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Abstract

The mean-variance framework developed by Markowitz (1959) for portfolio
analysis is probably one of the most elegant and widely accepted concepts in fi-
nancial theory. A major problem in portfolio optimization is the estimation of
the input parameters in the distributions of the underlying assets. Jobson and
Korkie (1980) conclude that classical estimation techniques, where unknown pa-
rameters as means and covariances are replaced by their sample values perform
very poorly. Small variations in sample means often lead to extreme portfolio al-
location readjustments. To compliment historical data with new information that
helps better predict future market outcome Black and Litterman (1992) found a
way in which the investors could combine their market views with historical infor-
mation. Meucci (2008) extended the idea into Copula-opinion pooling which is the
numerical equivalence to the Black-Litterman framework. Also an effort has been
made by Stein (1956) on the frontier of statistics to construct a mean estimator
better than the observed average of the data sample, the shrinkage estimator. In
this thesis a thorough comparison betweenBlack-Litterman, Copula-opinion pool-
ing, and Black-Litterman with shrinkage estimators will be made to find out their
respective strengths and shortcomings. Certain simplifications and assumptions
are made to make comparisons more convenient. New methods are suggested to
increase stability of the models and cope with some of the problems encountered.
The result indicates that Black Litterman combined with the shrinkage estimator
does give consistently better results compared to the other methods.
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Introduction

Black and Litterman (1992) proposed a mean of estimating expected returns to achieve
better-behaving portfolio models. The model sets the idealized market equilibrium as
a point of reference, allows the investor to specify a chosen number of market views in
the form of absolute or relative expected returns and a level of confidence for each view.
The views are combined with the market equilibrium returns to give more (less) weight
on assets where investors have positive (negative) opinions on.

With the increasing popularity of Monte-Carlo simulations normality assumptions in
the original Black Litterman become more and more questionable. In an effort to make
Black Litterman independent on distribution assumptions the Copula opinion pooling
is developed by Meucci in 2008 where empirical distribution is used. The choice of
the assumption of distributions is handed over to the user of the model. The user can
either choose to fit to a certain distribution and simulate using parametric bootstrap or
simply use historical observations as it is in which case fewer data points are available
but no assumptions are made.

After Stein first derived in Stein (1955) the inadmissibility of the classical Maximum-
Likelihood mean estimators and introduced the shrinkage estimator which will always
dominate the ML-estimators in the sense of mean-squared error, the shrinkage estimator
was initially met by frequent debate and resistance for a long period of time due to the
fact that it contradicted the common sense in statistics that observed average of the data
is the best estimator of the expected mean. The shrinkage estimator was later improved
and developed into the James-Stein Estimators where the historical means are adjusted
towards the grand mean of the entire sample, and the Bayes-Stein Estimators where the
historical means are adjusted towards the expected return of the Minumum-Variance
portfolio under the Markowitz framework.

Purpose

The purpose of this thesis is to find a stable model that integrates investor views into
historical market information and produces more reliable future market returns. It is
also in our interests to understand under which circumstances the model do produce
better results compared to averaging the historical sample and the robustness of the
models with respect to different input parameters. To do this a through understanding
of the models is required and more focus is directed to the theoretical backgrounds of
the models used in the thesis.

The analysis of the models is carried out through series of tests. All tests are indi-
vidually designed to test some aspects of the model among which the mean-error, the
volatility predicting power are two key components to be tested. Test scores measure
performances of the models and results are analyzed and connected back to the theories
behind.
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The thesis only focuses on inputs and outputs of models that combines investors views
with historical samples and does not evaluate the effect of portfolio optimization itself.
The models used in the thesis will produce input parameters into portfolio optimiza-
tion models. Performance of the portfolio optimization models on the other hand often
depend on the portfolio constraints used. This dependency sometimes leads to port-
folio allocations so extreme that the qualities of the original input parameters become
obscure.

Outline

Chapter I, II and III covers the basics of the models and sketches of derivations are
provided along with some discussions of how to set certain parameters. Chapter IV
outlines the setup of the test models and gives a discussion of solutions of several
problems encountered during the implementation.

Chapter V gives a thorough walk-through of the results. While several reflections and
recommendations of parameter calibrations are made in the thesis, Chapter VI makes
an attempt to construct an alternative way of determining one of the parameters used
in Black-Litterman, the uncertainty matrix Ω.
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1 The Black-Litterman model

While the standard portfolio optimization model can only take expectations and covari-
ances of the assets intended to be included in the portfolio, Black and Litterman (1992)
found a new way in which the investors could combine their market opinions with the
expectations and covariances of the assets estimated within the Markowitz framework.
The Black-Litterman framework requires a larger set of inputs: the view portfolios, the
expected return on the assets in the portfolio, the confidence level of the view portfolios
and the uncertainty on the reference model.

This chapter begins with an introduction of the original Black-Litterman model with its
assumptions. A list of drawbacks of the Black-Litterman framework will be presented.
Modifications inspired by Stein (1955), Satchell and Scowcroft (2000), Idzorek (2004),
Meucci (2005) and Meucci (2010) will be briefly discussed. The purpose of this chapter
is to provide the basic background to the BL framework while highlighting useful mod-
ifications to the original framework. Some of these modifications will be implemented
in Chapter IV.

1.1 The Market

Let’s consider a market with N securities. The log-returns of the assets are modeled as
an N -dimensional multivariate normally distributed variable X ∼ (X1, X2, X3, ...).

X ∼ N(µ,Σ)

where µ is an N -dimensional vector and represents the expected outcome of the returns.
The covariance Σ can be estimated from the observed past outcome of the returns.
However when it comes to specifying µ the original BL takes into consideration the
estimation error and models µ as

µ ∼ N(π, τΣ)

Normality is a very important assumption in the BL-framework as it allows the model
to give explicit formulas for expectation and covariances of the log-return distribution,
blended with expert views. The π refers to the equilibrium state of all underlying assets
in the portfolio. Litterman himself argues in Litterman (2003) that this is a concept
where supply meets demand for the underlying assets. However this idealized state
never appears on real market and its returns are not readily observable.

Many BL practitioners approximates the equilibrium state π by solving the mean-
variance portfolio optimization problem to obtain the market implied returns from the
readily observable market allocations of the assets, say the weight vector ωm of the
assets in an index of reasonable choice. The mean-variance optimization maximizes
the numerical difference between the return and the variance of the portfolio. The
allocation that has the best balance between return and risk is chosen to be the optimal
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portfolio allocation, provided that satisfactory estimates of the mean and covariances
are inserted into the model.

ωm ≡ argmax ωmπ − δωmΣωm (1.1)
π = 2δΣωm

Here δ is the risk-aversion factor. According to He and Litterman (1999) it is explic-
itly set to 2.5 to represent the average risk appetite of investors worldwide. The wm

is the market allocation that is again, not observable. Litterman suggested that the
equilibrium portfolio could be approximated from a benchmark index, for instance the
OMX30 index. The expected return derived this way is to be interpreted as the ex-
pected return by the market if all actors on the market consistently act to maximize
return while minimizing risk.

Mean-variance optimization is not the only way to obtain the equilibrium estimates and
the reference point for the BL-framework. Assuming that the market is in its equilibrium
state in the long term and that the equilibrium is only distorted by short-term noises,
we can average the historical daily returns to obtain the market equilibrium returns.
In fact as Mazzoni (2010) pointed out in his studies, the historical sample turned out
to be one of the best predictors in mean-squared error sense for predicting short term
stock asset returns, compared to the GARCH(1,1) model among others.

In later sections we will introduce the shrinkage estimator for the purpose of estimating
π while using the traditional historical average estimator as benchmark.

There is another parameter that caused some confusion among BL-practitioners, τ , the
weight-on-views. Black and Litterman (1992) proposed that the constant should be set
close to zero because the uncertainty in the mean is much smaller than the uncertainty
in the return itself. Satchell and Scowcroft (2000) proposed a ingenious model where
τ is stochastic, but the model also came with new parameters to calibrated. In the
GS fixed income research by Bevan and Winkelmann(1998) they proposed a value of τ
between 0.5 and 0.7.

τ is the coefficient relating the variance of the expected market returns to the estimate of
the mean of the expected market returns. All estimation methods give rise to estimation
errors. The standard historical average estimator µ̂ gives rise to variances that are
proportional to the sample size.

µ̂ ∼ N(µ̄,
1

T
Σ)

It is thus sensible to set the τ to 1
T in this case where T is the sample size. In general

I argue it should be set accordingly with respect to the estimation method used, the
formula for τ can be derived by expressing the estimated covariances as a function of
the prior distribution’s covariances. An example of this will be provided in connection
with introduction of the shrinkage estimation.
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Meucci (2010) suggested a modification where the original BL-framework is modified
to be based directly on market returns assuming no estimation error of µ, which conse-
quently erased the parameter τ from the modified formula for the BL-expected returns
and BL-covariances. The formula for this modification will be presented in the end of
this section.

1.2 The views

The magic of the BL-framework lies in the fact that it does not only take the market
equilibrium return and covariances and tries to compute the optimal portfolio right
away. BL is not about portfolio optimization, it is about blending the investors view
with the market implied asset returns. A view is a statement by the investors on
how future market will perform. The view can be based on technical analysis, macro-
economic analysis and so on. It can be expressed in both absolute and relative terms.
The views do not necessarily have to coincide with the market. For instance, the investor
might think that the second asset in the portfolio will under-perform the first asset in
which case the equivalent view becomes X2 −X1 > 0. Within the frame of the thesis,
the views are chosen to be expressed in absolute terms, in the form of absolute target
returns. For instance we will have the view asset 1 will have a daily target return of x
percent. Each view is coupled with a confidence level c ∈ (0,∞) which can be interpreted
as a coefficient inversely proportional to the variances of the view distributions. With
confident views c should be small with less confident views we expected the variances
of the view distributions to grow, as it does for c.

