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Abstract

Game contingent claims (GCCs), as introduced by Kifer (2000), are a gen-
eralisation of American contingent claims where the writer has the opportu-
nity to terminate the contract, and must then pay the intrinsic option value
plus a penalty. In complete markets, GCCs are priced using no-arbitrage
arguments as the value of a zero-sum stochastic game of the type described
in Dynkin (1969). In incomplete markets, the neutral pricing approach of
Kallsen and Kühn (2004) can be used.

In Part I of this thesis, we introduce GCCs and their pricing, and also
cover some basics of mathematical finance.

In Part II, we present a new algorithm for valuing game contingent
claims. This algorithm generalises the least-squares Monte-Carlo method
for pricing American options of Longstaff and Schwartz (2001). Convergence
proofs are obtained, and the algorithm is tested against certain GCCs. A
more efficient algorithm is derived from the first one using the computational
complexity analysis technique of Chen and Shen (2003).

The algorithms were found to give good results with reasonable time
requirements. Reference implementations of both algorithms are available
for download from the author’s Github page https://github.com/del/
Game-option-valuation-library.

Keywords: Game contingent claims, game options, Israeli options, Dynkin
games, zero-sum games, non-zero-sum games, Monte-Carlo simulation, pric-
ing
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Chapter 1

Introduction

Financial contracts similar to options have existed since ancient times, and
stock options were traded on Dutch and English markets as early as the
1600’s. Options trading in the modern sense started in 1973, when the
Chicago Board Options Exchange (CBOE) was established, and became
the first exchange to list standardised options.

Since then, the trade in financial derivatives has grown to become a
massive market, with a capitalisation several times larger than the world’s
gross domestic product (GDP). The outstanding value of over-the-counter
financial derivatives alone exceeded $590 billion1 in 20082, to compare with
a world GDP of $55 billion3.

Due to their practical importance, the fair pricing of options and other
derivatives has been the subject of a large body of research, and there are
many practitioners, so called quants, in the field of quantitative finance.

While European and American-style options are commonly priced ac-
cording to models that ignore counterparty risk, in reality, any financial
contract has some implicit possibility of premature termination by either of
the contract parties, which may then have to pay a penalty for the breach
of contract. There is also the risk of one party defaulting on the contract
due to insolvency. Finally, some financial instruments already exist where
a buyback or transformation option is explicitly stated, as is the case with
callable puts and convertible bonds.

Such financial contracts were formalised in Kifer (2000), who introduced
the concept of game contingent claims (GCCs), also known as game options
or Israeli options. In a game contingent claim, the holder has the opportunity
to exercise his option at any time until a fixed maturity, whilst the writer
has the opportunity to terminate the option at any time up until maturity.
However, if the writer terminates the claim, he must pay to the holder the

1American: trillions, i.e. 1 billion = 1012
2Data from the Bank for International Settlements, http://www.bis.org/.
3According to the International Monetary Fund (IMF), http://www.imf.org/.
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exercise value of the claim, plus an extra penalty.
GCCs can be seen as a generalisation of American contingent claims, and

mathematically they are treated using the theory of optimal stopping which
also applies to ACCs. However, due to the two-sided nature of the contracts,
the optimal stopping problem is in the form of an optimal stopping game of
the type described by Dynkin (1969).

Game contingent claims is a new field of study, and little work has been
published on computational methods for them, even though some interest-
ing findings have been made on the theory of such claims. This thesis focuses
on the algorithmic aspect, but Part I goes over some basic theory of math-
ematical finance, and introduces GCCs and their pricing.

In Chapter 2, a brief refresher is given of the concepts of mathematical
finance dealing with options that are of relevance here. This chapters also
serves to introduce the terminology and notation used in latter chapters.

In Chapter 3, Dynkin games are discussed, and then game contingent
claims are introduced, and the original pricing formula derived in Kifer
(2000) is presented.

While theory is important, a derivatives trader or financial institution
has as their primary concern the practical problem of pricing derivatives. The
valuation of realistic game contingent claims requires the use of numerical
methods.

Part II of this thesis is concerned with these numerical methods. One pre-
viously suggested method is based on simulating a judiciously chosen mar-
tingale, as described by Kühn, Kyprianou, and van Schaik (2007). Taking a
different approach, in this thesis we develop a Monte-Carlo algorithm, based
on an algorithm for American options that was introduced by Longstaff and
Schwartz (2001), and further analysed by Clément, Lamberton, and Protter
(2002).

In Chapter 4, the algorithm is described and convergence proofs are
obtained. Chapter 5 investigates an improvement on the algorithm, using the
techniques of Chen and Shen (2003), and in Chapter 7, the two algorithms
are tested against some realistic GCCs.

The algorithm we derive has several good qualities. It is conceptually
simple to understand, works for any Lévy model for underlyings, can deal
with stochastic interest rates, and can be parallelised to run on distributed
hardware. In Chapter 6, we explore the possibility of adapting the algorithm
to options on multiple underlyings and path-dependent options.
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Part I

The theory of game
contingent claims
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Chapter 2

Financial markets

2.1 Financial market models

2.1.1 Risk-free rates

When making financial decisions, especially risky ones such as investing in
stock or options, it is useful to not only consider the possible gains to be
acquired from an investment itself, but also to weigh them against those
that could be made by investing in other opportunities. In economics and
finance, we call this the opportunity cost of an investment.

One particularly relevant opportunity cost when considering a risky in-
vestment is that of instead investing the money in a safe way, such as buying
government bonds. Since the government is guaranteeing the bond, and has
the ability to raise taxes to collect funds if needed, these bonds are generally
considered a riskless investment1, and the interest one can earn on them is
known as the risk-free rate.

Another characteristic of the risk-free rate is that it is known in advance.
While no one can tell you what the value of a share will be in a year’s time,
it is possible to buy a 1-year government bond which will pay a fixed rate,
known at the date of purchase.

Formally, we model the risk-free investment with a deterministic process
(Bt)t∈[0,T ], where

Bt = B0e
rtt, (2.1)

with r being the risk-free rate. We assume either that rt = r is constant, or
that (rt)t∈[0,T ] is known in advance.

The fact that rt is known is what allows us to simply consider the dis-
counted processes described shortly, and not have to worry about the ran-
domness of interest rates.

1Although holders of Greek government bonds might beg to differ.
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2.1.2 Single security financial markets
We consider now a market consisting of the risk-free asset (Bt), the bond,
and a single process (St), representing the price of a stock.

Note, however, that there are many other markets that can be modelled
this way, where the process (St) could represent the price of a commodity
such as pork bellies, the price of electricity in a spot market, a weather
variable, etc. In general we can call this process the underlying, a name that
makes much more sense when contingent claims are in the picture.

The stock process can be modelled with many kinds of underlying dy-
namics. Common choices are the log-normal processes of the Black-Scholes
model, which is described in Black and Scholes (1973), or jump-diffusion
processes such as those used in the convertible bond examples of Section 7.2.

As mentioned in Section 2.1.1, we’re usually interested in the excess of
return over the risk-free rate, the premium we can earn from the risk we
take on in an investment, and so to simplify notation and calculations, it is
helpful to introduce the discounted stock process.
Definition 2.1. Let (St)t∈[0,T ] be a stochastic process. Then the process
(S̃t)t∈[0,T ], defined by

S̃t =
St
Bt
, (2.2)

is known as the discounted form of (St)t∈[0,T ].

Remark 2.2. Note that the discounted risk-free process (B̃t)t∈[0,T ] has B̃t = 1
for all t ∈ [0, T ].

2.1.3 Markets with multiple securities
An obvious extension of the single-security financial market model is one
with multiple securities, each modelled by a stochastic process (Si

t).
Definition 2.3. The multiple security financial market model has a risk-free
process (Bt)t∈[0,T ] and m risky securities (S1

t )t∈[0,T ], . . . , (S
m
t )t∈[0,T ].

It is handy to name the risk-free process (S0
t ) instead, and to gather all

of these processes together in a single stochastic process which takes vector
values of dimension m+ 1.
Definition 2.4. The multiple security financial market can also be modelled
as a vector-valued process (St) defined by

St =
(
S0
t , S

1
t , S

2
t , . . . , S

m
t

)
, ∀t ∈ [0, T ], (2.3)

where S0
t = B0

t , the risk-free security.
The discounted process (S̃t) corresponding to this is given by

S̃t =
1

Bt

(
S0
t , . . . , S

m
t

)
=
(
1, S̃1

t , . . . , S̃
m
t

)
. (2.4)
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2.2 Contingent claims
Contingent claims are financial instruments where payoffs between two (or
more) parties are regulated depending on some form of underlying process,
hence the word contingent in the name. They are also known as financial
derivatives.

Well known examples of derivatives are futures contracts on different
commodities such as rice, pork bellies, orange juice and cattle; interest rate
swaps and stock options.

We are here mostly interested in stock options, and more generally,
option-like instruments on some form of underlying, which will be assumed
to be a stock, but could in general be any time series, e.g. temperatures as
used in weather derivatives.

2.2.1 European options
A european option is a contract between an issuer, A, and a buyer, B, that
gives B the right, but not obligation, to either sell or buy shares at a pre-
determined strike price on a given expiration date (also called the option’s
maturity).

If B has the right to buy the shares, the contract is a call option, whereas
it is known as a put option if B has the right to sell shares.

The payoff of such a contract is easy to compute. Assume that B pur-
chases a call option from A, allowing him to purchase a share at the strike
price K upon expiration. Let the price of shares on the stock exchange on
expiration be ST . Assuming that ST > K, B can make a profit by exercis-
ing his right to buy shares at the lower price K, and then immediately sell
them on the market at the price ST , netting a profit of ST −K. If, however,
ST < K, then B will simply not exercise his option (since there is no use in
purchasing above market price), and his payoff is 0.

Summing this up, the payoff YT from the call option with strike price K
when the expiration date market price of the underlying is S, is given by

YT = max(ST −K, 0) = (ST −K)+. (2.5)

For a put option, which gives B the right to sell shares at the price
K, the situation is the other way around. If ST > K, it would be more
beneficial to sell at the market price, so B will not exercise his option, and
the payoff YT = 0. If ST < K, then B can buy shares at the market for ST
and immediately resell them at the price K by exercising his option, thus
making a profit of YT = K − ST . The payoff, thus, is given by

YT = max(K − ST , 0) = (K − ST )
+. (2.6)

The characteristic of a European option is that the option to exercise only
exists on the expiration time T . Generalising to other forms of underlyings,
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but retaining this exercise characteristics, we can talk of the larger class of
European contingent claims, or ECCs for short.

2.2.2 American options
An American option is a generalisation of the European counterpart, with
the difference lying in that an American option can be exercised not just on
the expiration time T , but at any point up to that time, i.e. for all t < T .
The payoff process for an American call option, then, is given by

Yt = (St −K)+, (2.7)

and for an American put option, it is

Yt = (K − St)
+. (2.8)

Again, we can generalise to other forms of underlyings, and will then
speak of American contingent claims or ACCs.

Bermudan options

Bermudan options are a type of option that are in between European and
American, in the sense that exercise is possible on a set number of discrete
time points up to maturity. When using computational methods for valuing
American options, one must always consider a discretisation in time, and so,
formally, in those situations the options being studied are actually Bermudan
approximations to American options.

