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Abstract

The performance of an optimal-weighted portfolio strategy is evaluated when trans-
action costs are penalized compared to an equal-weighted portfolio strategy. The
optimal allocation weights are found by maximizing a modified Sharpe ratio measure
each trading day, where modified refers to the expected return of an asset in this
context. The leverage of the investment is determined by a conditional expectation
estimate of the number of portfolio assets of the next-coming day. A moving window
is used to historically measure the transition probabilities of moving from one state
to another within this stochastic count process and this is used as an input to the
estimator. It is found that the most accurate estimate is the actual trading day’s
number of portfolio assets and this is obtained when the size of the moving window
is one. Increasing the penalty parameter on transaction costs of selling and buying
assets between trading days lowers the aggregated transaction cost and increases
the performance of the optimal-weighted portfolio considerably. The best portfolio
performance is obtained when at least 50% of the capital is invested equally among
the assets when maximizing the modified Sharpe ratio. The optimal-weighted and
equal-weighted portfolios are constructed on a daily basis, where the allowed VaR0.05

is e300 000 for each portfolio. This sets the limit on the amount of capital allowed
to be invested each trading day, and is determined by empirical VaR0.05 simulations
of these two portfolios.

Keywords: Modified Sharpe Ratio, Portfolio Optimization, Transaction Cost,
Conditional Forecasting, Performance Analysis, Transition Probability, Stochastic
Count Process, Value-at-Risk.
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Chapter 1

Introduction

Fortum is an energy company operating in the Nordic countries, Russia, Poland and
the Baltic Rim area. The company’s activities cover generation, distribution and
sales of electricity and heat as well as operation and maintenance of power plants.
The Trading and Industrial Intelligence (TII) is Fortum’s competence centre for
commodities traded on the financial markets. It provides analysis and views of
the current behavior of the commodities on the financial markets and functions
as decision support to Fortum’s business divisions, corporate strategy, M&A and
external communications. Additionally, TII supports Fortum by carrying out asset
backed trading, sales trading and fuel management for Fortum’s whole portfolio,
and proprietary trading. The latter consist of value-generating trading in

• Electricity forwards, futures and options primarily on the Nord Pool and EEX
exchange markets.

• CO2 emission allowances on the ICE/ECX exchange market.

• Financial coal and oil derivatives on the ICE and OTC exchange markets.

The proprietary trading portfolio consist of tradable assets, or strategies as they are
commonly referred to at TII. They are constructed as a single contract, a spread
contract or a basket of contracts of the specified financial instruments presented
above. The set of instruments used to construct new portfolio assets, and at which
trading days new/existing portfolio assets are activated/deactivated, is decided by
TII’s Case Group unit. The Case Group unit base their decisions on daily fundamen-
tal views and quantitative analysis of the financial markets mentioned above. This
decision process generates the dynamics of the portfolio, i.e the number of assets
that are included in the portfolio each trading day. This leads to a portfolio which in
general consists of few to several assets, where capital is needed to be allocated each
trading day. As a direct result of this, TII wants to construct a portfolio optimized
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allocation model which takes transaction costs into consideration and construct a
model that gives a probable prediction estimate of the number of portfolio assets of
the next-coming day. The latter is of importance for allocation planning, and when
implemented in the optimization routine it will determine the leverage of the invest-
ment and lower the transaction costs of the portfolio between trading days. As of
today, TII distributes its capital discretionary between portfolio assets each trading
day and they do not have any prediction estimate, more than mere experience, on
the future number of assets in the portfolio. It is well known that trading is exposed
to risk which may lead to losses due to unexpected market behavior. In order to
protect the daily investment from possible drawbacks, the company has regulated
that the probability of losing more than e300 000 is at most 5%. It follows that
a Value-at-Risk model is needed to simulate the riskiness of holding the portfolio
between trading days, which also can be used to determine how much capital is
allowed to be allocated to the portfolio each trading day.

