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Abstract

We evaluate the consistent estimator of the noise-to-signal ratio parameter, the so called DDR
estimator, in the Hodrick-Prescott filter introduced in Dermoune et al. (2008, [2]) and suggest
two ways to update it to make the probability distribution of the cyclical component as closer
to Gaussian as possible. When comparing the results between the different estimators, both the
trend and the cyclical component are analyzed to decide which of the three estimators generates
the best result. It appears that in most cases the DDR estimator gives the best trend component.
We then apply the filter to standard risk calculations in the sense that we compare risk figures
such as Value-at-Risk and expected volatility obtained for the original time series and the filtered
one. The observed variation in the ratio of these two risk figures may be useful to enhance the
performance of the underlying optimal portfolio.
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CHAPTER 1

Introduction

There are two fairly known methods to fit a smooth trend to a time series. By means of moving
average and by fitting regression curves. Unfortunately, both have known drawbacks, in the
regression curves the first possibility to fit a straight line is often a too big of an assumption.
The next question is how many degrees of freedom that are needed now to get a smooth trend
which would persist even in the future.

Because of this the preferred choice is to use moving averages. It is shown, e.g. in Macaulay
(1931, [6]), that moving averages in some special cases can be seen as moving regression curves.
The drawback with this method is that the time series needs to be long, since the beginning and
end parts of the time series does not yield trend values.

A third way to generate a trend was introduced by Whittaker (1923, [13]), where he minimizes
two sums of squares. The first sum is the deviation of the trend from the original time series
and the second sum specifies the degree of smoothness of the trend. This method was later on
introduced to finance with the Hodrick-Prescott filter, by Hodrick & Prescott (1997, [4]), where
some fixed numbers were proposed for the parameter, the noise-to-signal ratio, that suites to
financial data with different time intervals.

1.1 Noise-to-signal estimators

Different papers have argued that these fixed values, for the noise-to-signal ratio, are not optimal
and new estimation methods have been introduced. One of these methods is the Generalized
Cross- Validation method, see Weinert (2007, [11]), another on based on likelihood is introduced
in Schlicht (2005, [10]).

1.2 Trend

One thing that can be good to ask yourself before reading this thesis is: "What is a trend". If
you have an answer to that question it will probably not be the same as any friend of yours,
since there is no right answer to that question, because what a trend is has never been decided.
The article White et al. (2011, [12]) discuss the subject and their opinion of what a trend is

• it should have a direction - that is, it should generally be higher at one end of the series
than the other, so that it will seem generally to increase or decrease throughout

• it should be somewhat smooth (although there may be an unsmooth component)

This is the idea of a trend that we will use in this thesis, with the addition that a time series
can be broken in to smaller parts and thereby fulfills these criteria.
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Chapter 1. Introduction

1.3 Outline

Chapter 2 recalls the mathematical framework that we will use in the thesis, such as the Hodrick-
Prescott filter, the different noise-to-signal estimators and risk measures. In Chapter 3 the various
time series that we will use are presented, with the way to construct some of them since they
consists of different assets that have expiry dates. In Chapter 4 and Chapter 5 we analyze the
trend, the cyclical component and the smoothing parameter α and in of the Hodrick-Prescott
filter for these time series. Finally in Chapter 6 we use filtered time series to calculate risk values
as specified in the abstract.
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CHAPTER 2
Theoretical Background

This chapter recalls the theoretical background described in Schlicht (2005, [10]).

2.1 The Hodrick-Prescott filter

The purpose with the Hodrick-Prescott filter is to decompose a time series of observations,
x = (x1, . . . , xT ) ∈ RT , into a non stationary trend, y = (y1, . . . , yT ) ∈ RT , and a cyclical
residual component, u = (u1, . . . , uT ) ∈ RT :

x = y + u. (2.1)

To decompose x into y and u a positive smoothing parameter α is needed, then the weighted
sum of squares can be minimized,

||x− y||2 + α||Dny||2, (2.2)

with respect to y and usually n = 2 as e.g. in Dermonue et al. (2008, [2]), even though Araujo
(2003, [1]) found that the third order shift operator were more appropriate for some FX rate
series. In this paper the second order shift operator will be used if nothing else is mentioned.

As pointed out, e.g. in Pedersen (2001, [8]), the first term in (2.2) measures a goodness-of-fit
by minimizing the deviation between the trend yt and the observation xt, and the second term,
when n = 2, is a measure of the degree-of-smoothness.

D2 is, as mentioned earlier, the second order forward shift operator which here is applied on
the trend y,

D2yt := (yt+2 − yt+1)− (yt+1 − yt), t = 1, . . . , T − 2.

This measures the deviation between the value of the trend at t + 1, yt+1, and the linear inter-
polation between yt and yt+2.

This can be written in vector form as:

Py(t) = D2yt, t = 1, . . . , T − 2,

where, P is the following (T − 2)× T -matrix

P :=


1 −2 1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 1 −2 1

 .

But P is of rank T − 2, which implies that v := Py does not determine a unique y, rather a set
of solutions

y := {P ′(PP ′)−1v + Zγ; γ ∈ R2},

3



Chapter 2. Theoretical Background

where Z is a T × 2-matrix and satisfies

PZ = 0, Z ′Z = I2,

I2 is the 2 × 2 identity matrix. The time series x in equation (2.1) may now be described in
terms of (u, v) as

x = u+ P ′(PP ′)−1v + Zγ, (2.3)

for some γ ∈ R2.
The first-order condition to (2.2) gives,

(IT + αP ′P )y = x, (2.4)

and since (I +αP ′P ) is positive definite, the second order condition is satisfied as well and (2.4)
can be uniquely solved as

y(α, x) = (IT + αP ′P )−1x. (2.5)

where IT denotes the T×T identity matrix. Equation (2.5) defines how the trend y is decomposed
from the time series y using the HP-filter, this equation is dependent on the smoothing parameter
α and the disturbance operator P .

