monday of January First Friday of March

UKX Last Monday of January Last Friday of February

TPX Fourth Monday of January Second Friday of February

Table 1: The period of when the earnings announcements are for the di�erent
markets for the last quarter of 2010.

We then plot the correlation between the news and the price change the
following days, Corr(εt,∆Pt+p) for every t, where p is the lag, see Figure
20-23. These plots are very di�erent from the ones presented in the stylized
example and look like plots of noise. However, if we �x t to be the announce-
ment day and look at the correlation between the news (i.e. the return on
the announcement day) and the return over the next p days,

Corr(εt, Pt+p − Pt)

A certain pattern emerges: Figures 24 - 27 show that the correlation is
negative during the �rst 5-10 days and then it increases.

This can be interpreted as follows. Five to ten days after the news an-
nouncement, the price moves in the opposite direction of the announcement
return. After this initial period, the price enters a trend in the direction of
the announcement return.

This is not in accordance with the model formulated in chapter 2. Instead
of an underreaction to the news and a slow oscillation towards the �funda-
mental value�, these plots indicate a price reaction similar to the illustration
in Figure 28. We will test via a trading strategy whether this behaviour is
statistically signi�cant.
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Figure 20: The correlation with the news ε and the price change lag p days
after ∆Pt+p for SPX.

Figure 21: The correlation with the news ε and the price change lag p days
after ∆Pt+p for SXX.
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Figure 22: The correlation with the news ε and the price change lag p days
after ∆Pt+p for UKX.

Figure 23: The correlation with the news ε and the price change lag p days
after ∆Pt+p for TPX.
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Figure 24: The correlation with the news ε and the price change from the
day after until p days after Pt+p − Pt for SPX.

Figure 25: The correlation with the news ε and the price change from the
day after until p days after Pt+p − Pt for SXX.
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Figure 26: The correlation with the news ε and the price change from the
day after until p days after Pt+p − Pt for UKX.

Figure 27: The correlation with the news ε and the price change from the
day after until p days after Pt+p − Pt for TPX.
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Figure 28: One interpretation of how the price is reacting on a positive news
announcement at day zero.

4.3 Stocks

We randomly choose 40 stocks from the S&P 500. One group is the 20
�rst stocks whose name starts with P, the other group is the �rst 20 stocks
starting with T. The information on their prices is retrieved from Google
Finance1. The dates of their earnings announcements for the last ten years
are retrieved from The Street2.

4.3.1 Autocorrelation and partial autocorrelation functions

In an attempt to see if there are any similarities with the stylized example, we
plot the autocorrelation and the partial autocorrelation functions in Figure
29 - 30 in two di�erent cases. In both cases we �nd no similarities, thus our
original model fails when it comes to stocks as well.

4.3.2 Correlation with the news

Next we calculate the correlation between the news (i.e. the return on the
announcement day) and the return over the next p days,

Corr(εt, Pt+p − Pt)

The correlation plots (Figure 33-34) do not show the pattern we saw in the
indices. We will look at di�erent explanations for this result.

1http://www.google.com/�nance
2http://www.thestreet.com
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Figure 29: The autocorrelation and the partial autocorrelation function of
the return from having one long position in all the P stocks.

Figure 30: The autocorrelation and the partial autocorrelation function of
the return from having one long position in all the T stocks.
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Figure 31: The correlation with the news ε and the price change lag p days
after ∆Pt+p for the stocks that begins P.

Figure 32: The correlation with the news ε and the price change lag p days
after ∆Pt+p for the stocks that begins T.
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Figure 33: The correlation with the news ε and the price change from the
day after until p days after Pt+p − Pt for the P stocks.

Figure 34: The correlation with the news ε and the price change from the
day after until p days after Pt+p − Pt for the T stocks.
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4.4 First stock to announce in each sector

A possible explanation is that companies react to the earnings announce-
ments of other companies, especially those in the same sector. To isolate
this e�ect, we pick the companies who announced their earnings �rst in each
sector the last quarter of 2010 and assume that these companies were the
�rst to announce in their sector over the past ten years. A list of these
companies and the corresponding sectors are presented in Table 2. The cor-
relation between the news (i.e. the return on the announcement day) and
the return over the next p days,

Corr(εt, Pt+p − Pt)

for the companies who announce their earnings �rst is presented in Figure
35. We see the same pattern as in the indices. This evidence supports the
case for the price patterns described in section 4.2.2.