2.2.3 Pricing options
Since an option gives its holder exercisable rights, but comes with no obliga-
tions, it is clear that an option must come at a price, which the buyer pays
to the issuer upon entering into the option agreement.

Determining what price should be paid for options and other derivatives
is an important task for mathematical finance, and is the purpose of the
algorithms developed in Part II of this work.

If it were known upon entering into the option agreement what the stock
price would be on the expiration date, and each point up to it, it would be
possible to say exactly what the holder of an option stands to make, and the
price could reasonably be set to this. However, since this is not possible, the
closest we can get is the expected value of the option’s payoff process (Yt).

Investors, however, expect to be compensated for taking on risk, and so
are generally not willing to pay the full expected value of the option payoff,
but some amount less than that. The specific amount would generally be
expected to be a function of each investor’s risk aversion, which could be

8



codified in a utility function. This would lead to each investor assigning his
own price to an option, which is unsatisfying.

It turns out that under certain conditions, it is possible to determine a
unique price for an option. The idea is to consider a situation where we can
show that there is only a single price that does not lead to arbitrage, risk-
free winnings. In such a situation, the market forces of supply and demand
would push the option to the arbitrage-free price.

Consider a financial market consisting of a risk-free investment, single
stock and a call option on that stock. At time t = 0, the stock has the price
S0, and at the end of the time period, t = 1, the stock has either gone up
to uS0, where u > 1, or gone down to dS0, where d < 1. During this period,
the risk-free investment goes up with the interest r > 0. The price of a call
option at time t = 0 is Y0, and the strike price is K, such that uS0 > K and
dS0 < K.

An investor takes on a portfolio consisting of selling 1 call option, and
buying ∆ shares. This portfolio costs ∆S0 − Y0.

At time t = 1, the portfolio consisting of ∆ shares and one sold call
option can be in one of two situations:

(i) The stock went up to uS0. The shares are now worth ∆uS0, and the
holder of the option will exercise, since uS0 > K. The investor must
sell one share at the price K, and is left with ∆uS0 −K.

(ii) The stock went down to dS0. The shares are worth ∆dS0, and the
holder of the option will not exercise it, since dS0 < K. The investor
thus has ∆dS0 in shares.

We can determine ∆ in such a way that situation (i) and (ii) leave the
investor in the same financial position. This happens when

∆ =
K

(u− d)S0
. (2.9)

Now this portfolio has no uncertainty in it anymore, since we know that
whichever way the stock goes, we have the same payoff. Thus, the price of
this portfolio at t = 0 must simply be the amount of money that can be
invested in the risk-free investment and which will grow until t = 1 to match
the value of the investors portfolio at that point.

If it were anything else, it would be possible to sell the cheaper portfolio
and buy the more expensive one, making a risk-free profit, called arbitrage,
on the transaction. The existence of such a deal would lead to many investors
wanting to purchase the cheaper portfolio, and selling the more expensive
one. Through market forces, the cheaper portfolio would then increase in
price, and the more expensive would decrease, until they were both priced
equally and the arbitrage opportunity had ceased to be.
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We are thus justified in assuming that arbitrage opportunities do not
exist, for if they do, they will certainly not persist.

Thus, (1 + r) times the value of the portfolio at t = 0 is equal to the
value of the portfolio at t = 1, or

(1 + r)(∆S0 − Y0) = ∆dS0. (2.10)

Inserting (2.9) and solving for Y0, we get

Y0 =
1 + r − d

(1 + r)(u− d)
K. (2.11)

The situation depicted above is simplistic, but by choosing u and d ju-
diciously, and moving to a lattice of many time steps, where this pricing
equation is carried out repeatedly, starting at the last time point and work-
ing back towards t = 0, it is possible to get good valuations for options. The
resulting model is called the Cox-Ross-Rubinstein model (Cox, Ross, and
Rubinstein, 1979).

It can also be shown that as the size of the time steps ∆t → 0, the
Cox-Ross-Rubinstein model converges to the famous continuous-time Black-
Scholes model described in Black and Scholes (1973).

2.2.4 Complete and incomplete markets
The no-arbitrage pricing strategy used in Section 2.2.3 depends on being able
to create a portfolio of securities that replicate the contingent claim that is
being priced. If the financial market is such that all contingent claims can
be created as portfolios of securities, then the market is called complete.

Conversely, if there are contingent claims that do not have replicating
portfolios, for instance if the market has significant transaction costs or other
friction, we say that the market is incomplete.
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Chapter 3

Game contingent claims

3.1 Dynkin games
Dynkin games is a class of zero-sum optimal stopping games which were
introduced in Dynkin (1969).1

Consider a game played between two players, A and B, where each day
A and B must let each other know if they want to stop on that day, or
continue the game. When either player chooses to stop the game, B will
receive some amount of money from A. The specific amount B receives is
governed by three stochastic processes: one for the amount B receives if A
stops the game first, one for the amount that B receives if B stops the game
first, and one for the amount that B receives if both players choose to stop
on the same day.

Clearly, in such a game, B will attempt to maximise the amount he
receives, while A attempts to minimise the payout.

Mathematically, we consider payoff processes which are generated from
some underlying Markov process, i.e. a process that is stochastically static,
and let A and B choose stopping times to decide when to end the game.

Definition 3.1. Let (Ω,F ,P) be a probability space equipped with a fil-
tration (Ft)t∈[0,T ]. The Dynkin game is defined as a game played between
players A and B, where A chooses a stopping time σ ∈ T0,T and B a stopping
time τ ∈ T0,T . At the time σ ∧ τ , A receives the payoff

X(Sσ)1{σ<τ} + Y (Sτ )1{τ <σ} + Z(Sσ)1{σ= τ}, (3.1)

where the indicator function 1A satisfies

1A =

{
1, if ω ∈ A,

0, if ω /∈ A.
(3.2)

1Dynkin games have been generalised to a nonzero-sum version as well, but it is not of
interest here.
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The expected payoff to B is given by

Ms(σ, τ) = Es

[
X(Sσ)1{σ<τ} + Y (Sτ )1{τ <σ} + Z(Sσ)1{σ= τ}

]
, (3.3)

where X ≥ Z ≥ Y are Borel functions and S is a strong Markov process
which begins in S0 = s.

Player A strives to minimise this payoff, while B strives to maximise it.

Remark 3.2. A Dynkin game can also have an infinite horizon T = ∞.
Since B receives a payoff from A, it is reasonable that B must pay A

some amount of money to entice him to play. Following Ekström and Peskir
(2008), we can find the value of a Dynkin game using the notions of Nash
and Stackelberg equilibria.

Assuming that both A and B are playing the game in the optimal way,
B will be trying to find the stopping time that gives him the highest payoff,
under the condition that A has found a stopping time that gives the lowest
payout. Conversely, A must assume that B has found an optimal stopping
time that gives the highest payoff, and A must then try to find a stopping
time that minimises the payoff under those conditions. The strategies of A
and B give rise to the upper and lower values of the Dynkin game.

Definition 3.3. The upper and lower values of a Dynkin game are defined
respectively by

V ⋆(s)
def
= ess inf

τ
ess sup

σ
Ms(σ, τ),

V⋆(s)
def
= ess sup

σ
ess inf

τ
Ms(σ, τ).

(3.4)

Definition 3.4. If there exists optimal strategies for A and B that are
optimal even when the other player is not cooperating, we have a Nash
equilibrium. Loosely defined, the Nash equilibrium is a set of strategies such
that no player can increase his payoff by changing his strategy, if all other
players’ strategies remain unchanged. In other words, the Nash equilibrium
is a saddle point in the payoff function of each player.

Remark 3.5. Due to the fact that a Nash equilibrium is one where no player
can better his payoff while every other player holds his strategy constant,
Nash equilibria are also known as non-cooperative equilibria. It might in
general be possible for players to achieve higher payoffs through cooperation.

Definition 3.6. If a Nash equilibrium does exist in the Dynkin game, then
V ⋆(s) must be equal to V⋆(s), due to the fact that the σ and τ that the
players find are independent of each other. If this holds, then we are justified
in calling it the unique value of the game, and define V (s)

def
= V ⋆(s) = V⋆(s).

This value of the game is the fair price that B should pay to A in order
to get him to play.

12



Remark 3.7. If there exist stopping times σ⋆, τ⋆ such that

Ms(σ, τ
⋆) ≤Ms(σ

⋆, τ⋆) ≤Ms(σ
⋆, τ⋆), (3.5)

for all σ, τ ∈ T[0,T ] and for all s, then a Nash equilibrium holds.

Remark 3.8. The special case of a Nash equilibrium from Definition 3.6 is
called a Stackelberg equilibrium.

We can now present the theorem that states that the Stackelberg equi-
librium and unique value of the game exists. In a slightly more restricted
form, this was proven already in Dynkin (1969), but the version presented
here is due to Ekström and Peskir (2008).

Theorem 3.9. Consider the Dynkin game in Definition 3.1.

(i) If S is a càdlàg process, the Stackelberg equilibrium of Definition 3.6
holds, with V (s) = V ⋆(s) = V⋆(s) being a measurable function.

(ii) If S is a càdlàg and quasi-left-continuous process, the Nash equilibrium
of Remark 3.7 holds, with

σ⋆ = inf {t : St ∈ {V = X}} , τ⋆ = inf {t : St ∈ {V = Y }} . (3.6)

Proof. See Ekström and Peskir (2008), Theorem 2.1.

For more on the general theory of stochastic processes, including optimal
stopping, refer to Nikeghbali (2006).

3.2 Game options
A game contingent claim (GCC), introduced in Kifer (2000), is a derivative
contract between a seller A, and a buyer B. The claim in question is fre-
quently an option, and we will then call the GCC a game option2, and the
seller A will be known as the writer, whilst the buyer B is the holder. Sim-
ilarly to an American contingent claim (ACC), the buyer can exercise the
contract at any time until a final timepoint called the maturity, but unlike
an ACC, in the GCC case the seller too can terminate the contract, at a
penalty.

More precisely, consider a financial market as defined in Section 2.1. Let
(Xt)t∈[0,T ] and (Yt)t∈[0,T ] be adapted càdlàg processes, with E |Xt|2 <∞ and
E |Yt|2 <∞ for all t ∈ [0, T ]. Further, let Xt ≥ Yt for all t ∈ [0, T ]. These
processes are considered to be the payoff processes such that if A terminates

2Sometimes also known as Israeli options, as suggested by Kifer.
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the contract at time t, he pays to B the sum Xt, whilst if B exercises at time
t, he receives from A the sum Yt.3

If A chooses to terminate at the same time t as B chooses to exercise, B
receives Yt, i.e. this case is considered to be equal to exercise.4

In other words, assuming that A chooses to terminate the option at a
stopping time σ ∈ [0, T ], and B exercises at τ ∈ [0, T ], A pays to B an
amount R(σ, τ) as defined below.

Definition 3.10. The payoff of a GCC that B receives from A is given by

R(σ, τ)
def
= Xσ1{σ<τ} + Yτ1{τ ≤σ}. (3.7)

Remark 3.11. Note that this is a Dynkin game, as described in Section 3.1.
Assuming that such a price exist, we need a symbol for the fair price of

the GCC.

Definition 3.12. The fair price that B must pay to A at time t = 0 for
a GCC is called V . The price at any time t in the future is called Vt. Note
that V def

= V0.