The BL assumes the views to be normally distributed and only focuses on linear views.
K views are represented by a K × N matrix, with its k :th row describing the k :th
view. For the following views

• asset 1 will have a target return of q1 percent

• asset 2 will have a target return of q2 percent

• asset 3 will have a target return of q3 percent

• ...

We have the following relationship, with pick matrix P and view vector q.

P =

 1 0 · · ·
0 1 · · ·
...

...
. . .

 q =

 q1

q2
...


with µ ∼ N(π, τΣ) and q = Pµ the distribution of q ∼ N(Pµ, PΣP ′), which leaves no
room for the uncertainty in the views. However the BL fixes this by introducing the
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conditional distribution of q given µ.

q ∼ N(Pµ,Ω)

where the uncertainty matrix Ω depends on the confidence coefficient c. We can now
focus on how to systematically determine c ∈ (0,∞) and Ω.

Meucci (2010) and Idzorek (2004) suggested two systematic ways of determining Ω.
Meucci’s idea was probably inspired by how the original BL treated the parameter τ ,
where the author simply sets

Ω =
1

c2
PΣP ′ (1.2)

which yields a non-diagonal matrix proportional to original market covariance matrix.
The Ω is now related to PΣP ′, which can be explained by the fact that if an asset in
its equilibrium state has very high volatility, it will be harder for investors to predict
its expected future return as well what investors means by certain views, in this case
a large c, is that they are certain of the expected future returns given the historical
performance of the underlying assets. Unless the investors are 100 percent sure, in
which case Ω should be set to zero, it makes sense to expressed Ω in relative terms.

However to be able to express confidence on each of the views separately, assuming that
the distribution of qi has no correlation with qj for i 6= j, (1.2) can be modified to

Ω =
1

c2
PkΣP

′
k

where Pk is the k :th row in P .

Idozrek provided a step-by-step method to generate Ω. In this approach the certainty
coefficients are not explicit expressed on the views themselves but rather expressed as a
measure of how far the investors are prepared to go towards the extreme mean-variance
portfolio allocation where the views are 100 percent certain. Idozrek first computed
the portfolio weights from BL using mean-variance portfolio optimization. Comparing
the result to the equilibrium market weights Idozrek deducted some portion of the
difference between these two weights using a confidence argument. The less confidence
the investors are views the less willingly investors would want to go towards the full-
confidence weights. Finally the results is inserted into BL backwards to obtain Ω. This
approach requires a choice of the portfolio optimization model to calculate the portfolio
allocation. The diagonal elements in Ω become dependent on the choice of the portfolio
optimization method.

1.3 Combining the views with market equilibrium

The problem of combining the view with market equilibrium returns is to combine the
distribution of µ with the conditional distribution v|µ, a direct application of Bayes’
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Theorem. Below is a sketch of the proof from Meucci (2010).

fµ(µ) =
|(τΣ)|−

1
2

(2π)
N
2

e−
1
2

(µ−π)′(τΣ)−1(µ−π)

fq|µ(q) =
|(Ω)|−

1
2

(2π)
K
2

e−
1
2

(q−Pµ)′(Ω)−1(q−Pµ)

Applying Bayes theorem we write

fµ|q(µ) =
fµ,q(µ, q)

fq(q)
=

fq|µ(q)fµ(µ)∫
fq|µ(q)fµ(µ)dµ

(1.3)

The numerator in (1.3) is after some matrix calculations

fµ,q(µ, q) = fq|µ(q)fµ(µ)

∝ |(τΣ)|−
1
2 |Ω|−

1
2 e−

1
2

[(µ−π)′(τΣ)−1(µ−π)+(q−Pµ)′Ω−1(q−Pµ)]

= |(τΣ)−1 + P ′ΩP |
1
2 e−

1
2

(µ−µBL)′((τΣ)−1+P ′Ω−1P )(µ−µBL)

× |Ω + PΣP ′|
1
2 e−

1
2

(q−q̄)′(Ω+PΣP ′)−1(q−q̄)

= h(µ, q)×m(q)

where

µBL = ((τΣ)−1 + P ′Ω−1P )−1((τΣ)−1π + P ′Ω−1q)

and q̄ is some constant that does not depend on µ or q. This means that the entire
second part of the expression will disappear dividing with the denominator.We have

fµ|q(µ) =
fµ,q(µ, q)

fq(q)

=
h(µ, q)m(q)

fq(q)

∝ h(µ, q)

which gives us the covariance matrix of the blended distribution as well

Σµ
BL = ((τΣ)−1 + P ′Ω−1P )−1

Note that we have now computed the mean and covariances of the distribution of µ|q,
however we want the distribution of X|q.However we have (X) = µ + Z where Z is
independent of q and Z ∼ N(0,Σ) which leads to

X|q = µ|q + Z

ΣBL = Σ + Σµ
BL
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By re-shuffling the terms we obtain the BL-formulas in its usual form

µBL = π + τΣP ′(τPΣP ′ + Ω)−1(q − Pπ)

ΣBL = (1 + τ)Σ− τ2ΣP ′(τPΣP ′ + Ω)−1PΣ (1.4)

By highlighting contradictions to intuitions in the extreme null- and full-confidence
limits of the BL posterior distribution, Meucci (2005) suggested to set µ ≡ π and
eliminating the estimation risk and the use of τ in the model. Note that is only a
special case of the original model with (X) ∼ N(π,Σ).Derivation is exactly the same
as in the original model, which leads to the results:

µmBL = π + ΣP ′(PΣP ′ + Ω)−1(q − Pπ)

Σm
BL = Σ− ΣP ′(PΣP ′ + Ω)−1PΣ (1.5)

For testing purposes we will use the original BL-model with different values for τ de-
pending on the estimation method used.
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2 The Copula-opinion pooling model

The BL-framework is a breakthrough in portfolio optimization, opening up another
territory worth years of research. Many studies has been done aiming at improving
the existing framework and tackling parameter estimation problems within the orig-
inal framework, which remains to be one of the biggest drawbacks for BL. Another
problem with BL is its assumptions for normality on both market equilibrium returns
and views.This assumption gives rise to easily editable formulas but not sufficient to
describe the highly non-normal market return conditions.

With the increasing popularity of Monte-Carlo simulations, the use of empirical distri-
butions becomes all the more popular. Given large samples, which could be achieved by
bootstrapping or other methods of data-mining, a fairly accurate picture of the market
returns could be constructed. This method is already widely used when it comes to risk
management calculations; however it is a fairly new method with regard to blending
market equilibrium returns with investor views.

This chapter begins with an introduction of the copula-opinion pooling framework in-
troduced by Meucci (2006). Certain modifications will be presented in order for this
framework to be more comparable to the original BL-framework. Further testing results
and comparisons between the two methods will be provided in Chapter IV.

2.1 The market

According to Meucci (2006) the COP model is to address the following issues of the BL
framework.

In reality the markets are in general highly non-normal. Furthermore, prac-
titioners might wish to input their views in less informative ways than the
alpha plus normal noise prescription of BL,for instance by means of uniform
distributions on ranges. Finally, the markets are not necessarily represented
by a set of returns, for instance for a trader of Asian options the market is
the set of prices of one single underlying at specific monitoring times.

Like BL, the model starts off with a multivariate market represented by an N-dimensional
market returns M. Unlike BL, M is a matrix containing all the available historical re-
turns that are appropriate to take into consideration. For instance, if there are five
assets and 200 days of data the M matrix would be a 200× 5 matrix.

We can argue that 200 data points are hardly enough to motivate the use of empirical
distribution. Meucci (2006) suggested parametric bootstrap where the data matrix is
first fitted into a multivariate skew-t distribution, which is later used to simulate another
market matrix large enough to motivate the use of empirical distribution. However this
approach involves assumption of a distribution unknown to the investors. To be able to

Fang Li, F06, <fangl@kth.se>, 870707-3030 19



Predicting future returns with investor views

blend market views with investor views without involving any distributional assumption
on the market, we might suggest to bootstrap more data points through randomly draw-
ing from the old sample. However this method does not introduce any new information
into the existing dataset and thus will not improve the accuracy significantly. Since we
already have parametric method for blending market returns with expert views (BL),
we choose to implement this method without any additional assumption on the market
distribution.

For later conveniences the original empirical market cumulative distribution function
(cdf) and the marginal cdf for i :th asset is assumed to be:

cdf: Fm(Xm) = Fm(Xm
1 , X

m
2 , · · · , Xm

N )

marginal cdf: Fmj (xj) = Fm(· · · ,∞, xj ,∞, · · · )
j = 1, · · · , N

2.2 The views

As in the BL framework, the views are a set of K linear statements on market asset
returns. Meucci (2006) adopted author’s own modification on the original BL and
expresses the views directly on market returns. The views results as usual in a K ×N
pick matrix, with its k :th row representing the k :th view of the investors’. Furthermore,
P does not necessarily have to be a square matrix which leads to problems if P needs
to be invertible(as shown later in the section). The author suggested adding rows to P
where no views are explicitly expressed. It has the same effect of adding (N −K)×N
rows of zeros to P. Rather than adding rows of zeros, a (N −K) ×N matrix, ~P , that
spans up the complimentary space of P is added, resulting in the invertible N × N
matrix P̄ .

WithD days of market log-return data points, N assets andK views the model becomes:

M =


Xm
i,j · · · Xm

i,N

Xm
i+1,j

. . . Xm
i+1,N

...
. . .

...
Xm
D,j · · · Xm

D,N

 P =


1 0 · · ·

0
. . .

...
...

