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Abstract 

 

Trading with derivatives is getting increasingly popular. A consequence is that the risk 

of the portfolio becomes less transparent and more difficult to evaluate. Simple 

derivatives like European options are easily priced using the Black-Scholes formula. 

However, when the derivatives are path-dependent, finding closed-form expressions 

gets a lot trickier and you have to rely on approximations or even simulations to price 

them. As the portfolios are getting larger the computational cost becomes an issue. In 

this thesis we attempt to find a model that is accurate while still maintaining a low 

computational cost. We estimate Value-at-Risk and Expected Shortfall using Monte-

Carlo Simulation. Estimating the risk factors is always a challenge. We test three 

different methods and evaluate their performance using a simple backtest. 
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2 Introduction 

2.1 Background 

The purpose of this thesis is to risk evaluate a portfolio with a high concentration of 

exotic derivatives. Due to the complexity in valuating these derivatives and the large 

number of products in the portfolio a major challenge is to find appropriate tools to 

price the components as effectively as possible. In this study we consider three types of 

computer heavy pricing derivatives. These are American Options, Asian options and 

Barrier Options. Our portfolios also include more simple derivatives like futures and 

forwards but the pricing of these are standard and will not be emphasized in the thesis. 

 

2.2 Outline 

In Section 3, 5-7 the theoretical background will be explained in detail. Section 3 will 

introduce the reader to the options treated in this study and explain the pricing methods 

used. Section 4 gives an overview of the structure of the portfolios that are risk-

evaluated. Section 5 describes how we simulate scenarios used to risk evaluate. Section 

6 explains how we classify the risk. Section 7 describes the simple backtesting method 

used to compare the estimations to actual results. In Section 8 the results are given. In 

Section 9 we draw conclusions from the results obtained in Section 8. 
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3 Pricing the derivatives 

To be able to risk-evaluate our portfolios we need to be able to price the components. 

Since we have quite large portfolios with rather complex derivatives, pricing them 

exactly would be very time-consuming. Therefore our pricing methods are chosen to 

allow us to risk-evaluate as exactly as possible while still having good performance 

which will allow us to run sufficient number of simulations in a reasonable amount of 

time. 

 

For all closed form solutions we assume the underlying to follow a geometric Brownian 

motion: 

 

             

 

Where   is the expected rate of return of the asset,   is the variance of the rate of return 

and    is a Wiener process. We also assume that the risk-free rate and volatility is 

constant through the life of the option. 

 

 

3.1 Pricing American Options 

 

American options, unlike European options, can be exercised any day. This makes them 

path-dependent which makes exact closed-form solutions impossible to find. Therefore 

the pricing of American options is usually done numerically. The most common method 

is to use the Binomial Option Pricing Method              is fairly fast and 

accurate so we will use this method to price our American options. 

The theory behind      is the following. We assume that the underlying moves either 

up or down at each step with some probabilities       and        . At each step we 

evaluate the optimal action, which is to exercise the option or just keep it. Starting at 

maturity and stepping back n steps, while discounting at every step, we determine the 

value of the option today.  

To determine the amplitude of the movements at each time step we use the Cox, Ross, 

& Rubinstein (   ) method. 

     √  
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        √  
 

  
 

This method makes the tree recombinant, i.e. an “up and then down movement” will 

end up at the same value as a “down and then up movement”, which is a nice feature 

since it speeds up computations. 

The probabilities of up and down movements are chosen in accordance with the no 

arbitrage assumption, giving us the following probabilities: 

    
             

       
 

            

 

The number of binomial steps ( ) is chosen depending how much accuracy and 

performance preferred. Larger n will give better accuracy at the expense of computing 

time. In this study we are using        because we have a large portfolio and we need 

to limit the computational cost. 

 

3.2 Pricing Barrier Options 

 

Barrier options come in many different forms. The barrier options in our portfolio are 

options that are either activated or de-activated when hitting a specified barrier level. 