One way to estimate the smoothing parameter α, the one that Schlicht (2005, [10]) used, is
to let the optimal solution y(α, x) in equation (2.5) be the best predictor of any trend y given
the time series x, i.e.

y(α, x) = E[y|x]. (2.6)

Unfortunately, a conditional expected value use to be hard to calculate, but if we follow e.g.
Schlicht (2005, [10]) or Dermoune et al.(2008, [2]), a widely used model, and assume that u and
v are independent and normally distributed. This turns (x, y) into a normally distributed vector
and makes estimations using (2.5) and (2.6) feasible.(

u
v

)
∼ N (0,Σuv), (2.7)

with covariance matrix
Σuv :=

(
σ2
uIT 0
0 σ2

vIT

)
.

This makes the increments of the trend y following a Gaussian random walk, since, v = Py gives
yt+2 − yt+1 = yt+1 − yt + vt. From this we get that the time series x is a sum of the trend y
which is generated by a Gaussian random walk and the normal distributed vector u. We can
now describe (x, y) as a normal distributed vector using (2.3), as(

x
y

)
∼ N

((
Z
Z

)
γ,Σxy

)
,

with covariance matrix
Σxy :=

(
σ2
uIT + σ2

vQ σ2
vQ

σ2
vQ σ2

vQ

)
,

where,
Q := P ′(PP ′)−1(PP ′)−1P.

This yields an explicit expression for equation (2.6), namely

E[y|x] = Zγ + σ2
uQ[σ2

uIT + σ2
vQ]−1(x− Zγ),

if we now insert this into (2.5), the smoothing parameter α and the parameter γ satisfy

Zγ + σ2
uQ[σ2

uIT + σ2
vQ]−1(x− Zγ) = (IT + αP ′P )x.

We then recall Theorem 1 in Schlicht (2005, [10]) saying that equation (2.6) holds if and only if
γ = Z ′x and α = σ2

u/σ
2
v .
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2.2. The DDR estimator of the noise-to-signal ratio

2.2 The DDR estimator of the noise-to-signal ratio

This section will present the explicit unbiased consistent DDR estimator of the noise-to-signal
operator α, the one used in Dermoune et al. (2008, [2]), it will converge in probability as the
length T of the time series tends to infinity.

To this purpose, we will use observations from the time series Px:

Px = v + Pu ∼ N (0, σ2
vIT−2) + σ2

uPP
′).

The elements V (i, j) of the covariance matrix satisfy

V (i, j) = σ2
vδ
j
i + σ2

u(PP ′)ij = r|i−j|,

where,

rk =


σ2
v + 6σ2

u if k = 0

−4σ2
u if k = 1

σ2
u if k = 2

0 otherwise.

(2.8)

We then use the well establisted fact that (see e.g. Proposition 2.1 in Giurcanu et al. (2002, [3]))

r̂k =
1

(T − 2)− k

T−2−k∑
j=1

Px(j)Px(j + k), k = 0, 1, 2, (2.9)

is an unbiased estimator of rk = E[Px(s)Px(s+ k)] in the sense that E[r̂k] = rk.
If we combine (2.8) and (2.9) we get some easily checked relations. We start with k = 1

E[r̂1] = −4σ2
u,

this gives the following consistent unbiased estimator of σ2
u

σ̂2
u = −1

4
r̂1 = − 1

4(T − 3)

T−3∑
j=1

Px(j)Px(j + 1). (2.10)

If we instead look at k = 0 we get
E[r̂0] = σ2

v + 6σ2
u,

together with (2.10), we get a consistent unbiased estimator of σ2
v

σ̂2
v = r̂0 +

3

2
r̂1,

or

σ̂2
v =

1

(T − 2)

T−2∑
j=1

Px(j)2 +
3

2(T − 3)

T−3∑
j=1

Px(j)Px(j + 1). (2.11)

We now recall that α = σ2
u/σ

2
v , by using (2.10) and (2.11) we are now able to get a consistent

estimator of the smoothing parameter α

α̂ = −1

4

(
3

2
+

(T − 3)
∑T−2
j=1 Px(j)2

(T − 2)
∑T−3
j=1 Px(j)Px(j + 1)

)−1
. (2.12)
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Chapter 2. Theoretical Background

2.2.1 Noise-to-signal ration when using D3

Sometimes the estimations above generate a negative α, it usually comes from the fact that the
time series includes a lot of inflection points, see Figure 2.1
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Figure 2.1: The Japanese Gross Domestic Product from 1980 to the third quarter of 2010, in first
plot the whole time series is plotted and in the second some of the inflection points are
highlighted in red.

In this occasions we use another estimator to calculate α, an estimator that corresponds to
the third order shift operator instead. This is done in the same way as for the second order but
with the difference that we have a new P matrix

P :=


1 −3 3 −1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −1 −3 3 1

 .

As before we start with observations from the time series Px:

Px = v + Pu ∼ N (0, σ2
vIT−2) + σ2

uPP
′),

with following elements, V (i, j), in the covariance matrix

V (i, j) = σ2
vδ
j
i + σ2

u(PP ′)ij = r|i−j|,

Since we use a new P matrix, rk is new as well

rk =



σ2
v + 20σ2

u if k = 0

−15σ2
u if k = 1

6σ2
u if k = 2

−σ2
u if 12 k = 3

0 otherwise.