Remark 3.13. Note that the fair price of Definition 3.12 hasn’t been fully
specified. The notion of a fair price used depends on the situation. The
specific definition used depends on the financial market model, but is usually
the lowest price of a hedging strategy, as in arbitrage-free pricing.

If a hedge does not exist, it is under certain circumstances still possible
to find a unique fair price for the GCC. Kallsen and Kühn (2004) describe
the neutral pricing approach. They assume a market wherein participants
are expected utility maximisers in a market with balanced derivative supply
and demand, and replace the equivalent martingale measure of a complete
market with a neutral pricing measure. It is shown that under this measure,
the fair price of a GCC corresponds again to the value of a Dynkin game.

In this work, we assume that the fair price is the value of the Dynkin
game.

In many real situations, a party to a financial contract can get out of his
contractual obligation, but will usually then need to pay a penalty for it.
The difference between the payoff when B exercises the option and when A
terminates it can be considered a penalty that A must pay in order to get
out of a contract. This means that GCCs can be used to model contracts
where A should not be able to terminate the contract, but realistically can.

3It is possible to generalise this to include a process (Wt)t∈[0,T ], Xt ≥ Wt ≥ Yt ≥ 0,
∀t ∈ [0, T ], with WT = YT , such that the payoff is Wt if termination and exercise coincide.
This, however, does not change the price of the GCC, see Kifer (2000), Remark 2.2.

4The GCC could also be defined such that the payoff when exercise and termination
coincide is Xt. If XT = YT , this does not change the price of the GCC (Kifer, 2000,
Remark 2.2).
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Remark 3.14. Define (δt)t∈[0,T ] by δt = Xt − Yt. Note that δt ≥ 0 since
Xt ≥ Yt. The process (δt) represents the penalty that A must pay B for
terminating the contract. This way, we can write R(σ, τ) = Yσ∧τ +δσ1{σ<τ},
where a ∧ b = min(a, b).

Game options are an extension of American options, which in turn are
extensions of European options. The following remarks show how to consider
ACCs and ECCs as part of the GCC framework.
Remark 3.15. If A is not allowed to terminate the claim at any time before
maturity, the GCC becomes an ACC. Kifer (2000) points out that the ACC
case can be studied as a GCC where it is never optimal for the writer to
terminate. This can be acheived, for instance, when δ > sup0≤t≤T E [Yt].
Remark 3.16. Kifer (2000) remarks that if B is not allowed to exercise until
maturity, the GCC becomes a European contingent claim. This case can be
considered as a GCC if Yt = 0 for t < T and YT > 0.

Since the writer of a game option has a possibility to terminate the
option, which does not exist for the writer of American options, the value of
a GCC must be lower or equal to that of an ACC. How much lower depends
on the penalty the writer must pay to terminate the contract. If this penalty
becomes zero, then either the holder will exercise the option (if he believes
the value in the future will be less than now), or the writer will terminate it
(if he believes the value in the future will be higher than now), and so the
option will be stopped immediately.
Remark 3.17. If δ0 = 0, it is optimal for either writer or holder to stop
immediately, and the price of the GCC must be Y0. As pointed out in Re-
mark 3.15, if δ is big enough, the price of the GCC is equal to that of an
ACC. Together, this means that V is an increasing function of the penalty,
with Y0 ≤ V ≤ sup0≤t≤T E [Yt].

3.3 Pricing of GCCs
A number of results have been derived regarding the pricing and hedging
of game contingent claims. In this section we will only cover the pricing
of GCCs in complete markets by following the arguments in Kifer (2000),
where the unique price of a GCC is derived as the value of a Dynkin game.

For the interested reader, there are a number of other papers that make
for a good start in reading up on GCCs.

Kunita and Seko (2004) study fixed-penalty game call and put options
in a complete market, and find exercise regions for writer and holder. They
show that the writer of a game call option either terminates the claim when
the price is equal to the strike price, or not at all. If the underlying pays
no dividend, the holder never exercises; if it does pay a dividend, the holder
will exercise whenever the price hits a non-increasing exercise boundary.
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For game put options, the results are similar, although the holder’s exercise
region is never empty.

Kallsen and Kühn (2004) describe the neutral pricing approach. They
assume an incomplete market wherein participants are expected utility max-
imisers in a market with balanced derivative supply and demand, and replace
the equivalent martingale measure of a complete market with a neutral pric-
ing measure. It is shown that under this measure, the fair price of a GCC
corresponds again to the value of a Dynkin game.

In Kallsen and Kühn (2004), the neutral pricing approach is concerned
with a financial market with many speculators in game options. In such a
market, similarly to the case with ACCs, it is never optimal to exercise a
GCC before maturity; the holder should instead opt to sell it. If instead a
market with a single writer and a single holder is studied, the opportunity to
sell the claim disappears, and the game aspect of the game option surfaces.
Kühn (2004) studies this case from a utility maximisation perspective, where
the trading possibilities in the underlying are explicitly considered.

It is known that for both American put options and Russian options,
the finite-horizon problem (t ∈ [0, T ]) is harder than the infinite-horizon
one, where t takes values in [0,∞). For the latter case, both types of options
have closed-form solutions in a Black-Scholes framework, see for instance
McKean (1965); Shepp and Shiryaev (1994). Similarly, in the case of game
put options and game Russian options, there are closed-form solutions for
the perpetual case, which are derived in Kyprianou (2004).

Getting back to pricing GCCs in complete markets, Kifer (2000) consid-
ers the continuous time and discrete time cases, and also the special case of
the Cox-Ross-Rubinstein model.

3.3.1 Continuous time
Assume the financial market model from Section 2.1 with the underlying
driven by the Black-Scholes model mentioned in Section 2.2.3. Since the
market is complete, there exists a unique risk-neutral measure Q, and all
expectation values here are meant to be taken with respect to Q.
Remark 3.18. Note that the condition E |Xt|2 <∞, ∀t ∈ [0, T ], which is part
of the definition of GCCs used in Section 3.2, is quite strong. The results of
this section still hold if this condition is weakened to

E

[
sup

t∈[0,T ]
Xt

]
<∞. (3.8)

The seller A of the GCC will seek to minimise his liability to the buyer B
by choosing a stopping time σ such that E [R(σ, τ)] is minimised. Conversely,
the buyer is attempting to choose a stopping time τ that maximises this
value. Since the players cannot foresee the future, it must hold σ, τ ∈ T0,T .
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This situation leads to a zero-sum Dynkin game. As proven in Dynkin (1969),
such a game has a unique value in the sense that

ess inf
σ∈Tt,T

ess sup
τ∈Tt,T

E [R(σ, τ)|Ft] = ess sup
τ∈Tt,T

ess inf
σ∈Tt,T

E [R(σ, τ)|Ft] a.s. (3.9)

Kifer (2000) shows that the value of the Dynkin game is the unique
no-arbitrage price of the GCC using hedging arguments.
Definition 3.19. A hedge against a GCC is a pair (σ, π) of a stopping time
σ ∈ T0,T and a self-financing portfolio strategy π, such that the value of the
portfolio at time σ∧ t is higher than R(σ, t) almost surely for each t ∈ [0, T ].

As is typical in option pricing theory, the fair price of a GCC is the
infimum of positive prices such that there exists a hedge against the GCC
with the price as initial endowment.
Definition 3.20. The value process of a GCC is the càdlàg process (Vt)t∈[0,T ]

such that with probability one,
Vt = ess inf

σ∈Tt,T
ess sup
τ∈Tt,T

E [R(σ, τ)|Ft]

= ess sup
τ∈Tt,T

ess inf
σ∈Tt,T

E [R(σ, τ)|Ft] .
(3.10)

Theorem 3.21. The fair price of a GCC is given by V def
= V0. Furthermore,

for each t ∈ [0, T ], the stopping times
σ⋆t = inf {s ≥ t : Xs ≤ Vs} ∧ T,
τ⋆t = inf {s ≥ t : Ys ≥ Vs} ,

(3.11)

are the unique optimal stopping strategies for the writer and holder, respec-
tively, and it holds that

Vt = E [R(σ⋆t , τ
⋆
t )|Ft] a.s. (3.12)

Lastly, there exists a self-financing portfolio strategy π⋆ such that (σ⋆0, π
⋆)

is a hedge against the GCC with initial endowment V0, and this strategy is
almost surely unique up to the time σ⋆0 ∧ τ⋆0 .
Proof. See Kifer (2000), Theorem 3.1.

The results also hold for the perpetual contingent claim case.
Theorem 3.22. Let the conditions of Theorem 3.21 be satisfied with T = ∞,
in particular the condition in Remark 3.18.

Then the fair price of the perpetual GCC is given by V0, where Vt is
defined as

Vt = ess inf
σ∈Tt,∞

ess sup
τ∈Tt,∞

E [R(σ, τ)|Ft]

= ess sup
τ∈Tt,∞

ess inf
σ∈Tt,∞

E [R(σ, τ)|Ft] .
(3.13)

Proof. See Kifer (2000), Proposition 3.3.
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3.3.2 Discrete time
General case

In general, it is not possible to derive closed-form solutions for the price of a
GCC, and so numerical methods become necessary. The foundation of these
methods is to approximate the continuous (American) exercise property with
a discrete one (Bermudan), as described in Section 2.2.2.

Definition 3.23. T (n)
k,T is the subset of Tk,T of stopping times taking values

jn−1T for j = k, k + 1, . . . , n. The value of the discrete Dynkin game when
stopping is only allowed in T (n)

k,T is defined by

V
(n)
k = ess inf

σ∈T (n)
k,T

ess sup
τ∈T (n)

k,T

E [R(σ, τ)|Fkn−1T ]

= ess sup
τ∈T (n)

k,T

ess inf
σ∈T (n)

k,T

E [R(σ, τ)|Fkn−1T ] .
(3.14)

Remark 3.24. The discrete Dynkin game value satisfies the relation

V
(n)
k = min

(
Xkn−1T ,max

(
Ykn−1T ,E

[
V

(n)
k+1

∣∣∣Fkn−1T

]))
, (3.15)

which makes it possible to calculate the fair price approximation V
(n)
0 .

Of course, for this to be useful, the approximation must converge to the
correct fair price, which the following theorem states.

Theorem 3.25. The value of the discrete Dynkin game of Definition 3.23
converges to the value of the continuous Dynkin game in Definition 3.20 as
n goes to infinity. In other words,

V = V0 = lim
n→∞

V
(n)
0 . (3.16)

Proof. Refer to Kifer (2000), Proposition 3.2.

GCCs in Cox-Ross-Rubinstein’s model

Consider the discrete financial market of Section 2.1 with the underlying
driven by the Cox-Ross-Rubinstein model described in Section 2.2.3. Since
the market model is complete, there exists an equivalent martingale measure
Q = {p⋆, 1− p⋆}L, given by

p⋆ =
r − d

u− d
. (3.17)

The expectations below are taken with respect to this measure.
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Definition 3.26. The value process of a GCC, (Vj)j=0,...,L, is given by

Vj = min
σ∈Tj,L

max
τ∈Tj,L

E [R(σ, τ)|Fj ]

= max
σ∈Tj,L

min
τ∈Tj,L

E [R(σ, τ)|Fj ] .
(3.18)

Lemma 3.27. The value process of the GCC can also be derived recursively
from the dynamic programming principle{

VL = YL,

Vj = min (Xj ,max (Yj ,E [Vj+1|Fj ])) ,
(3.19)

where j = 0, . . . , L− 1.

