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Abstract

The predictability of asset returns is a much debated and investigated subject in academia as
well as in the financial services industry. In this thesis we study the predictability of the returns
of European stock indices, using time series and regression based forecasting methods, as well as
filtering techniques, specifically the Hodrick-Prescott filter. In disagreement with the Efficient
Market Hypothesis, which claims that asset prices incorporate all information embedded in
historical prices, indications of predictability based on historical returns are found. Predictability
was further improved by filtering the data before applying the forecasting methods.
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1 Introduction

The purpose of this project is in a broad sense to investigate the statistical properties of financial
time series. More specifically, various methods of time series analysis will be used to attempt
to forecast the future behaviour of these series, including filtering the data before applying
the methods of prediction. The dataset we analyze in this paper comprise daily returns of six
European stock indices - the Amsterdam Exchange Index, CAC40, DAX, IBEX, FTSE and the
Swiss Market Index, for the period 1993-04-07 to 2005-12-30. It is vital to exclude a part of the
full sample, to guard against data snooping in the construction of any models and make sure
that the models created exhibit similar characteristics out-of-sample. Numerical analysis will
be carried out in the programming language Python, using the package NumPy for numerical
calculations.

If the Efficient Market Hypothesis were true, then no predictability could be found in the time
series used in this study. According to the Efficient Market Hypothesis, stock indices should
be modeled like a random walk, i.e. for a stock index price series {Xt} the representation
Xt = Xt−1 + εt should be used, where {εt} is a white noise process. In this representation
obviously there is no dependency across time and the best prediction of Xt is Xt−1. The random
walk model of asset prices has been disputed though, e.g. in Lo and MacKinlay (1999), and
it seems that there indeed is some predictability in stock index returns. However it is unclear
whether predictability is large enough to allow for profitable exploitation above the risk-free
rate, e.g. when including transaction costs. This matter is not delved into further in this study.

The report is divided into two parts. In the first part (chapters 3, 4 and 5) we use standard
methods of time series analysis to predict future returns given past returns over some window,
based on autocovariance and regression. The second part (Chapter 6) uses filtering methods to
analyze the data and improve predictability, specifically through the Hodrick-Prescott filter.

Chapter 3 uses the univariate projection approach to calculate the best linear prediction of a
time series, equivalent to the conditional expectation given previous returns. The best linear pre-
diction is the one that minimizes the squared distance between the prediction and the outcome.
Some predictability indeed seems to be present. Chapter 4 attempts to normalize the data with
a view to increase predictability. Instead of predicting the raw returns, the data is normalized
by subtracting each day’s mean from the returns, and predicting the deviations from the mean,
thereby reducing some common variability. In this way, performance of the models in chapter 3
was improved. When using multivariate prediction, normalizing the data becomes unnecessary,
since the multivariate prediction implicitly calculates the prediction of deviations from a linear
combination of returns. Also, the minimum-variance portfolio is created and the deviations from
this portfolio are predicted, as well as the portfolio itself. A simple trading implementation is
performed, to see how the predictability translates into returns of a trading portfolio. Chapter
5 investigates multivariate models of prediction, specifically multivariate regression on returns
over arbitrary time periods. Predictability was somewhat improved over previous models. Chap-
ter 6 is dedicated to the Hodrick-Prescott (HP) filter. Three ways to determine the smoothing
parameter are investigated – a maximum-likelihood estimate derived in e.g. Schlicht (2004),
a consistent estimator in e.g. Dermoune, Djehiche and Rahmania (2008) and a Generalized
Cross-Validation estimate (see e.g. Weinert (2007)). The maximum-likelihood estimate turned
out to be computationally impractical and was not used in any implementation. A regression
was performed on the slope of the trend extracted by the HP filter, and the explanatory power
of the HP filter turned out to be good when using the consistent estimator of the smoothing
parameter. The best prediction of all models was obtained when performing a regression on
both the HP filter slope and previous returns.
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2 Initial data analysis

The data is made up of 2842 data points per index, comprising daily log returns.

We calculated the correlation matrix for the indices to get an idea of the dependence between
them, see Table 1. As can be easily seen, the indices are heavily correlated.

Table 1: Index correlation matrix
AEX FCHI FTSE GDAXI IBEX SSMI

AEX 1 0.8464 0.7962 0.7988 0.7637 0.7922
FCHI ... 1 0.7967 0.7918 0.7936 0.7521
FTSE ... ... 1 0.7142 0.7154 0.7325

GDAXI ... ... ... 1 0.7266 0.7282
IBEX ... ... ... ... 1 0.7027
SSMI ... ... ... ... ... 1

We also calculated the standard deviation for each index, see Table 2 below.

Table 2: Standard deviations
AEX FCHI FTSE GDAXI IBEX SSMI

Standard deviation 0.01394 0.01372 0.01064 0.01491 0.01345 0.01184
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3 Projection of returns on previous returns

The first model will make use of standard Hilbert space theory to construct a prediction based
on the projection of one day’s return on earlier days’ returns.

Suppose we have a probability space (Ω,A,P). The space L2(Ω,A,P) is then defined as the
collection of all square integrable random variables X on (Ω,A,P), i.e. the random variables for
which

E[X2] =

∫
Ω
X2dP < +∞

The space L2 is a vector space, and

〈X, Ȳ 〉 = E[XȲ ] =

∫
Ω
XȲ dP

defines an inner product on L2. Equipped with this inner product the space is complete and
thus a Hilbert space.

Suppose our observations {x1, x2, ..., xn} are outcomes of random variables {X1, X2, ..., Xn} be-
longing to L2. The random variables are part of a stationary process {Xt}t∈Z, i.e. a process with
constant mean and constant autocovariance function. Further assume γ(h) → 0 as h → +∞.
Then in this first model the prediction will be the projection on the linear span of earlier random
variables

X̂n+1 = Projspan{X1,...Xn}Xn+1

i.e. the element X̂n+1 in span{X1, ...Xn} = {φn1Xn + ...+ φnnX1 : φ̄ ∈ Rn} that minimizes the
distance to this subspace.

‖Xn+1 − X̂n+1‖ = inf
y∈span{X1,...,Xn}

‖Xn+1 − y‖

where ‖X‖2 = E[X2]. By the orthogonal projection theorem such a smallest element exists,
provided the span is a closed subspace of L2. Note that the projection of a random variable on
the space of all random variables that are functions of some random variables X1, ..., Xn equals
the conditional expectation given the random variables X1, ..., Xn

Proj{Z:Z=f(X1,...,Xn)}Xn+1 = E[Xn+1|X1, ...Xn]

The difference Xn+1 − X̂n+1 is orthogonal to the span, which gives us the projection equations

〈Xn+1 − X̂n+1, Y 〉 = 〈Xn+1 − (φn1Xn + ...+ φnnX1), Y 〉 = 0

for all elements Y in the span, which is equivalent to

〈Xn+1 − (φn1Xn + ...+ φnnX1), Xi〉 = 0, i = 1, ..., n.

Hence,
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E[Xn+1Xi] = E[(φn1Xn + ...+ φnnX1)Xi], i = 1, ..., n,

or

γ(i) =
n∑
j=1

φnjγ(i− j), i = 1, ..., n,

where, γ(h) is the covariance function. We have here assumed that we have a zero-mean process.
In matrix form the above expression becomes

Γnφ̄n = γ̄n,

where (Γn)i,j = γ(i− j), i, j = 1, ..., n and γn = (γ(1), ..., γ(n))′.

3.1 Yule-Walker Estimation of an AR(p) process

A more concise way to arrive at the same results is through Yule-Walker estimation of autore-
gressive processes, see e.g. Brockwell and Davis (1991). Suppose that our observations are
generated by a stationary zero-mean AR(p) process {Xt}t, i.e.

Xt = φ1Xt−1 + ...+ φpXt−p + Zt, (3.1)

where {Zt}t is a white noise, i.e. a sequence of uncorrelated, zero-mean random variables with
equal variances σ2, written {Zt}t ∼ WN(0, σ2). The coefficients φ1, ..., φp are real numbers. We
thus assume that each return is a linear combination of previous returns plus an uncorrelated
term.

As a prediction we will use

X̂t+1 = φ1Xt + ...+ φpXt−p+1, (3.2)

since the white noise is impossible to predict, being uncorrelated with the previous observations,
but will be zero on average.

To find the coefficients φ̄ we multiply both sides of (1) by Xt−j , for each j = 1, ..., p, and take
expectations

E[XtXt−j ] = φ1E[Xt−1Xt−j ] + ...+ φpE[Xt−pXt−j ], j = 1, ..., p

or
E[XtX̄] = φ̄E[X̄X̄ ′], X̄ = (Xt−1, ..., Xt−p)

′, (3.3)

or in matrix form
Γpφ̄ = γ̄p,

with (Γp)i,j = γ(i− j) and γ̄ = (γ(1), ..., γ(p))′.