Sector Company to announce earnings of Q4 2010 �rst

Oil and Gas Schlumberger Ltd

Basic Materials Alcoa Inc

Industrials Fastenal Co

Consumer Goods Lennar Corp

Health Care UnitedHealth Group Inc

Consumer Service eBay Inc

Telecommunication Verizon Communication

Utilities Consolidated Edison

Financial JPMorgan Chase & Co

Technology Intel Corp

Table 2: The Company in each sector who announce their earnings from Q4
2010 �rst
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Figure 35: The correlation with the news ε and the price change from the
day after until p days after Pt+p−Pt for the companies who announce their
earnings �rst.

4.5 Sectors

The last section indicates that there is a signi�cant correlation amongst
companies in the same sector. Let us see if the �rst company to announce
can forecast the sector behaviour. We use the sector iShares as a proxy for
sector performance (Table 3). De�ne εt as the price change of the index on
the day that the �rst stock in the sector announces its earnings. We then plot
in Figure 36 the correlation between εt and the price change of the sector from
the day after the �rst company's announcement until p days later Pt+p−Pt
. The correlation plot does not show the same clear patterns we observed
for stock market indices and the �rst stocks in the sector. Therefore the
information coming from the �rst company cannot be seen as representative
for the entire sector. Furthermore, sectors have their earnings season spread
out over the entire SPX index earnings season and thus are a�ected both by
sector-speci�c and market-wide news.
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Sector Index

Oil and Gas iShares Dow Jones US Oil & Gas Ex Index (IEO)

Basic Materials iShares Dow Jones US Basic Materials (IYM)

Industrials iShares Dow Jones US Industrial (IYJ)

Consumer Goods iShares Dow Jones US Consumer Goods (IYK)

Health Care iShares Dow Jones US Healthcare (IYH)

Consumer Service iShares Dow Jones US Consumer Services (IYC)

Telecommunication iShares Dow Jones US Telecom (IYZ)

Utilities iShares Dow Jones US Utilities (IDU)

Financial iShares Dow Jones US Financial Sector (IYF)

Technology iShares Dow Jones US Technology (IYW)

Table 3: The index used for the di�erent sectors.

Figure 36: The correlation with the news ε and the price change from the
day after until p days after Pt+p − Pt for the sector indexes.
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5 Test of a simple trading strategy

The plots of the autocorrelation and the partial autocorrelation function
Chapter 4 suggest that the market reaction to earnings news di�ers from
that predicted by the model. There is an overreaction on the day of the
announcement, a correction that lasts for 5-10 days and overshoots the price
in the opposite direction and eventually a long trend in the same direction as
the price move on the day of the announcement. To test the validity of this
observation depicted in Figure 28, we devise a trading strategy that exploits
this behaviour and test its performance. To measure performance we use the
information ratio (IR) de�ned as:

IR =
E[rannual]√
V ar(rannual)

At �rst the same four indexes used in the last chapter will be used and
the strategy will be developed step by step. We will then test the strategy
out of sample by applying it to four new indices. These indices are OMX
(Sweden), AS51 (Australia), SMI (Swiss) and DAX (Germany). Finally, we
will see how well the strategy works on the stocks that had their earnings
announcements �rst in each sector.

5.1 Equity futures

Although the benchmark for the strategy is zero, i.e. the strategy is an
alpha strategy, it is interesting to see what happens if we always hold one
long position in all indices, see Figure 37. The IR for the long-only strategy
is 0.14.

Then we test the following strategy: wait �ve days after an earnings
announcement, then take a position in the same direction as the market
moved on the day of the announcement and hold it for a year. This means
that during the earnings season, we take a new position every day in the
direction the market moved �ve days ago. The NAV of the this strategy is
shown in Figure 38. The IR value is 0.35. We include a trading cost of 0.1%.

The price reaction sketched in Figure 28, suggests that it would be prof-
itable to take a position for the �rst four days after the announcement in
the opposite direction of the price change on the day of the announcement.
This strategy is shown in Figure 39 and the IR value has now increased to
0.46 (it reaches 0.64 if only the last �ve years are considered).