6



2.2. The DDR estimator of the noise-to-signal ratio

We then use Proposition 2.1 in Giurcanu et al. (2002, [3]) and the fact that

E[r̂1] = −16σ2
u

E[r̂0] = σ2
v + 20σ2

u,

to get

σ̂2
u = − 1

15
r̂1 = − 1

15(T − 4)

T−4∑
j=1

Px(j)Px(j + 1)

σ̂2
v = r̂0 − 20σ2

u =
1

(T − 3)

T−3∑
j=1

Px(j)2 +
4

3(T − 4)
.

T−4∑
j=1

Px(j)Px(j + 1),

All of this gives the following α

α̂D3 = − 1

15

(
4

3
+

(T − 4)
∑T−3
j=1 Px(j)2

(T − 3)
∑T−4
j=1 Px(j)Px(j + 1)

)−1
. (2.13)

2.2.2 Data fitted noise-to-signal ratio α

We have also constructed two new ways to estimate a optimal α, where we use the calculated α
from above and then try to find a local minimum point to some function in the region around
this α. The first estimator fits the distribution of the cyclical component u with the normal
distribution, according to (2.7). The other one minimizes the autocorrelation within the cyclical
component u.

Normal fitted α

To estimate this αnorm we start by estimating α with (2.12), or in special cases (2.13), and then
use the MATLAB function fminsearch to find a local minimum to a certain function f(α, u) with
respect to α, starting at the estimated α.

The way this works is that we first calculate u by combining (2.1) and (2.4). We then calculate
the standard deviation, σu, of u and finally we calculate the following sum of squares

300∑
i=−300

(
L

(
i

100
σu

)
− Φ

(
i

100

))2

,

where,

L

(
i

100
σu

)
=

1

N
n i

100 ,σu

Φ(x) : Standard normal cumulative distribution function

and

n i
100 ,σu

= # of u that is lower then
i

100
σu

N = The length of u

These calculations are repeated until fminsearch finds the α that generates the lowest sum of
squares and returns it as αnorm. This αnorm is the α that generates the u-vector that best
approximates a normally distributed vector.

7



Chapter 2. Theoretical Background

Autocorrelation fitted α

The αacorr is mostly calculated in the same way as the normal fitted α but with another sum of
squares

100∑
l=1

ru(l)2,

where,

ru(l) : Is the autocorrelation of u with lag l.

As above, this is repeated until the optimal αacorr is found. What this αacorr has generated is
a u-vector that has the least dependence within it, in other words noise.

2.3 Risk measures

We will use two different types of risk measures in this thesis, expected volatility and Value-at-
Risk. To calculate both of these risk measures we first need to calculate the weighted covariance
matrix with the following elements

Ct(i, j) = 0, t = 0

Ct(i, j) = 0.96Ct−1 + 0.04 log(1 + ri,t) log(1 + rj,t), t = 1, 2, . . . , T,

where,

ri,t : Return of asset i at time t
T : Date of the day when the risk is calculated.

This will generate the n × n matrix, where n is the amount of assets within the portfolio, that
will be used to calculate the two risk measures that we will use.

2.3.1 Expected volatility (ETE)
First the market value, MV , of each position is calculated, using

MVi,t = Pi,tXi,t, (2.14)

where,

Pi,t : Current positions in asset i at time t
Xi,t : Price of asset i at time t.

Then the percentage of notional, pn, is calculated from

pni,t =
MVi,t
nt

, (2.15)

where,

nt : Total value of the whole portfolio is closed down at time t

Now the expected volatility can be calculated, using

ETEt =
√

252(pnTt × Ct × pnt). (2.16)

8



2.3. Risk measures

2.3.2 Value-at-Risk (VaR)
Value-at-Rsik is mostly calculated as expected volatility, we start by calculating each positions
marked value with

MVi,t = Pi,tXi,t, (2.17)

where,

Pi,t : Current positions in asset i at time t
Xi,t : Price of asset i at time t.

With these we calculate the Value-at-Risk, as

V aRt = 1.645(MV Tt × Ct ×MVt). (2.18)

9





CHAPTER 3
Time series under study

This chapter covers the various types of time series that we will apply the filter to and also what
characterize each type of time series. The types of time series that we will use can be divided
into two groups, these are; macroeconomic time series and "ordinary" price series. The main
difference between the two types is that the macroeconomic time series has a much more obvious
seasonal dependence.

3.1 Macroeconomic time series

The most eye catching with these type of time series is that they tend to have a quite obvious
seasonal component. This becomes even more obvious since they are usually presented monthly
or quarterly. Because of this distinct seasonal component, they also tend to be available in a
seasonally adjusted type of time series. One example with a time series containing the seasonal
component and one that has been seasonally adjusted can be seen in Figure 3.1
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Figure 3.1: The Japanese Gross Domestic Product from 1980 to the third quarter of 2010, both sea-
sonally adjusted and not.

We will apply the filter to a lot of different macroeconomic time series like; Gross Domestic
Product, Current Account, Industrial Production and Trade Balance.
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Chapter 3. Time series under study

3.2 Price series

Price series are traded continuously and are therefor available in time spans that macroeconomic
time series aren’t. These kinds of series are often found in everything from tick, the time points
when a trade is made, up to whatever time length you want.

Financial price series can be found in all sort of financial assets that are traded in a market.
The ones that we will mostly use are the daily prices of futures and forwards, because the
portfolios that we later on will calculate risk within are trading in these sorts of financial assets.
However, there is one drawback with these type of securities and that is that they have an expiry
date. So what we do is that we overlap each contract by one day. We then calculate the daily
return for all days within each contract, this gives us returns for all days. We then put together
a time series by starting at one level, say 100, and then take it times the first return, or more
exactly the return plus one, and keep doing this for all returns to create a continuous time series.
For a graphical description of this see Figure 3.2
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Figure 3.2: Future contracts on the Swedish OMX30 index from 2008-07-09 to 2008-09-26, first plot
are daily closing prices for four different contracts, in the middle plot are the daily returns
from these contracts and in the last plot a time series put together using the daily returns.