The optimal-weighted portfolio is computed each trading day by maximizing the
modified Sharpe ratio when transaction costs are penalized between trading days.
Modified refers to the fact that the performance measure is changed in order to agree
with TII’s view on how each asset in the portfolio is expected to perform, i.e. the
expected return of an asset. This optimal-weighted trading portfolio, defined as the
optimal trading strategy, is in terms of performance compared to an equal-weighted
trading portfolio, defined as the benchmark trading strategy, to determine the best
candidate. The performance of each trading strategy is mainly based on annual-
ized Sharpe Ratio and aggregated transaction cost of these two trading portfolios.
The prediction estimate of the number of portfolio assets of the next-coming day
is computed by using transition probabilities as input to a conditional expectation
estimator. This is implemented in the optimization as a leverage on the investment
of the two trading portfolios. The model that will be used to simulate the riskiness
of holding these two trading portfolios over one day is the empirical Value-at-Risk
at confidence level α = 0.05.

The plan of the thesis is as follows. In Chapter 2 the historical data is evaluated
and its matrix structure is highlighted. Before presenting the results, a theoretical
framework upon which the analysis rest is established in Chapter 3 . Some modi-
fications are made here compared to standard theoretical procedure in the field in
order to accommodate to the nature of the problem. In Chapter 4 the numerical
results from the optimal trading strategy and the benchmark trading strategy are
presented, and a comparison between the two models is made. This is followed
by a discussion and conclusions in Chapter 5, and proposals on further studies for
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enhancement of established models and theory.
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Chapter 2

Data Study

In order to understand how the theoretical framework is applied, it is necessary to
introduce the reader to how the trading data is structured and give some comments
on its properties. The data, consisting of two matrices, ranges from 2004-01-02 to
2007-11-01 and is created to reflect the true original trading data which is confi-
dential. Dates that account for weekends and bank holidays are neglected and not
incorporated in the data sets.

2.1 Matrix Representation

The two data sets are represented in matrix form consisting of 1000 rows and 931
columns, where a row indicates a specific trading day t = 1, 2, 3, . . . , 1000 and where
a column indicates a specific asset a = 1, 2, 3, . . . , 931. The first matrix contains
historical 1-day returns for each asset, defined as the return matrix, and the second
matrix contains historical information showing which assets have been included in
the portfolio each trading day, defined as the information matrix. The structure is
illustrated in two matrices below.



−0.01665 0.01092 0.002106 0.00805 · · · r1931
−0.04257 0.1264 0.05999 0.003021 · · · r2931
−0.05284 0.04274 −0.008734 0.005665 · · · r3931
0.01703 −0.04218 −0.01079 −0.01104 · · · r4931
0.01309 0.02606 0.0007212 0.009992 · · · r5931

...
...

...
...

. . .
...

r10001 r10002 r10003 r10004 · · · r1000931


(2.1)

This is the structure of the return matrix, where the first four assets’ historical 1-day
returns of the first five recorded trading days are depicted and where rta is the return
of asset a at trading day t.
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0 0 0 0 0 · · · 0 · · · 0 0 · · · 0 · · · 0 0 0

0 0 0 0 0 · · · 0 · · · 0 0 · · · 0 · · · 0 0 0

1 1 0 0 0 · · · 0 · · · 0 0 · · · 0 · · · 0 0 0

1 1 1 1 0 · · · 0 · · · 0 0 · · · 0 · · · 0 0 0

0 I62 I63 I64 I65 · · · I6n−k · · · 0 0 · · · 0 · · · 0 0 0
...

...
...

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
...

...
0 0 0 0 0 · · · Imn−k · · · Imn−1 Imn · · · 0 · · · 0 0 0

0 0 0 0 0 · · · 0 · · · Im+1
n−1 Im+1

n · · · Im+1
n+l · · · 0 0 0

...
...

...
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
...

0 0 0 0 0 · · · 0 · · · 0 0 · · · I999n+l · · · I999929 I999930 0

0 0 0 0 0 · · · 0 · · · 0 0 · · · 0 · · · I1000929 I1000930 I1000931



(2.2)

This is the structure of the information matrix, illustrating the assets that have
been included in the portfolio on a specific trading day and where Ita∈{1,0} is the
indicator function of asset a at trading day t. The indicator function takes the value
1 if asset a is active at trading day t and 0 otherwise.

By combining rows and columns in (2.2) it can be seen that on trading day
t = 1, 2, there are no active assets in the portfolio. On trading day t = 3, the
portfolio consists of asset a = 1, 2. On trading day t = 4, the portfolio consists of
asset a = 1, 2, 3, 4. The same reasoning for the remaining rows in the matrix. As
soon as an asset a is found to be active in matrix (2.2), it is possible to extract its
corresponding historical 1-day returns from matrix (2.1).

