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Abstract

Several models for predicting future customer profitability early
into customer life-cycles in the property and casualty business are con-
structed and studied. The objective is to model risk at a customer level
with input data available early into a private consumer’s lifespan. Two
retained models, one using Generalized Linear Model another using
a multilayer perceptron, a special form of Artificial Neural Network
are evaluated using actual data. Numerical results show that differ-
entiation on estimated future risk is most effective for customers with
highest claim frequencies.

Keywords: Predictive Modeling, Generalized Linear Models, Ar-
tificial Neural Networks.
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1 Introduction
During the past three decades the introduction of direct distribution chan-
nels, Customer Relationship Management (CRM) systems and increased
customer focus have led to a volatile consumer market in the property and
casualty insurance business. Customer turnover rates are historically high.
In a harsher financial and economic climate, underwriting profit and cus-
tomer retention are becoming increasingly important. The days when suffi-
cient profits could be made on investments of premiums alone are gone.

The combination of a volatile consumer market and increased focus on
underwriting necessitates a higher level of intelligence in portfolio manage-
ment and growth. The aim should be to actively seek groups of new cus-
tomers that can and should be added to the portfolio, as well as conducting
up-selling activity on the existing customers most likely to respond and with
highest probability of being profitable in the future.

The aim of this thesis is to produce a quantitative measure of expected
future profitability.

Furthermore, this measure is attempted to be integrated with existing
models on probability of purchase. In practice, such a combined score is
envisioned to be used as a prioritization within a list of prospects for a given
CRM activity. The potential benefits of such a scheme are among others
increased hit-rate in campaign activities, reduced costs of acquisition and
proactive portfolio pruning of risk.

In this thesis, modeling risk patterns at a customer level and not the
usual product-based risk approach is attempted using Generalized Linear
Models and Artificial Neural Networks.

The area of focus is first-time customers. We attempt to predict future
profitability as early as possible in a customer life-cycle. Attempts on pre-
dictions of future customer loyalty as measured by the longevity of active
policy coverage has also been made.

This thesis has been conducted at If, the largest non-life insurance com-
pany in the Nordic region. It is hereafter referred to as the insurance com-
pany.
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Outline of the report

The thesis is divided into the following sections:

Section 2 introduces some important concepts from the field of predictive
modeling followed by some details on how the models have been implemented
and built.

In section 3, the Generalized Linear Model is described and the tech-
niques used to find the estimated parameters are introduced.

Artificial Neural Networks are uncommon in traditional actuarial science,
wherefore they are described in some detail in Section 4.

Section 5 presents the results of testing the models against actual data
for the different models.

The thesis concludes with Section 6 with a discussion on possible future
development.
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2 Introductory Notes on Predictive Modeling
Estimation of risk premiums and hence pricing of non-life insurance policies
is made by studying historical correlations and trends in large amounts
of data. In a broader perspective, this endeavor can be thought of as an
application of predictive modeling to a well studied field, with standardized
assumptions of distributions and other modeling preliminaries. This section
focuses on some of the preliminary steps when building a predictive model.
It outlines how the development of the model is made in terms of data
preparation and constructing response variables.

2.1 Data Sources and Data Preparation

The principal source of data used in this theses is the company’s own records,
organized in the traditional form of an exposure table and a claim table. The
exposure table contains details on what kind of risk is covered by a given
policy, while the claim table describes claims with details such as timing, cost
and cause of damage. Additional information pertaining to the customer
such as demographic data and financial information from external sources
can be added to create a large source table, referred to as the customer
summary table.

A number of decisions have to be made during the data preparation step.
Decisions such as to what extent should outliers be removed? Claims with
no payment, are they to be counted as claims? And at what level should the
claim severity be capped? Another decision for the claim severity is whether
or not to define it as paid claims or incurred claims which includes case
reserves. Further considerations can be made, such as inflation adjustment
of historical claim costs versus maintaining the original value. One could
include the accident year as a factor so that inflationary effects are reflected
in this variable.

Final steps in data preparation are also the ones of a more technical
nature, making sure that policies that cancel mid-term, or rather very early
after the start date, test rows and internal customers are treated appropri-
ately. Treatment of missing values, grouping of variables and so forth are
also questions that arise at this stage.

Once constructed, the customer summary table is then usually separated
(randomly) into three subsets: training, validation and testing. The training
data is used to construct the model, validation data is used to test the
efficiency of the model and important to detect over-fitting in the modeling
environment while the final test data set is used to evaluate and compare
the predictive power of the models.
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2.2 Response Variables

Modeling future customer characteristics in this thesis effectively boils down
to one desire:

Differentiate customers based on expectations of profitability

Exact and all-applicable definitions of customer profitability metrics are
as elusive as profitability itself. A number of different metrics, seen as re-
sponse variables, or target variables in predictive analytics merit considera-
tion:

• Claim Frequency

• Customer Duration

• Claim \ No Claim

• Claim Count

• Paid Premiums - Paid Claims

• ClaimCount
PaidPremiums

In this thesis implemented models use Claim Frequency. Results for the
binary variable Claim \ No Claim are presented as well.

2.3 Sampling Period

Choice of sampling period is important for several reasons. The sample needs
to be large enough to build and test the model with enough confidence. It
also needs to be representative of the ’normal’ situation. Extreme weather,
legal changes and other external factors that can affect the response variable
can have adverse affects if a model built on unrepresentative data is applied
in production.