Theorem 3.28. The fair price of a GCC is given by V0 from Definition 3.26.
Furthermore, for each j = 0, . . . , L, the stopping times

σ⋆j = min{k ≥ j : Xk = Vk} ∧ L,
τ⋆j = min{k ≥ j : Yk = Vk},

(3.20)

are in Tj,L, and satisfy

E
[
R(σ⋆j , τ)

∣∣Fj

]
≤ Vj ≤ E

[
R(σ, τ⋆j )

∣∣Fj

]
, (3.21)

for any σ, τ ∈ Tj,L.
Finally, there exists a self-financing portfolio strategy π⋆ such that (σ⋆0, π⋆)

is a hedge against the GCC with initial capital V0, and this strategy is almost
surely unique up to the time σ⋆0 ∧ τ⋆0 .

Proof. See Kifer (2000), Theorem 2.1.
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Part II

Numerical methods and
applications
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Chapter 4

Algorithm 1: A least-squares
Monte-Carlo method

Game contingent claims generalise American contingent claims, and numer-
ical methods for pricing them encounter the same difficulties as methods
for ACCs, plus a few complications of their own. When dealing with claims
of American or game type, one must solve an optimal stopping problem.
Diffusion models for optimal stopping are difficult to solve using classical
PDE methods such as finite difference methods. To remedy this problem,
Monte-Carlo methods can be employed. The main difficulty encountered
when applying these methods to the optimal stopping problem is the eval-
uation of conditional expectations.

A secondary difficulty in applying Monte-Carlo methods to American
option pricing is that the exercise characteristics of an American option are
continuous, but a computer can handle only discrete cases. The standard way
of approaching the numerical valuation of American options is to approxi-
mate the continously exercisable option by one which is exercisable only at
certain discrete times. An option with such exercise characteristics is called
Bermudan, and the convergence of Bermudan option prices to American has
been shown, for instance in Lamberton (2002).1

For pricing American options, Longstaff and Schwartz (2001) developed
a Monte-Carlo algorithm which addresses the problem of evaluating condi-
tional expectations by regressing them on a finite number of functions of
the underlying. This method has earned widespread adoption among practi-
tioners due to being simple to implement and efficient for high-dimensional
problems. It is also possible to apply parallel computing techniques to it by
using a singular value decomposition method to perform the least-squares
regression, as described by Choudhury, King, Kumar, and Sabharwal (2008).

Owing to being a Monte-Carlo method, the Longstaff and Schwartz algo-
rithm can also handle some path-dependence in the payoff functions. This is

1For the corresponding convergence result for GCCs, see Kifer (2000), Proposition 3.2.
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limited, however, by the requirement that the underlying is a Markov chain.
The convergence of Longstaff and Schwartz’s algorithm, along with certain
rate of convergence results, was proven by Clément, Lamberton, and Protter
(2002).

In this chapter, we will describe an algorithm for pricing game contin-
gent claims which is essentially an extension of the algorithm in Longstaff
and Schwartz (2001), and prove the convergence using methods inspired by
Clément et al. (2002). However, due to the two actors involved in the op-
timal stopping problem for a game option, the convergence proofs become
quite a bit more cumbersome than in Clément et al. (2002).

4.1 Description of Algorithm 1
As discussed, we will study the discrete optimal stopping problem where the
GCC is exercisable and cancellable at discrete times {0, . . . , L} only.

Consider a probability space (Ω,F ,P) with filtration (Fj)j=0,...,L. The
underlying of the GCC is an adapted Markov chain (Sj)j=0,...,L with state
space (E, E). The discounted2 payoff processes (Xj)j=0,...,L and (Yj)j=0,...,L

are adapted, with E |Xj |2 <∞, E |Yj |2 <∞ for j = 0, . . . , L.
Recall that the return, representing the payoff for the buyer of the GCC,

is defined as R(σ, τ) = Xσ1{σ<τ}+Yτ1{τ ≤σ}, where the stopping times σ, τ
are the chosen stopping strategies of the seller and buyer, respectively.

We are looking for the present value of the GCC, given by

V0 = ess inf
τ∈T0,L

ess sup
σ∈T0,L

E [R(σ, τ)] , (4.1)

where Tj,L is the set of all stopping times with values in {j, . . . , L}.
To obtain this value, one can use the dynamic programming principle

to calculate the value for each time j = 0, . . . , L, starting at L and working
backwards. The value at time j is given by

Vj = ess inf
τ∈Tj,L

ess sup
σ∈Tj,L

E [R(σ, τ)|Fj ] , (4.2)

and the dynamic programming principle is{
VL = YL,

Vj = min
(
Xj ,max (Yj ,E [Vj+1|Fj ])

)
, j = 0, . . . , L− 1.

(4.3)

Introducing the stopping times

σj = min {k ≥ j : Xk = Vk} ∧ L,
τj = min {k ≥ j : Yk = Vk} ,

(4.4)

2The proofs assume a constant interest rate for simplicity, but hold for any adapted
interest rate, i.e. if rj ∈ Fj for j = 1, . . . , L.
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where j = 0, . . . , L, it follows that

V0 = E [R(σ0, τ0)] ,

Vj = E [R(σj , τj)|Fj ] , j = 1, . . . , L.
(4.5)

The dynamic programming principle can be rewritten in terms of these
stopping strategies, as{

σL = L

σj = j1{Xj≤E[R(σj+1,τj+1)|Fj ]} + σj+11{Xj>E[R(σj+1,τj+1)|Fj ]},{
τL = L

τj = j1{Yj≥E[R(σj+1,τj+1)|Fj ]} + τj+11{Yj<E[R(σj+1,τj+1)|Fj ]},

(4.6)

where j = 1, . . . , L− 1.
Recall that the underlying is a Markov chain. The payoff processes de-

pend on the underlying so that Xj = f(j, Sj), Yj = g(j, Sj) for some Borel
functions f(j, ·), g(j, ·), and thus it follows that Vj = W (j, Sj) for some
function W (j, ·), and E [R(σj+1, τj+1)|Fj ] = E [R(σj+1, τj+1)|Sj ]. Assuming
that the initial state S0 = s is deterministic, then so is V0.

With the setup of the algorithm in place, we will now use two separate
approximations to enable the problem to be tackled numerically. The first
approximation consists of replacing the hard to calculate conditional ex-
pectation E [R(σj+1, τj+1)|Fj ] with an orthogonal projection onto the space
spanned by a finite number of functions of Sj .

For this, we will consider a sequence
(
ek(x)

)
k≥1

of Fj-measurable func-
tions ek : E → R that satisfy

A1 :
(
ek(x)

)
k≥1

is a total sequence in L2
(
σ(Sj)

)
for j = 1, . . . , L− 1.

A2 : For j = 1, . . . , L−1 and m ≥ 1, if
∑m

k=1 λkek(Sj) = 0 a.s., then λk = 0,
for all k = 0, . . . ,m.

In other words, the sequence is total and linearly independent. Examples
of such sequences are Hermite and Laguerre polynomials, which yield good
numerical results in tests.

For j = 1, . . . , L − 1, we denote by Pm
j the orthogonal projection from

L2(Ω) onto the vector space generated by
{
e1(Sj), . . . , em(Sj)

}
. We will

write
Pm
j

(
R(σmj+1, τ

m
j+1)

)
= αm

j · em(Sj), (4.7)

where u · v is the Euclidean inner product, and em(Sj) is defined as the
vector valued function

(
e1(Sj), . . . , em(Sj)

)
. Under A2, αm

j ∈ Rm can be
explicitly written as

αm
j = (Am

j )−1E
[
R(σmj+1, τ

m
j+1)e

m(Sj)
]
, j = 1, . . . , L− 1, (4.8)
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where the matrix Am
j ∈ Rm×m has coefficients given by

(Am
j )1≤k,l≤m = E [ek(Sj)el(Sj)] (4.9)

Using this notation, we introduce the approximating stopping times σmj , τmj
with their dynamic programming principle{

σmL = L

σmj = j1{Xj≤αm
j ·em(Sj)} + σmj+11{Xj>αm

j ·em(Sj)},{
τmL = L

τmj = j1{Yj≥αm
j ·em(Sj)} + τmj+11{Yj<αm

j ·em(Sj)},

(4.10)

where j = 1, . . . , L− 1.
With these stopping times, the value function can be approximated as

V m
0 = min

(
X0,max

(
Y0,E [R(σm1 , τ

m
1 )]
))

(4.11)

Recall that X0 = f(0, s), Y0 = g(0, s) are deterministic.
Our second approximation is to use a Monte-Carlo method to numer-

ically estimate E [R(σm1 , τ
m
1 )]. Given the N independent simulated paths(

S
(1)
j , . . . , S

(N)
j

)
of the Markov chain (Sj)j=0,...,L, we denote the payoff func-

tions, for j = 0, . . . , L and n = 1, . . . , N , by X
(n)
j = f(j, S

(n)
j ) and Y

(n)
j =

g(j, S
(n)
j ). We introduce for each path n stopping times σm,n,N

j , τm,n,N
j and

their associated dynamic programming principleσ
m,n,N
L = L

σm,n,N
j = j1{

X
(n)
j ≤αm,N

j ·em
(
S
(n)
j

)} + σm,n,N
j+1 1{

X
(n)
j >αm,N

j ·em
(
S
(n)
j

)},τ
m,n,N
L = L

τm,n,N
j = j1{

Y
(n)
j ≥αm,N

j ·em
(
S
(n)
j

)} + τm,n,N
j+1 1{

Y
(n)
j <αm,N

j ·em
(
S
(n)
j

)},
(4.12)

for j = 1, . . . , L − 1, and where αm,N
j ∈ Rm, j = 1, . . . , L − 1 is the least

square estimator (LSE)

αm,N
j = arg min

a∈Rm

N∑
n=1

(
R(σm,n,N

j+1 , τm,n,N
j+1 )− a · em

(
S
(n)
j

))
, (4.13)

and it is understood that

R(σm,n,N
j , τm,n,N

j ) = X
(n)

σm,n,N
j

1{σn,m,N
j <τn,m,N

j }

+Y
(n)

τm,n,N
j

1{τn,m,N
j ≤σn,m,N

j }.
(4.14)
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From these stopping times, the value function is estimated as

V m,N
0 = min

(
X0,max

(
Y0,

1

N

N∑
n=1

R
(
σm,n,N
1 , τm,n,N

1

)))
, (4.15)

again recalling that X0, Y0 are deterministic and known.

4.2 Convergence
As described above, the algorithm can be seen as two successive approxima-
tions,

1. approximating the conditional expectation E [R(σj+1, τj+1)|Fj ] with
an orthogonal projection onto the space spanned by a finite number
of functions of Sj , and,

2. approximating E [R(σm1 , τ
m
1 )] with a numerical estimate obtained by

Monte-Carlo simulation.

We will first prove that as m goes to infinity, the orthogonal projection
in approximation 1 converges in probability to the conditional expectation,
and thus that the approximated value function converges in probability to
the original value function. Second, we will prove that for a fixed number
of functions m, the Monte-Carlo simulation’s numerical estimate converges
almost surely to the value function from approximation 1 as the number of
simulated paths N tends to infinity.

Together, this will show that the value function estimator from the al-
gorithm converges to the correct value function, when both the number of
functions in the projection and the number of simulated paths go to infinity.