The reason why we are able to start the new series at whatever point we want is that the
filter will generate the same kind of time series even if you divide the original time series with
any real number. The proof of this is presented in Chapter 4.4.

We will use a wide range of different price series, like; Stock index futures, future contracts
on 10 years treasures and FX forwards.
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CHAPTER 4

Performance of the filter

In this chapter we will go through the returns from the filter and what happens when we change
the input time series. We start by just applying the filter to some time series and look at the
different parameters that the filter returns. We then look at what happens with α when we scale
the input time series.

4.1 Applying the filter

To get a feeling how the filter works we apply it to prices of futures contracts on the German
DAX index, constructed as in Chapter 3.2 with the price at 2010-06-16 set to 100, see Figure 4.1
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Figure 4.1: Futures contract prices on the German DAX index from 2010-06-16 to 2010-11-03, the blue
line is the original time series and the red line is the trend estimated by the Hodrick-Prescott
filter.

As we can see, the trend component from the Hodrick-Prescott filter, the red line, follows the
original time series, the blue line. But when the original time series makes some quick changes,
the trend component has a damped response. This comes from the fact that the second term in
(2.2) tries to counteract rapid changes.
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Chapter 4. Performance of the filter

4.2 Analysis of the trend component x

One things that might be good to know about the trend component, x in (2.1), is how each data
point changes when more data points are added to the original time series. To test this the filter
is applied to same time series as above, the prices of future contracts on the German DAX index.
Then we analyze the data of three time points, the time points are 2010-08-06, 2010-08-27 and
2010-09-17, highlighted in Figure 4.2
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Figure 4.2: Futures contract prices on the German DAX index from 2010-06-16 to 2010-11-03, the blue
line is the original time series, the red line is the trend estimated by the Hodrick-Prescott
filter and the three green circles are the time points that are analyzed.

To see how each data point changes when new date points are added we start with only data
until the selected time point and apply the filter to them, the last datapoint is saved and then
the next data point is added on the time series. Then we apply the filter again and save the
value at the same time point as we saved before, then we do this for all the following data points
that we have in the time series. The three saved time series can be seen in Figure 4.3
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4.2. Analysis of the trend component x
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Figure 4.3: Price changes of future contracts on the German DAX index when more time points are
added. The first plot is the price of the contract at 2010-08-06, the middle is at 2010-08-27
and the last is at 2010-09-17

As we can see in Figure 4.3 there is a big change in the price when the first data point is
added, this is caused by the second part of (2.2) tries to minimize the change in the second
derivative over the middle of three data points, this means that it needs at least one extra data
point to affect a singular data point. After the first correction, the time series starts to stabilize.

From the fact that there is a big change after adding one extra data point, we got the idea
of making a new kind of time series where we just have end points. With end points we mean
that we only save the last data point after each filtration, this is done at the same time series as
earlier, the prices of the German DAX index, this new time series can be seen in Figure 4.4
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Figure 4.4: Futures contract prices on the German DAX index from 2010-06-16 to 2010-11-03, the blue
line is the original time series and the red line is the last data point in each estimation by
the Hodrick-Prescott filter.
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Chapter 4. Performance of the filter

From Figure 4.4 can we see that the last filtrated data point is not that good if we want
a consistent trend, this means that the Hodrick-Prescott filter does not generate a good trend
estimation of the last time point.

4.3 Analysis of the Cyclical component u

The filter returns more then just the trend component. Another thing is the cyclical component
u, which is the difference between the original time series and the trend returned by the filter.
What we know about this cyclical component, from (2.7), is that it is supposed to be normally
distributed. This is one of the things we look for in the cyclical component, it can be done by
plotting a histogram of the component. Another thing we know is that if there does not exist
a seasonal part in the original time series then there should be no autocorrelations within the
cyclical component, in other words any cyclical component should be just noise.

We have, as in previous section, applied the filter to the prices of futures contracts on the
German DAX index, we used data from 2008-03-31 to 2010-11-03 and the price at 2010-06-16
has been set to 100, see the results in Figure 4.5
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Figure 4.5: Futures contract prices on the German DAX index from 2008-03-31 to 2010-11-03 with
2010-06-16 set at 100, in the first plot the corresponding cyclical component to the trend
in Figure 4.1 has been plotted. In the middle the distribution of the cyclical component
over the whole interval has been plotted together with at fitted normal distribution and in
the last plot the corresponded autocorrelation is plotted.

As we can see in the middle graph the distribution of the cyclical component have a similar
appearance as the fitted normal distribution. The last plot shows that there is almost no auto-
correlation in the cyclical component, as we would have guessed, since futures contracts tend to
have no seasonality, because if it did it would create an arbitrage that the market would trade
away.
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4.4. Analysis of the noise-to-signal ratio α

4.4 Analysis of the noise-to-signal ratio α

The noise-to-signal ratio α is the parameter that decides how much weight the filter should put
on the smoothing part according to the minimizing of the quadratic error. The only restriction
we have for α is that it is supposed to be a positive real number, see the third section of Chapter
2, this is easily checked. But one thing that might be good to investigate is what happens with
α when the input time series is scaled.

We apply the filter to the prices of futures contracts in the German DAX index, from 2008-
03-31 to 2010-11-03. With the difference that the time series is scaled with five different factors,
[-100 000, -100, 1, 100, 100 000].