A second decision to be made at the drawing board is also: to whom
should the model be applied in practice. When trying to enhance cus-
tomer loyalty, it is generally accepted that earlier, better and more targeted
communication is better. This time urgency poses some difficulties when
modeling: the shorter the customer life-time is, the less the company knows
about the customer. This balancing of data availability and urgency to com-
municate was made in this thesis by choosing first-time customers one year
into the customer file.
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2.4 Propensity to Buy

The final objective of the thesis was to append a predicted level of risk with
existing propensity to buy model, this section briefly discusses how such a
model works.

Predictive models on propensity to buy are increasingly used in the busi-
ness world. The goal is to quantify a given customers probability to complete
a purchase in the near future. As the insurance business is similar to sub-
scription based selling, the model is trained on existing customers and the
target variable is the binary renewal or no renewal. The model used at
the insurance company is a logistic regression on a number of variables to
predict a propensity to renew a policy.

2.5 Constructing the Models

When constructing a regression type model, like the generalized linear model,
one often uses step-wise inclusion of additional independent variables. An
additional variable is included in the model if it increases the overall good-
ness fit of the model and enhances its predictive powers. A way to visualize
the isolated effect of a given independent variable is shown in Figure 1 be-
low. The way in which variables are studied and potentially added in the
regression is the following:

1. Look at the model prediction along a potential variable dimension

2. Compare a the results of a regression with and without this variable

3. If the regression including the potential variable is significantly better,
include it.

4. Repeat the previous steps while also looking at the effects on previous
variables and other measures of fit, like the AIC discussed in Section
3.
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Figure 1: Visualization of the effects of an independent variable

6



For the ANN, all input variables are used by the model albeit being
weighted differently. Building a neural network consists of firstly examining
the independence of the input variables and secondly looking at the fit for
a given network setup. In the model building phase, one can compare the
final prediction errors on the training sets by iteration shown in Figure 2.

Figure 2: Final prediction error by training iteration

2.6 Comparing GLM and ANN

The models used to predict future profitability of customers in this thesis
are introduced separately in Sections 3 and 4 respectively. Comparing the
two, the fundamental difference is one of assumptions. The GLM used in
this thesis assumes that claim frequencies are poisson distributed. It also
assumes a linear relationship between dependent and independent variables.
The ANN is built with fewer such assumptions. The claim frequency is
not assumed to follow a specific distribution, and no assumptions of linear
relationship between independent variables and dependent variable is made.
In terms of transparency, the GLM offers more insight and larger room for
interpretations on the importance of an independent variable.
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3 Generalized Linear Models
Correctly pricing policies in order to generate enough revenue to cover costs
of claims, expenses and create profit is the bread-and-butter of the insurance
business. In a market full of competitors there is a constant threat of adverse
selection. This guarantees that pricing of policies at an increasingly finer
level is needed to stay profitable in the long run. In non-life insurance, line of
business often entail large portfolios of small and similar risks. Generalized
Linear Models (GLMs) are often used in these situations. In this thesis, we
apply the GLMs to model the overall profitability of customers across lines
of business.

One valid objection to this endeavor is: if actuaries can model the cost
and frequency of claims to an acceptable degree, it means that customers
are already paying the appropriate premium to cover their expenses, and
should therefore by and large be profitable. Nevertheless, we may defend
using GLMs to this purpose with the following logic: Insurance companies
are allowed to use more variables in prospecting than pricing, and more
importantly, pricing is done separately for different products. If we can
find groups of people who are more profitable than other on the whole,
the company should prioritize them with loyalty building activity. In this
section the Generalized Linear Model is introduced, as well as commonly
used parameter estimation techniques. Finally some tools for diagnosing
and evaluating the goodness of fit of the models are discussed.
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3.1 Structure of Generalized Linear Models

The standard multivariate Gaussian regression model expresses observation
i of the dependent variable y as a linear function of (p − 1) independent
variables x1, x2, . . . , xp−1 in the following way:

yi = β0 + β1xi1 + β2xi2 + . . . βp−1xi(p−1) + εi.

In matrix form, this may be summarized by:

y = Xβ + ε,

where y = (y1, y2, . . . , yn)T and X =


1 x11 . . . x1(p−1)
1 x21 . . . x2(p−1)
...

...
...

1 xn1 . . . xn(p−1)

.

Let also β = (β0, . . . , βp−1)T be the vector containing the p parameters
to be estimated and ε = (ε1, . . . , εn)T denote the residuals. These resid-
ual components are assumed to be independent and normally (N (0, σ2))
distributed.

In GLMs, this assumption is relaxed, allowing for a larger ensemble of
distributions for the error term. A GLM is defined by:

E[y] = µ = g−1(η), (1)

where g(·) is referred to as a link function and y follows a distribution from
the exponential family. The linear predictor, η is defined by η = Xβ.

3.2 Exponential Family

A distribution is a part of the exponential family if its density or probability
mass function can be written in the following form:

f(y; θ, φ) = exp
(
yθ − b(θ)
a(φ) + c(y, φ)

)
,

where functions a(·), b(·) and c(·) determine the parametric subfamily for
a given distribution. The canonical and dispersion parameters are denoted
θ and φ respectively. Constraints on the function b are limited to it being
twice differentiable and convex.

If Y is a member of the exponential family, the following is true:

E[Y ] = b′(θ)
Var[Y ] = a(φ)b′′(θ).
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To see that this holds, one can evaluate the following differentials of the
likelihood function of a distribution from the exponential family:

∂l(θ, φ; y)
∂θ

= ∂

∂θ

(
yθ − b(θ)
a(φ) + c(y, φ)

)
= y − b′(θ)

a(φ)
∂2l

∂θ2 = −b
′′(θ)
a(φ) .