4.2.1 Convergence of V m
0 to V0

The convergence
V m
0

P−−−−→
m→∞

V0 (4.16)

follows directly from the following theorem.

Theorem 4.1. Let P (Xj = E [R (σj+1, τj+1) |Fj ]) = 0 a.s. and
P (Yj = E [R (σj+1, τj+1) |Fj ]) = 0 a.s. Then, for j = 1, . . . , L, as m→ ∞,

(i) σmj
P−→ σj,

(ii) τmj
P−→ τj,

(iii) E
[
R
(
σmj , τ

m
j

)∣∣∣Fj−1

]
P−→ E [R(σj , τj)|Fj−1],
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Proof. We’ll proceed by induction over j.
For j = L, by definition σmL = L = σ and τL = L = τ , so that (i) and

(ii) hold. It follows

E [R (σmL , τ
m
L )|FL−1] = E [YL|FL−1] = E [R (σL, τL)|FL−1] , (4.17)

which means that (iii) holds. Therefore, the hypothesis holds for j = L.
Assuming that the hypothesis holds for j + 1, we shall show that it also

holds for j (1 ≤ j ≤ L− 1).
Again, we will first prove (i) and (ii), whereupon (iii) will follow. Con-

sider

σmj − σj = j
(

1{Xj≤αm
j ·em(Sj)} − 1{Xj≤E[R(σj+1,τj+1)|Fj ]}

)
+σmj+1

(
1{Xj>αm

j ·em(Sj)} − 1{Xj>E[R(σj+1,τj+1)|Fj ]}

)
+
(
σmj+1 − σj+1

)
1{Xj>E[R(σj+1,τj+1)|Fj ]}

(4.18)

⇒
∣∣σmj − σj

∣∣ ≤ j
∣∣∣1{E[R(σj+1,τj+1)|Fj ]<Xj≤αm

j ·em(Sj)} − 1{αm
j ·em(Sj)<Xj≤E[R(σj+1,τj+1)|Fj ]}

∣∣∣
+σmj+1

∣∣∣1{E[R(σj+1,τj+1)|Fj ]≥Xj>αm
j ·em(Sj)} − 1{αm

j ·em(Sj)≥Xj>E[R(σj+1,τj+1)|Fj ]}
∣∣∣

+
∣∣σmj+1 − σj+1

∣∣1{Xj>E[R(σj+1,τj+1)|Fj ]}

≤ j1{|Xj−E[R(σj+1,τj+1)|Fj ]|≤|αm
j ·em(Sj)−E[R(σj+1,τj+1)|Fj ]|}

+σmj+11{|Xj−E[R(σj+1,τj+1)|Fj ]|≤|αm
j ·em(Sj)−E[R(σj+1,τj+1)|Fj ]|}

+
∣∣σmj+1 − σj+1

∣∣ .
(4.19)

Now, by definition,

αm
j · em(Sj) = Pm

j

(
R
(
σmj+1, τ

m
j+1

))
, (4.20)

and since Pm
j represents an orthogonal projection onto the space of Fj-

measurable functions,

Pm
j

(
R
(
σmj+1, τ

m
j+1

))
= Pm

j

(
E
[
R
(
σmj+1, τ

m
j+1

)∣∣Fj

])
. (4.21)

Therefore, under A1,

αm
j · em(Sj) −−−−→

m→∞
E
[
R
(
σmj+1, τ

m
j+1

)∣∣Fj

]
, in L2. (4.22)

By the induction hypothesis, this converges to E [R (σj+1, τj+1)|Fj ], so for
each ε > 0:

lim sup
∣∣σmj − σj

∣∣ ≤ (j + σmj+1)1{|Xj−E[R(σj+1,τj+1)|Fj ]|≤ε}

+ lim sup
∣∣σmj+1 − σj+1

∣∣ . (4.23)
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The second term goes to 0 due to the induction hypothesis, and when ε goes
to 0, the first term vanishes, since P (Xj = E [R (σj+1, τj+1) |Fj ]) = 0 a.s.
This yields σmj

P−−−−→
m→∞

σj , i.e. (i) holds.

Analogously, it can be shown that τmj
P−−−−→

m→∞
τj , and (ii) holds.

Finally,

E
[
R
(
σmj+1, τ

m
j+1

)∣∣Fj

]
= E

[
Xσm

j+1
1{σm

j+1 <τmj+1} + Yτmj+1
1{τmj+1 ≤σm

j+1}
∣∣∣Fj

]
,

(4.24)
which converges in probability, as m→ ∞, to

E
[
Xσj+1

1{σj+1 <τj+1} + Yτj+1
1{τj+1 ≤σj+1}

∣∣∣Fj

]
= E [R (σj+1, τj+1)|Fj ] ,

(4.25)
and so (iii) holds as well. Thus, the hypothesis holds for j = 1, . . . , L.

4.2.2 Convergence of V m,N
0 to V m

0

Notation

To simplify the presentation of the next convergence proof, it is necessary
to introduce some notation and make a few remarks.

Under A2, the least squares estimator αm,N
j , j = 1, . . . , L − 1 has the

explicit form

αm,N
j =

(
Am,N

j

)−1 1

N

N∑
n=1

R
(
σm,n,N
j+1 , τm,n,N

j+1

)
em
(
S
(n)
j

)
, (4.26)

where Am,N
j ∈ Rm×m has coefficients given by

(
Am,N

j

)
1≤k,l≤m

=
1

N

N∑
n=1

ek

(
S
(n)
j

)
el

(
S
(n)
j

)
. (4.27)

Note that due to the strong law of large numbers, Am,N
j → Am

j , N → ∞
a.s., and so Am,N

j is invertible for large enough N .
We define matrices αm = (αm

1 , . . . , α
m
L−1) and αm,N = (αm,N

1 , . . . , αm,N
L−1 ),

and given parameters am = (am1 , . . . , a
m
L−1) ∈ RmL−1 and deterministic vec-

tors x = (x1, . . . , xL) ∈ RL, y = (y1, . . . , yL) ∈ RL and s = (s1, . . . , sL) ∈ EL,
we define the vector fields F = (F1, . . . , FL) and G = (G1, . . . , GL) as{

FL (am, x, s) = L,

Fj (a
m, x, s) = xj1{xj≤αm

j ·em(sj)} + Fj+1 (a
m, x, s)1{xj>αm

j ·em(sj)},{
GL (am, y, s) = L,

Gj (a
m, y, s) = yj1{yj≥αm

j ·em(sj)} +Gj+1 (a
m, y, s)1{yj<αm

j ·em(sj)}.
(4.28)
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Introducing, for j = 1, . . . , L, the sets
Bj =

{
xj > amj · em(sj)

}
, (4.29)

Cj =
{
yj < amj · em(sj)

}
, (4.30)

and the stopping times

σ̃j = j1BC
j
+

L−1∑
i=j+1

i1Bj ...Bi−1BC
i
+ L1Bj ...BL−1

, (4.31)

τ̃j = j1CC
j
+

L−1∑
i=j+1

i1Cj ...Ci−1CC
i
+ L1Cj ...CL−1

, (4.32)

where BiBj = Bi ∩Bj .
Now we can write

Fj (a
m, x, s) =xσ̃j

, (4.33)
Gj (a

m, y, s) = yτ̃j . (4.34)
Note that Fj (a

m, X, S) , Gj (a
m, Y, S) are independent of (am1 , . . . , a

m
j−1),

and
Fj (α

m, X, S) =Xσm
j
, (4.35)

Fj

(
αm,N , X(n), S(n)

)
=X

(n)

σm,n,N
j

, (4.36)

Gj (α
m, Y, S) =Yτmj , (4.37)

Gj

(
αm,N , Y (n), S(n)

)
=Y

(n)

τm,n,N
j

. (4.38)

For j = 2, . . . , L, let Hj denote the vector valued function

Hj (a
m, x, y, s) =

(
Fj (a

m, x, s)1{σ̃j<τ̃j} +Gj (a
m, y, s)1{τ̃j≤σ̃j}

)
em(sj−1),

(4.39)
and define φ,ψ, ξ as

φj(a
m) =E [Fj (a

m, X, S)] , (4.40)
ψj(a

m) =E [Gj (a
m, Y, S)] , (4.41)

ξj(a
m) =E [Hj (a

m, X, Y, S)] , (4.42)
so that

αm
j =

(
Am

j

)−1
ξj+1 (α

m) , (4.43)
and, similarly, for j = 1, . . . , L− 1,

αm,N
j =

(
Am,N

j

)−1 1

N

N∑
n=1

Hj+1

(
αm,N , X(n), Y (n), S(n)

)
. (4.44)

After all this new notation, it will please the reader to know that in the
coming section, we will drop the superscript m wherever it would not confuse
matters, as it is taken to be fixed.
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Convergence

Theorem 4.2. Let P (Xj = αj · e(Sj)) = P (Yj = αj · e(Sj)) = 0 a.s. and
P
(
X

(n)
j = αj · e

(
S
(n)
j

))
= P

(
Y

(n)
j = αj · e

(
S
(n)
j

))
= 0 a.s. for all

n = 1, . . . , N . Then, for j = 1, . . . , L, as N → ∞,

(i) V m,N
0 → V m

0 a.s., and

(ii) 1

N

N∑
n=1

R
(
σm,n,N
j , τm,n,N

j

)
→ E

[
R
(
σmj , τ

m
j

)]
a.s.

With the notation just introduced, this means that for all j = 1, . . . , L,
we must prove

lim
N→∞

1

N

N∑
n=1

Fj

(
αN , X(n), S(n)

)
= φj(α), (4.45)

lim
N→∞

1

N

N∑
n=1

Gj

(
αN , Y (n), S(n)

)
= ψj(α). (4.46)

To prove this, we shall rely on three lemmas.

Lemma 4.3. For j = 1, . . . , L− 1,

(i) |Fj (a,X, S)− Fj (b,X, S)| ≤

 L∑
i=j

|Xi|

L−1∑
i=j

1{|Xi−bi·e(Si)|≤|ai−bi||e(Si)|}

 ,

(ii) |Gj (a, Y, S)−Gj (b, Y, S)| ≤

 L∑
i=j

|Yi|

L−1∑
i=j

1{|Yi−bi·e(Si)|≤|ai−bi||e(Si)|}

 .

Proof. Let Bj = {Xj > aj · e(Sj)} and B̃j = {Xj > bj · e(Sj)}. Then,

Fj(a,X, S)− Fj(b,X, S) =Xj

(
1BC

j
− 1

B̃C
j

)
+

L−1∑
i=j+1

Xi

(
1Bj ···Bi−1BC

i
− 1

B̃j ...B̃i−1B̃C
i

)
+XL

(
1Bj ...BL−1

− 1
B̃j ...B̃L−1

)
.