We then estimate the autocovariances and solve the system of equations to obtain the estimated

coefficients ˆ̄φ.
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3.2 Durbin-Levinson algorithm

To increase computational efficiency one can turn to recursive algorithms for calculation of φ̄n.
One such algorithm is the Durbin-Levinson algorithm. For further details see e.g. Brockwell
and Davis (1991).

Initializing the algorithm with φ11 = γ(1)/γ(0) and v0 = γ(0), where v = E[(Xn+1 − X̂n+1)2],
the coefficients φ̄n are given by

φnn =

γ(n)−
n−1∑
j=1

φn−1,jγ(n− j)

 /vn−1,

φn,j = φn−1,j − φnn · φn,n−j , j = 1, ..., n− 1,

vn = vn−1(1− φ2
nn).

3.3 Ordinary Least Squares multiple regression

The projection approach is equivalent to performing an Ordinary least squares (OLS) multiple
regression. In the OLS multiple regression, one wants to explain a random variable with some
other random variables, through the model

Y = β1X1 + ...+ βnXn + ε.

The goal of the OLS regression is to minimize

N∑
i=1

(yi − β̄′x̄i)2,

for a set of observations {x̄t} and {yt}. But this is minimized exactly by the empirical estimate
of the projection coefficients of X onto Ȳ . The projection in theory minimizes the norm

‖Y − Ŷ ‖2 = ‖Y − β̄′X̄‖2 = E[(Y − β̄′X̄)2].

Furthermore, the solution to the OLS multiple regression problem is given by

β̄ = (X ′X)−1X ′ȳ,

where, X is the matrix of observations of the independent variables, and likewise ȳ is a vector
of observations of the dependent variable. 1

NX
′X and 1

NX
′ȳ are exactly (one of) the empirical

estimates of E[XtX̄] and E[X̄X̄ ′] derived above.

3.4 Implementation

The model takes in a sample of size N and the number of previous returns n used to predict
the current return. Next, the autocovariance function is estimated using the estimator
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γ̂(h) =
1

N − h

N−h∑
i=1

(xi − x̄)(xi+h − x̄), 0 ≤ h < N,

where x̄ is the sample mean. The Durbin-Levinson algorithm is used to calculate the coefficients
φ̄.

The models will be evaluated using the correlation mean. Given a window, the code loops
through the data, using the window backward to estimate the model, producing index predictions
for the next day. This is repeated for all days in the sample. Next, the correlation between the
predictions for the indices and the outcomes is calculated, and then we take the mean of all
correlations.

When choosing the sample size, there is a trade-off between increased precision in the estimation
of the covariance function, and validity of the assumption of stationarity. We want a large enough
sample size to get accurate estimates of the autocovariance function, eliminating as much noise
as possible. However the larger the time span, the autocovariance function is more likely to have
changed.

Another important question is how many previous returns Xt, Xt−1, ..., Xt−n to use in the pre-
diction. Below we see that this has a large effect on the performance.

3.5 Performance

The performance of the model was generally poor, with little predictive power for the index
returns. See Table 3 for a summary of the results.

Table 3: Correlation mean
N = 50 N = 100 N = 500 N = 1000

n = 1 -0.0014 0.0163 0.0063 -0.0259
n = 2 -0.0008 -0.0022 0.0160 -0.0105
n = 3 -0.0054 -0.0020 0.0185 0.0030
n = 4 -0.0047 -0.0001 0.0171 0.0101
n = 5 -0.0041 0.0033 0.0176 0.0130
n = 6 -0.0101 0.0028 0.0209 0.0082
n = 10 -0.0018 0.0107 0.0145 0.0079

The best results are obtained for N = 500, with the highest correlation for lags n = 6.

The model is based solely on the autocovariance function, so weak values of the autocovariance
between different days’ returns lead to the model not being able to make very accurate pre-
dictions. This lead to the projection coefficients being close to zero and their values seemingly
mostly due to noise in the calculation of the autocovariance function.

3.6 Testing statistical significance

To determine whether any of the autocovariances were statistically significant, we perform a
statistical test by use of the following theorem, see e.g. Brockwell and Davis (1991) for further
details.
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Theorem 1. If {Xt}t is the stationary process

Xt − µ =
+∞∑
j=−∞

ψjZt−j , {Zt}t ∼ IID(0, σ2),

where
∑+∞

j=−∞ |ψj | <∞ and E[Z4
t ] < +∞, then ∀h ∈ {1, 2, ...} we have approximately for large

N
ρ̂(h) ∼ N (ρ(h), N−1W ),

where
ρ̂(h) = (ρ̂(1), ..., ρ̂(h)),

ρ(h) = (ρ(1), ..., ρ(h)),

and W is the covariance matrix.

Under the null hypothesis that {Xt}t ∼ IID(0, σ2) then W = In and the ρ(i)′s are independent
and normally distributed with variance N−1. So we could reject the null hypothesis of no
autocorrelation and consider an estimate of the autocorrelation statistically significant if it is
outside of the interval ±1.96N−1/2, at a significance level of 95%. At N = 50, 100, 500 and
1000 the corresponding intervals are ±0.277,±0.196,±0.0877 and ±0.0620. Basically none of
the estimates were statistically significant up to and including N = 500.
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4 Eliminating common variability

In the previous model the time series were all considered separately, when in reality they are
highly correlated. This can be taken advantage of to eliminate some of the noise that is common
to the series.

This general idea could be implemented in a number of ways. One way is to construct a linear
combination of the indices where the white noises in different series partly offset each other,
by for example minimizing the variance. One risk though is that the linear combination also
removes a predictable trend component.

4.1 Normalizing

One possibility is to subtract a day’s mean return from each index and look at the new trans-
formed indices, i.e. each day trying to predict the deviations from that day’s mean across all
indices.

4.1.1 Prediction of deviations from the mean

We begin by transforming the data by subtracting the mean for each day from each index. We
thus get a transformed data series with deviations from the day’s mean, which we can evaluate
using the model above, to see if we get a better performance than before. To see how much
variability was removed we computing the standard deviation of the new series.

Below the standard deviations of the normalized series

Table 4: Standard deviations of deviations from mean
AEX FCHI FTSE GDAXI IBEX SSMI

Standard deviation 0.005235 0.005200 0.005700 0.006889 0.006469 0.006005

The transformed series are a lot less volatile, less than half the previous values in almost all
cases.

The performance of the projection model was greatly improved when applying it to normalized
data instead. See below a summary of results for different lags.

Table 5: Correlation mean for normalized data
N = 50 N = 100 N = 500 N = 1000

n = 1 0.0350 0.0564 0.0333 0.0224
n = 2 0.0327 0.0513 0.0341 0.0205
n = 3 0.0320 0.0471 0.0269 0.0183
n = 4 0.0259 0.0403 0.0315 0.0145
n = 5 0.0205 0.0355 0.0375 0.0244
n = 6 0.0227 0.0350 0.0390 0.0264
n = 10 0.0228 0.0275 0.0389 0.0240

The best correlation was achieved for N = 100 and n = 1, with a correlation of 0.0564, compared
to a maximum correlation of 0.0209 in the previous model. Also note that we never get a negative
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correlation, unlike the previous model. It is encouraging to see that at least some predictiability
seems to be present in the series.

Also note that the best results are generally obtained for N = 100, instead of N = 500. This
might be due to the fact that since there is less noise, a smaller sample size is enough to make
the statistical characteristics appear, and the advantages of a closer to constant autocovariance
function overtakes the increased noise in its estimation due to a smaller sample.

The predictive performance varies substantially among the different indices. Noteworthy is that
the correlation between the series of predictions and the series of actual returns is significantly
higher for the DAX index than the rest. For example with one lag and a sample size of 130 we
get a correlation of 0.187, whilst for the second best index the correlation is only 0.0598.

To investigate this further I make scatter plots of the predicted versus actual returns for the
case N = 130, n = 1, for the different series. Please see the six figures below. For the DAX
index there are a few outliers.

I also divided the data into two subsets to test the performance in each subset (for N = 130,
n = 1), to make sure that the correlation was not some earlier phenomen which since has
disappeared and to see whether the performance has remained fairly constant, which would be
desirable. The performane turned out to be similar, with a correlation mean of 0.0548 for the
first subset and 0.0589 for the second one.