... 1

 q =

 q1
...
qK


P̄ =

(
P
~P

)
V = ~PM j = 1, · · · , N i = 1, · · · , D

where Xm
i,j means the i :th day log-return observation of the j :th asset Xm

j . The above
yields a D × N matrix V, which is the view-adjusted market returns. Vcj is the i :th
column of matrix, representing the observations of stochastic variable Vj during a D day
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period. Only the first K columns in V are relevant and subject to further computations.

V =


Vi,j · · · Vi,N

Vi+1,j
. . . Vi+1,N

...
. . .

...
VD,j · · · VD,N

 = [Vc1, Vc2, · · · , VcN ]

Vcj =


Vi,j
Vi+1,j

· · ·
VD,j


Apart from computing the view-adjusted matrix V , a marginal cumulative distribution
function for the i :th view, F vi (vj) = F v(· · · ,∞, vj ,∞, · · · ) needs to assigned to each of
the views. While market returns are difficult to estimate with distributions the views
are far easier and perhaps more intuitive as well to model with an assumed distribution.
Any distribution that suits the investor views could be applied. A couple of suggestions
are:

Multivariate Normal Distribution This assumption is used in the original BL-
framework. An application of this assumption in the COP model will make the two
models comparable in the sense that both models will have the same inputs. However
the results from the two models will still differ. This result will be shown in later
sections.

F vj (vj) = Φq,Ω(vj) = P (Vj ≤ vj)

where q and Ω is the mean and covariances of the K -dimensional multivariate normal
distribution, just as in BL.

Uniform Distribution This class of distribution is not used in the BL-framework.
It is suggested by Meucci (2006).The distribution is sensible in the way that when an
investor thinks of a view, target returns in particular, she normally thinks of a range in
which the future return is likely to occur rather than a normal distributed stochastic
variable. The uniform distribution provides them with such a tool and spares the
problem of estimating the covariances in the normal distribution case.

F vj (vj) = Ua,b(vj) = P (Vj ≤ vj)

where U is the cdf for an uniform distribution between (a, b). For instance, if the view
is asset 1 return will be between two and five percent the distribution will be uniform
with a = 0.02 and b = 0.05.
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2.3 Combining the views with market returns

For those assets where the investor has views upon, a numerical view-blending tech-
nique is be used to make the views count. Meucci(2006) suggests the opinion pooling
technique to obtain the posterior marginal distribution F postj .

F postj (xj) = F post(· · · ,∞, xj ,∞, · · · ) = (1− pj)Fmj (xj) + pjF
v
j (xj)

pj ∈ (0, 1) is the confidence coefficient as in the the BL-framework. The less certain the
view is, the less becomes pj and the more weight will be put on the original marginal
market distributions. However even though pj has the same interpretation as cj :s in the
BL, they are defined for different intervals. A transformation function will be introduced
in Chapter IV to solve the problem.

The second step in the COP approach is to determine a joint distribution which is
consistent with the posterior marginal distribution and also inherits the dependency
structure of the original market returns. This calls for the use of Copula.

Copula is a distribution function C of a random vector U = (U1, U2, · · · , Uk) whose
components Uj are uniformly distributed on (0, 1). It is defined as

C(u1, · · · , uk) = P (U1 ≤ u1, · · · , Uk ≤ uk)

Note that both F vj and F postj are continuous marginal distribution functions and that F v1 (V1)
...

F vk (Vk)

 ≡
 U1

...
Uk


where the distribution of Uj can be specified empirically through observations of Vj ,
Vcj. Now we can use the marginal distribution of F postj to transform the uniform Uj :s
back to the posterior empirical distribution of V, V post.

V post =

 V post
1
...

V post
k

 =

 F post−1
1 (U1)

...
F post−1
k (Uk)


When inverse transforming from Uj to V post interpolation technique is used in MAT-
LAB.Note that one drawback of the COP approach is that we have to explicit give the
marginal cdf:s for each of the view distributions so they have to be independent of each
other.Note also that if pj for view j is very small the term pjF

v
j (xj) will be close to zero

and we will not change the original empirical view distribution V implied by the market
by a noticeable amount. But if pj is large or that Vj has very narrow variance around
the mean,the term pjF

v
j (xj) will dominate in the posterior marginal distribution.
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Finally, to determine the posterior joint distribution of the market Fmpost the inverse
of the pick matrix is used.

Mpost = P̄−1V post

Note that the extra column added to P is used here to ensure that the inverse of P
exists. The first column of Mpost is only a function of the first column in V post, which
means that the posterior return distribution of asset j is only dependent on the view
distribution of the same asset. If the view distribution for asset j did not change as
there were no view imposed on the asset, the i :th column in V post will be the same as
in V , which multiplied by P̄−1 gives back the i :th column in M .

The COP method will be compared head-to-head with the BL-framework in Chapter
IV. But already here we have a feeling that the method can be more sensitive to the
choice of the views compare to BL.
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3 The shrinkage estimator

The best guess about future is usually obtained by computing the average
of past events. Stein’s paradox defines circumstances in which there are
estimators better than the arithmetic average. - Bradley Efron & Carl Morris

When Charles Stein of Stanford University first published the result in statistics in
1955, it was initially met by frequent and sometimes angry debates and resistance for
long period of time. In traditional statistical theory it was for long believed that no
other estimation rule is uniformly better than the observed average. Stein’s paradox
lies in the statement that if there are three or more groups of means within a sample
and if we are interested in predicting future means of the groups there is a procedure
that always gives the better estimation in the sense of mean-squared error than simply
extrapolating from the observed averages of the groups.

Applying this to the context of market asset returns estimation, Stein’s theory says
that if we are interested in predicting future market asset returns we can do better than
simply averaging the past returns.

This chapter will start by introducing the James-Stein estimator, giving a sketch of the
proof provided by Stein in the original paper in 1955 and James & Stein (1961). We
will move on to several modifications of the original model suggested by Stanley Sclove
(1960), Jobson & Korkie (1980, 1981) and Jorion (1986). The chapter will conclude
with a model which will be implemented in Chapter IV.

3.1 The original proposal

In James & Stein (1961) the author proposed a new class of estimator for the mean
of a multivariate normally distributed dataset. On the surface this new class of esti-
mators seems counter-intuitive. Each independent experiment should not affect other
experiment, for instance given that students takes tests independently one student’s
performance should only be judged on the student’s personal test scores of the different
tests. Yet according to Stein the performance of the entire class should be taken into
consideration. What Stein proved in his paper is that by making use of test scores of
the entire class we can construct better estimates for individual performances.

Let X be a random n-vector whose expected value is the completely unknown vector ζ
and whose components are normally distributed with known covariance matrix Σ. We
want to solve for ζ while minimizing the loss function L given by

L(ζ, d) = (ζ − d)′Σ−1(ζ − d)

where d is the vector of estimates. In the case of independent multivariate normal
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distribution with covariance matrix σ2I the loss function becomes:

L(ζ, d) = (ζ − d)′Σ−1(ζ − d)

=
(ζ − d)′I(ζ − d)

σ2

=

∑
(ζi − di)2

σ2

∝ E[(ζ − d)2]

with I as the diagonal unity matrix. Let us now introduce two independent stochastic
variable Y and S where Y is p-dimensional and S represents the known variance of the
sample of Y .

Y ∼ N(ζ, σ2I)

S ∼ σ2χ2(n)

Also we introduce two estimators of the form

d1 = Y

d2 = (1− aS

‖Y ‖2
)Y

We can show that d2 is a more efficient estimator than d1 by showing that

E(d2 − ζ)2 < E(d1 − ζ)2

= E( Y − ζ︸ ︷︷ ︸
N(0,σ2I)

)2

= σ2p

we extend the error term for d2 and obtain

E(d2 − ζ)2 = E((1− aS

‖Y ‖2
)Y − ζ)2

= E(Y − ζ)2 − 2aE(S
S(Y − ζ)′Y

‖Y ‖2
) + a2E(

S2

‖Y ‖2
)

= σ2{p− 2aE(
S

σ2
)E(

(Yσ −
ζ
σ )′ Yσ

‖Yσ ‖2
) + a2E(

S

σ2
)2E(

1

‖X
σ2 ‖2

)}

= σ2{p− 2an(p− 2)E
1

p− 2 + 2K
+ a2n(n+ 2)E

1

p− 2 + 2K
}

using the following relationship (without proof)

E
1

‖Y ‖2
= E

1

χ2
p+2K

= E
1

p− 2 + 2K
> 0

E
(X − ζ)′X

‖X‖2
= (p− 2)E

1

p− 2 + 2K
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Now taking the derivative with respect to a yields that a = p−2
n+2 minimize the loss

function.

E(d2 − ζ)2 = σ2{p− n(p− 2)2

n+ 2
E

1

p− 2 + 2K
}

< σ2p

As James & Stein (1961) suggested the result could be further generalized to the case
where the covariance matrix is unknown but an estimate based on a Wishart matrix
with n degrees of freedom is available.

d3 = (1− c

Y ′SY
)Y

c =
p− 2

n− p+ 3

We want to show now that an estimator of this form is superior, regardless of the vector
it shrink towards. We start by rewriting:

d3 = (1− c

Y ′SY
)Y

= (1− c

(Ȳ − 0̄)′S(Ȳ − 0̄)
)(Ȳ − 0̄)

now we have replaced Y with its mean Ȳ and according to the theorem d3 should
be superior Ȳ if p ≥ 3.But since a normal distributed variable plus a constant is an-
other normal distributed variable we can without loss of generosity replace 0̄ with some
shrinkage vector K.

d3 = (1− c

(Ȳ −K)′S(Ȳ −K)
)(Ȳ −K) +K

= (1− ω)Ȳ + ωȲ

ω =
c

(Ȳ −K)′S(Ȳ −K)

Looking at the formula so far we realize that there is no guarantee that 1 − ω will be
positive. In the late 1960’s, Stanley Sclove worked out a modification of the original
James-Stein shrinkage estimator where the term (Ȳ −K)′S(Ȳ −K) is interpreted as a
F-test result against the null hypothesis that Ȳ = K. If test is passed with confidence
level c, all weight will be put on K, with ω taking the value 1, otherwise the estimator
will shrink towards K depending on how strongly the F-test came out.