After being activated, the option will behave as a standard European option with 

corresponding specifications. Usually there is a rebate that is paid out if the option never 

get activated (knocked in) during its life. We are treating four different types of barrier 

options, each type can be either a put or a call, in this study: 

 

Up & In (    and    ) 

Up & Out (    and    ) 

Down & In (    and    ) 

Down & Out (    and    ) 

 

Denote the price of the Up & In call option as         (the price of an Up & In put 

option will then be denoted         ) and denote the other option types in a similar way. 

Then we will get, in the Black-Scholes framework, the following formulas (Reiner & 

Rubinstein, 1991) when the barrier level is lower or equal to the strike: 
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Where   is the strike price,   is the barrier value,   is the asset price,   the risk-free rate 

of return,   is the volatility,   is the time to maturity,   the dividend yield (which we 

set to zero since we use discrete dividends),     and     are the prices of a European 

call and put option respectively under the Black-Scholes framework. 

 

When the barrier is greater than the strike price: 
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For coding versatility I will use a generalization of these formulas provided by Haug 

(1998). Reiner & Rubinstein and Haug formulas are equivalent and merely presented in 

a different way. 
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  is the rebate being paid out if the option has not been activated (knocked in) during its 

lifetime. 

 

With these formulas we can obtain the price of the different option types according to 

Table 1. 

 

TABLE 1 

X<H Value     

Down-In Call A-B+D+E 1 1 

Down-Out Call B-D+F 1 1 

Up-In Call B-C+D+E -1 1 

Up-Out Call A-B+C-D+F -1 1 

Down-In Put A+E 1 -1 

Down-Out Put F 1 -1 

Up-In Put C+E -1 -1 

Up-Out Put A-C+F -1 -1 

X>H Value     

Down-In Call C+E 1 1 

Down-Out Call A-C+F 1 1 

Up-In Call A+E -1 1 

Up-Out Call F -1 1 

Down-In Put B-C+D+E 1 -1 

Down-Out Put A-B+C-D+F 1 -1 

Up-In Put A-B+D+E -1 -1 

Up-Out Put B-D+F -1 -1 

 

 

Here we have assumed we check for a barrier breach continuously. In reality this 

checking interval is discrete but since we check for barrier breaches every single 

“market tick” it is approximately equivalent as a continuous checking.  

 

 

3.3 Pricing Asian Options 

 

Asian options are similar to European options, but with the difference that the payoff is 

determined not by the underlying asset, but instead on an average value of the 

underlying asset.  
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Payoff for Asian call option:                     

 

Payoff for Asian put option:                     

 

         is calculated by checking the value of the underlying at a number of specified 

dates(reset dates) and calculating the arithmetic average of these values. 

 

 

Asian options are clearly path-dependent and are a bit tricky to value since it’s hard to 

find a good approximation and BOPM is not suitable for pricing method. Therefore we 

use Monte-Carlo-Simulation to price them. The simulation approach will yield an 

accurate price at the cost of computational time. The simulations are carried out similar 

to the method described in section 4. 
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4 The Portfolios 

In this study we are going to evaluate two portfolios which have different 

characteristics. We will call them Portfolio 1 and Portfolio 2. Both portfolios consist of 

derivatives with underlying assets traded on the Swedish stock market. The underlying 

assets are usually stocks included in OMXS30 (the index itself is also an underlying 

asset for some derivatives), but there are also some other stocks which makes a total of 

roughly 50 underlying assets. 

 

4.1 Portfolio 1 

This portfolio consists of more than 500 derivatives. The derivatives in this portfolio are 

a mixture of American options, forward contracts and equities. 