(4.47)

Looking closer at the first two terms, we have∣∣∣1BC
j
− 1

B̃C
j

∣∣∣ = ∣∣∣1{Xj≤aj ·e(Sj)} − 1{Xj≤bj ·e(Sj)}

∣∣∣
=1{bj ·e(Sj)<Xj≤aj ·e(Sj)} + 1{aj ·e(Sj)<Xj≤bj ·e(Sj)}

≤1{|Xj−bj ·e(Sj)|≤|aj−bj ||e(Sj)|},

(4.48)
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and∣∣∣1Bj ...Bi−1BC
i
− 1

B̃j ...B̃i−1B̃C
i

∣∣∣ ≤ i−1∑
k=j

∣∣∣1Bk
− 1

B̃k

∣∣∣+ ∣∣∣1BC
i
− 1

B̃C
i

∣∣∣
=

i∑
k=j

∣∣∣1Bk
− 1

B̃k

∣∣∣ . (4.49)

Please note that
∣∣∣1BC

k
− 1

B̃C
k

∣∣∣ = ∣∣∣1Bk
− 1

B̃k

∣∣∣. It follows that

|Fj(a,X, S)− Fj(b,X, S)| ≤ |Xj |
∣∣∣1Bj − 1

B̃j

∣∣∣
+

L−1∑
i=j+1

|Xi|
i∑

k=j

∣∣∣1Bk
− 1

B̃k

∣∣∣
+ |XL|

L−1∑
k=j

∣∣∣1Bk
− 1

B̃k

∣∣∣
=

L−1∑
i=j

|Xi|
i∑

k=j

∣∣∣1Bk
− 1

B̃k

∣∣∣
+ |XL|

L−1∑
k=j

∣∣∣1Bk
− 1

B̃k

∣∣∣
≤

L−1∑
i=j

|Xi|

L−1∑
k=j

∣∣∣1Bk
− 1

B̃k

∣∣∣
+ |XL|

L−1∑
k=j

∣∣∣1Bk
− 1

B̃k

∣∣∣
=

 L∑
i=j

|Xi|

L−1∑
i=j

∣∣∣1Bi − 1
B̃i

∣∣∣


≤

 L∑
i=j

|Xi|

L−1∑
i=j

1{|Xi−bi·e(Si)|≤|ai−bi||e(Si)|}

 .

(4.50)

This proves (i). The proof of (ii) is entirely analogous.

Definition 4.4. Let σ̃n,Nj and τ̃n,Nj be defined for all n = 1, . . . , N , asσ̃
n,N
L = L

σ̃n,Nj = j1{
X

(n)
j ≤αN

j ·e
(
S
(n)
j

)} + σ̃n,Nj+11{
X

(n)
j >αN

j ·e
(
S
(n)
j

)},τ̃
n,N
L = L

τ̃n,Nj = j1{
Y

(n)
j ≥αN

j ·e
(
S
(n)
j

)} + τ̃n,Nj+1 1{
Y

(n)
j <αN

j ·e
(
S
(n)
j

)},
(4.51)

Lemma 4.5. Let P
(
X

(n)
j = αj · e

(
S
(n)
j

))
= P

(
Y

(n)
j = αj · e

(
S
(n)
j

))
= 0 a.s.

for all n = 1, . . . , N , and αN
j → αj as N → ∞. Then, for all j = 1, . . . , L,

as N → ∞,
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(i) σ̃n,Nj → σ̃j a.s., and

(ii) τ̃n,Nj → τ̃j a.s.

Proof. We will proceed by induction on j. For j = L, by definition σ̃n,Nj = L = σ̃j ,
and τ̃n,Nj = L = τ̃j , so (i) and (ii) hold.

Assuming that (i) and (ii) hold for j +1, . . . , L, it remains to show that
it also holds for j. Consider

σ̃n,Nj − σ̃j = j

(
1{

X
(n)
j ≤αN

j ·e
(
S
(n)
j

)} − 1{
X

(n)
j ≤αj ·e

(
S
(n)
j

)})
+ σ̃n,Nj

(
1{

X
(n)
j >αN

j ·e
(
S
(n)
j

)} − 1{
X

(n)
j >αj ·e

(
S
(n)
j

)})
+
∣∣∣σ̃n,Nj − σ̃j

∣∣∣1{
X

(n)
j >αj ·e

(
S
(n)
j

)}.
(4.52)

Thus,∣∣∣σ̃n,Nj − σ̃j

∣∣∣ ≤ j

∣∣∣∣1{
X

(n)
j ≤αN

j ·e
(
S
(n)
j

)} − 1{
X

(n)
j ≤αj ·e

(
S
(n)
j

)}∣∣∣∣
+ σ̃n,Nj

∣∣∣∣1{
X

(n)
j >αN

j ·e
(
S
(n)
j

)} − 1{
X

(n)
j >αj ·e

(
S
(n)
j

)}∣∣∣∣
+
∣∣∣σ̃n,Nj+1 − σ̃j+1

∣∣∣1{
X

(n)
j >αj ·e

(
S
(n)
j

)}.
(4.53)

Let us consider these three terms separately. For the first, it holds,

j

∣∣∣∣1{
X

(n)
j ≤αN

j ·e
(
S
(n)
j

)} − 1{
X

(n)
j ≤αj ·e

(
S
(n)
j

)}∣∣∣∣
= j

(
1{

αj ·e
(
S
(n)
j

)
<X

(n)
j ≤αN

j ·e
(
S
(n)
j

)} + 1{
αN
j ·e

(
S
(n)
j

)
<X

(n)
j ≤αj ·e

(
S
(n)
j

)})
≤ j1{∣∣∣X(n)

j −αj ·e
(
S
(n)
j

)∣∣∣≤|αN
j −αj|

∣∣∣e(S(n)
j

)∣∣∣}.
(4.54)

Since αN
j → αj as N → ∞ and P

(
X

(n)
j = αj · e

(
S
(n)
j

))
= 0 a.s., this term

converges almost surely to zero as N → ∞.
Consider the second term,

σ̃n,Nj

∣∣∣∣1{
X

(n)
j >αN

j ·e
(
S
(n)
j

)} − 1{
X

(n)
j >αj ·e

(
S
(n)
j

)}∣∣∣∣
= j

(
1{

αj ·e
(
S
(n)
j

)
>X

(n)
j ≥αN

j ·e
(
S
(n)
j

)} + 1{
αN
j ·e

(
S
(n)
j

)
>X

(n)
j ≥αj ·e

(
S
(n)
j

)})
≤ j1{∣∣∣X(n)

j −αj ·e
(
S
(n)
j

)∣∣∣≤|αN
j −αj|

∣∣∣e(S(n)
j

)∣∣∣}.
(4.55)
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Just as for the first term, this converges almost surely to zero as N → ∞.
Finally, the third term converges almost surely to zero as N → ∞; this

follows directly from the induction hypothesis that σ̃n,Nj+1 → σ̃j+1 a.s., as
N → ∞.

This shows that as N → ∞, σ̃n,Nj → σ̃j a.s., which proves (i). The proof
of (ii) is analogous.

Lemma 4.6. Let P (Xj = αj · e(Sj)) = P (Yj = αj · e(Sj)) = 0 a.s. and
P
(
X

(n)
j = αj · e

(
S
(n)
j

))
= P

(
Y

(n)
j = αj · e

(
S
(n)
j

))
= 0 a.s.

for all n = 1, . . . , N . Then, for j = 1, . . . , L, as N → ∞, αN
j converges

almost surely to αj.

Proof. We will employ induction on j. For j = L− 1, we have

αN
L−1 =

(
AN

L−1

)−1 1

N

N∑
n=1

Y
(n)
L e

(
S
(n)
L

)
, (4.56)

αL−1 = (AL−1)
−1 E [YLe(SL)] . (4.57)

Since Y
(n)
L , n = 1, . . . , N are i.i.d., by the strong law of large numbers,

αN
L−1 → αL−1 a.s. as N → ∞.

Now, assuming the hypothesis holds for j, . . . , L− 1, we shall show that
it also holds for j − 1. Consider

αN
j−1 =

(
AN

L−1

)−1 1

N

N∑
n=1

Hj

(
αN , X(n), Y (n), S(n)

)
. (4.58)

By the strong law of large numbers, AN
j−1 → Aj−1 a.s., so it must be proven

that
1

N

N∑
n=1

Hj

(
αN , X(n), Y (n), S(n)

)
−−−−→
N→∞

ξj(α) a.s. (4.59)

The strong law of large numbers, the usual suspect, gives the convergence

1

N

N∑
n=1

Hj

(
α,X(n), Y (n), S(n)

)
−−−−→
N→∞

ξj(α) a.s., (4.60)

so all that remains is to prove that as N → ∞,

1

N

N∑
n=1

(
Hj

(
αN , X(n), Y (n), S(n)

)
−Hj

(
α,X(n), Y (n), S(n)

))
→ 0 a.s.,

(4.61)
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and we will be done. We will denote by HN the sum in (4.61). Now consider

|HN | ≤ 1

N

N∑
n=1

∣∣∣e(S(n)
j−1

)∣∣∣ [∣∣∣Fj

(
αN , X(n), S(n)

)
− Fj

(
α,X(n), S(n)

)∣∣∣1{σ̃j < τ̃j}

+
∣∣∣Gj

(
αN , Y (n), S(n)

)
−Gj

(
α, Y (n), S(n)

)∣∣∣1{τ̃j ≤ σ̃j}

+
∣∣∣Fj

(
αN , X(n), S(n)

)∣∣∣ ∣∣∣1{σ̃n,N
j < τ̃n,N

j } − 1{σ̃j < τ̃j}

∣∣∣
+
∣∣∣Gj

(
αN , Y (n), S(n)

)∣∣∣ ∣∣∣1{τ̃n,N
j ≤ σ̃n,N

j } − 1{τ̃j ≤ σ̃j}

∣∣∣].

(4.62)

Since αN
i → αi a.s. for i = j, . . . , L− 1 and N → ∞ under the induction

hypothesis, it follows from Lemma 4.5 that σ̃n,Nj → σ̃j a.s. and τ̃n,Nj →
τ̃j a.s., and thus also 1{σ̃n,N

j < τ̃n,N
j } → 1{σ̃j < τ̃j} a.s., and 1{τ̃n,N

j ≤ σ̃n,N
j } →

1{τ̃j ≤ σ̃j} a.s. This means that the last two terms of (4.62) converge almost
surely to zero as N → ∞.

Now, using Lemma 4.3, we get

|HN | ≤ 1

N

N∑
n=1

∣∣∣e(S(n)
j−1

)∣∣∣ [
( L∑

i=j

∣∣∣X(n)
i

∣∣∣)(L−1∑
i=j

1{∣∣∣X(n)
i −αi·e(S

(n)
i )

∣∣∣≤|αN
i −αi|

∣∣∣e(S(n)
i )

∣∣∣}
)

+

( L∑
i=j

∣∣∣Y (n)
i

∣∣∣)(L−1∑
i=j

1{∣∣∣Y (n)
i −αi·e(S

(n)
i )

∣∣∣≤|αN
i −αi|

∣∣∣e(S(n)
i )

∣∣∣}
)

+
∣∣∣Fj

(
αN , X(n), S(n)

)∣∣∣ ∣∣∣1{σ̃n,N
j < τ̃n,N

j } − 1{σ̃j < τ̃j}

∣∣∣
+
∣∣∣Gj

(
αN , Y (n), S(n)

)∣∣∣ ∣∣∣1{τ̃n,N
j ≤ σ̃n,N

j } − 1{τ̃j ≤ σ̃j}

∣∣∣].