3.2 The extensions

Jobson, Korkie and Ratti (1979) are the first to use James-Stein estimators in context
of portfolio optimization. They used simulation analysis to show that James-Stein
estimators does lead to more reasonable results compared to the historical average
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estimators. The idea of shrinkage has further been developed in a Bayesian framework
by Jorion (1986) in which he proposed the following Baye-Stein estimator:

ˆE(Y ) = d4 = (1− ω)Ȳ + ωY0I

ω =
N + 2

(N + 2) + (Ȳ − Y0I)′TΣ−1(Ȳ − Y0I)

λ =
Tω

1− ω
ˆV (Y ) = Σ(1 +

1

T + λ
+

λ

T (T + 1 + λ)

I ′I

I ′Σ−1I
) (3.1)

Inspecting closely this is a slightly modified James-Stein estimator with shrinkage vec-
tor K equals to Y0×I which happens to be the average return of the minimum variance
portfolio optimization. Note that I here is the unity vector. Also the introduction of the
shrinkage covariance matrix is new and not included in the original James-Stein shrink-
age estimator. Most importantly the Baye-Stein shrinkage estimators eliminates the
need of finding a suitable shrinkage vector that gives noticeable improvement compared
to shrinking towards a zero vector.

The shrinkage vectors is under constant improvement. While they all achieve less mean-
squared error compared to the observing-average, their ability to predict future log-
return remains questionable. We will implement Baye-Stein estimator into the original
BL-framework to see if it results in more stable market equilibrium return estimation.
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4 Implementation

While combining expert views with market return seems a very nice idea for predicting
future returns on a portfolio of assets, it involves more estimates as inputs to the models.
We have already discussed some approaches of setting the extra parameters in previous
chapters. The goal of this chapter is to put some of these approaches to the test and
eventually find out whether expert views do help in the prediction of future returns.
We setup three methods and one benchmark. The three methods are:

• COP: Copula-opinion pooling

• BL: Original Black-Litterman

• BLS: Black-Litterman with shrinkage estimators

All three methods are compared to the benchmark BM, the observed historical average
estimator. A neutral view and a good view are used with varying degrees of certainty.
Three measures are designed to test the quality of the expected return estimates, the
variance estimates and the overall degree of matching with market-realized log-return
distributions.

4.1 The data

800-day time series of OMX30, STOXX50, NIKKEI 225, SPX500, OMRX and the
three- month STIBOR rates are used for testing. The data series starts on 2008/01/03,
undergoes the financial crisis with increasing volatility and decreasing interest rates on
the markets and stabilizes on post-crisis financial markets in 2009. Certain impacts of
the European debt crisis is reflected in the data as well. The data ends on 2011/04/27.
As could be seen in Figure 1, for all indices market volatility is constantly varying over
the test period.

In line with market practice a history of 200 trading days will be considered for predict-
ing future quarterly returns. Shorter historical periods may result in lack of empirical
data for the copula opinion-pooling method, as it may not capture enough variations
of the market itself and thus cannot be used to represent the equilibrium state of the
market. Longer historical periods may use data that is too old and does not have any
impact on the concurrent market. A future predicting period of between one and three
months is preferred to represent realistic holding period of the portfolio. Shorter future
predicting period may need far more sophisticated models to reflect short-term market
movements than only expert target returns. This means that a longer prediction period
is preferred to include enough mean-reverting in the data. This motivates the choice of
a quarterly predicting window.
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Figure 1: absolute and log-return plot for 3 of the under-lyings through out the testing
period. The two volatility peaks come from the financial crisis and the European debt
crisis.
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4.2 The models

We start here with a list of variables.

• MPrior: the 200 days of historical data describing the log-return time series of the
five indices

• MPost: the 60 day forecast of the log-return time series of the five indices

• P : pick matrix describing the views

• q: target return vector

• ωs: shrinkage coefficient

• Y0: minimum variance portfolio return, shrinkage vector

• ˆµBL ˆΣBL: shrinkage estimator of market prior mean and covariances

• µreal Σreal rreal: realized average log-return, covariances and market total re-
turn of the future 60 days

• µCOP µBL µBLS µBM : estimated expected daily log-returns from COP, BL,
BLS and BM

• ΣCOP ΣBL ΣBLS ΣBM : estimated covariances for daily log-returns from
COP, BL, BLS and BM

4.3 Copula-opinion pooling

The general theory has been outlaid in Chapter II. A 200 × 5 MPrior is used and
re-sampled to a 2000 × 5 matrix with non-parametric bootstrap. An outcome of the
model is the 60 × 5 view-adjusted posterior matrix MPost. If no views are expressed
MPost will be the same as MPrior apart from the length. Depending on the confidence
levels of the views MPrior will be more or less adjusted towards the view distributions.
The only distribution assumption comes from the normal distribution assumption of
the views. While it is not necessary to assume normality it gives COP the same sets of
inputs as in other models and make them easier to compare. However we should bear
in mind at all time the COP is different from BL. In the extreme case where we do not
have any confidence in the views, the model simply estimate future expected returns
directly from the 200 historical data points without any modification.

4.4 Original Black-Litterman

An original BL-framework is set up to obtain µBL and ΣBL from MPrior, P and q. We
assume that market is in equilibrium and we are thus able to obtain the equilibirum
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return vector π = µBM and its covariances directly from MPrior. Using µBL and ΣBL

we use parametric bootstrap to obtain the future 60 day forecast of log-returns. The
choice of τ plays a very important part in the performance of BL.

4.5 BL with shrinkage estimator

Following the concept of shrinkage estimators in Chapter III, it is possible to construct
a multivariate mean estimator that is superior to the benchmark. The Bayes-stein
shrinkage estimator is used to replace µBM with ˆµBM as inputs in the original BL.
Following this change we need to modify τ in the BL model as well. Recall that the
shrinkage estimator is

ˆµBM = (1− ωs)µBM + ωsY0

Var( ˆµBM ) = (1− ωs)2Var(µBM ) =
(1− ωs)2

N
ΣBM

⇒ τ =
(1− ωs)2

N
(4.1)

where Y0 is a scalar and the minimum variance portfolio return containing all five
indices. While everything else stays the same as in the original BL, a ωs of (0.4, 0.8)
implies quite a change from the observed historical average. The shrinkage estimator
gives more stable inputs into the BL framework, which should at least lead to more
stable results from the model.

4.6 Views and confidence levels

The views are expressed as independent normally distributed variables q ∼ N(Pµ,Ω).
Ω is defined as a diagonal matrix with each element representing the uncertainty in
each view.

Ω =

 ω1 0 · · ·

0
. . . · · ·

· · · · · · ω5

 ωi =
1

c2
P ′iΣPi c ∈ (0,∞)

when pooling together the marginal prior- and view distributions in COP we use the
pooling factor p ∈ (0, 1).

F postj (xj) = (1− pj)Fmj (xj) + pjF
v
j (xj) (4.2)

To make COP relatively comparable to BL we already choose to give them exactly the
same sets of inputs. However we also need to find a way to transform c into p, since
the p and c have the same interpretation.

We assume now that both distribution cdfs Fm and F v are normal distributions so that
any linear combination of them is still normally distributed. We might start thinking
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that F post ∼ N(µBL,ΣBL) if µCOP = µBL and ΣCOP = ΣBL. However we can see that
this is not true by reviewing the following:

ΣBL = Σ︸︷︷︸
marketpriorpart

+ Σµ
BL︸︷︷︸

viewcorrectionpart

lim
Ω→0

ΣBL = lim
Ω→0

(1 + τ)Σ− τ2ΣP ′(τPΣP ′ + Ω)−1PΣ

= (1 + τ)Σ− τ2ΣP ′(τPΣP ′)−1PΣ

= (1 + τ)Σ− τΣP ′(ΣP ′)−1P−1PΣ

= (1 + τ)Σ− τΣ

= Σ

In the extreme case |Σµ
BL| goes to zero but ΣBL does not. This means that in the

original BL the posterior covariances will never be less than |Σ|. However COP does
not involve the concept of market equilibrium distribution π ∼ N(π, τΣ), it expresses
the posterior distribution directly on the market log return distributions. We can see
this by letting p go to 1 in Equation (4.2).

lim
p→1

F postj (xj) = F vj (xj)

where the variances of F vj (xj) will also go to zero as views become more confident. Thus
the original COP is only comparable with Meucci’s modified version of the BL where
the posterior distribution is calculated directly upon the market returns X, not the
equilibrium return µ. We will see more consequences of this in the result section. For
now this means that we can use Meucci’s modified BL and solve the following problem
to obtain the p ∈ (0, 1) that minimize the sum of mean and variances for all c ∈ (0,∞).
We use period (350, 550) as reference since it is a normal period with relatively constant
volatility shown in Figure 1.

min
p
|µmBL − µCOP |2 +

∑
|Σm
BL(i, i)− ΣCOP (i, i)| (4.3)

The square on the means is to bring the mean-error to the same level as variances are
quadratic. We try here to find out c and p that gives the most similar single-asset
performances with same view and same prior market information. µmBL and Σm

BL is
the expectation and covariances of the modified BL, consistent with Chapter I. The
solution is plotted below with several values highlighted.

c = 0.5⇔ p = 0.1910

c = 1⇔ p = 0.4725

c = 5⇔ p = 0.9283

Even after the above transformation we should still bear in mind that COP and BL
are not directly comparable due to the fact that COP in our case is purely implemented
with empirical distributions and both BL methods uses parametric bootstrap to obtain
future forecast.
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Figure 2: c-p plot shows clearly that the relation between c and p is not linear but the
function is strictly increasing which confirms the similarity in interpretation.