Since we know that E( ∂l∂θ ) = 0 we obtain that E[y] = µ = b′(θ) from the
first differential above. Another property of the Maximum Likelihood Esti-
mator(MLE) is that E[ ∂2l

∂θ2 ] + E[( ∂l∂θ )2] = 0. From this we obtain that

Var[y] = a(φ)b′′(θ).

Since b′ is invertible, this means that θ is a function of E[Y ]. Since c is not
a function of θ, by extension it cannot depend on E[Y ]. Equation (1) makes
estimation of this function irrelevant when model parameters are estimated.

The expression of the variance of Y as a function of θ, fittingly named
the variance function links the mean and variance of the distributions in the
exponential family. One often lets V = b′′(θ).

Link function

A number of link functions have the desirable property that g(µ) = θ, and
are then referred to as canonical links. A few such functions are listed below
for commonly seen distributions. It is interesting to note that although these
links often are used by default in statistical software, there is no a priori
reason that on the whole a canonical link is better than an alternative link
function without this statistical property.

Distribution Variance Function Var[x] Canonical link g(x)
Poisson µ log(x)
Gaussian 1 x
Bernoulli µ(1− µ) log( x

1−x)
Gamma µ2 1

x

Table 1: Table of distributions in the Exponential Family and commonly
used link functions

3.3 GLM Parameter Estimation

Parameter estimation is often done by means of the Maximum Likelihood
method. The estimates are thus taken as the values that maximize the log
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likelihood, which can be written as (for a single observation):

l = log[L(θ, φ; y)] = yθ − b(θ)
a(φ) + c(y, φ).

Differentiation of l with respect to the parameters, the elements of β yields

∂l

∂βj
= ∂l

∂θ

∂θ

∂µ

∂µ

∂η

∂η

∂βj
.

Using the knowledge that b′′ = V and that η =
∑
j βjxj , we get the expres-

sion,

∂l

∂βj
= y − µ

a(θ)
1
V

∂µ

∂η
xj

= W

a(θ)(y − µ)∂µ
∂η
xj ,

where W is defined by

W−1 =
(
∂η

∂µ

)2
V.

Recall that the likelihood above has been written for a single observation.
The likelihood equation for a given parameter, βj , is given by

∑
i

Wi(yi − µi)
a(θ)

∂µi
∂ηi

xij .

The MLE of the parameter vector is asymptotically multivariate normally
distributed N (θ, I−1

θ ). The asymptotic covariance matrix is given by the
inverse of the Fisher information matrix, Iθ, which has the elements,

Ij,k = E
[(

∂l

∂θj

)(
∂l

∂θk

)]
.

In general there are no closed form solutions for the Maximum Likelihood
Estimation problem for GLMs. In practice, numerical algorithms are used.
The likelihood function can be written as:

L(y, θ, φ) =
n∏
j=1

f(yj ; θj , φ) =
n∏
j=1

c(yj , φ) exp
(
yjθ(β, xj)− a(θ(β, xj))

φ

)
.

A commonly used approach is the iteratively re-weighted least squares
approach, described in [10]. One can summarize the process with the fol-
lowing steps:

1. Linearization of the link function. E.g. first order Taylor series. g(y) ≈
z . Where z = g(µ) + (y − µ)g′(µ).
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2. Let η0 be the current estimate of the linear predictor, and let µ̂0 be
the corresponding fitted value derived from the link function η = g(µ)
. Form the adjusted dependent variate z0 = η0 + (y − µ0)( dηdµ)|µ=µ̂0 .

3. Calculate the weight matrix W fromW−1
0 = ( dηdµ)2V0, where V denotes

the variance functions.

4. Apply a weighted regression of z on predictors x1, x2, . . . , xn using
weightsW0. This gives an updated estimate β̂1 from which an updated
estimate of the linear predictor, η̂1 is produced.

5. Repeat steps 1-4 until stop conditions apply.

3.4 Assessing the Fit of the Model

One way to benchmark the goodness of fit of any model is to compare it to
the deviance. It can be defined as:

D = 2(l(y, φ; y)− l(µ̂, φ; y)).

In the special case of the Normal distribution, the deviance is equal to
the residual sum of squares. If the model is to be considered reasonable,
the deviance should tend asymptotically towards a χ2 -distribution as n
increases.

Another goodness of fit measure is the generalized Pearson χ2 statistic,
which can be defined by

χ2 =
∑
i

(yi − µ)2

V̂ (µ̂)
,

where V̂ (µ̂) refers to the estimated variance function. Plots of the residuals
discussed above against the fitted value should show a ’random’ pattern
with constant range and mean equal to zero. Erroneous link functions and
omitted non-linear terms in the linear predictor may explain any deviance
from such a plot.

A measure of fit often used in model selection is

DC = D − αqφ,

where D is the deviance, q the number of parameters and φ is the dispersion
parameter. For values of α = 2, this measure is referred to as Akaike’s Infor-
mation Criterion (AIC). The models with small values of DC are preferred
over the ones with larger values.
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4 Artificial Neural Networks
Artificial Neural Networks can be thought of as machines designed to model
the behavior of biological neurons. In this thesis they are used to predict
future customer behavior through a process of supervised learning. The aim
of this section is to describe the way in which the multi-layer perceptron
network functions and how the model is constructed. The outline of this
section is as follows:

First we start by introducing the basic component of a neural network,
the neuron. The second part relates to linear adaptive filters. This re-
lated field is evoked in the hopes that the multi-layer perceptron and the
back-propagation algorithm will be easier to understand having first stud-
ied adaptive filters, the Least-Mean-Squares algorithm and reviewed some
optimization techniques. Third and fourth part treat the single and multi-
layer perceptron networks. As the field of ANNs is vast, our goal is only to
emphasize the most important features used during this project.
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4.1 Introductory Notes on Artificial Neural Networks

Artificial Neural Networks can be regarded as an adaptive machine. We
may define it by quoting [6] as: A neural network is a massively parallel
distributed processor made up of simple processing units, which have a natu-
ral propensity for storing experiential knowledge and making it available for
use. It resembles the brain in two aspects:

1. Knowledge is acquired by the network from its environment through a
learning process.

2. Interneuron connection strength, known as synaptic weights, are used
to store the acquired knowledge.

The essential building block of a neural network, the neuron, can be
schematically be modeled in Figure 3.