Dividing the data into four subsets, we obtain 0.0856, 0.0081, 0.0565 and 0.0422 for the first,
second, third and fourth period, respectively. Note the poor result for the second period, 1996-
09-09 to 1999-11-23.

4.1.2 Prediction of the mean

I also tried to predict the time series of the daily mean of the log index returns. The per-
formance seems to be slightly improved as opposed to predicting the indices themselves (the
actual/predicted correlation of the mean series seems slightly higher than the average of the ac-
tual/predicted series for the constituent indices). However in general the performance was poor.
This indicates that the mean process contains mostly common noise, and the use of forming
the mean proces lies in being able to form the deviations from it. Indeed, if there is more noise
in the mean process itself, then more noise has been removed from the deviations, improving
predictability for that model. The reason the performance seems to be slightly better might be
due to that the idiosyncratic noise is averaged out over the indices, and the idiosyncratic noises
are uncorrelated by assumption.

Table 6: Correlation actual/predicted series for the mean process
N = 50 N = 100 N = 500 N = 1000

n = 1 -0.0130 -0.00824 0.00252 0.00516
n = 2 -0.0128 0.00063 0.0188 0.0284
n = 3 0.00061 0.0237 0.0418 0.0616
n = 4 -0.00839 0.0123 0.0288 0.0609
n = 5 -0.00724 0.00064 0.0229 0.0571
n = 6 0.00879 0.0105 0.0400 0.0661
n = 10 0.00888 0.0106 0.0419 0.0689

With data snooping, i.e. knowing which parameters yield the best results, the model performs
well, however the result is quite different for different parameter values.
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Note that the mechanisms generating improved predictability are different in the two cases - in
the first it was thanks to elimination of common noise in the second it was supposedly due to
the idiosyncratic noise averaging out.

4.1.3 A note on the prediction coefficients

In the context of the mean deviation predictions, it would be interesting to look at not only the

prediction, but also the actual projection coefficients, ˆ̄φ. As mentioned above, these are directly
derivable from the autocovariance function, through e.g. the Durbin-Levinson algorithm.

See Table 7 for some values of the autocorrelation function. I used the last 100 returns in
the estimations. For all the covariances statistical significance at 95 % is achieved if the value
is outside the interval ±1.96/

√
N = ±0.196 (see above). Achieved by few (but indeed some)

estimates, clearly there is valuable information in the estimates despite not necessarily being
statistically significant.

Table 7: Autocorrelation function
ρ(1) ρ(2) ρ(3) ρ(4)

AEX 0.2276 -0.0178 -0.0427 0.1406
FCHI -0.0507 -0.1838 -0.0053 -0.0955
FTSE 0.0236 0.0665 -0.0055 0.0524

GDAXI -0.1667 0.1626 -0.1775 -0.0267
IBEX 0.2483 0.1496 0.1206 0.0351
SSMI -0.0239 0.0335 -0.0370 0.0037

The autocorrelation is quite large. Note though that some of the correlation further back might
already be captured by the correlation with more recent days. For this reason it would be
interesting to also look at the partial autocorrelation function. The partial autocorrelation
function is also given by φnn, as seen in the last column in Table 8 below, showing some values
of the projection coefficients, for the last 100 days, with n = 4.

Table 8: Projection coefficients
φ14 φ24 φ34 φ44

AEX 0.2463 -0.0566 -0.0628 0.1644
FCHI -0.0688 -0.2143 -0.0357 -0.1371
FTSE 0.0230 0.0629 -0.0097 0.0486

GDAXI -0.1379 0.1306 -0.1495 -0.0973
IBEX 0.2202 0.0799 0.0732 -0.0216
SSMI -0.0219 0.0321 -0.0355 0.0010

4.1.4 Weighting the mean

In the above model we have use the simple arithmetic mean, however increased performance
might be obtained by using some weighted mean, and predicting the deviations from this mean
instead, or predicting the mean itself.

We might weight by variance, standard deviation or covariance, or some other measure. The
intuition behind weighting the mean is that if one index has higher variance (or covariance, or
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standard deviation) then it is more affected by common noise factors, and thus its deviation is
better predicted by a deviation from a mean with higher weight in this index.

However it seemed difficult to achieve better performance by weighting the mean. The deviations
from a mean weighted by variance or standard deviation seem to be only marginally improved
in some cases, and in other cases performing worse.

4.2 Minimum-variance portfolio (MVP)

Now a similar strategy to the above one will be implemented. To remove as much noise as
possible, leaving only completely idiosyncratic noise and (hopefully) some trend component, a
minimum-variance portfolio will be constructed. Then we will (1) attempt to predict this series
instead, and (2) attempt to predict the deviations from it.

One danger with this model is that when creating a model trying to eliminate all common noise,
any predictability or trend is eliminated as well, and the only thing left is idiosyncratic noise,
decreasing predictability.

I wrote a function that takes in a data series and returns a new data series that dynamically
calculates the minimum-variance portfolio for each day.

I calculated the standard deviation of the minimum-variance portfolio and obtained 0.01045,
which was not much lower than the constituent indices, due to the high correlation between the
series. The standard deviation of the mean portfolio was 0.01174.

I also calculated the standard deviations of the deviations from the minimum-variance portfolio.

Table 9: Standard deviations of deviations from min-var series
AEX FCHI FTSE GDAXI IBEX SSMI

Standard deviation 0.01040 0.00977 0.00469 0.01179 0.00974 0.00715

4.2.1 Prediction of deviations from the MVP

I first tried to predict the deviations from the mean-variance process. See the results above. I
have used 500 past returns when calculating the weights in the minimum-variance portfolio.

Table 10: Correlation mean for prediction of deviations from minimum variance portfolio
N = 50 N = 100 N = 500 N = 1000

n = 1 0.0182 0.0384 0.0012 -0.0022
n = 2 0.0121 0.0283 0.0090 -0.0033
n = 3 0.0144 0.0375 0.0135 0.0043
n = 4 0.0192 0.0309 0.0125 -0.0014
n = 5 0.0185 0.0283 0.0257 0.0184
n = 6 0.0236 0.0276 0.0240 0.0154
n = 10 0.0249 0.0306 0.0230 0.0138

As can be seen the performance turned out to be fairly good, especially compared to the original
linpred model, however not as good as the simpler mean deviation prediction.
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4.2.2 Prediction of the MVP

I also tried to predict the minimum variance series itself. See below the results. As can be seen
quite a large sample size is needed for good results.

Table 11: Correlation actual/predicted for the minimum variance portfolio
N = 50 N = 100 N = 500 N = 1000

n = 1 -0.0239 -0.0126 0.0096 -0.0459
n = 2 -0.0299 -0.0104 0.0327 -0.0083
n = 3 -0.0263 0.0025 0.0514 0.0386
n = 4 -0.0415 -0.0145 0.0386 0.0340
n = 5 -0.0468 -0.0207 0.0324 0.0321
n = 6 -0.0502 -0.0311 0.0375 0.0339
n = 10 -0.0683 -0.0441 0.0277 0.0298

We get good performance for N = 500 but very poor performance for N = 50. With data
snooping (i.e. knowing the values of the parameters N , n that produce good results) the model
performs well.

4.3 A trading implementation

We will now implement a simple trading strategy, as follows. We will use the mean deviations
with parameter values N = 100 and n = 1, i.e. those with the best results above. For each
day we will look at the predictions of the projection model and take short and long positions
depending on the predictions. We will first use equal weights on all indices, with long or short
positions depending on the sign of the prediction.

See below Figure 1 for the results over the entire time period.

Avergae yearly return was ∼ 4.6 %. An important question is how much disappears when taking
into account transaction costs, since this model requires daily rebalancing.

We will now extend the model and weight by the absolute value of the prediction. However
some initial tests indicate no improvement, quite the contrary. Please see Figure 2.

As can be seen absolute performance is worse, but variance is significantly reduced. Please see
Table 12 for summary statistics.

Table 12: Daily mean and standard deviation
Equal weight Weighting by prediction

Standard deviation 0.002576 0.000615
Mean 0.000184 0.000067
Ratio 0.0713 0.1097

Indeed, return per standard deviation is actually higher in the second approach. However with
transaction costs of e.g. 2 basis points, .0002, the daily mean is negative, assuming the whole
position has to be rebalanced each day.
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Figure 1: Equal weights

4.4 Returns over longer time periods

We will now try to predict returns over longer time periods, e.g. weekly, simply by transforming
the returns. Hopefully this will lead to improved predictability, since short-term noise is averaged
out and hopefully there is more momentum in returns over slightly longer time periods.

One additional difficulty when calculating returns over other time periods is the smaller number
of observations available, reducing statistical accuracy in the models. Looking at data over k
days reduces the available data by more than a factor 1/k.