2.2 Asset Returns

To get an intuition on how the assets perform over time and how they are distributed,
a few figures will be examined below for illustrative purpose. Due to the fact that
the return matrix (2.1) is very large, the full range of the data is not presented here.
As a consequence, only a small data sample from arbitrarily chosen time points is
presented for this empirical study.

The chosen time points under observation are trading day t = 424 and trading
day t = 995 where each data sample consists of the returns from trading day t to
trading day t− 195 of each asset.

The active assets in the portfolio on trading day t are extracted from the infor-
mation matrix (2.2) and their corresponding historical 1-day returns are extracted
from the return matrix (2.1).
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2.2.1 Historical 1-Day Returns

By definition the historical 1-day return of asset a at trading day t is computed by
equation (2.3), where p is the closing price of an asset.

rta =
pta − pt−1a

pt−1a
. (2.3)

2004−11−14 2005−01−22 2005−04−01 2005−06−08 2005−08−16
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 

 
366
372
375
380
381

2007−01−23 2007−04−02 2007−06−09 2007−08−17 2007−10−24
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

 

 
917
923
924
927
929

Figure 2.1: Historical 1-day returns.

Figure 2.1 illustrates the historical 1-day returns of those assets found to be active
(top left corner in each graph) in the data samples conducted from trading day
t = 424 (top graph) and trading day t = 995 (bottom graph). Notice that asset
a = 927 occasionally exhibits high volatile outcomes compared to the other assets.

2.2.2 Cumulative Product Returns

The cumulative product return of asset a at trading day t for sample size k, where
t ≥ k, is defined by equation (2.4).
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cprt,ka = (1 + rt−k+1
a ) · (1 + rt−k+2

a ) · · · (1 + rta). (2.4)

2004−11−14 2005−01−22 2005−04−01 2005−06−08 2005−08−16

0.8

1

1.2

1.4

1.6

1.8

2
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381

2007−01−23 2007−04−02 2007−06−09 2007−08−17 2007−10−24
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

 

 
917
923
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927
929

Figure 2.2: Cumulative product returns.

Figure 2.2 illustrates the cumulative product returns of those assets that were found
to be active (top left corner in each graph) in the data samples conducted from
trading day t = 424 (top picture) and trading day t = 995 (bottom graph). Bare
in mind that assets are activated when they are expected to outperform their fun-
damental state, e.g. oversold. An example of this can be studied in the bottom
graph for asset a = 927 which has experienced times of increase in value followed
by decrease in value and vice versa.

2.3 Portfolio Dynamics

From the information matrix (2.2), it is possible to extract additional information
from its structure property by analyzing the rows and columns in detail. Each row
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contains information on the number of assets that are included in the portfolio on
a specific trading day t. From this it is possible to illustrate how the number of
assets in the portfolio historically has varied over time and how it is distributed.
Each column contains information on the number of trading days an specific asset a
has been included in the portfolio. This measures an asset’s historical tendency of
surviving and its distribution can give an indication on how future, not yet activated
assets, will tend to survive in the portfolio.

Combining these facts enables the possibility to investigate the time series of
how many portfolio assets that: are active at trading day t, activates/deactivates
at trading day t and survives from trading day t − 1 to trading day t. From these
time series the corresponding marginal distributions are created and evaluated.

2.3.1 Active Assets

The number of active assets is the amount of investable assets the portfolio consist of
each trading day t and these numbers are obtained by adding together the elements
of each row in (2.2). This generates a time series of 1000 data values, one for each
trading day, which is illustrated in Figure 2.3 below.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Figure 2.3: Time series of active assets.

This graph shows explicit indications of a stochastic behavior in the time series,
where the number of active assets oscillates each trading day between a minimum
of 0 to a maximum of 21 assets. The marginal distribution, i.e. the number of
times the portfolio consist of an unique number of active assets (0, 1, 2, . . . , 21), is
generated from this time series and illustrated in Figure 2.4 below.
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Figure 2.4: Marginal distribution of active assets.

This graph illustrates the outcome frequency for each time the portfolio consists
of an unique number of active assets, indicating a rather large negatively skewed
distribution which peaks at 6 possibly 7 active assets.

2.3.2 Surviving Assets and Their Survival Time

The surviving assets are the active assets that survives from trading day t − 1 to
trading day t in the portfolio and these numbers are extracted from (2.2). This
generates a time series of 1000 data values, one for each trading day, illustrated in
Figure 2.5 below.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Figure 2.5: Time series of surviving assets compared to active assets.