 

4.2 Portfolio 2 

This portfolio is smaller than portfolio 1 since it contains less than 500 derivatives. On 

the other hand this portfolio consists of more complex path-dependent derivatives such 

as Asian options and barrier options. 
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5 Monte Carlo Simulations 

To evaluate the risk of these portfolios we use Monte-Carlo-Simulation. The underlying 

assets are simulated 10 000 times based on historical returns and volatilities. A decay 

model for historic volatilities is also implemented. For simplicity and for computation 

effectiveness we assume the underlying assets to be independent, though not accurate it 

is widely assumed in computations. This will yield 10 000 different scenarios which we 

will use to determinate the risk measures of the portfolio. Note that when estimating 

historical returns and volatilities we use data up to one year old, which means we use 

       . 

5.1 Standard volatility model 

The most simple volatility estimation method, sometimes referred to as the Equally 

Weighted Moving Average (MA) estimator, where you treat all the data equally 

regardless of how old they are. The estimator is 

 

    
 

 
∑       ̅  

   

   

 

 

Where  ̅ is the expected return and    is the logreturn at time t. 

 

5.2 Decay volatility model 

The decay model, also known as the Exponential Weighted Moving Average (EWMA), 

is a refined estimator where recent observations are given more weight than older 

observations. 

 

           ∑      
 

 

   

 

Where   is the decay factor which we set to the standard value      since we have daily 

data. 

 

5.3 Historical simulation 

Historical simulation is using past returns to simulate future returns. This is done by 

storing past underlying returns, we have access to data a year back so we have 250 

scenarios, and randomly drawing a day from history and use those returns in the 

simulation. This procedure is repeated   number of times. The advantage of this method 

is that we can simulate the unknown parameters, including correlation, in a simple way. 
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A drawback of this method is that only past returns can occur in the future, which of 

course is unrealistic especially with the relative small sample size of historical returns 

we use. 
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6 Risk Measures 

To determine the risk evaluate a portfolio we need to define the risk measures we are 

using. In this study we will use the standard risk measures Value at Risk (   ) and 

Expected Shortfall (  ,     ). To get a sense of the correctness of our risk values we 

will also evaluate the uncertainty of the risk measures. 

 

6.1 Value at Risk (   ) 

Value at Risk is defined as the threshold value where a loss will exceed that threshold 

with a certain probability. For instance, imagine you own a portfolio, define the one-day 

    and choose the confidence level 95%. Then the probability that your portfolio loss 

over one day will exceed that value is 5%. The time horizon and the confidence level 

can be chosen arbitrarily but the most common parameters are for confidence levels 

95% and 99% and for time horizons one day and ten days. 

 

Furthermore we get the mathematical definition using the following arguments. Define 

  as the net worth of the portfolio, and then we can define Value at Risk as 

            
       , where  

              is the discounted loss of the portfolio. 

Given the fact that we use simulation to obtain the empirical Value at Risk, we conclude 

that the empirical estimate of         is given by 

   ̂                 

Where             is the ordered sample. 

In this study we will calculate     with confidence level 95% and 99% using a one day 

time horizon. We will not calculate ten-day     and the reason behind that is that ten 

day     is much more complicated to compute, since the estimators are likely to 

change during this ten day period, without making a lot of approximations. 

 

Value at Risk quantifies the risk in a single number quite nicely but it is not flawless. 

The biggest drawback being that it does not capture the risk of extreme scenarios in a 

satisfying way. This is of course essential in risk management and therefore we will 

discuss Expected Shortfall in the next section. 
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6.2 Expected Shortfall (  ,      etc) 

Expected Shortfall, also known as Conditional Value at Risk, is a measure that 

eliminates some of the shortcomings of    . Expected shortfall is the average losses of 

the losses greater than the     threshold and is defined as follows. Using the 

definitions in the previous section Expected Shortfall at level   is defined as: 

          
 

 
 ∫   

       
 

   

 

Introducing the empirical distribution function    we can define the empirical expected 

shortfall estimator 

  ̂        
 

 
 ∫   

       
 

   

 

Since   
   is piecewise constant the estimator can be written as 

  ̂        
 

 
 (∑
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)          

    

   

) 

Which, if     ⁄  for some integer k>1, is reduced to 

  ̂  ⁄        
 

 
 ∑    

 

   

 

 

The advantage of Expected Shortfall is that it captures heavy tails and is therefore 

desirable when evaluating portfolios with potentially extreme outcomes. 