The results is that in all five cases the α that the filter use is 0.4048. This means that we can
scale the time series without changing the outcome of the filter. It is this fact that we use when
we construct price series as in Chapter 3.2.
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CHAPTER 5

Computing α for different time series

We will in this chapter test what kind of α to use for which time series, four sort of different time
series will be tested; Macroeconomic time series, Seasonally adjusted Macroeconomic time series,
ordinary Price series and also time series with lots of Inflection points. We will test the three
types of estimators that were described in Chapter 2.2. The way we will analyze the different α
estimators is to look at the trend component x and then analyze the cyclical u since we know
what to expect from this component.

5.1 Macroeconomic time series

The first type of time series is the Macroeconomic time series, as described in Chapter 3.1 this
type of time series has a quite obvious seasonal component. The time series that we use is the
Japanese Current Account with monthly data from July 2002 until October 2010.
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Figure 5.1: The Japanese Current Account from July 2002 until October 2010. The black line is the
original time series, the green line is the trend component using the DDR noise-to-signal
ratio, the blue line is the trend component using the normal fitted noise-to-signal ratio and
the red line is the trend component using the autocorrelation fitted noise-to-signal ratio.
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Chapter 5. Computing α for different time series

As can be seen in Figure 5.1 there is almost no difference between the normal fitted time
series, the green line, and the correlation fitted time series, the blue line, but there is quite a
big difference to the time series that used the DDR estimator, the green line. The trend that
the DDR estimator generates is the best, since both the normal and autocorrelation fitted time
series still has some cyclical components.

DDR 15.348
Normal 1.9125

Autocorrelation 1.4886

Table 5.1: The α:s used in the calculations of the time series in Figure 5.1.

Table 5.1 confirms what we saw in Figure 5.1, that there is a small differences between the
two fitted time series since both have similar α:s. Something more that we will check is the
behavioral of the different cyclical components, this will be done as described in Chapter 4.3.
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Figure 5.2: Analysis of the cyclical component to the Japanese Current Account using the DDR noise-
to-signal ratio, in the first plot the time series are plotted. In the middle the distribution
of the cyclical component is plotted together with a fitted normal distribution and in the
last plot the autocorrelation of the cyclical component is plotted.
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5.1. Macroeconomic time series
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Figure 5.3: Analysis of the cyclical component to the Japanese Current Account using the normal
fitted noise-to-signal ratio, in the first plot the time series are plotted. In the middle the
distribution of the cyclical component is plotted together with a fitted normal distribution
and in the last plot the autocorrelation of the cyclical component is plotted.
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Figure 5.4: Analysis of the cyclical component to the Japanese Current Account using the autocor-
relation fitted noise-to-signal ratio, in the first plot the time series are plotted. In the
middle the distribution of the cyclical component is plotted together with a fitted normal
distribution and in the last plot the autocorrelation of the cyclical component is plotted.
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Chapter 5. Computing α for different time series

If we start with the first plots in Figures 5.2, 5.3 and 5.4, we see that all of them have a
similar shape but that the cyclical component corresponding to the DDR estimator has almost
twice the amplitude. This comes from the fact that the noise-to-signal ratio is bigger which will
give a smoother time series.

In the two last plots in each Figure we can easily see the difference between the plots in
Figure 5.2 and the plots in the two other Figures, 5.3 and 5.4 , these differences comes from the
fact that we optimize the results that corresponds to what can be seen in both of the plots. But
even here it is hard to see the differences between the two optimizations because both of them
returns similar α.

It is not easy to determine which of the estimators that is superior. If we just want a good
trend the DDR is the best estimator, but we still have the restriction that the cyclical component
shall be normal distributed and in that case both the other two estimators are superior.

5.2 Seasonally adjusted macroeconomic time series

As mentioned earlier there are two types of macroeconomic time series, the original in the section
above and the one that comes from the original but where the seasonally dependent component
has been removed. We will use the same time series as in Section 5.1, the Japanese Current
Account with monthly data from July 2002 until October 2010 but with the difference that this
time it is the seasonally adjusted time series.
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Figure 5.5: The seasonally adjusted Japanese Current Account from July 2002 until October 2010.
The black line is the original time series, the green line is the trend component using the
DDR noise-to-signal ratio, the blue line is the trend component using the normal fitted
noise-to-signal ratio and the red line is the trend component using the autocorrelation fitted
noise-to-signal ratio.
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5.2. Seasonally adjusted macroeconomic time series

From Figure 5.5 we can see that the seasonally adjusted time series, the black line, is still
noisy, it jumps back and forth all the time. There is a larger difference between the three
calculated time series this time, where we can see that the autocorrelation fitted time series, the
red line, will have the largest α and that the normal fitted time series, the blue line, will have
the smallest α. But the time series that have been calculated with the DDR estimation still has
the best shape, not too much nor to little information from the original time series.

DDR 10.483
Normal 1.8672

Autocorrelation 202.13

Table 5.2: The α:s used in the calculations of the time series in Figure 5.5.