(4.63)

Under the induction hypothesis, αN
i → αi a.s. for i = j, . . . , L − 1 and
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N → ∞, so for each ε > 0,

lim sup |HN | ≤ lim sup 1

N

N∑
n=1

∣∣∣e(S(n)
j−1

)∣∣∣ [
( L∑

i=j

∣∣∣X(n)
i

∣∣∣)(L−1∑
i=j

1{∣∣∣X(n)
i −αi·e(S

(n)
i )

∣∣∣≤ε
∣∣∣e(S(n)

i )
∣∣∣}
)

+

( L∑
i=j

∣∣∣Y (n)
i

∣∣∣)(L−1∑
i=j

1{∣∣∣Y (n)
i −αi·e(S

(n)
i )

∣∣∣≤ε
∣∣∣e(S(n)

i )
∣∣∣}
)

+
∣∣∣Fj

(
αN , X(n), S(n)

)∣∣∣ ∣∣∣1{σ̃n,N
j < τ̃n,N

j } − 1{σ̃j < τ̃j}

∣∣∣
+
∣∣∣Gj

(
αN , Y (n), S(n)

)∣∣∣ ∣∣∣1{τ̃n,N
j ≤ σ̃n,N

j } − 1{τ̃j ≤ σ̃j}

∣∣∣].

(4.64)

As earlier noted, the last two terms converge to zero, and by the strong law
of large numbers, the first two terms converge to an expectation value,

lim sup |HN | ≤E

|e(Sj−1)|

 L∑
i=j

|Xi|

L−1∑
i=j

1{|Xi−αi·e(Si)|≤ε|e(Si)|}


+E

|e(Sj−1)|

 L∑
i=j

|Xi|

L−1∑
i=j

1{|Xi−αi·e(Si)|≤ε|e(Si)|}

 .
(4.65)

Since P (Xj = αj · e(Sj)) = P (Yj = αj · e(Sj)) = 0 a.s., this converges to zero
when ε→ 0.

The proof of Theorem 4.2 is very similar to that of Lemma 4.6, and so
is omitted.
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Chapter 5

Algorithm 2: A simple
Monte-Carlo method

The algorithm due to Longstaff and Schwartz that underlies Algorithm 1 can
be simplified by removing the least-squares approximation of the conditional
expectation, and instead using the known continuation values for each path.
This approach was taken by Chen and Shen (2003), who showed that it not
only reduces the computational complexity, and therefore the running time
of the algorithm, but also gives more accurate values than the LSE method.

Using this approach, we have developed Algorithm 2 as a simplification
of Algorithm 1, where the LSE step is removed and replaced with the perfect-
foresight method.

Since the least-squares approximation of the conditional expectation is
replaced by the future knowledge, the convergence proofs of Section 4.2.2
no longer hold in this case. Alternative proofs have not been obtained, leav-
ing Algorithm 2 on less solid foundation that Algorithm 1. However, the
convergence is intuitively likely, and it can be seen in Chapter 7 that the
algorithm does empirically converge to similar values as Algorithm 1 does,
and indeed does so quicker and with less computational effort.

5.1 Description of Algorithm 2

As in Chapter 4, we will consider a discrete financial market consisting of
probability space (Ω,F ,P) with filtration (Fj)j=0,...,L. The underlying of the
GCC is an adapted Markov chain (Sj)j=0,...,L with state space (E, E). The
discounted payoff processes (Xj)j=0,...,L and (Yj)j=0,...,L are adapted, with
E |Xj |2 <∞, E |Yj |2 <∞ for j = 0, . . . , L.

We are looking for the present value of the GCC, given by

V0 = ess inf
τ∈T0,L

ess sup
σ∈T0,L

E [R(σ, τ)] . (5.1)
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The value of the GCC at time j can be written as

Vj = ess inf
τ∈Tj,L

ess sup
σ∈Tj,L

E [R(σ, τ)|Fj ] , (5.2)

using the dynamic programming principle{
VL = YL,

Vj = min
(
Xj ,max (Yj ,E [Vj+1|Fj ])

)
, j = 0, . . . , L− 1.

(5.3)

By introducing the stopping times

σj = min {k ≥ j : Xk = Vk or k = L} ,
τj = min {k ≥ j : Yk = Vk or k = L} ,

(5.4)

where j = 0, . . . , L, it follows that

V0 = E [R(σ0, τ0)] ,

Vj = E [R(σj , τj)|Fj ] , j = 1, . . . , L.
(5.5)

In terms of these stopping strategies, the dynamic programming principle
becomes{

σL = L

σj = j1{Xj≤E[R(σj+1,τj+1)|Fj ]} + σj+11{Xj>E[R(σj+1,τj+1)|Fj ]},{
τL = L

τj = j1{Yj≥E[R(σj+1,τj+1)|Fj ]} + τj+11{Yj<E[R(σj+1,τj+1)|Fj ]},

(5.6)

where j = 1, . . . , L− 1.
In Chapter 4, we describe an algorithm which uses two separate approx-

imations of the stopping strategies and value process:

(i) an estimate of the conditional expectation E [R(σj+1, τj+1)|Fj ] using a
least-squares orthogonal projection onto the space spanned by a finite
number of functions of Sj , and

(ii) a Monte-Carlo simulation to numerically estimate E [R(σm1 , τ
m
1 )].

In this chapter, approximation (i) will be left out, and only approxi-
mation (ii) will be used. Instead of basing the estimation of E [R(σm1 , τ

m
1 )]

on the least-squares approximation of E [R(σj+1, τj+1)|Fj ], this conditional
expectation will be replaced with the holding values in the simulated paths.

Let
(
S
(1)
j , . . . , S

(N)
j

)
be N independent simulated paths of the underly-

ing Sj , j = 0, . . . , L, and denote by X(n)
j = f(j, S

(n)
j ), Y (n)

j = g(j, S
(n)
j ) the
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payoff functions for j = 0, . . . , L and n = 1, . . . , N . For each path n, we in-
troduce the stopping times σn,Nj and τn,Nj with their dynamic programming
principle

σn,NL = L

τn,NL = L

σn,Nj = j1{
X

(n)
j ≤R(σn,N

j+1 ,τ
n,N
j+1 )

} + σn,Nj+11{
X

(n)
j >R(σn,N

j+1 ,τ
n,N
j+1 )

},
τn,Nj = j1{

Y
(n)
j ≥R(σn,N

j+1 ,τ
n,N
j+1 )

} + τn,Nj+1 1{
Y

(n)
j <R(σn,N

j+1 ,τ
n,N
j+1 )

},
(5.7)

where R(σn,Nj , τn,Nj ) = X
(n)

σn,N
j

1{σn,N
j <τn,N

j } + Y
(n)

τn,N
j

1{τn,N
j ≤σn,N

j } and the
time runs through j = 1, . . . , L− 1.

From these stopping times, the value function is estimated as

V N
0 = min

(
X0,max

(
Y0,

1

N

N∑
n=1

R
(
σn,N1 , τn,N1

)))
, (5.8)

again recalling that X0, Y0 are deterministic.
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Chapter 6

Possible extensions of
algorithms 1 and 2

Algorithms 1 and 2, as defined in Chapters 4 and 5 are both defined for
single-security financial markets with Markovian underlyings.

An extension to multiple securities is straightforward, and as long as
each underlying is Markovian, so is the multiple-security market, and the
proofs of Section 4.2 still hold.

Handling non-Markovian path-dependent payoff functions is a more sub-
tle matter. Owing to being Monte-Carlo methods, the algorithms have po-
tential to be useful in this case.

In the following sections, these extensions are discussed, but no proofs
will be presented. It must be stressed that we have not implemented and
tested any of these extensions. In essence, this chapter consists of our ideas
of interesting future possibilities for the algorithms.

6.1 Multiple security markets
Let (S1

j )j=0,...,L, . . . , (S
p
j )j=0,...,L represent p distinct security value processes.

For each i = 1, . . . , p, Si is an adapted Markov chain with state space
(Ei, E i).

The payoff processes depend on the underlyings via some Borel functions
f, g that map {0, . . . , L} × E1 × · · · × Ep 7→ [0,∞), i.e.

Xj = f(j, S1
j , . . . , S

p
j ),

Yj = g(j, S1
j , . . . , S

p
j ).

(6.1)

It follows that the value process of the GCC depends on the underlyings
through some function

Vj =W (j, S1
j , . . . , S

p
j ). (6.2)
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In Algorithm 2, this suffices to introduce multiple securities. In Algo-
rithm 1, the situation is trickier. The LSE in (4.8) must be extended to
contain functions of all the underlyings, as well as their cross products. This
would suggest an exponential growth in the number of basis functions, m.

However, as noted in Longstaff and Schwartz (2001), Section 2.2, it is
possible that in actuality, the growth would be only polynomial. Even so, for
multiple securities, it is likely that Algorithm 2 will be a great improvement
on Algorithm 1, and the use of the latter is simply not called for.

6.2 Path dependent payoffs
To allow for path dependent payoffs, the requirement that X and Y only
depend on the current value of the underlying is relaxed, to allow a more
general form

Xj = f
(
{0, . . . , j}, (S1

k)k=0,...,j , . . . , (S
p
k)k=0,...,j

)
,

Yj = g
(
{0, . . . , j}, (S1

k)k=0,...,j , . . . , (S
p
k)k=0,...,j

)
,

(6.3)

where f, g are some Borel functions.
With the payoffs thus defined, the convergence proofs in Section 4.2 do

not hold anymore. The LSE (4.8) must be extended to include functions
of all previous security values. In the multiple-security case, also of cross
terms both between the individual securities, as well as between separate
timesteps. The dimensionality of this LSE will grow fast enough that it is
possible that the LSE approach of Algorithm 1 is entirely untenable under
these circumstances.

Algorithm 2 fares better, due to the fact that it works through direct
Monte-Carlo simulation of the paths. In this case, the dimensionality of the
problem does not grow when path-dependence is allowed, and the algorithm
should be able to function still.
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Chapter 7

Examples

The legendary computer scientist Donald Knuth famously quipped

Beware of bugs in the above code; I have only proved it correct,
not tried it.

Alas, the rest of us shall have to resort to testing. In this chapter we put
our algorithms to the test against two examples of GCCs: callable puts and
convertible bonds.

We study the convergence characteristics of the algorithms when the
number of simulated paths, number of time steps and number of basis func-
tions in the LSE vary. We find that both algorithms provide good estimates
of the GCC values. Algorithm 2 performs similarly to Algorithm 1, but with
quicker convergence and superior computational speed.

7.1 Callable puts
Consider the financial market of Section 2.1 with an underlying following
the Black-Scholes model described in Black and Scholes (1973).

We introduce the discounted payoff functions

Yt = (K − St)
+ , t ∈ [0, T ], (7.1)

and {
Xt = (K − St)

+ + δ, t ∈ [0, T )

XT = (K − St)
+ ,

(7.2)

where δ > 0 is a fixed penalty. Simply put, this is a put that can be called;
it will be called a callable put.1 In Kühn and Kyprianou (2007), the callable
put is characterised as a composite exotic option, and the value function is
studied.

1Sorry about that.
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Remark 7.1. Note that the callable put is a regular game put option. Callable
puts were in use before Kifer coined the term game option.

Of more interest here is Kühn, Kyprianou, and van Schaik (2007), in
which a pathwise GCC pricing algorithm is presented, and the callable put
is studied as one example. Kühn et al. use Canadisation (Carr, 1998) to
obtain a true value approximation of the prices for five callable puts with
parameters

κ = 0.4, r = 0.06, K = 100, T = 0.5, δ = 5, (7.3)

for different initial prices S0 = 80, 90, 100, 110, 120 of the underlying. These
values will serve as a useful benchmark against which to compare the values
from Algorithms 1 and 2.