 

6.3 Uncertainty of the risk measures 

Suppose we have            observations from     random variables           with the 

same unknown continuous distribution function  . Suppose we want to construct a 

confidence interval       for the quantile       , where                and   

             such that 

 

                    (        )   (        )        ⁄  

 

Where   is the confidence level.   is unknown so we can’t find   and  . However we 

can find     and the smallest        such that 

 

 (                )     
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 (           )        ⁄       (           )        ⁄               

 

Where             is the ordered sample. 

 

Let                 i.e. the number of sample points exceeding         

 

   is                                Note that 

 

 

 (           )           

 (           )           

  

 (           )             

 

 

 

Similarly  (           )               Hence we can compute  (     

      ) and  (           ) for different   and   until we find indices that satisfy 

(6.1). This results in the confidence interval (          ). 
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7 Backtesting method 

 

While the risk measures and statistical uncertainty quantifies the risk in a very nice way, 

it could be interesting to compare the model used with real market outcomes. This is 

done by using some kind of backtesting method. In this study we will use a pretty 

straightforward and simple backtest. 

 

The observed returns for the following 100 daily returns are calculated and used when 

pricing the portfolio. Basically we use the same procedure as when performing the 

historical simulation with the difference that every scenario is only calculated once. 

Based on these values the number of Value at Risk breaches and Expected Shortfall are 

observed and compared with the estimated values. This method will be quite inaccurate 

since we have to assume that the risk factors are constant during this period and the 

sample size is small, but it will give a good sense of how accurate the model is with 

reality. 
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8 Results 

 

In this section the results of all the simulations will be presented. The results for each 

portfolio will be presented separately. Also after each return distribution histogram there 

will be a backtest which compares the estimated risk measures with the future returns 

calculated as described in section 7. 

 

 

8.1 Portfolio 1 

FIGURE 1 

 
Figure 1 shows the distribution of absolute portfolio returns generated by our Monte 

Carlo Simulations (N = 10000) when using the standard volatility estimator, where the 

x-axis shows the absolute returns and the y-axis is the number of outcomes. From this 

distribution we calculate the risk measures. For the comfort of the reader these measures 

are displayed in the table below. 

 

 

 

 

VaR95: 527 621 

VaR99: 596 429 

ES95: 571 070 
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ES99: 630 903 

Mean return: -304 633 

Standard deviation: 149 146 

 

Using theory in section 6.3 we calculate the estimated confidence intervals for the     

estimators. For the 95%     we get the interval (522 640, 533 600) and doing the same 

for the 99%     we get the interval (589 450, 609 390). 

 

 

The actual change in portfolio value, based on the market movements the following 100 

(which gives us N = 100) market days are presented in figure 2.  

FIGURE 2 

 
VaR95 breaches: 22 

VaR99 breaches: 0 

ES95: 552 597 

ES99:  

Mean return: 460 595 

Standard deviation: 1 370 357 

 

We observe that our model, with this calibration, greatly underestimated the variance of 

the portfolio. Because the extreme returns were positive our risk measures wasn’t as 

inaccurate as the variance. With a sample size of 100 we would have expected the 

VaR95 threshold to be exceeded approximately 5 times compared to the 22 times we 

observed, while the VaR99 threshold were exceeded 0 times compared to the expected 1 
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time. The average losses of the VaR95 breaches was 552 597 compared to the 571 070 

we expected. Though it should be noted that a sample size of 124 is very small and 

could yield inaccurate values. The main issue with this configuration is probably the 

assumption of zero correlation between the individual assets in combination with 

extreme market conditions during the test period which will make our estimated returns 

and volatilities quite inaccurate. Obviously there exists some market correlation, which 

probably is significant when all the underlying assets are traded on the same market as 

is the case in this portfolio. 