4.7 Test methods

Three tests have been implemented. The results are generated using the data described
above and may vary under other circumstances. The tests are designed specifically to
test the estimation quality of the mean, the variances and the distribution predicting
power as a whole.

4.7.1 Mean tests

An appropriate method of measuring the matching degree of the mean vector is the
mean-squared error of the estimated mean vector compared to its realized equivalence.
Since MPrior represents daily returns we obtain from the models the expectation and
covariances forecast of daily log-returns for the prediction period. If we assume time
independency we can calculate the future d days return by simply scaling up µBL and
µBLS . For instance in the BL case with n underlying assets the MSE becomes

MSEBL =
|dµBL − rreal|2

n
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where rreal is the realized future 60-day market returns. In COP we obtain the entire
posterior distribution Mpost as an empirical distribution and we need to estimate µCOP
and ΣCOP from MPost. MSE gives the overall performance of the models in the sense
of mean estimation but it does not tell us anything about the error in individual asset
mean estimations. The overall MSE may still be low if the model returns good result
for some of the assets while it gives totally wrong estimations for other assets. We can
calculate the mean-error for the assets by taking

MEBL =

√
nMSEBL

n
=

1√
n

√
MSEBL

4.7.2 Variance tests

Assuming that the daily log returns are normally distributed χ2-tests could be con-
ducted to test the degree of variance matching. If Yi is normally distributed with
N(0, 1) then Y 2

1 + Y 2
2 + · · ·+ Y 2

n is χ2 distributed with degree of freedom n.

In our model if we only concentrate on the i:th asset log-returns in BL they are normally
distributed with N(µBL(i),ΣBL(i, i)). Since we want to test variances we can minimize
the noises by replacing µBL with the sample mean mureal, the average log-return of
the future 60-day markets. We thus lose one degree of freedom. For 60 days forecast
we will have a χ2 distribution with 59 degrees of freedom, and the following 95 percent
confidence interval for the test scores, for the i:th asset:

χ2
0.025(59) = 39.6619 ≤ χ2

i =

∑
(Mpost(i)− µreal)2

ΣBL(i, i)
≤ χ2

0.975(59) = 82.1174

If the test score lies outside the interval we can reject the H0 hypothesis that the variance
of the i:th asset is ΣBL(i, i), in the BL case. Here we could also test the correlations
between the assets by adding asset returns along a given direction. But this effect will
not be considered here.

4.7.3 Distribution test

Apart from conducting tests on means and variances it would be interesting to see how
well the realized and modeled distributions match as a whole. For the purpose of this
we will use the empirical data available from COP while we bootstrap parametrically
using multivariate normal distribution from BL, BLS and BM.

QQ-plot QQ-plot could be obtained by sorting and plotting the actual outcome of
the market log-return distribution for the prediction period against any of the model
results from COP, BL, BLS or BM. If they line up in a 45 degree line they match
perfectly, otherwise we will have to analyze each of the plots separately to see how well
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they match. Due to the number of plots we have to generate (5 assets, 4 methods, 20
plots per test) the QQ-plot becomes unpractical.

The KS test While QQ-plot is a very powerful tool for examining the relationship
between two samples, it does not give a score of how similar or different two samples
are. For this purpose we introduce the Kolmogorov-Smirnov test.

Suppose we have i.i.d sample X1, · · · , Xn with some unknown distribution F (x) =
Pf (X < x) and we would like to test if the sample comes from a known distribution
G(x) = Pg(X < x) with the following hypothesis:

H0 : F = G

H1 : F 6= G

The idea of the KS test is to measure the maximum distance between the cumulative
distribution functions of the two distributions. If the sample distribution (empirical
distribution) matches the assumed distribution perfectly we have

sup |F (x)−G(x)| → 0

If they do not match perfectly we have

Ph(
√
n sup |F (x)−G(x)| < t)→ H(t) = 1− 2

∑
(−1)i−1e2i2t

where H(t) is the Kolmogorov-Smirnov distribution. It is worth noting that for
large n

Dn =
√
n sup |F (x)−G(x)| >

√
nδ δ 6= 0

lim
n→∞

Dn → ∞

The result is very intuitive since by law of large numbers F (x) should converge to G(x)
for large n. If it does not converge, that is if δ 6= 0 the test fails. Like other statistics
the test will fail on the predefined level of significance α.

The KS-test could be extended to test for similarity between two samples as well. Let
X1, · · · , Xm have the unknown cdfA(x) and empirical distribution Ae(x) and Y1, · · · , Yn
have the unknown cdfB(x) and empirical distribution Be(x)

H0 A(x) = B(x)

H1 A(x) 6= B(x)

Dmn = (
mn

m+ n
)0.5 sup |Ae(x)−Be(x)|

α = Ph(Dn ≥ cα) ≈ 1−H(cα)

confirm H0 : Dn ≤ cα
reject H0 : Dn ≥ cα
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An example For instance it might be interesting to see if parametric bootstrapping
is any better at approximating future log-return distribution than using pure historical
data. For this purpose we choose to plot the 300-500 day data against 500-700 day
data and compute the 500-average of the KS p-value for all assets. We also compare
the KS p-value of all 5 asset pairs. Using 5 percent confidence level, the below matrix
shows the p-values of the tests. Each value can be interpreted as a measure of how its
equivalent QQ-plot performs. Taking the average we see that purely historical data
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Figure 3: QQ-plots for parametric bootstrapping vs using pure historical data. We can
identify any method is noticeably superior to the other.

KS p-value
OMX30 STOXX50 NIKKEI225 SPX500 OMRX

parametric 0.0351 0.1025 0.1024 0.2054 0.3735
historical 0.0545 0.0506 0.1551 0.1947 0.4773

performs slightly better with an average p-value at 0.1864 compared to 0.1638. The two
methods thus come quite close to each other on normal markets. This tells us that it is
reasonable comparing COP’s empirical distribution to the bootstrapped distribution in
BL, BLS and BM. Also KS tests performs sufficiently well to replace QQ-plots in our
tests.
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5 Results

Reviewing Figure 1 we identify the following two periods for single period test purposes.

• Normal market conditions: day 300-500 (2009-03-12 to 2009-12-23) to predict day
500-560 (2009-12-23 to 2010-03-24)

• Abnormal market conditions: day 0-200 (2008-01-03 to 2008-10-15) to predict day
200-260 (2008-10-14 to 2009-01-14)

Also we will use two sets of views. Since all indices could be decomposed into a drift
part, a noise part and a jump part according to Merton 1975a, the indices return under
sufficiently long period should thus be comparable to the drift part (excluding jump
effects). Since ex ≈ 1 + x for very small x and ex is the index pricing formula with
drift part only we could argue to set the view to risk-free rates. Since our investment
takes place quarterly and we use the 3 months STIBOR rates on the first day of the
prediction period as our first view, q = rf . The view is usually not good enough for a
3-month investment.

One advantage with back-testing is that we already know the actual outcome of the
markets. We will thus use the actual market return as our second view, q = rreal. This
view is as good as we can get and gives a sense of best-case-scenario performance of the
models.

5.1 Single period test

5.1.1 Mean-error test

COP is very view sensitive. For the same reason it performs bad in abnormal markets
with high confidence on rf where the means get pulled in the wrong direction. COP
performance is on-par with Meucci’s modified BL as in Table 1, partially due to the
consistent p and c used in these two models, partially because of the lack of τ in both
methods and larger part of view correction is taken into consideration.

The choice of τ has an huge impact on the BL and BLS results. This is the reason why
Meucci’s BL almost always outperforms the original BL, apart from high confidence rf
view in abnormal markets. Meucci’s BL is more sensitive because

lim
τ→0

τΣP ′(τPΣP ′ + Ω)−1 = 0

and the term grows larger with larger τ given non-zero Ω. By setting τ closer to zero
the view correction part will be taken less seriously and in the limit we just get back the
market prior part which equals µBM . This issue can be solved by either using Meucci’s
modification or by setting a larger τ .
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Mean-error in day 300-500
60-day ME rf , c = 0.5 rf , c = 5 rreal, c = 0.5 rreal, c = 5

COP 0.0304 0.0039 0.0285 0.0122
BL 0.0390 0.0313 0.0390 0.0308
Meucci BL 0.0266 0.0026 0.0260 0.0152
BLS 0.0178 0.0173 0.0178 0.0172
BM 0.0391 0.0391 0.0391 0.0391

Table 1: Mean-error in normal markets. BLS achieves very stable results while COP
and Meucci’s BL performs best with correct views

Mean-error in day 0-200
60-day ME rf , c = 0.5 rf , c = 5 rreal, c = 0.5 rreal, c = 5

COP 0.0294 0.0043 0.0242 0.0455
BL 0.0279 0.0275 0.0277 0.0221
Meucci BL 0.0266 0.0049 0.0233 0.0489
BLS 0.0310 0.0293 0.0310 0.0318
BM 0.0279 0.0279 0.0279 0.0279

Table 2: Mean-error in abnormal markets. None of the methods managed to beat BM
with q = rf

BLS is all-around better in theME sense on normal markets, regardless of good or bad
views. The stability comes from two sources. The first is the construction of τ = (1−ωs)2

N
that yields even smaller τ than BL with ω ∈ (0.5, 0.9). This means that the BLS mean
goes towards full confidence view solutions slower compared to BL. The second edge
comes from the addition of OMRX with is an interest rate index. This managed to
reduce the overall risk of the portfolio. For instance during day 300− 500 with q = rf
and c = 0.5 the shrinkage estimator was able to scale down the means heavily towards
the OMRX return and thus lowering the overall MSE.

rreal µCOP µBL µBLS µBM
0.0011 0.0017 0.0018 0.0009 0.0018
0.0006 0.0019 0.0020 0.0010 0.0020
-0.0002 0.0019 0.0020 0.0010 0.0021
0.0003 0.0018 0.0019 0.0010 0.0020
0.0002 0.0002 0.0001 0.0002 0.0001

Table 3: daily log-return vector for all models, note that BLS shrinks towards the
middle much more than other models due to the shrinkage estimator Y0

If we throw away the OMRX index from the portfolio we have Table 4 during normal
markets. The COP and BL perform the same while the BLS performs worse. With
more asset classes and different return levels the shrinkage estimator works best. For
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single-assets portfolios we need to go for larger τ if we want to use BLS to enable more
view-sensitivity.