One could believe that the di�erence between the last strategy and the
long-only is due to the pro�t stemming from chasing a trend, which is unre-
lated to the earnings announcements. To check this we implement a simple
trend chasing strategy: take a position in the same direction that the market
moved yesterday and hold for a year. The performance of this strategy is
shown in Figure 40 and the corresponding IR value is 0.23. So even if it beats
the long-only strategy, it is relatively far away from the IR values connected
with the strategy that builds on price behaviour during earnings seasons.

Can we improve on the strategy even more? It would make sense to
only take a position if the price change on announcement day was signi�-
cant. So the strategy checks if the price change on the day of the earning
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Figure 37: Taking one long position in all the four indexes.

Figure 38: Wait �ve days after an earnings announcement then takes a
position in the same direction
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Figure 39: Take an opposite position as the earnings announcement for the
�rst four days then do the opposite.

Figure 40: Follow a simple trend chasing strategy, take a position in the
same direction as the price change yesterday and hold for a year
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announcement is larger than one standard deviation of the returns over the
last half year. If this is this is the case then takes the opposite position for
the �rst four days followed by a position in the direction of the announce-
ment return from day �ve up until a year. This strategy has an IR of 0.72
(for the last �ve years the IR = 1.24). It is shown in Figure 41 and with
statistical data presented in Table 4. If we increase the threshold to two
standard deviations of daily returns, the strategy is inactive for long peri-
ods; we do not present this result. The trading strategy is predicated on
the release of earnings-related news. To gauge the impact of this, instead of
basing the strategy on the earnings season we base it on what happens one
or two months later (i.e. we move one month and two months forward the
period over which the Dirac delta function takes the value one in the de�-
nition of εt+i = sδ0(i)∆Pt+i−z, i = 0, 1, ..., z − 1,). This gives IR values of
0.27 and 0.38 for the entire period and with just the last �ve years 0.43 and
0.23, both signi�cantly below the values of the strategy tied to the actual
earnings announcements.

Figure 41: Take opposite positions as the earnings announcement for the
�rst four days then do the opposite if the price change was higher than one
standard deviation.

Finally we test the strategy out-of-sample. We apply it on four new in-
dices: OMX (Sweden), AS51 (Australia), SMI (Swiss) and DAX (Germany).
Historical returns are retrieved from Bloomberg, along with details of their
�rst earnings announcement season in 2011. The earnings season for each
market is determined by looking at the concentration of earnings announce-
ments, these seasons are presented in Table 5. We make the same assumption
here as for the previous four indexes: these earnings seasons had been the
same during the last 15 years.

The performance of the trading strategy developed is presented in Figure
42 and Table 6. The IR value has now dropped to 0.44 (0.68 the last �ve
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Best return 0.0356

Worst return -0.0359

Skewness of return 0.21

Excess kurtosis of return 20.17

Percentage of up days 0.49

Percentage of down days 0.44

Information ratio (IR) 0.72

IR last three years 1.06

IR last �ve years 1.24

IR last ten years 0.95

Draw-down to volatility -1.95

Table 4: A table with statistical data of the return related to Figure 41

Index Start date End date

OMX Fourth Monday of January Second Friday of February

AS51 First Monday of February First Friday of March

SMI First Monday of February First Friday of March

DAX Third Monday of February Third Friday of March

Table 5: The period of when the earnings announcements are for the di�erent
markets for the last quarter of 2010.

years)
If we move the period, over which the Dirac delta function in ε takes the

value one, one and two months forward, we get IR values of 0.08 and -0.13
for the entire period and with just the last �ve years 0.17 and -0.15, both
signi�cantly below the values based on the true earnings season. So even
though the IR values are lower, the degradation in IR when we debase the
strategy from earnings is about the same.

Best return 0.0217

Worst return -0.0380

Skewness of return -0.64

Excess kurtosis of return 27.19

Percentage of up days 0.44

Percentage of down days 0.42

Information ratio (IR) 0.44

IR last three years 0.57

IR last �ve years 0.68

IR last ten years 0.30

Draw-down to volatility -3.70

Table 6: A table with statistical data of the return related to Figure 42
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Figure 42: Take opposite positions as the earnings announcement for the
�rst four days then do the opposite if the price change was higher than one
standard deviation.