Figure 3: Signal-flow chart of a perceptron

Key elements of the model are:

1. Synapses, which determine the importance of a given input signal for
a given neuron by means of a synaptic weight. Synaptic weight wkj is
the multiplying factor of signal xj in neuron k. In general, the weights
can take negative and positive values.

2. Linear combiner, or adder for summation of the input signals weighted
by the respective synapses.

3. Activation function for limiting the output amplitude. Typically the
range of permissible output is [0,1] or [-1,1].

14



A neuron can also be summarized by the equations:

uk =
m∑
j=1

wkjxj

and
yk = ϕ(uk + bk),

where x1, x2, . . . , xm denotes the input signals, wk1, wk2, . . . , wkm are the
synaptic weights, uk is the linear combiner output, ϕ(·) is the activation
function and bk = wk0 is an externally applied bias. The bias has the
effect of applying an affine transformation to the linear combiner output.
vk = uk+bk. vk is called induced local field. Note that the bias is considered
to an external parameter of artificial neuron k.

The activation function can be of various forms. Three basic forms are
Heaviside function, piecewise-linear functions and the most commonly used
sigmoid function. The most commonly used sigmoid function is the logistic
function ϕ(v) = 1

1+e−av where the parameter a determines the slope.

There are many different types of architectures and forms of neural net-
works. In this thesis, the feedforward multilayer perceptron was used. A
feedforward network does not allow cycles from later layers to previous, it
feeds input in a fixed forward direction.
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4.2 Adaptive Filters

Adaptive filters are applied to a given dynamic system of unknown mathe-
matical form. Known features of the system are limited to input and output
data generated by the system at regular time intervals. In the case when in-
puts are x(i), the system response is the scalar d(i), where i = 1, 2, . . . , n, . . .
denotes the time. The adaptive filters seeks to replicate this system to the
fullest extent possible.

Figure 4: The adaptive filter to the right seeks to replicate the dynamical
system on the left

The external behavior of the system is described by the data set:

T = {x(i), d(i) ; i = 1, 2, . . . , n, . . .},

where
x(i) = (x1(i), x2(i), . . . , xm(i))T .

The components of x are iid samples from some unknown distribution. The
neuronal model can be described as an adaptive filter, whose operation con-
sists of two continuos processes.

1. Filtering process:

(a) Computing the output signal y(i) that is produced as a response
of the stimulus vector x(i) = (x1(i), x2(i), . . . , xm(i)).

(b) Computing an error signal, e(i) = y(i)− d(i), where d(i) denotes
the target signal.

2. Adaptive process, where the synaptic weights are adapted in accor-
dance with the error signal e(i).

The combination of these processes results in a feedback loop around the
neuron.
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In Figure 4, the output at time i, y(i) can be written as:

y(i) = v(i) =
m∑
k=1

wk(i)x(i),

where w1(i), w2(i), . . . , wm(i) are the synaptic weights measured at time i.
The manner in which the error signal is used to control the adjustments to
the synaptic weights is determined in the cost function used in the adaptive
filtering. This area takes natural influences from optimization theory, which
is why a few unconstrained optimization techniques are discussed below. We
refer to [9] for further details from the field of optimization.

4.3 Unconstrained Optimization Techniques

Consider a cost function C (w) which is a continuously differentiable function
of some unknown weight vector w ∈ Rm. We want to solve the unconstrained
optimization problem:

Find w? such that
C (w?) ≤ C (w).

The necessary condition for optimality is the usual:

∇(w?) = 0.

Iterative descent methods are generally useful in the context of adaptive
filtering. The main idea is to start with an initial guess, w(0) and generate a
sequence of w(1), w(2), . . . , such that the cost function is reduced iteratively,
i.e. that

C (w(n+ 1)) ≤ C (w(n)). (2)

Three unconstrained optimization methods related to the iterative de-
scent methods are presented below.

Method of steepest descent

The method of steepest descent updates the weights in a direction opposed
to the gradient of the cost function C , updating the weights each step by

w(n+ 1) = w(n)− η∇C (w), (3)

where η is the step size, or learning-rate parameter. In the steepest descent
algorithm, the update from iteration n to n+ 1 is given by:

∆w(n) = w(n+ 1)−w(n) = −η∇C (w).

17



To see that this method iteratively reduces the error in accordance with
Equation (2), one can linearize around w(n) for small η. Denoting g(n) =
∇C (w), one gets the expansion:

C (w(n+ 1)) ≈ C (w(n) + gT (n)∆w(n))
C (w(n)− ηgT (n)g(n))
C (w(n)− η||g(n)||2).

(4)

This shows that for positive values of η the cost function is reduced in each
iteration.

The learning-rate parameter η has a substantial influence on the con-
vergence of the steepest descent method. If it is too large the algorithm
becomes unstable and the algortithm diverges.