As we can see in Table 5.2 the difference between the three α:s is quite large, both the
normal fitted and DDR estimated α:s are close to the ones estimated in section 5.1 while the
autocorrelation fitted shows major changes. As before, we will analyze all three of the cyclical
components as well.
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Figure 5.6: Analysis of the cyclical component to the seasonally adjusted Japanese Current Account
using the DDR noise-to-signal ratio, in the first plot the time series are plotted. In the
middle the distribution of the cyclical component is plotted together with a fitted normal
distribution and in the last plot the autocorrelation of the cyclical component is plotted.
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Chapter 5. Computing α for different time series
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Figure 5.7: Analysis of the cyclical component to the seasonally adjusted Japanese Current Account
using the normal fitted noise-to-signal ratio, in the first plot the time series are plotted.
In the middle the distribution of the cyclical component is plotted together with a fitted
normal distribution and in the last plot the autocorrelation of the cyclical component is
plotted.
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Figure 5.8: Analysis of the cyclical component to the seasonally adjusted Japanese Current Account
using the autocorrelation fitted noise-to-signal ratio, in the first plot the time series are
plotted. In the middle the distribution of the cyclical component is plotted together with a
fitted normal distribution and in the last plot the autocorrelation of the cyclical component
is plotted.
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5.3. Price series

Starting from the first plots in Figures 5.6, 5.7 and 5.8, we see that they all have a similar
shape, something that looks like noise. In the second plot the DDR estimated α generates a
cyclical component that does not seem to be normally distributed, but the other two cyclical
components have distributions that are more or less normally distributed. The last plot in
the three figures shows the autocorrelation in the cyclical component and since the time series
should been seasonally adjusted there should not be any signs of autocorrelation within the
component. This is also the case for all three plots, although the last plot, which minimizes the
autocorrelation, has a smaller autocorrelation with lag 1 then the others.

In this case the DDR estimation generates the best looking trend component, but at the same
time the cyclical component is the worst of all three. The only thing that is clear is that the
autocorrelation fitted α generates a trend that lacks a lot of information in each time point. It
is hard to decide which of the estimators to use, but since the DDR estimator generates the best
looking trend component, it would be our preferable choice.

5.3 Price series

A common type of time series is the daily price series, it use to be closing prices of any type
of asset. The price series that we will use is the constructed, as in Chapter 3.2, Swedish stock
market index OMX 30 with daily closing prices, from 2010-02-26 until 2010-11-03.
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Figure 5.9: The Swedish OMX30 index, constructed as in Chapter 3.2 with 2010-02-25 set to 100, from
2010-02-26 until 2010-11-03. The black line is the original time series, the green line is the
trend component using the DDR noise-to-signal ratio, the blue line is the trend component
using the normal fitted noise-to-signal ratio and the red line is the trend component using
the autocorrelation fitted noise-to-signal ratio.
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Chapter 5. Computing α for different time series

As seen in Figure 5.9 there seems to be just two lines but the fact is that behind the red line
lies both the green and blue lines. One thing that the plot shows is that all three trends follow
the original time series at almost all time points but skips some rapid changes.

DDR 0.6483
Normal 0.7139

Autocorrelation 0.8070

Table 5.3: The α:s used in the calculations of the time series in Figure 5.9.

From Table 5.3 we understand why only the red line is visible in Figure 5.9. This is because
all of the three α:s are almost identical. But we still want to se if there exists any differences
within the cyclical components, so as in previous sections we will make the same analyzing plots.
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Figure 5.10: Analysis of the cyclical component to the constructed Swedish OMX30 index using the
DDR noise-to-signal ratio, in the first plot the time series are plotted. In the middle the
distribution of the cyclical component is plotted together with a fitted normal distribution
and in the last plot the autocorrelation of the cyclical component is plotted.
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5.3. Price series
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Figure 5.11: Analysis of the cyclical component to the constructed Swedish OMX30 index using the
normal fitted noise-to-signal ratio, in the first plot the time series are plotted. In the
middle the distribution of the cyclical component is plotted together with a fitted normal
distribution and in the last plot the autocorrelation of the cyclical component is plotted.
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Figure 5.12: Analysis of the cyclical component to the constructed Swedish OMX30 index using the
autocorrelation fitted noise-to-signal ratio, in the first plot the time series are plotted.
In the middle the distribution of the cyclical component is plotted together with a fitted
normal distribution and in the last plot the autocorrelation of the cyclical component is
plotted.
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Chapter 5. Computing α for different time series

As we would have guessed, after seeing Table 5.3, there is almost no differences between
the three cyclical components as can be seen in Figures 5.10, 5.11 and 5.12. According to this
the choice of estimator does not matter, but to use either the normal or autocorrelated fitted
estimator the DDR estimations must first be calculated, this makes the choice of the DDR
estimator quite obvious.

5.4 Inflection time series

The last type of time series that we are going to test is the one that has a lot of inflection points,
we chose this one to show one cases where the DDR estimator, using the second order shift
operator D2, does not work. The time series we will use is the Japanese Gross Domestic Product
with quarterly data from the second quarter of 1980 until the second quarter of 2010.

1980 1985 1990 1995 2000 2005 2010
5

6

7

8

9

10

11

12

13

14
x 10

4

G
D

P
 (

b
ln

. 
J
P

Y
)

Date

Figure 5.13: The Japanese Gross Domestic Product from the second quarter of 1980 until the second
quarter of 2010. The black line is the original time series, the green line is the trend
component using the DDR noise-to-signal ratio corresponding to D3 and the red line is
the trend component using the DDR noise -to-signal ratio corresponding to D2.

As mentioned earlier the D2 estimator does not handle time series with a lot of inflection
points very well, as can be seen in Figure 5.13, the D2 estimator generates something that looks
like a sine curve, but with another period than the original time series. When this happens we
use the third order shift operator, corresponding to D3. From Table 5.4 we see that the D2

estimator generates a negative α, which we know is not allowed, that is why the D2 estimated
trend series looks as it does.

D2 -1.4722
D3 0.3896

Table 5.4: The α:s used in the calculations of the time series in Figure 5.13.
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5.4. Inflection time series

As seen in Figure 5.13 the D3 estimator copes quite well with the inflection points. That is
why we use that one, instead of the original D2 estimator, when we calculate the two other α:s.
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Figure 5.14: The Japanese Gross Domestic Product from the second quarter of 1980 until the second
quarter of 2010. The black line is the original time series, the green line is the trend
component using the DDR noise-to-signal ratio corresponding to D3, the blue line is the
trend component using the normal fitted noise-to-signal ratio and the red line is the trend
component using the autocorrelation fitted noise-to-signal ratio.