Mean-error in day 300-500
60-day ME rf , c = 0.5 rf , c = 5 rreal, c = 0.5 rreal, c = 5

COP 0.0362 0.0034 0.0270 0.0170
BL 0.0488 0.0205 0.0488 0.0179
Meucci BL 0.0338 0.0005 0.0303 0.0195
BLS 0.0473 0.0472 0.0473 0.0472
BM 0.0489 0.0489 0.0489 0.0489

Table 4: Mean-error without OMRX in normal markets. BLS barely changes due
close-to-one ωs which decreases the value of τ

A good guess generally improve the ability to predict regardless of markets while risk-
neutral views seems to work on normal markets. All view combining methods give rise
to better ME-score than the benchmark during normal market conditions.

5.1.2 Variance test

We carry out χ2 test withH0 stating that realized variances during the prediction period
of the i:th assets can be described by ΣCOP (i, i), ΣBL(i, i), ΣBLS(i, i) and ΣBM (i, i).
Larger test scores imply that variances from models are too small and vice versa. We
only carry out tests on marginal distributions and disregard the effects of correlations
between the assets. To capture the correlations between them we can for instance carry
out the same χ2 test with certain linear combinations of the assets. All distributions
are assumed to be normal during the test.

daily χ2 tests for day 300-500 with rf and c = 0.5

OMX30 STOXX50 NIKKEI225 SPX500 OMRX
COP 22.392 25.348 44.161 39.126 39.57
BL 18.21 23.036 35.91 32.339 34.19
BLS 18.216 23.043 35.921 32.35 34.135
BM 18.301 23.151 36.089 32.501 34.36

daily χ2 tests for day 300-500 with rf and c = 5

OMX30 STOXX50 NIKKEI225 SPX500 OMRX
COP 278.41 381.88 573.76 39.126 39.54
BL 18.228 23.057 35.949 32.359 34.214
BLS 18.216 23.044 35.923 32.351 34.136
BM 18.301 23.151 36.089 32.501 34.36

Table 5: daily χ2 tests in normal markets, BL, BLS and BM are not particularly
confidence-sensitive while COP is highly sensitive
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Variance estimates are consistently too large for BL, BLS and BM and H0 is rejected for
almost all tests. This is a period which started off with large volatilities in the reference
period. The prediction period realized volatilities are much less than expected, in line
with test results.

Something happened to COP and leads us back to the assumptions of the models.
Reviewing the formula for ΣBL we have

ΣBL = (1 + τ)Σ︸ ︷︷ ︸
marketpriorpart

− τ2ΣP ′(τPΣP ′ + Ω)−1PΣ︸ ︷︷ ︸
viewcorrectionpart

The view correction part is scaled down significantly by τ and is in general less than
market prior part unless the views are extremely un-confident. For confidence views the
view correction part goes to zero. Indeed it does so much faster than for µBL due to
τ2. Thus neither BL or BLS should come too far from the benchmark with reasonable
levels of view confidence. However with COP we have shown before that the variances
goes to zero, just like in Meucci’s BL. This is the reason we could not really compare
COP with the rest of the models in variance sense. This also gives us an initiative to
modify the original ΣCOP as follows

˜ΣCOP = ΣCOP + ΣBM

daily χ2 tests for day 0-200 with rf and c = 0.5

OMX30 STOXX50 NIKKEI225 SPX500 OMRX
COP 81.131 93.98 73.474 111.09 19.312
BL 149.5 188.42 137.31 208.53 90.165
BLS 149.63 188.59 137.43 208.72 90.048
BM 150.24 189.36 138 209.58 90.617

daily χ2 tests for day 0-200 with rf and c = 5

OMX30 STOXX50 NIKKEI225 SPX500 OMRX
COP 133.19 166.05 119.81 191.15 39.837
BL 149.67 188.58 137.47 208.68 90.231
BLS 149.63 188.59 137.44 208.72 90.05
BM 150.24 189.36 138 209.58 90.617

Table 6: χ2 tests in abnormal markets, BL, BLS and BM are not particularly confidence-
sensitive while the modified COP is now catching up with the rests but a certain degree
of double-counting leads to less test score values

It remains interesting to discuss whether the covariance matrix should become 0 or
ΣBM with extreme certain views. It makes sense to set this to 0 as extreme certain
views mean that we are sure that asset returns will turn out the way we expected. But
on the other side the true covariances of the assets will not drop to zero just because we
have certain views. Luckily for portfolio optimizations only the relative differences in
variances and correlations matter so Meucci’s modifications will still work like a charm
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for its designed purposes. However we should pay attention to this problem when we
calculate the portfolio risk from the models. With the modified the COP we obtain the
χ2 results for abnormal markets in Table 6.

In Table 6 variance estimates are consistently too small, resulting in large χ2 test scores.
Reference period has too low volatility compared to the prediction period. It is worth
noting that the prediction period is right after the financial crisis in 2008. In general it
is hard to predict future volatilities with historical volatilities, particularly if reference
period is as long as 200 days.

COP variances are now in line with the rest. The modification leads to certain double
counting effect if the views are not strong enough. If p goes towards 0 COP will just
return Mpost = Mprior. If we now add ΣBM to it we double-count the covariances while
the views stay the same. This double-counting effect decreases quite drastically with
increasing p. Just as in Meucci’s BL, the market posterior distributions are directly
expressed on market prior log-return distributions, adding ΣBM is totally unnecessary
and even violates the basic assumptions of X ≡ N(π,Σ). Because of this we continue
using the original ΣCOP , but we will bear in mind the problems that it causes.

5.1.3 Distribution test

In this section we will keep COP unmodified so we can get a better understanding of
how the original ΣCOP behaves. By using the original model we do not have to assume
any distribution. By adding ΣBM certain distribution assumptions have to be done in
order to obtain a bootstrapped sample for QQ-plots and KS tests.

QQ-plots In the daily log-return distribution plot in Figure 4 and 5 we see a clear
anti-clockwise twist from the 45-degree line. With realized quantiles on the x-axis and
model quantiles on y-axis this anti-clockwise twist demonstrates that model variances
are larger than realized variances. Already at c = 0.5 we see traces of COP distributions
being different than BL, BLS, BM and also the realized market distributions. It starts
to shrink towards the views and highlights even smaller variances than benchmark.

KS test To get a better understanding of the degree of matching of overall distribu-
tions we use the KS test to quantify it to a number. To achieve stability in test scores
we take the average score of 500 tests. The KS tests are carried out with 5 % confidence
with H0 stating that the model distributions of COP, BL, BLS and BM match the real
outcome of the market log distribution.

COP variances goes to zero with higher confidences in the views, as predicted in the
χ2 results. COP scores in normal markets happen to be better because the views are
qualified and variances estimates from the reference period are too large but COP tends
to make the variances smaller compared to BL.
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Overall distribution matching decreases when views are bad and certain, which is shown
with Table 9 and Table 10. It increases when views are qualified and certain which is
shown in Table 7 and Table 8.
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Figure 4: QQ-plots in normal markets with rf and c = 0.5, note that models often
return too large variances compared to the actual outcome

daily KS tests for day 300-500 with rf and c = 0.5

OMX30 STOXX50 NIKKEI225 SPX500 OMRX
COP 0.232 0.479 0.439 0.515 0.240
BL 0.134 0.113 0.379 0.325 0.223
BLS 0.135 0.131 0.421 0.340 0.272
BM 0.135 0.120 0.379 0.319 0.241

Table 7: p-value for KS tests on normal markets with neutral views and low confidence
level
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Figure 5: QQ-plots in normal markets with rf and c = 100, note that while BL, BLS
stayed roughly the same while COP heavily concentrates its distribution towards the
views

daily KS tests for day 300-500 with rf and c = 100

OMX30 STOXX50 NIKKEI225 SPX500 OMRX
COP 5.8× 10−9 5.6× 10−8 1.9× 10−8 4.4× 10−7 5.3× 10−8

BL 0.157 0.124 0.458 0.367 0.273
BLS 0.148 0.124 0.448 0.353 0.272
BM 0.135 0.120 0.379 0.319 0.241

Table 8: p-value for KS tests on normal markets with neutral views and high confidence
level. A good guess(rf is quite good as shown in Table 1) results in slightly better distri-
bution matching. BL and BLS have both reasonable outputs on the variances(compared
to benchmark) while their mean estimates in this case come closer to the true values.
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daily KS tests for day 0-200 with rf and c = 0.5

OMX30 STOXX50 NIKKEI225 SPX500 OMRX
COP 0.237 0.018 0.163 0.082 0.240
BL 0.471 0.163 0.502 0.191 0.183
BLS 0.463 0.158 0.516 0.201 0.124
BM 0.484 0.162 0.528 0.201 0.165

Table 9: KS tests on abnormal markets with neutral views and low confidence level

daily KS tests for day 0-200 with rf and c = 100

OMX30 STOXX50 NIKKEI225 SPX500 OMRX
COP 2.3× 10−13 5.9× 10−11 1.5× 10−12 6.5× 10−11 1.2× 10−25

BL 0.062 0.019 0.075 0.090 1.04× 10−25

BLS 0.197 0.019 0.161 0.125 2.4× 10−24

BM 0.479 0.164 0.512 0.188 0.163

Table 10: p-value for KS tests with excellent views and high confidence level. Bad
guesses (see Table 2) result in worse distribution matching than benchmark while vari-
ances stay approximately the same.
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Figure 6: τ amplifies the weights on the view correction part
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BL is more affected by view certainty than BLS due to the fact the BLS in our case
has a smaller τ , which puts less weight on the view correction part. Reviewing BL
formulas, we see that smaller τ yields smaller view correction and the prior market
distribution dominates more, which should be having the same effect as varying the
confidence coefficient c. Let us investigate this closer.