Newton’s Method

Newton’s method aims at minimizing the quadratic approximation of the
cost function around the current point. Using specifically a second-order
Taylor expansion of the cost function, one can write:

∆C (w(n)) = C (w(n+ 1))− C (w(n))

≈ gT (n)∆w(n) + 1
2∆wT (n)H(n)w(n),

(5)

where g =


∂C
∂w1
∂C
∂w2...
∂C
∂wm

 and H =



∂2C
∂w2

1

∂2C
∂w1w2

. . . ∂2C
∂w1wm

∂2C
∂w2w1

∂2C
∂w2

2
. . . ∂2C

∂w2wm

...
...

...
∂2C

∂wmw1
∂2C

∂wmw2
. . . ∂2C

∂w2
m


The update in weights that minimize the error is found by differentiating

(5) with respect to ∆w and solving

∂∆C (w(n))
∂∆w(n) = gT (n) + H(n)w(n) = 0.

The update is that satisfies this is ∆w(n) = −H−1(n)g(n)
Newton’s method for updating the weights can thus be summarized by

w(n+ 1) = w(n) + ∆w(n)
= w(n)−H−1(n)g(n).

For Newton’s method to work, the Hessian, H(n) has to be a positive
definite matrix for all n. Unfortunately, there is no guarantee that this is
true for all steps of the algorithm. We refer to [6] for further explanations
on how to handle this.
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Gauss-Newton Method

The Gauss-Newton is applicable to cost functions expressed as the sum of
squared errors,

C (w) = 1
2

n∑
i=1

e2(i).

The error term in this method are evaluated around a fix weight vector w
during for the observations 1 ≤ i ≤ n. The error signal is evaluated using

e′(n,w) = e(n) + J(n)(w−w(n)), (6)

where J(n) is the n×m Jacobian matrix, J(n) =


∂e(1)
∂w1

∂e(1)
∂w2

. . . ∂e(1)
∂wm

∂e(2)
∂w1

∂e(2)
∂w2

. . . ∂e(2)
∂wm...

...
...

∂e(n)
∂w1

∂e(n)
∂w2

. . . ∂e(n)
∂wm


w=w(n)

The update of the weights is done by:

w(n+ 1) = arg min
w

{1
2‖e

′(n,w)‖2
}
.

Using (6) we can evaluate this as

1
2‖e

′(n,w)‖2 =1
2‖e(n)‖2 + eT (n)J(n)(w−w(n))

+ 1
2(w−w(n))TJT (n)J(n)(w−w(n)).

Differentiating and solving for w, one gets the expression

w(n+ 1) = w(n)− (JT (n)J(n))−1JT (n)e(n). (7)

For the Gauss-Newton iteration to be computable, JT (n)J(n) needs to be
nonsingular. This means that it has to have rank n. If this matrix is found
to be rank deficient, one can add a diagonal matrix to ensure linearly inde-
pendent rows. The method uses, in a modified form the following updated
weights:

w(n+ 1) = w(n)− (JT (n)J(n) + δI)−1JT (n)e(n).

The effect of this modification is reduced as the iteration increases.
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4.4 Linear Least-Squares Filter

We may define the error signal as:

e(n) = d(n)−X(n)w(n),

where d(n) is the desired response vector, known when training the model.
Differentiating the equation above with respect to w(n) yields

∇e(n) = −XT (n)
J(n) = −X(n).

We now show that the Gauss-Newton method converges in one iteration.
Substituting the expressions for the Jacobian and error terms into equation
(7) we get,

w(n+ 1) = w(n) + (XT (n)X(n))−1XT (n)(d(n)−X(n)w(n))
= X+d(n).

The matrix X+(n) = (XT (n)X(n))−1XT (n) denotes the pseudoinverse.

4.5 Least-Mean-Square Algorithm

The Least-Mean-Square Algorithm (LMS) uses the error signal in its cost
function,

C (w) = 1
2e

2(n).

As with the Least Squares filter, the LMS uses a Linear Neuron model,
ensuring that we can write

e(n) = d(n)− xT (n)w(n).

Differentiation of C (w) gives

∂C (w)
∂w = e(n)∂e(n)

∂w .

Hence,
∂C (w)
∂w = −x(n)e(n).

The last relation can be used as an estimate for the gradient, g. The
LMS algorithm uses the method of steepest descent to find the updated
weights. The LMS algorithm, using (3) may then be written as

ŵ(n+ 1) = ŵ(n) + ηx(n)e(n).

It can be shown that the feedback loop around the weight vector ŵ above
behaves like a low-pass filter, letting low frequency components of the error
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signal through while attenuating the higher ones. The average time constant
of the filter is inversely proportional to the learning-rate parameter η. This
means that small values of η means slower progress of the algorithm, while
the accuracy of the filtering improves.

4.6 Single-Layer Perceptron

The perceptron, originally introduced in by Rosenblatt in 1958, is a simple
form of a neural network used for binary classifications of patterns that are
said to be linearly separable. It is built around the non-linear neuron, the
McCulloch–Pitts model in which the linear combiner is followed by a hard
delimiter (signum) as activation function. In essence, it consists of a single
neuron with adaptable synaptic weights and bias. The usage of a single
perceptron, limited to classification into two classes can be expanded to
allow for classification in the presence of several classes by adding parallel
perceptrons. To simplify notation the single-layer network consisting only
of a single perceptron is presented rather than a network of several neurons
within the same layer is presented in this section. Expansion to the latter
case is readily made by simply writing more. It is important to note (see
[6]) that even with other nonlinear choices of delimiter functions, successful
usage of the perceptron is limited to cases when we seek to organize in the
presence of linearly separable patterns. A signal-flow representation of a
perceptron is shown in Figure 5.