In Figure 5.14 the results from the Japanese Gross Domestic Product is shown. The thing
that we first notice is that none of the trend series are really good, both the DDR estimator
and the normal fitted estimator retains to much of the original time series, although the DDR
estimator works better, and the autocorrelated fitted estimator generates a trend series that has
too little information from the original time series.

DDR 0.3806
Normal 0.0858

Autocorrelation 168477

Table 5.5: The α:s used in the calculations of the time series in Figure 5.14.

In Table 5.5 we see that the normal fitted α is almost zero which means that the corresponding
trend is almost the original time series, the autocorrelation fitted α is enormous and generates a
trend that is too generalized.
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Chapter 5. Computing α for different time series

1980 1985 1990 1995 2000 2005 2010 2015
−1

0

1
x 10

4

Date

b
ln

. 
J
P

Y

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
4

0

10

20

bln. JPY

S
a
m

p
le

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

Lag

A
u
to

c
o
rr

e
la

ti
o
n

Figure 5.15: Analysis of the cyclical component to the Japanese Gross Domestic Product using the
DDR noise-to-signal ratio, in the first plot the time series are plotted. In the middle the
distribution of the cyclical component is plotted together with a fitted normal distribution
and in the last plot the autocorrelation of the cyclical component is plotted.

1980 1985 1990 1995 2000 2005 2010 2015
−5000

0

5000

Date

b
ln

. 
J
P

Y

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000
0

10

20

bln. JPY

S
a
m

p
le

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

Lag

A
u
to

c
o
rr

e
la

ti
o
n

Figure 5.16: Analysis of the cyclical component to the Japanese Gross Domestic Product using the
normal fitted noise-to-signal ratio, in the first plot the time series are plotted. In the
middle the distribution of the cyclical component is plotted together with a fitted normal
distribution and in the last plot the autocorrelation of the cyclical component is plotted.
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5.5. Overall choice of α
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Figure 5.17: Analysis of the cyclical component to the Japanese Gross Domestic Product using the
autocorrelation fitted noise-to-signal ratio, in the first plot the time series are plotted.
In the middle the distribution of the cyclical component is plotted together with a fitted
normal distribution and in the last plot the autocorrelation of the cyclical component is
plotted.

All of the first plots in Figures 5.15, 5.16 and 5.17 shows a similar pattern. In the last
figure, the one corresponding to the autocorrelation fitted estimation, there is also a trend in the
component, not just fluctuations around zero, this is something we wanted to have in the trend
series not the cyclical component

Since all of the cyclical components shows such a visible pattern, the distribution of the
component can not be expected to be normally distributed as can be seen in the middle plot. It
should also be a clear pattern in the autocorrelation, something that do not fit with the estimator
that tries to minimize the autocorrelation.

If we have to decide what α to use in this case, we would go for the DDR estimator. Although
it is not perfect and we think that the optimal α should be a bit larger, to get a perfect trend
series.

5.5 Overall choice of α

As we have seen in the previous sections our choice of α estimator would be the DDR estimator,
since it generates the trend component that does not lose to much information or is not smooth
enougth compared to the other trends. Even though it does not follow all the constraints on the
cyclical component perfect.

As mentioned in the introduction, there exist other methods to estimate α. For example
the standard way, the rule-of-thumb basis, where there exists some fixed values for different
time intervals, this method was introduces together with the filter in Hodrick & Prescott (1997,
[4]). Worth mentioning is also the maximum-likelihood estimation-based method introduced in
Schlicht (2005, [10]) and the Generalized Cross-Validation method as in Weinert (2007, [11]).
But, common for all these estimators is that they generate a too large α, that makes the trend
too smooth, in the sense that the cyclical component is far from being Gaussian.
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CHAPTER 6

Risk calculations

This chapter covers all parts of how to calculate risk within a portfolio using filtered data, from
the beginning when the time series is filtered through the risk calculations until the risk values
are provided.

6.1 The portfolio

We calculates risk within a portfolio consisting of thirty assets, first thirteen future contracts
on stock market indices; Australian S&P/ASX 200, Canadian S&P/TSE 60, French CAC 40,
German DAX, Hong Kong based Hang Seng, Italian FTSE MIB, Japanese Topix, Dutch AEX,
Spanish IBEX 35, Swedish OMX 30, Swiss SMI, British FTSE 100 and American S&P 500. It
also consists of future contracts on 10 years treasuries in eight different countries; Australia,
Canada, Germany, Japan, Sweden, Switzerland, UK and USA. Finally it has forward contracts
in nine different currencies; Australian Dollar, Canadian Dollar, Hong Kong Dollar, Japanese
Yen, Swedish Kronor, Swiss Francs, British Pound, American Dollar and New Zealand Dollar.

6.2 Constructing the filtered data

Since the portfolio consists of different types of contracts that each have expire dates, the portfolio
has to change contracts from time to time. The way we cope with this is to use returns from
each contract, by doing this it is possible to combine two different contracts to a new time series,
see Chapter 3.2.

We start with time series of daily returns for all assets, we then construct a ordinary time
series using

X(0) = 1

X(t) = X(t− 1)r(t).

Where X(t) is the price series and r(t) is the return series, look in Chapter 4.4 to see why it
is possible to set the starting value to 1. After this we apply the Hodrick-Prescott filter to the
time series and out of the returned trend we calculate the daily return.