Figure 6 and 7 consists of a τ -KS score plot and a c-KS score plot where we average
KS score for all five assets between day 300-500 with q = r. For larger τ BL and BLS
scores both decreased which means that the distributions are becoming more unlikely
to match the realized market distributions. If the view correction part generated with
c = 0.5 is not satisfying increasing τ will only amplify the un-satisfying effect and lead
to worse matching. Note also that by construction BLS uses the same τ as in BL but
scaled with (1− ωs)2, and thus yields more stable KS scores.

Increasing confidence generally yields better degrees of distributional matching provided
that the views are sophisticated. Since covariances grow closer to the market prior co-
variances more correct expectations intuitively leads to better distributional matching.
Here we see that τ and c together controls the weight to be put on the views. It thus
makes sense to do as in Meucci (2006) to eliminate the use of τ and re-calibrate the
confidence levels c. Or we can consider τΣ−1 as a whole since it always appears as a
whole in BL formulas.
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Figure 7: c calibrates the view correction part to make it more or less satisfactory

5.1.4 Single-period summaries

Blending market returns with investor views do help on normal market conditions to
achieve better prediction for future returns. If views are certain and sophisticated,
COP or Meucci-BL outperforms the others. If views are not sophisticated enough but
we have cross-assets porfolio BLS is the all-round winner, with good distribution match
and stable mean-error. View-sensitivities could be customized by increasing values of
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τ , the weight-on-view coefficient, while view-correctness could be calibrated by varying
the confidence levels of the views.

The original COP covariances is only comparable to Meucci’s BL since they both express
posterior distribution on market log-return distributions directly.
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5.2 Multi-period test

The section’s result will give insights on whether single period results could be general-
ized. We will use the methods used in the single period tests. In general Meucci’s BL
performs quite similar to that of COP and we will not show Meucci’s BL separately. To
compensate for small τ values we now set τ=0.5 for BL to allow more visible difference
between BL and BM.

We consider the entire test period. For every test a reference period of 200 days and
a prediction window of 60 days will be used. We start from using day 1− 200 data to
predict day 200− 260 returns, and 60− 260 to predict 260− 320 and vice versa.

5.2.1 Mean-error test
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Figure 8: Multi-period 60-day mean-errors using q = rf (above) and q = r (below).
The last two BLS plots are generated with τ = (1−ωs)2

N and τ = 0.5 respectively. τ is
set to 0.5 for BL.
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The mean-error fluctuates with market conditions. BL now performs similar to COP. rf
is not very good apart from the first four periods when the interest rate is high (falling)
and equity returns are negative or close to zero in the aftershock of the financial crisis.
After period four interest rates lingers close to zero and equity market boomed in 2009.
As expected during 2009 and 2010 the model performance results with q = rf is quite
disappointing.

BLS is not confidence-sensitive in our tests, but yields stable results. The stability
comes from the shrinkage estimator which is designed for MSE-minimization and the
confidence stability comes from the small weigh-on-view coefficient τ . In Figure 8 an
increased τ made a difference and is able to decrease the mean-errors a notch.

The results seem to be consistent with single-period tests with COP and BL leading in
situations with high-confident and excellent views while BLS is best with neutral views
under normal market conditions.

5.2.2 Variance test

The plots are generated by averaging the χ2 scores for all assets and roll the test over
all periods. We also keep using the original ΣCOP , which leads to the expectation that
variances will tend to 0 with higher confidence levels and χ2 test scores will be on the
upper extremes.

In Figure 9 COP variances peak for high confidence levels indicates that ΣCOP grows
close to 0, exactly as expected. Both BL and BLS comes close to benchmark, par-
ticularly BLS as shown in Figure 9. The view does not have an huge effect on the
variance estimates. According to the tests none of the methods are particularly good
at estimating variances since the χ2 scores fail the test most of the time. By looking
at the log-return plot we realize that we need less than 200 historical days to achieve
more accurate variance estimates.

Figure 10 uses historical 60 days to estimate future 60 days. The results is blended.
We have both higher peaks and more test scores within the confidence interval. In
times where market volatilities suddenly increase or decrease the variance tests fail and
we get the two tops and one dip in the plots. It seems to be generating slightly more
stable test scores compared to Figure 9 as the tops are now around 110 compared to
120 before and the dip is a bit above 20 as opposed to well below 20. This confirms
the rule of the thumb that we should use shorter historical days to make predictions on
future volatilities.

5.2.3 Distribution test

As in the single-period case when it comes to neutral views we should not have a too
much weight-on-views, using the original setup we obtain the following plot which is
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Figure 9: Multi-period 500-average χ2 test scores using q = rf (above) and q = r
(below).

consistent with single period results, that is, COP variances is not comparable with the
rest as it is so close to zero that it is barely visible. BL and BLS comes close to market
prior distribution due to its small values of τ .

With good view we can afford to have a larger τ . With τ = 0.5 we can in general achieve
better results when views are qualified and certain. Figure 12 is generated with c = 0.5
and c = 100 respectively. The gain in KS score is around 3 percent(from 24 to 27
percent) in the single-period case according to Figure 6 and 7. In the multi-period case
the trend mainly follows the market prior distributions with slight gains, particularly in
the first 3 periods where the gains is clearly visible. In general it is hard to be confident
of the views to such an extent(c = 100) to motivate the slight gains in distribution
matching. Another interesting point here is that COP actually managed to beat BM
by an huge amount between period three to seven. During these 240 days the reference
period volatility is very high and the prediction period volatility is low. The original
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Figure 10: Multi-period 500-average χ2 with 60-day reference period and 60-day pre-
diction period using q = r

COP decreases the volatilities drastically and it helped in this case to minimize the
distribution differences.
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Figure 11: Multi-period 500-average KS-test using q = rf and the original τ

5.2.4 Multi-period summaries

Functionality of τ is to amplify the view correction part in the BL expressions. Both
τ and c controls the weight put on the views and it makes sense to consider these two
parameters together.

COP has very similar characteristics compared to BL with τ close to 1. This is why COP
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Figure 12: Multi-period 500-average KS-test using q = r and τ = 0.5

is very sensitive to confidence level changes, just as Meucci’s BL. Also the covariances
of COP goes to zero with extreme confident views which can be corrected by adding the
market prior covariances to it. However addition could not be motivated by theories as
it double-counts the covariance with low confidence levels.

BLS is still overall the most stable thanks to the cross-assets characteristics of the
portfolio. It minimized the ME very quickly even under neutral views with neutral
confidences. It is also more stable reacting to confidence level and weight-on-view
parameter changes due to the smaller τ used.

Blending market log-return distributions with sophisticated views consistently improves
the mean prediction throughout all periods. The cost we pay is the estimation of the
extra parameters τ and Ω. While we have given an interpretation of τ in this section
we will try to find a systematic way of determining Ω in the following chapter.
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6 Determining the uncertainty matrix Ω

One difficult parameter to set in view-combining models is view confidences. One might
know what views one have but it is always hard to know to what degree one is ready to
take the bet. For instance if one is certain of her views she might want to set c >= 1
in our case, but c is defined for (0,∞) and what should she do with an this handful of
choices of c:s?

This section will provide a concept to calibrate and estimate future confidences with help
from historical view certainties. It starts with a description of the idea and concludes
with a series of mean-error tests. We will choose to focus on mean-error tests since we
have shown before that distributions or variances are not sensitive to view confidence
variations unless they become extreme.

6.1 The model

We continue to assume Ω to be a diagonal matrix and views to be independent normally
distributed with N(q,Ω). Following the same convention used in previous sections we
have

Ω =

 ω1 0 · · ·

0
. . . · · ·

· · · · · · ω5

 ωi =
1

c2
P ′iΣPi c ∈ (0,∞)

For all past allocations we can estimate market realized expectation µreal and covari-
ances Σreal directly from the market outcome. In best case scenarios the output from
the model should match µreal and Σreal perfectly. In reality they could never match
and we do best by minimizing the quadratic differences. For instance in the case of BL
We have three problems ready to be solved depending on our priorities, with µBL and
ΣBL as functions of c.