First we use the retutns over two days. This way, some noise will be eliminated, since on average
the noise takes positive and negative values the same number of times. We also maintain a fairly
large sample size. Please see Table 13 for some results for the mean deviations.

As can be seen results are fairly good, however not better than the simple one-day returns. With
data snooping we obtained 0.0513 for n = 5, N = 225. However one has to keep in mind that
although predictability is reduced, results in a trading implementation might be improved since
the returns extend over a longer period of time.

We also look at returns over three, four, five and ten days. Please see Tables 14 to 17.
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Figure 2: Weighted by prediction
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Table 13: Correlation mean, r = 2
N = 50 N = 100 N = 200 N = 500

n = 1 0.0283 0.0309 0.0280 -0.0121
n = 2 0.0227 0.0358 0.0369 -0.0006
n = 3 0.0228 0.0393 0.0406 0.0028
n = 4 0.0229 0.0412 0.0444 0.0215
n = 5 0.0278 0.0464 0.0495 0.0199
n = 6 0.0237 0.0461 0.0432 0.0056
n = 10 0.0246 0.0312 0.0423 -0.0032

Table 14: Correlation mean, r = 3
N = 50 N = 100 N = 200 N = 500

n = 1 0.0113 0.0186 0.0156 -0.0003
n = 2 0.0288 0.0285 0.0243 0.0215
n = 3 0.0246 0.0212 0.0308 0.0259
n = 4 0.0258 0.0203 0.0305 0.0326
n = 5 0.0255 0.0211 0.0348 0.0277
n = 6 0.0418 0.0406 0.0354 0.0202
n = 7 0.0438 0.0346 0.0297 0.0171
n = 10 0.0276 0.0218 0.0273 0.0049
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Table 15: Correlation mean, r = 4
N = 50 N = 100 N = 200

n = 1 0.0039 0.0217 -0.0049
n = 2 0.0155 0.0205 0.0103
n = 3 0.0008 0.0118 0.0079
n = 4 0.0269 0.0324 0.0431
n = 5 0.0198 0.0248 0.0364
n = 6 0.0217 0.0332 0.0441
n = 7 0.0155 0.0330 0.0397
n = 10 0.0187 0.0208 0.0263

Table 16: Correlation mean, r = 5
N = 50 N = 100 N = 200

n = 1 -0.0105 0.0200 -0.0094
n = 2 -0.0146 0.0142 -0.0181
n = 3 -0.0105 0.0221 -0.0109
n = 4 -0.0010 0.0099 -0.0109
n = 5 -0.0002 0.0032 -0.0238
n = 6 -0.0022 0.0065 -0.0270
n = 7 -0.0080 0.0121 -0.0159
n = 10 -0.0105 0.0097 -0.0271
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Table 17: Correlation mean, r = 10
N = 50 N = 100

n = 1 0.0485 -0.0347
n = 2 0.0204 -0.0378
n = 3 0.0254 -0.0507
n = 4 0.0220 -0.0532
n = 5 0.0025 -0.0576
n = 6 -0.0073 -0.0640
n = 10 -0.0068 -0.0779
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5 Multivariate prediction over arbitrary time periods

Previously we have looked at the indices individually, predicting an index’s value only based on
the past information contained in that index. We will here use a multivariate analysis, looking
at a model of the form

Xt,i =

p∑
j=1

m∑
k=1

β
(i)
j,kXt−j,k + εt,i, i = 1, ...,m,

where p is the number of lags and m is the number of series.

The projection model is the same as the above with m = 1. There are a number of ways to
implement the above general model. One option is estimating a vector autoregression model
(VAR). Another option is an ordinary least squares regression, or ridge regression for increased
accuracy.

An extension is to regress upon time periods of different lengths, i.e.

X
(j)
t−r,t =

κ∑
k=1

I∑
i=1

β
(k)
i X

(k)
ti−ri,ti + εt,j , r = 0, 1, 2, ..., j = 1, 2, ...., κ, (5.1)

Where κ is the number of assets, Xξ,ζ denotes the return from and including day ξ to day ζ,
and the indices in parentheses refer to the asset. Here we have assumed identical time periods
of past returns for each asset.

5.1 Multivariate-univariate mixture OLS

We will start with a mixture of a univariate and multivariate approach – a univariate approach
in calculating the prediction, but making use of data from all indices in the calculation of the
coefficients, using the same regression coefficients for all indices. This somewhat mitigates the
problem of having less data to make use of when the previous time periods we are regressing
upon increase.

The specification is as follows

Y
(j)
t =

I∑
i=1

βiX
(j)
t,i + εt,j , j = 1, 2, ..., κ,

where Y is the one-day return we are trying to predict, and Xt,i are the previous returns, over
various time periods, that we are regressing upon. Since these returns are not intersecting, they
are supposedly only weakly correlated, so we can use a normal OLS regression. This approach,
then, assumes that previous returns are the same random variable regardless of the index, when
estimating the beta coefficients. So for one index we can write

Yt = β̄X̄t + εt,

where X̄ is the vector of random variables we are regressing upon, and Yt is the return random
variable.

Through OLS the coefficient vector β̄ is given by

21



β̄ = E[X̄X̄
′
]−1E[X̄Y] = Σ−1E[X̄Y],

yielding the estimate

ˆ̄β =

(
N∑
i=1

x̄ix̄
′
i

)−1( N∑
i=1

x̄iyi

)
.

We thus would need to estimate the covariances of all the variables. Another, equivalent option
is to solve the system Ax̄ = ȳ in a least-squares sense, i.e. solving

β1x11 + ...+ βnxn1 = y1

β1x12 + ...+ βnxn2 = y2

...

β1x1i + ...+ βnxni = yi
...

β1x1N + ...+ βnxnN = yN

,

by minimizing ‖Ax̄ − ȳ‖2, where the xij ’s and yj ’s are the observations, for all indices. Recall
that we act as though we only have one random variable of returns Y and X̄, comprising the
returns of all indices.

5.1.1 Performance

We begin with a regression on return periods of just one past day, which will give an interesting
comparison to the projection model applied to the non-normalized returns. Since we regard the
indices as one random variable, it makes more sense to use the non-normalized returns, however
we might also try applying it to the mean deviations, that are still fairly correlated.

Please see below Table 18 for some results.

Table 18: Correlation mean, non-normalized
N = 50 N = 100 N = 400 N = 500

n = 1 -0.0072 0.0016 0.0139 0.0086
n = 2 -0.0024 -0.0018 0.0146 0.0150
n = 3 0.0026 0.0029 0.0213 0.0240
n = 4 0.0021 0.0024 0.0178 0.0246
n = 5 -0.0006 0.0048 0.0123 0.0182
n = 6 0.0020 0.0069 0.0127 0.0167
n = 10 0.0102 0.0148 0.0043 0.0062

We get slightly improved performance as compared with the projection model in general, al-
though not for all sample sizes and lags.
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See below some more results for different previous return periods, with both normal log returns
and mean deviations. The notation [a, b, c] is to be interpreted as a regression on the returns
over the last a days, and the following b− a and c− b days.

Table 19: Correlation mean
Periods N = 50 N = 100 N = 400 N = 500 N = 600

Non-normalized

[1, 5, 20] -0.0046 -0.0003 0.0146 0.0117 0.0064
[1, 5, 20, 250] - - 0.0172 0.0136 0.0190
[1, 2, 3, 20] -0.0045 -0.0006 0.0156 0.0199 0.0164
[1, 2, 3, 200] - - 0.0132 0.0144 0.0198
[1, 2, 3, 250] - - 0.0133 0.0155 0.0175

[10] -0.0082 0.0038 0.0094 0.0086 0.0028
[10, 20] -0.0070 -0.0034 0.0126 0.0179 0.0175

[10, 20, 30] -0.0047 -0.0030 0.0134 0.0195 0.0136
[10, 20, 30, 200] - - 0.0098 0.0062 0.0077

[1, 2, 3, 10, 20, 200] - - 0.0144 0.0095 0.0155
[5, 10, 20, 30] -0.0016 -0.0021 0.0149 0.0153 0.0162

[5, 10, 15, 20, 25, 30] -0.0060 0.0023 0.0139 0.0155 0.0152

Normalized

[1] 0.0099 0.0227 0.0102 0.0088 0.0109
[1, 2] 0.0118 0.0250 0.0105 0.0115 0.0138

[1, 2, 3] 0.0183 0.0275 0.0142 0.0188 0.0231
[1, 2, 3, 4] 0.0181 0.0257 0.0168 0.0239 0.0228

[1, 2, 3, 4, 5] 0.0135 0.0224 0.0155 0.0218 0.0217
[1, 5, 20] 0.0085 0.0175 0.0101 0.0131 0.0154

[1, 5, 20, 250] - - 0.0260 0.0179 0.0146
[1, 2, 3, 20] 0.0071 0.0258 0.0134 0.0135 0.0183
[1, 2, 3, 200] - - 0.0253 0.0215 0.0155
[1, 2, 3, 250] - - 0.0224 0.0222 0.0187

[10] 0.0043 0.0097 0.0077 0.0070 0.0047
[10, 20] 0.0061 0.0099 0.0041 0.0052 0.0086

[10, 20, 30] 0.0059 0.0079 0.0015 0.0061 0.0074
[10, 20, 30, 200] - - 0.0029 -0.0008 -0.0037

[1, 2, 3, 10, 20, 200] - - 0.0177 0.0109 0.0109
[5, 10, 20, 30] 0.0064 0.0115 0.0025 0.0035 0.0065

[5, 10, 15, 20, 25, 30] 0.0106 0.0193 0.0007 -0.0031 -0.0008

Note that performance was improved when adding the 250-day return period to [1, 5, 20], for
both normalized and non-normalized returns. However performance was not improved when
adding it to the returns [1, 2, 3] for the non-normalized returns.