5.2 Stocks

We apply the above trading strategy to the ten stocks that announce �rst in
the ten sectors: if the price change on the day of the announcement is larger
than one standard deviation of returns, we take a position in the opposite
direction for the following four days, then reverse the position and hold it for
a year. Every time we trade, we incur a trading cost of 0.1%. The result is
presented in Figure 43 and in Table 7. The IR is 0.64; this can be compared
to an IR value of 0.17 for the long-only strategy. It is also noted that if
instead of the date of the earnings announcement we use the day after or
the day before, the IR value drops to -0.44 and -0.51 respectively. Thus the
importance of taking the exact earnings release dates is great.
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Figure 43: The trading strategy on the 10 stocks

Best return 0.0784

Worst return -0.0706

Skewness of return 0.23

Excess kurtosis of return 10.50

Percentage of up days 0.54

Percentage of down days 0.46

Information ratio (IR) 0.64

IR last three years 0.40

IR last �ve years 0.54

Draw-down to volatility -1.71

Table 7: A table with statistical data of the return related to Figure 43
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6 Additional tests of signi�cance

We use three di�erent tests to investigate the signi�cance of the returns given
by the trading strategy. At �rst we will look at t-statistic based on an article
by Donoho, Crenian and Scanlan (2010), where they argue that even a bad
strategy can have a good return in the short run. Therefore, the time of
which the strategy has been applied on is of great importance. Secondly,
we test the null hypothesis that the returns are independently identically
distributed (IID) and identical, both with and without the strategy. If the
strategy is informative, is should alter the distribution. This is done with two
di�erent goodness of �t tests, by comparing the quantiles and a Kolmogorov-
Smirnov test. Finally, we bootstrap the returns and run several samples of
the Kolmogorov-Smirnov test.

6.1 t-statistics

If we are considering the actual return generated over the last Y years, ad-
justed for the market exposure as our only information. The t-statistics of
our strategy performance is given by (Donoho, Crenian and Scanlan (2010));

ts :=
E[rannual]√
V ar(rannual)

√
Y = IR

√
Y ,

The IR is the same IR calculated in our trading strategy for the returns.
This yields Table 8, the convention of when a t-statistic number implies
statistical signi�cance varies from �eld to �eld. Donoho, Crenian and Scanlan
(2010) set the limit of signi�cance at 2.

Indices/Stocks ts last �ve years ts entire period

Indices (SPX, UKX, TPX, SXXE) 2.8 3.0

Indices (OMX, AS51, SMI, DAX) 1.5 1.8

Stocks 1.2 1.7

Table 8: t-statistics of the returns

6.2 Goodness of Fit

If the two normalized return distributions, the one with and the other one
without the strategy are identical their quantiles should be close to identical
(Lo, Mamaysky, Wang (2000)). To check this, we compute the deciles of nor-
malized returns without the strategy and tabulate the relative frequency δj
of normalized returns with the strategy falling into decile j of the normalized
returns without the strategy.

δj ≡
number for normalized returns with the strategy in decile j

total number of returns with the strategy
,
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We normalize the returns by subtracting means and dividing by the stan-
dard deviation, hence;

rnormalized =
r −mean(r)

std(r)
,

Under the null hypothesis that the returns are IID and the returns with
and without the strategy are identical, the corresponding goodness of �t test
statistic Q are given by (Lo, Mamaysky, Wang (2000));

√
n(δj − 0.1)

d∼ N(0, 0.1(1− 0.1)),

Q ≡
10∑
j=1

(nj − 0.1n)2

0.1n

d∼ χ2
9,

where nj is the number of observation that fall in decile j and n is the total
number of observation. The δj and Q values for our strategy is tabulated in
Table 9. The null hypothesis is rejected for both the indices and the stocks
at signi�cance level 0.01.