 

 

Figure 3 shows the outcomes when using the more sophisticated volatility estimator, the 

decay model introduced in section 5. 

FIGURE 3 

 
 

VaR95: 520 293 

VaR99: 597 078 

ES95: 566 484 

ES99: 633 516 

Mean return: -290 935 

Standard deviation: 153 556 

 

 

 

Using this calibration we get a pretty similar return distribution as when using the 

standard volatility estimator. What we can observe is a slight increase in the variance 
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and a slight increase in the mean return. The confidence intervals calculated as usual are 

for       (516 300, 526 280) and for       (586 110, 608 050).  

 

FIGURE 4 

 
VaR95 breaches: 22 

VaR99 breaches: 0 

ES95: 552 597 

ES99:  

Mean return: 460 595 

Standard deviation: 1 370 357 

 

 

 

Our comparison with the market returns actually yields the same results as with the 

standard volatility estimator. This suggests that the two models are quite equal and that 

something else is responsible for the difference between expected returns and market 

returns. While the main issues probably is correlation and extreme market conditions we 

will test the first one when using historical simulation. 
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Figure 5 shows the outcomes when simulating with the Historical Simulation method 

rather than the Monte Carlo Method. 

 

FIGURE 5 

 
VaR95: 516 652 

VaR99: 606 401 

ES95: 561 644 

ES99: 613 492 

Mean return: -96 658 

Standard deviation: 562 040 

 

The confidence intervals calculated as usual are for       (516 650, 517 650) and for 

      (606 400, 608 400). 

 

Using historical simulation, which includes correlation, we get a substantially larger 

variance in our portfolio. The mean return is less negative than with the previous 

configurations, while the other risk measures are quite similar. 
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FIGURE 6 

 
VaR95 breaches: 22 

VaR99 breaches: 0 

ES95: 552 597 

ES99:  

Mean return: 460 595 

Standard deviation: 1 370 357 

 

 

Once again we get the same values when comparing with the following market returns. 

This is of course because the three different configurations yielded similar risk 

measures, in combination with the positive returns that were observed during the test 

period. 

 

 

To understand the inaccuracy of our model we need to take a look at the market 

conditions. The graph below shows the movements of the index OMXS30 at the time 

we collected data for the estimators. 
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Compare this with the next graph, which shows the OMXS30 movements during the 

time interval used to determine the “real” returns. 

 
One can observe completely different returns and a much larger variance than in the 

data used to estimate the expected returns and variance. This is very likely the main 

reason that the models are quite inaccurate. 
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8.2 Portfolio 2 

 

The first figure shows the distribution when using the standard setup with equally 

weighted volatilities. The risk measures are presented in the same way as the other 

portfolio. 

FIGURE 8-1 

 

VaR95: 432 024 

VaR99: 554 381 

ES95: 508 619 

ES99: 626 900 

Mean return: -151 138 

Standard deviation: 166 464 

 

The confidence intervals are for       (424 540, 437 310) and for       (538 130, 

575 320). 

 

 

 

 



  

 27 

 

The figure below shows the “actual distribution” using returns observed in the following 

100 market days. These results are then compared with our estimated risk measures. 

FIGURE 8-2 

 

VaR95 breaches: 30 

VaR99 breaches: 22 

ES95: 914 903 

ES99: 1 064 691 

Mean return: -153 759 

Standard deviation: 624 835 

 

As with Portfolio 1 we observe a different behavior between our estimated distribution 

and the observed distribution. A difference is that this portfolio would not perform as 

well as Portfolio 1 and therefore the large variance of the observed returns would have 

an large impact on the     and    observations. Since the observed returns are more 

balanced for this portfolio, our model will underestimate both     and   . Observing 

the number of breaches confirms this (30 and 22 compared to the expected 5 and 1). 
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The following figure shows the estimated distribution using the decay volatility model. 