Figure 5: Signal-flow representation of a perceptron

The goal of the perceptron is to correctly classify the set of external
simuli x1, x2, . . . , xm into one of two classes C1,C2. Since the perceptron
uses the hard delimiter to classify the inputs, the decision making is made
with the following rule:
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
x ∈ C1 if v =

m∑
i=1

wixi + b > 0

x ∈ C2 if v =
m∑
i=1

wix1 + b < 0

In a simplistic form of a perceptron application the classification can be
thought to be spanned by two classification regions, separated by the hy-
perplane defined by

m∑
i=1

wixi + b = 0. (8)

An illustration of the case with two inputs, in which the hyperplane is a line
is shown in figure 6.

Figure 6: Decision regions divided by the hyperplane, a line in the case of
two inputs

4.7 Relation Between Naive Bayes Classification and the
Perceptron

When the environment is Gaussian the perceptron is equivalent to a linear
classifier, the same form taken by a Bayesian classifier in the same environ-
ment. We present this special case below. We refer to [6] for more details
on learning perceptrons.

4.8 Bayes Classifier

The Bayesian classification scheme aims at reducing the average risk. For a
two-class problem, we can define this as:

R = c11p1

∫
X1
fX(x | C1)dx + c22p2

∫
X2
fX(x | C2)dx

+ c21p1

∫
X2
fX(x | C1)dx + c12p2

∫
X1
fX(x | C2)dx,

22



where

• pi denotes the a priori probability that the observation vector x is
drawn from subspace Xi

• cij is the cost we assign of deciding that x is drawn from Xi, when it is
fact drawn from Xj . It is natural to assign values of c such that correct
classification has a lower cost than erroneous, i.e. that c11 < c12 and
c22 < c21

• fX(x | Ci) refers to the conditional probability density function of X
given that the observed vector is drawn from subspace i.

Since the subspaces form a partition of the total space, we can reformulate
the average risk as

R = c11p1

∫
X1
fX(x | C1)dx + c22p2

∫
X \X1

fX(x | C2)dx

+ c21p1

∫
X \X1

fX(x | C1)dx + c12p2

∫
X1
fX(x | C2)dx,

or furthermore as,

R = c22p2+c21p1+
∫

X1

[
p2(c12−c22)fX(x | C2)−p1(c21−c11)fX(x | C1)

]
dx.

A study of the average risk expressed in the latter forms allows for the
following deduction of a path towards an optimum (minimum) value:

1. Assigning all values of x for which the integrand is negative to class
C1 lowers the average risk.

2. Assigning all the values of x for which the integrand is positive to class
C2 lowers the average risk, as these values would then add zero to the
overall risk.

3. Values of x for which the integrand is zero has no effect, and can be
mandated to class C2.

Following this recipe, the Bayes Classification can then be compressed as
the following rule: If

p2(c12 − c22)fX(x | C2) < p1(c21 − c11)fX(x | C1)

Assign this observation to class C1, otherwise assign it to class C2
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4.9 Multilayer Perceptrons

Multilayer perceptrons (MLP) is a natural extension of the single layer per-
ceptron network reviewed earlier. It is characterized by a forward flow of
inputs passing through subsequent hidden or computational layers composed
by perceptron neurons. The usage of MLPs is defended by the fact that they
are able to predict and detect more complicated patterns in data. In this
section we will describe the back-propagation algorithm used in this thesis
to train the network. In essence the back-propagation algorithm consists of
two steps;

1. Step 1, forward pass: the inputs are passed through the network, layer
by layer and an output is produced. During this step the synaptic
weights are fixed.

2. Step 2, backward pass: the output from step 1 is compared to the
target, producing an error signal that is propagated backwards. Dur-
ing this step the aim is to reduce the error in a statistical sense by
adjusting the synaptic weights according to a defined scheme.

The multilayer perceptron has the following characteristics:

1. All neurons within the network features a nonlinear activation function
that is differentiable everywhere.

2. The network has one or more hidden layers, made up of neurons that
are removed from direct contact with input and output. These neurons
calculate a signal expressed as a nonlinear function of its input with
synaptic weights and an estimate of the gradient vector.

3. There is a high degree of interconnectivity within the network.

4.10 Back-Propagation Algorithm

At iteration n (the n:th row in the training set) we may calculate the error,
for neurons in the output layer as

ej(n) = dj(n)− yj(n). (9)

The error energy for the entire network is defined by

C (n) = 1
2
∑
j∈C

e2
j (n), (10)

where C denotes the set of neurons in the output layer. The average error
energy for an entire training set is given by

CAV = 1
N

N∑
n=1

C (n). (11)
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Figure 7: Example of a Multilayer Perceptron with two hidden layers

For a given training set, CAV represents a cost function, a measure of learn-
ing performance. The goal is to adjust the free parameters such as the bias
and the synaptic weights to minimize this cost.

Consider again a neuron j in the output layer. We may express its output
as

vj =
m∑
i=0

wji(n)yi(n)

yj = ϕj(vj(n)).