5.1.2 Extension: predicting longer returns

Instead of predicting one day’s return, the model can be applied to predicting returns over longer
future time periods as well. In general, longer future return periods are preferred, yielding lower
turnover and lowering transaction costs.

Performance of the model was satisfactory. As an example, with N = 400, periods = [1, 2, 3] and
r = 2, 3, 4, we got correlation means of 0.0276, 0.0312 and 0.0165 for non-normalized returns,
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an improvement in the first two cases as compared with predicting just one day.

5.2 Multivariate OLS regression

We will derive the OLS best estimates of the more general model above, i.e. a multivariate
regression of and on returns over arbitrary time periods. We apply the model to the original non-
normalized returns. In this setting, when using several indices as independent variables, there is
no point in using the mean deviation returns, since the prediction is already a linear combination
of the other indices, so we are implicitly predicting a deviation from a linear combination of
indices.

The simplest approach, regressing upon the return of one past day, gave among the best results.
However for some sample sizes performance was improved by adding additional previous return
periods. See below Table 20 for a short summary of the performance, predicting the future
return over one day.

Table 20: Correlation mean
Periods N = 50 N = 100 N = 200 N = 500

[1] 0.0335 0.0530 0.0502 0.0535
[1, 2] 0.0312 0.0442 0.0522 0.0547

[1, 2, 3] 0.0205 0.0279 0.0366 0.0413
[1, 2, 5] 0.0343 0.0418 0.0541 0.0541
[1, 2, 10] 0.0089 0.0301 0.0423 0.0480
[1, 20] 0.0060 0.0343 0.0429 0.0456
[1, 100] - - 0.0142 0.0387
[1, 250] - - - 0.0248

Performance was satisfactory, and better absolute performance than the simplest approach was
obtained for both [1,2] and [1,2,5], indicating there is some merit to increasing the number of
previous return periods.
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6 The Hodrick-Prescott filter

The Hodrick-Prescott (HP) filter is a time series filter often applied in economics, decomposing
the series into a trend component and a residual component, which may or may not contain a
cyclical component.

The specification of the HP filter is the following. If {Xt} is a time series, with available
observations {xt}t=1,...,T , then the series is supposed to be made up of a trend component {τt}
and a residual component {ut}, such that

xt = τt + ut, (6.1)

where E[ut] = 0 and the trend component is the one that minimizes the following expression

T∑
t=1

(xt − τt)2 + λ

T−1∑
t=2

((τt+1 − τt)− (τt − τt−1))2 = (6.2)

=

T∑
t=1

(xt − τt)2 + λ

T−1∑
t=2

(∆2(τt))
2 (6.3)

The second term is the squared second difference of the trend, thus penalizing a large change
in growth rate of the trend. The higher the parameter λ, the smoother the trend component is
forced to be. Without the second term, the trend component would simply be equal to original
series {xt}. The minimization is similar to a least squares minimization, but instead of specifying
{τt} as some predetermined function, the penalization is added. As λ → ∞, the minimization
approaches ordinary least squares minimization against a linear function.

Note that the trend component can be written as

τt = 2τt−1 − τt−2 + εt,

with εt as a residual noise term. Since λ is penalizing changes in τt, a higher λ leads to lower
variance of the residual term εt.

The HP filter is a type of Kalman filter and can be written in state-space form, with {xt} as the
observed variable and the trend {τt} as the unobserved state variable. Recall that a time series
{Yt} is in linear state-space form if it can be written

Yt = GtXt + Wt, (6.4)

Xt+1 = FtXt + Vt, (6.5)

where {Yt} is the observed time series, {Xt} can be interpreted as an unobserved state vector,
Gt and Ft are matrices, X1 is a random variable, and Wt and Vt are orthogonal random “noise”
vectors. The matrices are often taken to be constant. For further details see e.g. Brockwell and
Davis (1991). In the state-space representation some assumptions on the initial value on the
state variables are needed. In the minimization problem (6.2) no such assumptions are needed,
rather they are implicit in the model.
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From the defining equation for the HP filter above we can deduce the state-space representation.
The observation equation (6.4) is

xt = τt + ut,

with ut as the noise term. The state equation (6.5) is

(
τt+1

τt

)
=

(
2 −1
1 0

)(
τt
τt−1

)
+

(
εt
0

)
Note that εt and ut are two different residuals, ut is the difference between the trend and the
observations, and εt is the random part in the next trend point. Furthermore, if another obser-
vation is added, in general the previous trend points will change, since the whole minimization
has to be repeated.

Since the HP filter can be written in state-space form, the Kalman recursions can be used to
find a prediction for the time series {Yt} and the state equation {Xt}. The prediction using the
Kalman recursions works as follows. First the state equation is forecasted. Given the supplied
structure of the state evolution, the prediction returned is the projection of the state variable
on all observed data, i.e. the estimate that minimizes E[(Xt − X̂t)

2]. The prediction of {Yt} is
then straightforward, given simply by Ŷt = GtX̂t, since Wt ⊥ {Xt}. Since Gt = [1] in our case,
the prediction would be equal to the prediction of the trend.

However, in our case we are rather interested in the state variable itself. There would be little
use to the state-space approach in predicting the series itself, given the constraints put on the
state variable. Rather than estimating the matrices and coefficients, we take those as given, the
noise then being a result of what is not explained by the trend. Often the main objective is
rather to estimate the unknown parameters in the state-space model.

6.1 Initial analysis

We first plot the returns together with the trend calculated based on the returns, rather than
prices. See Figure 3 for an example with λ = 16000.

It is hard to get any idea about the trend plotted for the returns. The trend is oscillating around
zero seemingly in no predictable manner. However recall that exactly the same information is
present in returns as in prices, the only information lost when transforming from prices to returns
is the initial value, which is irrelevant for any trading implementation or predictability.

We next plot the trend for prices instead, see below Figure 4 for an example again with λ = 16000,
zoomed in for greater visibility. In Figure 5 the smoothing parameter is λ = 100000 instead.

Now the trend is clearly visible, and indeed there seems to be some momentum in the trend.
However, one has to keep in mind that each trend point is calculated using all available data,
where future and past values have equal weight.

I also applied the HP filter to prices calculated from the deviations from the mean return.
However in the implementation of the HP filter it is not obvious whether we should use the
original or normalized returns, since there might be some trend component that is lost if we
take away the mean.

We also compute a simple rolling average to compare with the HP trend. See below Figure 6
for an example with λ = 16000 and a moving average using 47 data points symmetrically. As
can be seen the moving average is not as smooth as the HP filter trend.

26



Report/Report/figftseret16000.png

Figure 3: Returns and trend

One problem with the trend detection using the HP filter is that almost by definition, trends will
appear in any time series, although being spurious. Consequently, we also apply the HP filter to
a Brownian motion, where we know that any apparent trends will be purely coincidental. Please
see Figure 7. Indeed, some trends seem to be present, however the trends are not as persistent
and seem to be fluctuating more than with our real financial data.

6.2 Determining the smoothing parameter

The smoothing parameter λ is the only free parameter in the HP filter. Often it is determined on
a rule-of-thumb basis, e.g. set to λ = 1600 for quarterly data. By changing the λ parameter one
can adjust the trend component and make it reflect more short-term or long-term fluctuations.
The parameter can be thought of as corresponding to the number of observations used in a
moving average, thus deciding how much you want to rely on closer or more distant observations.
Indeed each trend point τt is a linear combination of observations xt as seen from the relation
τ = (I + λP ′P )−1x below. However there are ways to determine the parameter in a more
structured manner.