FIGURE 8-3 

 

VaR95: 410 137 

VaR99: 523 918 

ES95: 478 090 

ES99: 585 297 

Mean return: -147 693 

Standard deviation: 154 758 

 

The decay model gives a pretty similar distribution as the equally weighted volatility 

model. This model estimates the portfolio to be slightly less risky but the difference is 

very small. The confidence intervals are for       (403 750, 416 520) and for       

(503 970, 538 180). 
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This is confirmed in the comparison with observed returns presented in the figure 

below. 

 

FIGURE 8-4 

 

 

VaR95 breaches: 31 

VaR99 breaches: 24 

ES95: 899 053 

ES99: 1 020 611 

Mean return: -153 759 

Standard deviation: 624 835 

 

Because this model was quite similar to the original model the comparison yields 

similar results. The volatility and risk is underestimated and we once again observe 

more     breaches than expected. 
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Finally we are testing historical simulation. The results are presented below. 

FIGURE 8-5 

 

VaR95: 613 712 

VaR99: 833 398 

ES95: 788 870 

ES99: 1 142 412 

Mean return: -159 773 

Standard deviation: 273 000 

 

With this model, where correlation is incorporated, we get a greater variance of the 

returns. This results in a more risky portfolio with larger     and   . This is more in 

line with the observed returns presented in the figure below.  

The confidence intervals are for       (604 940, 620 990) and for       (833 400, 

857 830). 
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FIGURE 8-6 

 

VaR95 breaches: 19 

VaR99 breaches: 16 

ES95: 1 139 388 

ES99: 1 226 103 

Mean return: -153 759 

Standard deviation: 624 835 

 

The results yielded by the historical simulation are the most similar to the observed 

returns. The risk is still underestimated, since the observed variance is again greater and 

yields more extreme outcomes. We observe 19 Var95 breaches and 16 VaR99 breaches 

which is more than expected. The standard deviation observed is 624 835 compared to 

273 000 we estimated in our model.  
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9 Conclusions 

This study highlights the difficulties of estimating risk measures in extreme market 

conditions when there is a sudden shift in market behavior. There are two ways to solve 

this problem. First option is to improve the estimation method in some way to make the 

estimators represent future movements better. This was done in this study by 

introducing the decay method for variance estimation. This gives more accurate results 

if recent results are representative for future returns. Unfortunately in this scenario it 

was more of an issue of a sudden shift in market behavior right when we started the test. 

This is of course a very difficult situation to deal with if using historical events to 

predict the future. What you can do if you know that the market conditions are extreme 

is that you could try classifying the past time periods and only use data from those 

periods you consider similar to the current market conditions. Although this is very 

difficult and unpractical to implement since it requires subjective evaluation of market 

states. The other method for improving model-accuracy is to use implied volatilities. 

This is quite easy to implement since all you need is market data. The drawback is of 

course that you assume that the market is correctly valuated and if that is not the case 

your estimations will become inaccurate. 

Another reason for inaccurate estimations is the correlation. Mostly we assumed zero 

correlation for computation effectiveness, only when using historical simulation the 

correlations were incorporated in the simulations, which sometimes is quite inaccurate. 

The results also suggested¸ since the configuration with historical simulation was the 

most accurate, that there was indeed some correlation between the underlying assets.  

The inclusion of a proper correlation model and the introduction of implied volatility 

would probably the most interesting features to be implemented to the model, 

considering the market conditions and the portfolio structure with underlying assets in 

the same market. 

Also the backtesting method used can be quite inaccurate since we use static return and 

volatility estimations in our models, while when we observe future returns we assume 

these estimates to be constant. In reality this is unlikely the case, you would expect the 

market state to change a bit in 100 market days. The objective of the backtest was more 

to give a simple example of how well it predicted the risk in a point estimate. If one 

were to evaluate a model more thoroughly it is advised to use a more sophisticated 

backtesting method. 

As a final comment I would say that this study is a great example how     and   , 

estimated by historical estimation, are only accurate in a stable market state. In very 

volatile market states these risk measures will be inaccurate. This is of course a big 

issue since those are the times when risk management is essential. 
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