As in the LMS algorithm, the back-propagation algorithm applies a weight
adjustment ∆wji(n) ∝ ∂C (n)

∂wji(n) , where

∂C (n)
∂wji(n) = ∂C (n)

∂ej(n)
∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

∂vj(n)
∂wji(n) . (12)

Plugging these straight forward differentiations made on the equations of
this section yields:

∂C (n)
∂wji(n) = −ej(n)yi(n)ϕ′j(vj(n)). (13)

As in the steepest descent method, the update applied to the weights is
made by

∆wji(n) = −η ∂C (n)
∂wji(n) = ηδj(n)yi(n),
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where
dj = −∂C (n)

∂vj(n) = ej(n)ϕ′j(vj(n)). (14)

In (14) dj is called the local gradient and η is again a learning rate parameter.

The error signal ej(n) is used explicitly in these expressions for updating
the synaptic weights, which creates the following two situations for obtaining
its value depending on where the neuron j is located within the network.

Output layer

In this case the error signal is calculated by (9) as the target response d is
directly available. The local gradient is obtained using equation 14

Hidden layer

For a neuron located in the hidden layer the desired response is not directly
accessible, creating the need for recursive iteration over all the neurons it
is connected to. We now focus on describing how this can be done: Using
knowledge above we can write

dj(n) = −∂C (n)
∂yj(n)

∂yj(n)
∂vj(n)

= −∂C (n)
∂yj(n)ϕ

′
j(vj(n)).

(15)

The second term ϕ′j(vj(n)) is directly known from the activation and local
induced field of hidden neuron j. The first, term can be evaluated using
(10). Using another dummy index, k to indicate that the summation of the
error energy is made through summation over output neurons, we get

∂C (n)
∂yj(n) = ∂

∂yj

∑
k

e2
k(n)

=
∑
k

ek(n)∂ek(n)
∂yj(n)

=
∑
k

ek(n)∂ek(n)
∂vk(n)

∂vk(n)
∂yj(n) .

(16)

From equation (9) we see that since k is an output neuron

∂

∂vk(n)ek(n) = ∂

∂vk(n)

(
dk(n)− yk(n)

)
= ∂

∂vk(n)(dk(n)− ϕk(vk(n)))

= −ϕ′k(vk(n)).

(17)
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The induced field for neuron k can be expressed as the weighted sum (in-
cluding the bias for this neuron as wk0 = bk ) all its input from the previous
layers:

vk(n) =
m∑
j=0

wkj(n)yj(n). (18)

Differentiating yields
∂vk(n)
∂yj(n) = wkj(n). (19)

The local gradient for a hidden neuron j can thus be expressed using (15
,16 ,17 19) as,

dj(n) = ϕ′j(vj(n))
∑
k

ek(n)ϕ′k(vk(n))wkj(n). (20)

Recognizing the expression in the sum as the local gradient as defined in
(14) we can rewrite this last expression as

dj(n) = ϕ′j(vj(n))
∑
k

dk(n)wkj(n). (21)

Equation (21) is finally the back-propagation formula for the local gradient
for a hidden neuron. The update in weights is made using

∆wji = ηδj(n)yi(n). (22)

Summary of the back-propagation algorithm

Two computational steps are done in the back-propagation algorithm. The
forward pass consists, left to right propagation through the network using
fixed synaptic weights throughout. The output signals are calculated for all
neurons individually using

yi = ϕ(vj(n)),

where vj is the induced local field of neuron j, is given by

vj(n) =
m∑
i=0

wji(n)yi(n),

where m is the number of inputs to neuron j and yi is the input signal.
In the special case when neuron j is either in the input or output layer,
yi(n) = xi(n) If j is in the output layer, the output signal yj(n) is compared
to the target value d(i), rendering the error ej(n). The backward pass goes
right to left, starting at the output layer, recursively calculating the local
gradient δ and updating the synaptic weights using (22).
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When training a feedforward multilayer perceptron, there are two ways in
which the the back-propagation can be implemented. Using it incrementally,
the algorithm is used for every training input. In the second, batch mode,
all training examples are supplied to the network before the weights are
reevaluated. The fixed weights in the forward pass are obtained using a
given initialization method, usually a random sample from a distribution
with zero mean.

Highly simplified, the training is made following the steps:

• Initialize weights (e.g. small random numbers)

• Pass a record through the network and calculate output.

• Update weights proportional to the error in output, propagate errors
backwards from output layer to first hidden layer.

• Repeat for each record until stop conditions apply.
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5 Results
This section presents results for two implemented models: a Generalized
Linear Model and feedforward multilayer perceptron. The GLM model uses
Claim Frequency as response variable, whereas the Neural Network has been
developed using claim frequency as well as the binomial claim/no claim as
response variables. The chapter is organized in the following way: first
results for the predicted claim frequency from Generalized Linear regression
model and the Artificial Neural Network are compared. Secondly, some
results for the Neural model using a binary response variable are presented.
This chapter concludes with presenting the results of the cross-application of
these results with the already developed propensity to buy model described
in chapter 2.

5.1 Comparison of the GLM and Neural Model
The Generalized Linear Model and the Artificial Neural Network use the
following parameters

Variable GLM ANN
ClaimCnt × ×
FirstProd × ×

SalesChannel × ×
YearOfBirthGroup × ×

MaritalStatus × ×
EducationLevel × ×
HHIncomeDecile × ×

Gender ×
MonthOfBirth ×

RegionOfResidency ×
HousingType ×
LifePhase ×

LastRelocationDate ×
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The list of candidate independent variables studied did not motivate a
larger set of variables included in the GLM. Given the fact that the ANN
works on a larger set of input variables and has a larger degree of freedom
it should be somewhat better. However, some caution is necessary when
following this logic. A known risk when using neural networks, and regres-
sion models for that matter, is the risk of over-fitting. This is when noise
and random behavior in the training data is fitted rather than the overall
pattern. When more variables and hidden layers are added to a model, the
overall fit of the data tends to increase and the R2 increases. It is important
to note that the model is built on one set of data, and that testing and sys-
temic usage of the models is made on another. If the model is too specific, it
may be overemphasizing certain traits in the training set and can have lower
predictiveness than a more generalizing model built on fewer variables.