6.2.1 Maximum-likelihood estimation of the smoothing parameter

A maximum-likelihood estimate of the smoothing parameter is derived in e.g. Schlicht (1994).
First define the second term in the filter specification (6.2) as the disturbances
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Figure 4: Prices and trend

vt = ((τt − τt−1)− (τt−1 − τt−2)). (6.6)

Writing the HP filter in matrix form, the expression to minimize is, with ut as the residuals, vt
as the trend disturbances, τt as the trend and xt as the original series

u′u+ λv′v = (x− τ)′(x− τ) + λτ ′P ′Pτ,

where

P =

1 −2 1 0 0 · · ·
0 1 −2 1 0 · · ·

...
. . .


This gives the first-order condition

(IT + λP ′P )τ = x,

which gives the unique solution

28



Report/Report/figfchipcs100000zm.png

Figure 5: Prices and trend

τ = (IT + λP ′P )−1x.

To determine the smoothing parameter it is assumed that {vt} and {ut} are normally distributed,
iid sequences.

vt ∼ N (0, σ2
v), ut ∼ N (0, σ2

u),

from where a distribution for the trend {τt} can be determined.

Given {vt}, any solution to v = Pτ can be written

τ = P ′(PP ′)−1v + Zβ,

where Z is a (T × 2) matrix with the two orthogonal solutions to the the equation Pτ = 0 as
columns. Since the matrix P is of rank T − 2 there exists two orthogonal solutions and any
linear combination of these is also a solution. So given a distribution for vt there is no unique
solution for the trend.

Writing the original series as xt = ut + τt we get

x = u+ P ′(PP ′)−1v + Zβ.
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Figure 6: Prices, trend and moving average

Given the distributions for {vt} and {ut} the distribution for τ can then be determined, which
depends on the parameter β. This parameter is then determined by maximizing the likelihood
of the observations with respect to this parameter, yielding β̂ = Z ′x.

Next the likelihood of x is maximized with respect to λ. The log-likelihood function becomes

L(x;λ) = −log(det(λIT +Q))− T log(û′û+ λv̂′v̂) + T log(λ),

where Q = P ′(PP ′)−1(PP ′)−1P . This can be simplified to

L(x;λ) = −log(det(IT + λP ′P ))− T log(û′û+ λv̂′v̂) + (T + 2), log(λ)

where τ̂ = (It − λP ′P )−1x, û = x − τ̂ and v̂ = P τ̂ . This likelihood function can then be
maximized numerically to obtain an estimate for the smoothing parameter.

Attepmting to maximize the likelihood numerically proved difficult, the likelihood function ex-
hibiting erratic behaviour for small sample sizes, with seemingly no global maximum, or a
global maximum tending to infinity, revealed through a graphical inspection. From a sample
size of about 50 a global maximum appeared, which then seemed to converge as the sample
size increased. However the determinant in the likelihood function quickly approaches negative
infinity, whereby very large sample sizes are not feasible. This problem is inherent in it being

30



Report/Report/figbrownian16000zm.png

Figure 7: Brownian motion and trend

a maximum-likelihood estimation, where as the sample size of the time series increases, the
probability of the actual observations quickly becomes minuscule.

Requiring the residuals {ut} to be a white noise sequence will supposedly lead to small values
of the parameter λ, since large values would make the residuals highly correlated, since clearly
if P[utut−k > 0] > 1

2 ⇒ E[utut−k] > 0. The last term is the correlation, since the residuals have
zero mean. If they had not zero mean, the trend would not be the minimizer of the defining
equation. To see this, note that

u = x− τ = (I − λP ′P )τ − τ = λP ′Pτ,

with

P ′P =


1 0 0 0 0 · · ·
−2 1 0 0 0 · · ·
1 −2 1 0 0 · · ·
0 1 −2 1 0 · · ·

...
. . .




1 −2 1 0 0 · · ·
0 1 −2 1 0 · · ·
0 0 1 −2 1 · · ·
0 0 0 1 −2 · · ·

...
. . .

 =


1 −2 1 0 0 · · ·
−2 5 −4 1 0 · · ·
1 −4 6 −4 1 · · ·
0 1 −4 6 −4 · · ·

...
. . .


Thus Ê[ut] = ūt = 1

T

∑T
j=1 uj = 0. Likewise, since v = Pτ , v̄t = 1

T (τ1 − τ2 − τT−1 + τT )→ 0 as
T → +∞ or as λ→ +∞.
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6.2.2 A consistent estimator of the smoothing parameter

Another way to estimate the λ parameter is the approach derived in Dermoune, Djehiche and
Rahmania (2008), which leads to a much easier implementation, henceforth called the DDR
method. The smoothing parameter is determined by setting τ̂(λ, x) = E[τ |x], following Schlicht,
which leads to the smoothing parameter being a ratio of variances. Thus, given the variances σ2

u

and σ2
v , the optimal choice of smoothing parameter is the ratio of these variances, minimizing

the mean-squared error.

In order to derive a consistent estimator of the noise-to-signal ratio λ we consider the centered
series

Px = Pτ + Pu = v + Pu.

Thus (Px)t = vt + ut+1 − 2ut + ut−1

The transformed series is stationary, since Pτ and Pu have zero mean and the variances σ2
u and

σ2
u are assumed constant. Recall that in this approach it is assumed that E[utut−k] = 0, ∀k, i.e.

the residuals are white noise. The autocovariance function is given by

γ(h) =


σ2
v + 6σ2

u, if h = 0
−4σ2

u, if h = 1
σ2
u, if h = 2

0, otherwise

Thus the variances can be estimated by estimating the autocovariance function of the trans-
formed series, which will lead to an estimate of the smoothing parameter, through λ = σ2

u/σ
2
v .

This estimator is consistent by the consistency of the covariance estimator. Note that we do
not need to estimate the trend. Hence the estimates for the variances become σ̂2

u = −1
4γ(1) and

σ̂2
v = γ(0) + 3

2γ(1).

Typical smoothing parameter values are around 1 when applying the method to the price se-
ries, and the resulting trend is somewhat similar to a simple moving average of 5 observations
symmetrically, in terms of how much the trend is affected by each observation.

Note that if our return series are completely uncorrelated this leads to an estimated smoothing
parameter of zero. This is logical, since if the prices follow a random walk there obviously cannot
be any trend (or, rather, the trend coincides with the original series). The smoothing parameter
tends to infinity as the first autocovariance tends to −2

3 of the variance, i.e. as ρ(1) → −2
3 ,

which is when σ2
v → 0.

6.2.3 Determining the smoothing parameter through Generalized Cross-Validation

Cross-validation is a general technique for estimating parameters that can be applied to many
different problems. It is applied specifically to the determination of the HP smoothing parameter
in Weinert (2007).

In cross-validation, the data sample is first divided into different subsets. In K-fold cross-
validation, the parameter α of a model f(x, α) is estimated, using some suitable estimation
technique, for all but one of the partitions. In our case the function f(·) is the function estimating
the trend, f̂ : x 7→ τ . Next the prediction error is calculated when predicting the left-out
partition using the model fitted with the training data sets. The procedure is then repeated
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with each partition as a validation data set. Denoting the fitted function with the kth partition
removed by f̂−k(x), the cross-validation estimate of the prediction error is given by

CV(f̂) =
1

N

N∑
i=1

L(yi, f̂
−κ(i)(xi))

where κ : {1, ..., N} 7→ {1, ...,K} is an indexing function giving the partition for each observation.
Thus we are calculating the average prediction error for all points in the data sets, using the
model estimated using the other partitions. L(·) is the prediction error. The K = N case is
known as leave-one-out cross-validation. The parameter α is finally chosen as the value that
minimizes CV(·).

Generalized Cross-Validation provides an approximation to leave-one-out cross-validation, for
linear fitting methods, i.e. methods for which the estimator can be written ŷ = Sy, where y is
the outcomes and ŷ is the estimator. In our case, we can view the outcomes y as the original
observations, and ŷ as the trend points, then being estimations of the original series. In this
sense the trend estimation is a linear fitting, since as seen before, τ̂ = (I + λP ′P )−1x.

For many linear fitting models the following holds,

1

N

N∑
i=1

(yi − f̂−i(xi))2 =
1

N

N∑
i=1

(
yi − f̂(xi)

1− Sii

)2

. (6.7)

The GCV approximation is then

GCV(f̂) =
1

N

N∑
i=1

(
yi − f̂(xi)

1− trace(S)/N

)2

, (6.8)

which is useful if the trace is easier to calculate than the individual diagonal elements. In our
case recall that S = (I + λP ′P )−1. The smoothing parameter is then determined through
minimizing the GCV score (6.8).