Indices/Stocks SPX,UKX,TPX,SXXE OMX,AS51,SMI,DAX Stocks

Decile 1 0.079 0.065 0.089

Decile 2 0.070 0.065 0.102

Decile 3 0.095 0.089 0.100

Decile 4 0.140 0.113 0.103

Decile 5 0.162 0.249 0.114

Decile 6 0.123 0.135 0.101

Decile 7 0.093 0.082 0.120

Decile 8 0.077 0.071 0.074

Decile 9 0.070 0.059 0.084

Decile 10 0.089 0.069 0.107

Q 362.5 1197.2 26.5

p-value 0.000 0.000 0.002

Table 9: Goodness of �t with quantiles

6.3 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is based on the empirical distribution function
Fi(x), which for n IID observations Xik is de�ned as;

Fi(x) ≡ 1

ni

ni∑
k=1

IXik≤x

where IXik≤x is the indication function, equal to 1 if Xik ≤ x otherwise 0.
The test is designed to test the null hypothesis that F1 = F2. The statistics
is given by the expression;
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γn1,n2 =

√
n1n2
n1 + n2

sup
x
|F1(x)− F2(x)|

Under the null hypothesis, F1 = F2, γn1,n2 is zero. In particular, the
hypothesis cannot be rejected at level α if γn1,n2 ≤ Kα, where Kα is found
from Pr(K ≤ Kα) = 1− α. K is Kolmogorov distributed;

Pr(K ≤ x) = 1− 2
∞∑
i=1

(−1)i−1e−2i
2x2

With our normalized returns, the null hypothesis is rejected for both
groups of indices at signi�cance level 0.01, however, the null hypothesis for
the returns of the stocks cannot be rejected at signi�cance level 0.05.

We use the n number of returns with the strategy to bootstrap (with
replacement) 1000 new samples, each of them with n number of returns.
We run the Kolmogorov-Smirnov test with the same null hypothesis with
all these samples. For both groups of indices all samples are rejected at
signi�cance level 0.01. With the stocks 151 of the samples are rejected at
signi�cance level 0.05 and 37 samples are rejected at signi�cance level 0.01.

Figure 44: The empirical distribution functions. The red line is the returns
with the strategy, the blue line is the returns without the strategy.
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7 Conclusion

Hong and Stein's (1999) model is based on three main assumptions: (a) that
the market only consists of two types of traders, news-watchers and momen-
tum traders, (b) that private news gradually di�uses across the population
and (c) that momentum traders use a simple strategy only conditioned on
yesterday's price change. If this were the case, the model's parameters would
have been identi�able in the correlation plots. However, they are not iden-
ti�able in the correlation plots and therefore the model cannot explain the
complex reality.

As Hong and Stein (1999) pointed out, if the news is public, smart mo-
mentum traders would also condition on the release dates thus responding
quicker to the news. This can explain what we see with the indices and with
the stocks who are the �rst ones to announce in each sector.

So can we add this additional momentum trader to the model? The
answer is no because our news de�nition is the market return on the day of
the announcement. We would need to sample prices at a higher frequency
during the announcement day (e.g every hour) and use these price returns
as the news fed to the model.

Another explanation of why the stocks seem to react a lot quicker than
the model is describing is that the stocks used here are all very liquid. This
means that they are easily traded, thus information can be incorporated in
the price quicker than for illiquid stocks. Chordia et.al. (2007) shows that
post earnings announcements drift are not that severe on liquid markets as
on illiquid markets.

Our �ndings indicate that there is some post drift from the earnings
announcements and it seems to be an overreaction on the announcement
day. The trading strategy built around this observation easily beats the
long-only and a simple trend chasing strategy and loses all its power when
it is detached from the announcement timetable. This is in accordance with
�ndings of Frazzini and Lamont (2006), who show that stock returns are on
average abnormally high during the day of the earnings announcements.

During periods of news announcements, the trading volume goes up,
see Hong and Stein (2006). This can explain why Piqueira (2006) �nds a
signi�cant negative association between turnover and future returns. This
supports the strategy used in Chapter 5.

Why the model on indices works better for the last �ve years, can be ex-
plained by the fact that we took the �rst earnings season of 2011 and assumed
it had been the same every quarter of the past 15 years. Unfortunately, we
have been unable to �nd detailed data for past earnings seasons.

We showed that earnings information is important for stocks that report
�rst in their sector. For these stocks we found post-earnings patterns similar
to those of market indices. The importance of earnings for a random stock
seems to be limited.
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