This graph compares the amount of assets surviving from trading day t − 1 to
trading day t (blue line) with the actual number of active assets in the portfolio
(black dashed line). The number of surviving assets oscillates each trading day
between a minimum of 0 to a maximum of 20 assets, and not surprisingly it behaves
similarly to that of the time series of the active assets. The corresponding marginal
distribution of this time series can be seen in Figure 2.6 below.
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Figure 2.6: Marginal distribution of surviving assets.

This distribution illustrates the outcome frequency of the surviving assets, which
peaks at 5 surviving assets and exhibits a similar negatively skewed distribution as
that of Figure 2.4.

Additional properties can be extracted from matrix (2.2) by adding all elements
in each column, resulting in the number of days each asset has been active in the
portfolio, i.e. each asset’s tendency of surviving. A time series of 931 data values
is generated, one for each asset, representing the survival time of an asset. This is
illustrated in Figure 2.7 below.

100 200 300 400 500 600 700 800 900

5

10

15
20

25

30

35

Figure 2.7: Time series of assets’ survival time in the portfolio.

The graph illustrates the survival time of each asset, ranging from a lowest of 1
to a highest of 37 trading days, indicating high randomness. The corresponding
marginal distribution of this time series can be seen in Figure 2.8 below.
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Figure 2.8: Marginal distribution of assets’ survival time.

This graph indicates somewhat a decay in frequency as the number of trading days
increases, except for some distinct outliers at 1, 5, 8 and 10 trading days.

2.3.3 Birth and Death of Assets

The birth and death of assets are the number of portfolio assets activated and
deactivated at each trading day and these values are also obtained from (2.2). This
generates two time series consisting of 1000 data values each, one for each trading
day, which is illustrated in Figure 2.9 below.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Figure 2.9: Time series of death and birth process.

The graph compares the number of births (green line) and deaths (red line) at each
trading day t. In general, the death process seems to exhibit less extreme movements
compared to the birth process. The two processes however oscillate heavily, between
a minimum of 0 to a maximum of 5 assets for the death process and a minimum
of 0 to a maximum of 9 assets for the birth process. The corresponding marginal
distributions of these two time series are shown in Figures 2.10 and 2.11 below.
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Figure 2.10: Marginal distribution of birth process.

The marginal distribution of the birth process clearly indicates that it decays in
frequency as the births increase in number. Notice that approximately 50% of the
time there are no births occurring in the time series, i.e. the probability of a new
asset not being activated on a trading day is historically approximately 50%.
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200
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300

350
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Figure 2.11: Marginal distribution of death process.

The marginal distribution of the death process indicates that the two most fre-
quently occurring outcomes correspond to those of 0 and 1. These two events occur
historically at approximately 40% and 37% of the time respectively. The combined
probability of these two events covers 77% of the outcomes and the remaining mass
is distributed between the remaining outcomes as the graph illustrates.
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Chapter 3

Theoretical Background

The purpose of this chapter is to give the reader a thourough explanation of the
methods and theories that have been used in order to obtain the numerical results
later on in this thesis. These theories and methods are originally designed to apply
on problems that in some cases differ from the problem that is faced in this thesis.
As a consequence, it is necessary to make some few adjustments to the existing
theories and methods in the field in order to fit to the framework of this thesis.

The reader is encouraged to make notice of one important interpretation that
holds throughout this chapter. Up to trading day t everything is assumed to be
known except the returns of the active assets in the trading portfolio for that day.
They are first known at the end of each trading day since returns are computed
from closing prices.

3.1 Time Series Analysis

In order for transaction costs to possibly be lowered and allocation planning to be
applicable it is of importance to predict the most probable outcome on the number
of active assets in the portfolio at trading day t+ 1. By extracting the dependency
structure from the count process of active assets, birth of assets and death of assets
it is possible to predict the number of portfolio assets of trading day t+ 1, when the
number of portfolio assets at trading day t is given. Since the data is generated from
stochastic count processes, it is reasonable to use a model that is proved to work with
this type of behavior. Thus, the predictor that will produce this 1-day estimate will
be based on transition probabilities together with conditional expectation theory.
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3.1.1 Stochastic Processes and Transition Probability Matrices

It is stated in [1] that a stochastic process is a family of random variables Xt for
time points t such that