To study the convergence of the algorithms for varying input parameters,
we used Algorithm 1 to value these options in a series of simulations with
different number of time steps L, number of simulated paths N and num-
ber of functions m in the projection. A similar series of simulations were
performed for Algorithm 2, although without m, of course. The next two
sections discuss the results of the convergence study.

7.1.1 Results for Algorithm 1
To test Algorithm 1, we ran a series of simulations with increasing number
of simulated price paths, N , discretisation time steps, L, and least-squares
basis functions, m. For each set of N , L and m together with initial stock
price S0 = 80, 90, 100, 110, 120, the algorithm was run 20 times, and the
results averaged to smooth the values.2 The value S0 = 100 was dropped
from all graphs since the algorithm almost immediately converges there to
the true value of 5, which makes for some rather dull graphs.

Letting N = 3000 and L = 400 be constant, we consider first the char-
acteristics of the algorithm for varying values of m, i.e. varying numbers
of basis functions in the least-squares approximation. We see in Figure 7.1
(p. 45) that the performance of the algorithm does not heavily depend on
m once past m = 50. Consequently, we kept the constant m = 60 for the
tests of varying number of simulated paths and time steps.

Next, we ran the simulations for a grid of increasing values for the number
of sample paths, N , and time steps, L, while holding the number of basis
functions m constant at m = 60. The resulting graphs show the convergence
characteristics of Algorithm 1 as a function of N and L for different S0.
These results are presented first as a function of N in Figure 7.2, and then
as a function of L in Figure 7.3.

2The underlying assumption that the relative errors are normally distributed was ver-
ified using the quantile-quantile plots of them against the normal distribution, for each
combination of N , m, L and S0, as well as the Shapiro-Wilk normality test.
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Figure 7.1: The convergence characteristics of Algorithm 1 for callable puts
of different S0 with a varying number of least-squares basis functions m.
N = 3000 and L = 400 are constant. The dashed lines represent the values
where V settles for large N and L.
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Number of sample paths, N
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Figure 7.2: The convergence characteristics of Algorithm 1 for callable puts
of different S0. Here, the option price V is considered a function of N for
different levels of L.

Considering first Figure 7.2 (p. 46), we see a “small multiples” plot of
the option price V as a function of N , with each panel in the graph showing
this function for a given set of L and S0.

It is clear that the algorithm converges, as each panel settles towards a
value of V when N grows. The convergence is rather quick, with N = 3000
being close to the final value in most cases. It can also be seen that the option
value is dependent on the number of time steps L, with each refinement
bringing V to settle at a lower value.

Figure 7.3 (p. 47) shows the same dataset, but now each panel shows V
as a function of L for a given set of N , S0.

Again, we see a clear convergence pattern as L increases in each panel,
and jumps between panels as larger values of N move the convergence point.
It is clear that most movement between panels is for smaller values of N ,
with little discernable difference after N = 3000, which is in line with what
we saw in the last graph.

The convergence in L is a bit different from that in N , still improving
at L = 800, but with slowed pace. Since the algorithm works by finding the
optimal exercise strategies in the Bermudan approximation of the option, it
is important that this approximation is good.

In sum, we see that while not too many sample paths are needed to get
the Monte Carlo estimation to converge, the discrete time approximation of
the option converges slower to the continuous time value.

Computationally, since the algorithm’s run time increases linearly in
both N and L, time is better spent by limiting the number of sample paths,
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Number of time steps, L
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Figure 7.3: The convergence characteristics of Algorithm 1 for callable puts
of different S0. Here, V is considered a function of L for different levels of
N .

and using a finer grid in the time discretisation.
To answer the question of whether the algorithm converges to reasonable

values, we compare it in Figure 7.4 (p. 48) to the values calculated in Kühn,
Kyprianou, and van Schaik (2007). The graph shows the calculated values
of V as a function of S0, with the values from Kühn et al. marked in the
graph with crosses. The alignment is good, but with slightly high values
when S0 > 100.

7.1.2 Results for Algorithm 2
For Algorithm 2, we ran a similar set of simulations with increasing number
of simulated paths and discretisation time steps. Due to the lack of a least-
squares approximation, there is no parameter m for Algorithm 2, and it also
runs significantly faster, by a factor of about 6.5. This allowed us to run the
N and L values to higher reaches for Algorithm 2.

Figures 7.5 (p. 48) and 7.6 (p. 48) are the corresponding small multiples
plots for Algorithm 2.

Considering first Figure 7.5 , we see a plot of the option price V as a
function of N , with each panel in the graph showing this function for a given
set of L and S0.

Again we compare the convergence values of the algorithm with those
calculated in Kühn, Kyprianou, and van Schaik (2007). Figure 7.7 shows the
calculated values of V as a function of S0, with the values from Kühn et al.
marked in the graph with crosses.

The alignment is again good, with even better fit to the values from

47



Initial stock price, S0
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Figure 7.4: The relative error of callable put values for different S0 as func-
tion of N , using Algorithm 1. L = 400 and m = 60 are kept fixed.
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Figure 7.5: The convergence characteristics of Algorithm 2 for callable puts
of different S0. Here, the option price V is considered a function of N for
different levels of L.
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Number of time steps, L
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Figure 7.6: The convergence characteristics of Algorithm 2 for callable puts
of different S0. Here, V is considered a function of L for different levels of
N .

Kühn, Kyprianou, and van Schaik (2007) than Algorithm 1, except for the
case of S0 = 80. Why this algorithm overestimates the value at S0 = 80 is
unclear, but it is also possible that the converse is true; that Algorithm 2 is
actually closer to the true value than Kühn et al. (2007).

7.2 Convertible bonds
A convertible bond is a bond that can be converted by the holder to a fixed
amount of stock at any time up to the maturity. The writer can at any time
recall the bond at a fixed price, but the holder then has the opportunity to
convert to stock.

The convertible bond can be modelled as a GCC with discounted payoff
functions

Xt = max (γSt,K) and Yt = γSt, for t ∈ [0, T ), (7.4)

and XT = YT = max(1, γST ). K > 1 is the recall price, while 0 < γ < 1 is
the number of stocks the bond can be converted into. Note that the holder
is guaranteed a minimum payment of 1 at the maturity; this is the bond
component of the convertible bond.

In Kühn, Kyprianou, and van Schaik (2007), the convertible bond is
studied in the case when the underlying is modelled as a continuous div-
idend paying stock following a jump-diffusion process with non-negative,
exponentially distributed jumps. Formally, we have

St = exp (κWt + µt+ Jt) , (7.5)
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Initial stock price, S0
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Figure 7.7: The relative error of callable put values for different S0 as func-
tion of N , using Algorithm 2. L = 400 is kept fixed.

where W is a standard Brownian motion and J a compound Poisson process
with jump intensity η > 0 and increments following an exponential distribu-
tion with parameter ϑ > 1. Further, J is independent of W . The stock pays a
continuous dividend 0 < d < r, so with the drift µ = r−d−κ2/2+η/(1−ϑ),
P is an equivalent martingale measure.

Similarly to Section 7.1, we use the Canadisation true value approxima-
tions from Kühn, Kyprianou, and van Schaik (2007) as a guiding value, and
run our algorithm using the parameters

κ = 0.4, r = 0.06, K = 1.3, T = 0.5,

d = 0.02, γ = 0.9, η = 10, and ϑ = 7,
(7.6)

while S0 = 0.8, 1.0, 1.2, 1.3, 1.4, as the values of N , L and m are varied. As
before, we run 20 simulations per level of N , L, m and S0, to smooth away
the variation of the Monte-Carlo simulation.

7.2.1 Results for Algorithm 1

Figures 7.8, 7.9 and 7.10 show the convergence characteristics of Algorithm
1’s convertible bond values for different values of the parameters L, m and
N when S0 = 0.8, 1.0, 1.2, 1.3, 1.4.
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Figure 7.8: The convergence characteristics of Algorithm 1 for convertible
bonds of different S0. Here, V is considered a function of L, with N = 1000
and m = 20 held constant.

The behaviour for increasing L is graphed in Figure 7.8 (p. 51). We see
that the values fluctuate with less than 1 % from 200 to 2000 time steps, so
the algorithm here converges very quickly indeed. In the case of S0 = 1.4, a
more stable trend towards settling is found.

The number of basis functions, m, is showin in Figure 7.9 (p. 52), and
tells roughly the same story. The differences are on the order of a few percent
when going from 20 to 200 basis functions, with a jump to higher precision
occuring around 120.

When the number of simulated paths N grows, the algorithm quickly
settles in to within a few percent of its final solutions, with relative stability
from around 4000 to 8000 sample paths; see Figure 7.10 (p. 53).

7.2.2 Results for Algorithm 2

Figures 7.11 and 7.12 show the convergence characteristics of Algorithm 2
when valuing convertible bonds with varying parameters L and N .

In Figure 7.11 (p. 54), the number of time steps L is varied. The algo-
rithm quickly moves towards its settling value, coming within 1 % before
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Figure 7.9: The convergence characteristics of Algorithm 1 for convertible
bonds of different S0. Here, V is considered a function of m, with N = 1000
and L = 100 held constant. The dashed lines represent the “true values” as
estimated by Kühn et al. (2007)
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Figure 7.10: The convergence characteristics of Algorithm 1 for convertible
bonds of different S0. Here, V is considered a function of N , with L = 100
and m = 20 held constant.

L = 400, and then settles slower until changes are minute when L > 1600.
As N increases, there is little trending behaviour at all. The algorithm

settles almost immediately at a relative error below 1 % and remains there.
This can be seen in Figure 7.12 (p. 55).

It is clear that Algorithm 2 has excellent convergence characteristics,
settling already at low values of simulated sample paths and time steps. It
can be seen, however, that L is the governing parameter in the quality of
valuations from Algorithm 2, while even small values of N give good results.
As was the case in Section 7.1, Algorithm 2 was also significantly faster than
Algorithm 1, in this case a factor about 6.5 when m = 20.
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Figure 7.11: The convergence characteristics of Algorithm 1 for convertible
bonds of different S0. Here, V is considered a function of L, with N = 1000
held constant.
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Figure 7.12: The convergence characteristics of Algorithm 2 for convertible
bonds of different S0. Here, V is considered a function of N , with L = 100
held constant.
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Chapter 8

Notes on software used

Both Algorithm 1 and Algorithm 2 were implemented in the Python pro-
gramming language (van Rossum, 1991) with the NumPy (Ascher, Dubois,
Hinsen, Hugunin, and Oliphant, 1999) and SciPy (Jones, Oliphant, Peter-
son, et al., 2001–) numerical and scientific computing packages. All the
source code and documentation of the reference implementation is avail-
able for download on the author’s Github page on https://github.com/
del/Game-option-valuation-library.

The code is designed to make it easy to implement and price general game
contingent claims, and should handle gracefully the ECC and ACC cases as
well. It is possible to choose between several models for the underlyings, and
easy to implement new ones as necessary.

All graphs in this thesis were created using the R statistical computing
language (R Development Core Team, 2011), together with the ggplot2 pack-
age (Wickham, 2009). This combination was of great use in rapidly testing
ideas, visualising data, and creating graphs.

This document was typeset using the XƎTEX dialect of LATEX1, academia’s
favourite typesetting software.

I am deeply grateful for the hard work put into all this free software by
the many contributors. Without them, this thesis would doubtlessly have
suffered.

1http://ctan.org/
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