The GCV method for the HP filter was originally developed for smoothing splines. A smoothing
spline is a function f ∈ L2 that minimizes

1

N

N∑
j=1

(f(xj)− xj)2 + λ

∫ xN

0
(f ′′(t))2dt. (6.9)

This looks like a continuous version of the HP filter, with the sum of second differences replaced
by an integral of the second derivative. See e.g. Craven and Wahba (1979) for further details.
The optimal λ is chosen as the one that minimizes the true mean squared error R(λ), defined as

R(λ) =
1

N

N∑
j=1

(gλ(xj)− g(xj))
2, (6.10)

where gλ is the fitted spline and g is the true smoothing function, i.e. this is the discrepancy at
the trend points. Next we define the n× n matrix A(λ) through
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gλ(x1)
gλ(x2)

...
gλ(xN )

 = A(λ)


x1

x2
...
xN


Such a matrix exists since gn,λ(t) is a linear function of x1, ..., xN at each data point xi. In
particular, we know that such a matrix exists in the case of the HP filter, withA(λ) := (I+λP ′P ).
The expected mean-squared error is

E[R(λ)] = E[
1

N
‖A(λ)x− g‖2], (6.11)

where the absence of subscripts indicate vectors. We assume the model xt = gt + εt, where {εt}
is a white noise process with variance σ2. We thus get

E[
1

N
‖A(λ)x− g‖22] = E[

1

N
‖A(λ)(g + ε)− g‖2] =

1

N
‖(I −A(λ))g‖+

σ2

N
Tr[A2(λ)],

where Tr[·] is the trace of the matrix. An unbiased estimator R̂(λ) is then given by

R̂(λ) =
1

N
‖(I −A(λ))x‖ − σ2

N
Tr[(I −A(λ))2] +

σ2

N
Tr[A2(λ)],

with g replaced by x and since E[A(λ)] = I.

We will now note down the derivation of (6.7). Minimizing the GCV score minimizes R(λ) as
defined above. We start out from

1

N

N∑
i=1

(yi − f̂−i(xi))2 =
1

N

N∑
i=1

(g−iλ − xi)
2.

In the setting with smoothing splines, if we replace the data point xi with the estimate of
that data point produced leaving the point out, g−iλ (x−i, xi), and repeat the whole original
minimization, then the leave-one-out estimation is reproduced, i.e.

gλ(x−i, g−i(xi)) = g−iλ (x). (6.12)

The notation g = g(ξ; ζ) means the function evaluated at the point ζ estimated using the points
ξ. (6.12) is seen in the following way. Suppose we have the original minimization problem (6.9)
and the function solving the leave-one-out problem, g−iλ . I we then replace the point zi with the
estimate g−iλ (zi), then the first sum becomes the sum in the leave-one-out problem, since that
point disappears, and the integral is smaller than the integral of any other function solving the
original problem. Thus g−iλ , the minimizer of the leave-one-out problem, also solves the original
problem with zi replaced by g−iλ (zi).

Since gλ depends linearly on the observations x, the first-order Taylor expansion of gλ around
any point xi holds exactly. With x as the variables used in the estimation and ξ as the point of
evaluation, and we are expanding about the point yi

gλ(x; ξ) = gλ(x−i, yi; ξ) + (xi − yi)
∂gλ
∂xi

(x−i, yi; ξ) +O

((
∂gλ
∂xj

)
j 6=i

)
,
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yielding

g−iλ (x−i; ξ) = gλ(x−i, g−iλ (x−i; ξ); ξ) = gλ(x−i, yi; ξ) + (g−i(x−i; ξ)− yi)
∂gλ
∂xi

(x−i; ξ). (6.13)

Recall that g : RN+1 → R is the function from the observations to the estimation of a point,
g = A(λ)x. The notation above is xi for the variables, i.e. one for each observation, depending
on the value of the observations we input, and y is the point we are expanding about. This
yields

g−iλ = gλ(y) + (g−iλ − yi)
∂gλ
∂xi

= gλ(y)− (g−iλ − yi)(1−
∂gλ
∂xi

) + gλ − yi

⇒ g−iλ − yi = (gλ(y)− yi)/(1−
∂gλ
∂xi

)

Now, since gλ = A(λ)x and ∂gλ/∂xi = Aii, the ith diagonal element, we finally get

1

N

N∑
k=1

(g−iλ − xk)
2 =

1

N

N∑
k=1

(gλ − xk)2

(1−Akk)2
,

which is the GCV score. Minimizing the GCV score yields an estimate for λ which minimizes the
expected error derived above in (6.10). The GCV score for the HP filter is the same as above,
only with (I+λP ′P ) as the matrix A. To show this, either we can repeat the above analysis with
the trend τ instead of the spline estimation gλ, or show that the spline approximation coincides
with the HP filter at the points t = 1, 2, ..., N , for the smoothing parameters as estimated by
the minimization of the GCV score.

What we would need to show to derive the HP filter GCV score is (6.12) and (6.13). However
(6.13) depends only on the linearity of the matrix A(λ), so this should hold in the case of the
HP filter. We thus only need to show that the relation gλ(x−i, g−i(xi)) = g−iλ (x−i) still holds,
i.e. that the trend obtained when solving the leave-one-out problem solves the original problem
with the left-out point replaced by the estimated point.

One problem though is that thet leave-one-out trend estimation τ−i does not provide an un-
ambiguous estimation of any other points left out of the sample, i.e. it is not clear what is the
meaning of τ−i(xi). However, assuming it exists, we can show that the relation holds.

Consider the problem of estimating the original problem with the point xi replaced by τ−i(t−i;xi).
Again, the notation τ(ξ; ζ) indicates the function τ : RN+1 → R obtained through the minimiza-
tion using the points ξ and evaluated at the point ζ. Following the reasoning above we consider
the minimization (the xj ’s are the points of evaluation)

1

N
[

N∑
k=1,k 6=i

[τ−i(xk)−xk]2+(τ−i(xi)−τ−i(xi)2]+λ

N−2∑
k=1

([τ−i(xk)−τ−i(xk+1)]−[τ−i(xk+1)−τ−i(xk+2)])2

(6.14)

=
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1

N

N∑
k=1,k 6=i

(τ−i(xk)− xk)2 + λ
N−2∑
k=1

((τ−i(xk)− τ−i(xk+1))− (τ−i(xk+1)− τ−i(xk+2)))2 (6.15)

We want to show that τ−i solves the original minimization problem with xi replaced by τ−i(x;xi).
If we take the trend function to be linear between the points, then τ−i(xi) solves the N-data
point minimization problem with xi replaced by τ−i(xi), since the left sum is the same as the
(N-1)-data point problem and the right sum will also have the same value. Supposedly, τ−i(xi)
has to be equal to τ−i(xi−1) + 1

2(τ−i(xi+1) − τ−i(xi−1)) for the relation to hold, i.e. a linear
interpolation. Otherwise the relation will not hold, and presumably neither the GCV relation.

Having established this, we can turn to the implementation. I used Weinert’s algorithm to
calculate the GCV score for the HP filter. We have used prices to calculate the GCV score.

It is important to use a constrained optimization algorithm in the implementation of the al-
gorithm, since the estimated parameter is given by a local minimum within the allowed region
of values for the smoothing parameter, and there sometimes existed a global minimum for the
function outside the allowed region. Please see next section for some results.

6.2.4 Summary and evaluation

Please find below some typical values of the smoothing parameter using the three methods,
applied to the most recent price series of the AEX index.

Table 21: Some estimated values of the smoothing parameter for AEX
λ̂Schlicht λ̂DDR λ̂GCV

N = 10 - 0.939 6.754
N = 20 - 0.769 1.309
N = 30 - 1.206 1.784
N = 40 - 1.079 0.992
N = 50 2691 1.252 1.068
N = 60 29.34 1.227 0.453
N = 70 13.27 1.096 0.255
N = 80 13.95 1.018 0.212
N = 90 7.195 0.962 0.188
N = 100 9.807 0.847 0.141
N = 110 13.77 0.752 0.098
N = 120 14.05 0.788 0.101
N = 130 13.84 0.852 0.128
N = 140 19.63 0.832 0.119
N = 150 23.13 0.866 0.100
N = 200 6.136 0.787 0.099
N = 250 4.209 0.791 0.102

The maximum-likelihood estimator is quite unstable, although seemingly converging towards
smaller values as the sample size grows. To get an idea of what a trend with λ = 1 and λ = 10
means in practice, we plot the series with these trends. Please see Figures 8 and 9.