6.3 Distribution of daily returns

What the filter does is that it evens out some of the rapid changes in the original time series,
this makes the dispersion of the daily returns much lower. Two examples of this can be seen in
Figure 6.1
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Chapter 6. Risk calculations
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Figure 6.1: Distributions of daily returns, the upper left plot is the original future contract on the
German stock market index DAX and below it is the corresponding filtered series. The
upper right plot is the original future contract on the British 10 years treasure and below
it the corresponding filtered series.

Another way to see that the Hodrick-Prescott filter makes a dispersion of the distribution is
to look at the standard deviation of the daily returns.

σ(x) σ(HP (x)) σ(HP (x))
σ(x)

S&P / ASX 200 0.0151 0.0086 0.5723
S&P / TSE 60 0.0192 0.0099 0.5135

CAC 40 0.0193 0. 0102 0.5298
DAX 0.0187 0.0102 0.5462

Hang Seng 0.0218 0.0123 0.5660
FTSE MIB 0.0200 0.0115 0.5738

Topix 0.0211 0.0106 0.5003
AEX 0.0206 0.0112 0.5470

IBEX 35 0.0201 0.0112 0.5557
OMX 30 0.0203 0.0106 0.5237

SMI 0.0154 0.0084 0.5471
FTSE 100 0.0173 0.0092 0.5332
S&P 500 0.0197 0.0099 0.5019

Table 6.1: Standard deviation for the daily returns on future contracts on the stock indices with cor-
responding filtered time series and the ratio between the standard deviations.

From Table 6.1 we can see that all of the standard deviations of the future contracts on stock
market indices are drastically decreasing when applying the Hordick-Prescott filter. On average
the filtered series has a standard deviation of 46% less then the original time series.
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6.4. Risk calculation

The same behaviour appears in the two other asset classes as well, this can be seen in Tables
6.2 and 6.3

σ(x) σ(HP (x)) σ(HP (x))
σ(x)

Australia 0.0058 0.0029 0.5069
Canada 0.0042 0.0023 0.5442

Germany 0.0040 0.0024 0.5979
Japan 0.0025 0.0014 0.5445

Sweden 0.0042 0.0026 0.6174
Swizerland 0.0034 0.0021 0.6283

UK 0.0049 0.0029 0.5957
USA 0.0052 0.0029 0.5543

Table 6.2: Standard deviation for the daily returns on future contracts on 10 years treasures for dif-
ferent countries with corresponding filtered time series and the ratio between the standard
deviations.

From Table 6.2 we get that the standard deviation within the future contracts on 10 years
treasures reduces on average with 43% after applying the filter.

σ(x) σ(HP (x)) σ(HP (x))
σ(x)

Australian Dollar 0.0103 0.0056 0.5488
Canadian Dollar 0.0079 0.0047 0.5911

Hong Kong Dollar 0.0080 0.0046 0.5711
Japanese Yen 0.0110 0.0064 0.5711

Swedish Kronor 0.0064 0.0037 0.5761
Swiss Francs 0.0050 0.0029 0.5816

British Pounds 0.0071 0.0042 0.5967
American Dollar 0.0081 0.0047 0.5760

New Zealand Dollar 0.0093 0.0055 0.5928

Table 6.3: Standard deviation for the daily returns on forward contracts on currencies with correspond-
ing filtered time series and the ratio between the standard deviations.

In the forward contracts on currencies the standard deviation reduces on average with 42%
after applying the filter, see Table 6.3, this gives an overall reduction for the standard deviation
on average with 44% in the filtered time series.

6.4 Risk calculation

After the time series have been filtered the weighted covariance matrix is calculated. From this
matrix both the expected volatility and Values-at-Risk can be calculated, how all calculations
are made can be found in Chapter 2.3, from 2010-06-17 until 2010-11-03.
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Chapter 6. Risk calculations

Target Original HP Trend
ETE ETE VaR ETE VaR ETE(HP (x))

ETE(x)

2010-06-17 13.33% 11.54% $2,881,753 6.78% $1,694,070 0.5879
2010-06-18 13.33% 11.30% $2,821,565 6.63% $1,656,964 0.5872
2010-06-21 13.33% 11.22% $2,801,652 6.18% $1,542,886 0.5507
2010-07-12 6.67% 5.85% $1,200,001 3.41% $698,753 0.5823
2010-07-13 6.67% 6.05% $1,240,389 3.42% $701,801 0.5658
2010-07-14 6.67% 5.88% $1,205,846 3.52% $721,938 0.5987
2010-10-04 12.00% 11.18% $2,304,727 6.59% $1,359,095 0.5897
2010-10-05 12.00% 11.05% $2,278,487 6.57% $1,354,127 0.5943
2010-10-06 12.00% 10.91% $2,249,421 6.73% $1,387,286 0.6167

Table 6.4: Risk values in the portfolio, both calculated with to original daily returns and with the
filtered returns.

There is a noticeable difference between the risk values for the original data and the filtered
data, as shown in Table 6.4. This difference can be seen in Figure 6.2 as well.
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Figure 6.2: Chart over the ETE values in the portfolio, the black line is the target ETE. The blue line
is the ETE level that the portfolio has with the original daily returns and the red line is
the ETE levels with the filtered returns.

As we can see in Figure 6.2 there is a similar distance between the original ETE and the
filtered ETE but it is not exactly the same over time. The distribution of the ratio between the
two ETE levels can be seen in Figure 6.3.
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6.4. Risk calculation
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Figure 6.3: Distribution of the ratio between the ETE level calculated with the filtered daily returns
and the ETE level calculated with the original daily returns.

Table 6.3 confirms that there is a big spread between the ratios, reaching from 0.5020 up to
0.6772. This means that the trend risk does not follow the real risk perfect.

This variation in the ratio of the two risk figures may be useful to enhance the performance
of the underlying optimal portfolio.
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