Mean-error prioritized optimization We minimize the 60-day mean-error using
rreal, the 60-day market realized return.

min
c

|60µBL − rreal|
dim(µBL)

rreal ≈ 60µreal

Mean-Covariance prioritized optimization We minimize the sum of daily mean-
squared- and covariance error.

min
c
|µBL − µreal|2 + |ΣBL − Σreal|
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single-period during day 1-200 with q = rf
asset q benchmark return µreal optimized confidence
1 9.4× 10−5 −0.0024 −0.0007

c = 0.5342, me = 0.0221
2 9.4× 10−5 −0.0023 −0.0012
3 9.4× 10−5 −0.0026 −0.0022
4 9.4× 10−5 −0.0022 −0.0029
5 9.4× 10−5 −0.0002 −0.0009

single-period during day 300-500 with q = rf
asset q benchmark return µreal optimized confidence
1 5× 10−6 0.0018 0.0011

c = 2.4710, me = 0.0136
2 5× 10−6 0.0020 0.0006
3 5× 10−6 0.0021 −0.0002
4 5× 10−6 0.0020 0.0003
5 5× 10−6 0.0001 0.0002

Table 11: optimized confidence using BL with τ = 0.5 and neutral guess on abnor-
mal(above) and normal(below) markets

In this section we will focus on mean-error optimizations and assume an overall con-
fidence level ci = c, i = 1, 2, 3, · · · . This reduces the optimization problem to one
dimension and achieves much better stability in the solutions. It is possible to con-
struct an optimizer that optimizes confidence levels on multi-dimensional basis since the
construction of Ω allows different confidences for different assets. However the results
turned out to be largely affected by numerical truncation errors when the derivatives of
the expressions become very flat. Much smaller tolerance levels are required. Also the
results are harder to interpret than the one-dimensional case but the two are in general
consistent with each other.

6.2 The results

We focus now on how much better mean-error scores we can achieve by using the new
method of calibrating Ω. The tests consist of two parts, one for single-period and
another for multi-periods. A reference period of 200 days and prediction period of 60
will be used just as the tests in the Chapter V. To allow more sensitivities to the
views we set τ = 0.5 for both BL and BLS. All optimizations are based on the BL
model but it is easy to modify based on COP or BLS as well. Also we only consider
c ∈ (0, 10) where 10 represents very high confidence in the views.
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single-period during day 1-200 with q = rf
asset q benchmark return µreal optimized confidence
1 −0.0007 −0.0024 −0.0007

c = 10, me = 0.0029
2 −0.0023 −0.0023 −0.0012
3 −0.0022 −0.0026 −0.0022
4 −0.0029 −0.0022 −0.0029
5 −0.0009 −0.0002 −0.0009

single-period during day 300-500 with q = rf
asset q benchmark return µreal optimized confidence
1 0.0011 0.0018 0.0011

c = 10, me = 0.0014
2 0.0006 0.0020 0.0006
3 −0.0002 0.0021 −0.0002
4 0.0003 0.0020 0.0003
5 0.0002 0.0001 0.0002

Table 12: optimized confidence using BL with τ = 0.5 and good guess on abnor-
mal(above) and normal(below) markets

6.2.1 Single-period analysis

As we can see in Table 11 and 12 that rf generally yields much lower confidence than
r. This is an intuitive result since we will minimize the error if we maximize the
confidence when views are correct. This is also the reason we have to set a boundary
for the optimization since we always achieve minimum error when c → ∞. All mean-
errors obtained using optimized confidence level are lower than the best of the scores
we obtained in single-period tests with c = 0.5 and c = 5. The method thus gives a
very good numerical indication of how certain the views are. The larger the difference
between the µreal and q, the lower becomes the confidence level. In the q = rf case the
interest rate is close to 0 at the same time as market index log-returns are very low(close
to 0) between day 300 and 500, why we obtained higher confidence in the views.

6.2.2 Multi-period analysis

To see if the single-period results could be generalized we apply the same test on all
periods.

Now we see clearly from Figure 13 that rf is not a very sophisticated view. Its optimized
confidence levels varies largely in the definition space of c. The confidence level first
increased with lower interest rate and uncertain equity market(lower return) after the
crisis. It plummeted during the equity boom(high return) in 2009 while interest rate
stayed low, but only to bounce back up again during the European debt crisis with

Fang Li, F06, <fangl@kth.se>, 870707-3030 54



Predicting future returns with investor views

yet another uncertain equity market. The confidence level fluctuates with markets and
there is not much consistency here.

Mean-error fluctuates as much as the confidence levels for q = rf . For q = r the implied
confidence levels are maximized at all times and thus yields very low mean-error. This
indicates that if we have a consistent view we can calibrate future view-confidences from
a historical track record. If the record is consistently good we can afford to use higher
certainty in the views to achieve better prediction for the future.
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Figure 13: BL optimization with τ = 0.5

6.3 Strategy back-testing

In this test we want to see if using historical confidence track-record has an effect on
minimizing future returns. We will use q = rf , q = r and q = r + noise to simulate
expert views in reality.

From Figure 14 we see that one-period lag is much more significant than for the rest.
It is thus argue-able to set

ci = ci−1 i = 2, 3, · · · (6.1)

As expected rf is not sophisticated enough to allow consistency in the views. The
views are relatively independent and historical view confidences does not have an huge
impact on future view confidence levels. On the other hand historically tracked view
confidences generally produce better results than both c = 0.5 and c = 5 with q = r.
But this is quite expected since we have correct views and we obtain large c:s which
yield smaller mean-error. This scenario is best-case and never happens in real-life.

Perhaps we should add a noise to q = r to reflect real-world scenarios. To set the vari-
ance of the noise we consider the following: the VIX-index reflects annualized volatility
on the SPX500 and is usually around 20 to 30% (crisis in 2008 made it peak at around
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Figure 14: Auto-covariance plot for q = rf (left) and q = r (right)

80%) which means an daily variance at 0.3×0.3
250 ≈ 0.04 percent. It thus makes sense to

add a normal distributed noise to r with N(0, 0.0004).
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Figure 15: 60-day mean-error with q = rf

We can also move towards the more extreme values, a daily noise with N(0, 0.001) is
equivalent to an annual volatility around 50%, which VIX achieved during the European
debt crisis.

At 30% annualized volatility, by using historically tracked confidences the performance
quickly become superior to c = 0.5 even if they shared the same start value. It also
performs better than c = 10 in the sense that the mean-errors tend to be less volatile.
At 50 percent annualized volatility, the mean-error become much more volatile and no
clear winner can be named. The high correlation with c = 10 implies that we tend to
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Figure 16: 60-day mean-error with q = r
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Figure 17: 60-day mean-error with q = r plus 30 percent annualized volatility on all
assets

be overconfident with historically tracked confidences.

While we could not use historical returns to predict futures, given sufficient consis-
tency in the views we could use historical confidences on the views to improve future
performances.

We should also note that it is possible to use time-series models with one or two periods
of lag to achieve more sophisticated prediction for future confidence levels if we have
access to vast set of historical data and historical views. But we should implement
boundaries in the model to see to that c stay positive at all times.
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Figure 18: 60-day mean-error with q = r plus 50 percent annualized volatility on all
assets
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7 Conclusions

There are two ways of improving the prediction quality of future market returns. One
can either choose to use models that take advantage of the momentum in the data
series and derive future values by extrapolation, or use additional information apart
from historical data. Blending market returns with investor views belongs to the later
category. It does help to improve the prediction quality of future market returns given
sophisticated views. However with more information there are more parameters to be
calibrated. The thesis has chosen several popular methods in the research frontier in
this area and makes a head-to-head performance comparison between the methods in
order to find out whether any or any one of the methods can be preferred over others.

Copula opinion pooling (COP), Black-Litterman (BL), Black-Litterman with shrinkage
estimators (BLS ) are chosen in the thesis. While BL opened our eyes by first intro-
ducing the concept, COP aims to do what BL does without the normality assumption
on market return distributions. BLS is a refined version of the original BL with same
sets of inputs adding features of the shrinkage estimator to obtain less mean-squared
error in mean prediction. Back-testing are conducted where model results are compared
to real market outcome in the sense of mean-error, volatility and return distribution
predicting power as a whole.

During the back testing we notice that assigning appropriate values to parameters such
as τ and Ω is difficult during application of BL and BLS. COP (and the modified version
BL by Meucci) would be facing the same problems if not τ is explicitly set to 1 in the
model by construction. τ controls the weight put on the views, Ω controls confidence
levels in the views but they together gives the sensitivities of the model to the views.
While calibrating them separately can be difficult we only need τΩ−1 as a whole. This
suggests that from a practitioner’s point of view we could fix τ and calibrate Ω for a
given τ . The last chapter provides a way of calibrating the confidence levels on the
views by extrapolating historical confidence levels. We show that it is appropriate to
set a one or two period lag in the view confidence levels and compute future confidence
levels from historical ones, given that the views are consistent. We simulate the views by
combining correct market outcomes with normal distributed noises. With an annulized
volatility less than 50% the simulations show that we do get better mean prediction if
we calibrate the view confidences against its historical values.

Returning to the comparisons between COP, BL and BLS we benchmark all testing
scores against the benchmark (BM) where means and covariances comes directly from
the historical sample. We find out that COP is giving similar results as the modified
BL by Meucci since they both share similar assumptions when it comes prior market
return distributions. Both models react more to view corrections, resulting in sensitive
mean-errors and variance predictions that are not quite comparable to the real market
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outcome of return distributions. BL and BLS both yield good predictions when it comes
to volatility and return distribution prediction as a whole where the effect of τ or Ω does
not come into play unless the views become extreme. BLS clearly dominates the BL if
we have a multi-asset portfolio. The shrinkage estimator compares the historical returns
with each other and scales down higher asset returns towards asset returns with lower
volatilities. This slightly neutralizes the market and makes BLS the most stable method
overall. All three methods demonstrate that blending market log-return distributions
with sophisticated views consistently improves the mean prediction throughout all test
periods.

All three methods produce interesting results while each has its own edge compared to
others. The sensitivity on views makes COP combined with certain views maximize
the benefits of the confident views. BLS and BLS are best to use when confidence on
views are neutral under normal market conditions. However we only focus on mean and
covariance in this thesis. The differences between portfolio performance after portfolio
optimization with model results is left out. Also further research on systematic ways of
determining τ and Ω would be interesting from a practitioner’s point of view.
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