In this section, the goal is to compare and cross-validate the GLM and
Neural Network model against each other. To do this, the customers are
assigned into deciles according to the predicted claim frequency of each
model respectively. The first decile is defined as 10 % of the customers with
highest claim frequency, second decile is another tenth of the customers with
claim frequencies lower than the first decile but higher than the subsequent
deciles and so on.

Comparing the predicted deciles using the ANN with the actual, realized
claim frequency deciles of customers is made in Figure 8.

Figure 8: Comparison of actual decile assignment with predicted assigments
using ANN

The results indicate that actual first decile claim frequency customers
where largely also predicted to be in that category. Among the customers
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in that segment 60 % were also predicted to be in that category. The
remaining 40 % were predicted to be in other segments. For subsequent
deciles the model is able to predict largely the same category. Most of the
discrepancy between the realized and the predicted lies in the first segment.

The same comparison with actual claim frequency and the predicted
assignment made using the GLM is shown in Figure 9. The GLM is less
accurate in predicting the decile compared with the neural network. It
shows a larger tendency of over and under predicting claim frequency. It
does however correctly shift the ’center of mass’ in the assigned deciles as
one moves from left to right in the chart.

Figure 9: Comparison of actual decile assignments with predicted assigments
using a GLM
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For validation, one can evaluate the risk ratio by predicted values. Risk
ratio, is a common metric in insurance reporting and is defined as cost of
claims over premiums paid of a given time interval. Comparing the Risk
Ratio by the predicted deciles in Figure 10 shows that the models finds
the most claim intense customers with some success, but is less precise at
differentiating between customers in the lower claim frequency ranges.

Figure 10: Risk ratio by decile
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5.2 Results for the Artificial Neural Network: Response vari-
able Binary Claim

To validate the ANN architecture and setup, a study on the binary target
variable claim or no claim was made. The Receiving Operator Characteris-
tics (ROC) chart below illustrates how well the customers are assigned into
one of the two classes. The plot shows true positive rate against the false
positive rate, or in other words the model’s overall ability to correctly flag
future claimers against a false prediction of an actual non-claiming customer
as a customer with claims. The network chosen was the one closes to the
upper left corner.

Figure 11: ROC chart
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A similar plot, the gain curve shows how well the customer based in
sorted into descending risk. The neural network assigns 50 % of the all
claimers in the top two deciles.

Figure 12: Gains Curve

5.3 Propensity to Buy and Risk Metric

A final objective of this thesis was to combine at the customer level, a
predicted risk propensity metric with an estimated probability of purchase.
The results are presented in Table 13, where the first column represents
a propensity to buy score, the subsequent columns represent a measure of
risk in descending order. The values represent percentage of row. The
interesting results come from the fact that higher probability of purchase
shows higher risk-prone characteristics and the converse, low probability of
purchase corresponds to lower predicted risk.
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Figure 13: Propensity to Buy and Estimated future Risk
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6 Conclusion
Different models used to predict future profitability early into a customer
life cycles were developed. Several modeling techniques and response vari-
ables were considered and tested. Claim frequency was retained as the most
viable option as a response variable. The basic theory underlying the two
resulting models using Generalized Linear Models and a feedforward mul-
tilayer perceptron was presented. The model performances were evaluated
and compared by estimating the future claim frequency ex post and compar-
ing the predictions with actual data. The results show that the implemented
models are able to differentiate higher propensity of risk, but less effective
across the entire frequency range.

The estimated future risk was appended to existing models on propensity
to buy future insurance policies. Interestingly enough, the combined distri-
bution suggests that the customers most likely to purchase also tend to
be less profitable. Retaining profitable customers and prioritization within
the existing set of customers should therefor be seen as an alternative levy
against adverse selection.

The combined predictions on propensity to purchase and expected prof-
itability can be used in several ways. One solution is to restrict the number
of prospects with low expectations on profitability actively treated by sales
agent or used in any campaign activity. In practice this could work as a
filter, where the expected profitability needs to be larger than a certain
threshold, or that a given percentage e.g. 5% customers with the lowest
predicted profitability are continuously filtered out. Another approach is to
assign a combined score, akin to a cost of being in a given point in a matrix
shown in Table 13. An example of this could be a matrix of scores as shown
below.

RD 1 RD 2 RD3 RD4 RD 5 RD 6 RD 7 RD 8 RD 9 RD 10
PD 1 100 90 80 70 60 50 40 30 20 10
PD 2 100 81 72 63 54 45 36 27 18 9
PD 3 100 72 64 56 48 40 32 24 16 8
PD 4 100 63 56 49 42 35 28 21 14 7
PD 5 100 54 48 42 36 30 24 18 12 6
PD 6 100 45 40 35 30 25 20 15 10 5
PD 7 100 36 32 28 24 20 16 12 8 4
PD 8 100 27 24 21 18 15 12 9 6 3
PD 9 100 18 16 14 12 10 8 6 4 2

PD 10 100 9 8 7 6 5 4 3 2 1

Another future direction to be taken from adding a measure of risk in
CRM prospecting activity is the compensations to underwriters and sellers:
Selling a policy is good, selling a more profitable one should be considered
better. Expanding the goals and incentives of volume increase and retention
seeking activity with profitability measurements could be a way of cultivat-
ing long-term profitability.
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