To get an idea of how much the estimates of the smoothing parameter vary over different time
periods, we summarize below some values for a sample size of 100 over different intervals, again
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Report/Report/aexddrlambda1.png

Figure 8: Prices and trend with λ = 1

for the AEX series. THe notation [−b : −a] means the part of the sample from the bth observation
from the last date to the ath observation from the last date.

Table 22: Some estimated values of the smoothing parameter for AEX, N = 100
λ̂Schlicht λ̂DDR λ̂GCV

[−100 :] 9.807 0.847 0.141
[−200 : −100] 6.292 0.808 0.110
[−300 : −200] 3.353 0.776 0.068
[−400 : −300] 8.080 1.624 0.962
[−500 : −400] 4.924 1.316 0.359
[−600 : −500] 5.472 1.211 0.367

The DDR parameter is less varying than the Schlicht one. Recall that the DDR estimates are
directly calculated from the variance and the first and second covariances. The GCV and DDR
estimates are quite correlated, with a correlation coefficient of ∼ 0.9.

To see how close the residuals really are to a white noise sequence, we calculate their autoco-
variance function for a sample size of 100, to see if this is statistically significant. We know from
section 3.6 above that the autocovariance function is approximately normal with standard devi-
ation N−1 under the null hypothesis of white noise. Please see Table 23 for the autocovariances.
An estimate is statistically significant at the 95 % level if it is outside ±1.96/

√
100 = ±0.196, so

with λ = 1 we seem to have close to white noise, which is a typical value when using the DDR
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Figure 9: Prices and trend with λ = 10

method.

Table 23: Autocovariance function of the residuals, N = 100
λ = 1 λ = 10

γ(1) -0.0620 0.1085
γ(2) -0.0935 -0.1885
γ(3) -0.0475 -0.2378
γ(4) 0.0260 -0.1089
γ(5) 0.0257 -0.0261

We further investigated the characteristics of the DDR and Schlicht (maximum-likelihood) esti-
mates by dividing our sample into subsections and estimating the parameters for all subsamples,
and calculating summary statistics. See below Tables 24 to 25 for summary statistics for different
partitions.

The DDR estimate has much smaller variance than the Schlicht estimate. The high variance
of the Schlicht estimator for our series makes it rather unsuitable for implementation. The
estimates in the Schlicht method are in general fairly low, but affected by a few very large
outliers. In the AEX case, most estimates are below 10, all but one below 100, and one is
around 1030.
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Table 24: Summary statistics for λ̂DDR
AEX FCHI FTSE GDAXI IBEX SSMI

N = 100

Mean 0.967 0.957 0.972 1.029 0.884 0.972
Standard deviation 0.292 0.285 0.327 0.317 0.256 0.308

N = 200

Mean 0.955 0.947 0.966 1.045 0.877 0.948
Standard deviation 0.233 0.220 0.289 0.255 0.223 0.212

Table 25: Summary statistics for λ̂Schlicht
AEX FCHI FTSE GDAXI IBEX SSMI

N = 100

Mean 47.40 13.42 15.62 14.23 46.25 6.851
Standard deviation 190.4 17.80 31.55 23.32 189.8 5.908

6.3 Regression on the HP filter trend

Having a method to determine the smoothing parameter λ, we can now proceed to making use of
the trend in a prediction. First we will simply regress upon the slope of the trend, next attempt
to find two trends for the same series with two different λ, and implement this in a regression.

6.3.1 Adding the trend slope as an indicator

We adapt the multivariate regression model from above, adding the slope of the HP filter trend
as an additional independent variable. The trend is calculated as the difference between the
last and next to last trend point. Initially, for each observation the smoothing parameter is
estimated using the DDR method.

We implement the model calculating the trend slope based on prices. Performance was the best
so far. See below some results in Table 27. With lookahead bias the model outperformed the
original multivariate regression model model (shown in Table 26).

Table 26: Correlation mean multivariate regression
Periods N = 100 N = 200 N = 500

[1] 0.0530 0.0502 0.0535
[1, 2] 0.0442 0.0522 0.0547

[1, 2, 3] 0.0279 0.0366 0.0413
[1, 2, 5] 0.0418 0.0541 0.0541
[1, 2, 10] 0.0301 0.0423 0.0480
[1, 20] 0.0343 0.0429 0.0456
[1, 100] - 0.0142 0.0387
[1, 250] - - 0.0248

The best performance with data snooping was 0.0667, with [1, 2, 5], N = 450.
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Table 27: Correlation mean multivariate regression with HP trend
Periods N = 100 N = 200 N = 500

[1] 0.0392 0.0560 0.0606
[1, 2] 0.0256 0.0389 0.0526

[1, 2, 3] 0.0136 0.0322 0.0403
[1, 2, 5] 0.0314 0.0421 0.0622
[1, 2, 10] 0.0163 0.0370 0.0489
[1, 20] 0.0243 0.0431 0.0572
[1, 100] - 0.0182 0.0359

6.3.2 Regression on the trend slope only

Next, we regressed the return of one index on the trend slopes of all other indices getting good
results. The fact that the residuals are white noise in the specification, and that this holds true
in the DDR method of estimating the parameter, was very good for predictability. Please see
Table 28 below.

Table 28: Correlation mean regression on trend slope using DDR
lperiod = 50 lperiod = 60 lperiod = 70 lperiod = 80

N = 200 0.0561
N = 300 0.0563 0.0572 0.0583 0.0573
N = 400 0.0533
N = 500 0.0525

The best result was obtained for N = 290 and lperiod = 70, at 0.0584, where lperiod is the
window used for calculation of the HP filter. We also partitioned the sample into two subsamples
and got a correlation mean of 0.0763 and 0.0556 respectively.

We also repeated the implementation using the GCV estimate. See below some results in the
table below.

lperiod = 50 lperiod = 60 lperiod = 70 lperiod = 80

N = 150 0.0505
N = 200 0.0598 0.0577 0.0599 0.0506
N = 300 0.0493
N = 400 0.0488
N = 500 0.0453

Table 29: Correlation mean regression on trend slope using GCV

The calculated λ parameters are generally quite small in both regressions above. Note that as
λ tends to zero, the slope regression tends to the regression on the previous day’s return.

6.4 Long and short trends

Another option is to add an indicator of the form

β∗Xt−1 = β∗(αSt−1 − Lt−1),
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to the regression, where St is a short trend and Lt is a long trend, corresponding to a small and
large smoothing parameter respectively. We can take the scaling constant α to be one.

I implemented this model for a number of different values for the smoothing parameter. The
results were generally best for low values of the smoothing parameters. The best result was
0.0444 for N = 200, λshort = 1, λlong = 2. Some other results are shown below.

Table 30: Regression on difference between long and short trend
N λlong λshort Correlation mean

200 2 1 0.0444
200 3 1 0.0443
200 3 2 0.0413
200 4 1 0.0433
200 4 2 0.0400
200 4 3 0.0381
200 5 1 0.0422
200 5 2 0.0391
200 6 1 0.0414
200 8 1 0.0404
500 3 2 0.0400
500 4 1 0.0413
500 5 1 0.0410
500 6 1 0.0408
500 8 1 0.0404

I also ran the same regression but rather than taking the difference, I regressed upon the con-
stituent trends, letting the regression create a difference. However, this did not lead to improved
performance.
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7 Conclusion

We have in this thesis investigated different methods of time series forecasting, applied to daily
returns of European stock indices. We have seen that historical prices give some predictability
to future prices of different time periods, even using fairly simple statistical techniques, such
as OLS regression. In order to get good predictive performance, it proved important to use
information from the the other series in the prediction of an index, either through normalizing
the data or through multivariate methods. We further explored the Hodrick-Prescott (HP) filter
as a tool to imrpove predictability of the forecasting methods, with good results. The smoothing
parameter being the only free parameter in the HP filter specification, we examined different
methods for its determination, specifically a consistent estimator based on the autocovariance,
a maximum-likelihood estimator and a Generalized Cross-Validation estimator. In all these
estimation techniques, the residuals between the data and the trend extracted from the HP
filter are modeled as white noise. Investigating the residuals obtained when calculating the
trend for our data, the consistent estimator turned out to yield residuals very close to white
noise. This was also the preferred method in terms of ease of implementation and performance.
The maximum-likelihood estimator was unstable and exhibited high variance across different
parts of our sample, so it was not deemed suitable for implementation. We ran a regression
of daily index returns on the slope of the HP filter trend, and good results were obtained,
especially for the consistent estimator. The GCV estiamtor yielded fairly good performance in
the regression, but required a significant amount of computing power compared to the consistent
estimator.
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