X = {Xt : t ∈ T}, (3.1)

where T is some index set of the process. Typical cases are when T belongs to a
subset or the whole set of nonnegative integers N0 (which case the process is said to
have discrete time) and when T belongs to the set of real numbers R, usually [0, 1]

or [0,∞) or (−∞,∞), (which case the process is said to have continuous time). The
stochastic process is in itself called discrete or continuous depending on the state
space S, which is the set of attainable values of the process. A stochastic process
with state space S is defined on the same probability space (Ω,F ,P). For each fixed
t ∈ T , Xt is a random variable which is mapped from Ω → S. Furthermore, for
each fixed ω ∈ Ω it holds that the mapping t→ Xt(ω), defined on the index set T ,
is called a realization, trajectory or sample path of the stochastic process in 3.1.

The data sets which contain values of the active, birth and death of assets are out-
comes from three different stochastic processes which all are discrete both in time
and state space. Let them be represented by the stochastic processes {At : t =

1, 2, 3, . . . , 1000} (active assets), {Bt : t = 1, 2, 3, . . . , 1000} (birth of assets) and
{Dt : t = 1, 2, 3, . . . , 1000} (death of assets). Evidently the state space S of the
stochastic processes At, Bt and Dt belongs to the set of nonnegative integers N0

where t as usual indicates a trading day in this framework. These stochastic pro-
cesses have each a discrete state space that evolves in discrete time and logically,
as figures 2.3 and 2.9 indicates above, the outcome space of each stochastic process
At, Bt and Dt is limited to their own unique set of attainable nonnegative integers.
They are all subsets of N0 and given by SA = {0, 1, 2, . . . , 21}, SB = {0, 1, 2, . . . , 9}
and SD = {0, 1, 2, . . . , 5} if the full range of the data set from each stochastic process
is used.

The dependence structure within each sample path can be successfully revealed
by estimating the probabilities of transition from one state to another, i.e. the
probabilities P(At+1 = at+1|At = at, . . . , A1 = a1) = P(At+1 = at+1|At = at),
P(Bt+1 = bt+1|Bt = bt, . . . , B1 = b1) = P(Bt+1 = bt+1|Bt = bt) and P(Dt+1 =

dt+1|Dt = dt, . . . , D1 = d1) = P(Dt+1 = dt+1|Dt = dt). The idea of transition
probabilities is originally a property of discrete time Markov chains and the full
range of those theories are presented in [2] and [3]. However, they do not fully apply
in this framework since the full range of the data is not used when estimating the
transition probability matrices. They are estimated each trading day t by using a
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moving window of size w, where all transitions from one state to another in the
sample paths are monitored from trading day t + 1 − w to trading day t. Thereby
the behavior of each stochastic process is captured and its transition probabilities
can be summarized in three different transition probability matrices (P̂At , P̂Bt , P̂Dt),
each with the matrix structure illustrated in table 3.1 below.

xt+1

state 0 1 2 3 4 · · · k

xt

0 p1,1 p1,2 p1,3 p1,4 p1,5 · · · p1,k+1

1 p2,1 p2,2 p2,3 p2,4 p2,5 · · · p2,k+1

2 p3,1 p3,2 p3,3 p3,4 p3,5 · · · p3,k+1

3 p4,1 p4,2 p4,3 p4,4 p4,5 · · · p4,k+1

4 p5,1 p5,2 p5,3 p5,4 p5,5 · · · p5,k+1

...
...

...
...

...
...

. . .
...

l pl+1,1 pl+1,2 pl+1,3 pl+1,4 pl+1,5 · · · pl+1,k+1

Table 3.1: Transition probability matrix

This table illustrates the structure of the transition probability matrix which is
estimated each trading day t. The arbitrary variable x is replaceable with a, b and
d which corresponds to the active, birth and death of assets respectively. Each
probability is estimated simply by dividing the number of times state i − 1 has
moved to another state j − 1 by the total amount of movements from state i − 1,
i.e.

pi,j = ni−1,j−1/Σ
k+1
a=1(ni−1,a−1), (3.2)

where ni−1,j−1 is the number of transitions made from state i− 1 to state j − 1 for
i = 1, 2, 3, . . . , l+1 and j = 1, 2, 3, . . . , k+1. It holds that Σk+1

j=1pi,j = 1 for every i, if
all of the states {0, 1, 2, . . . , l} transitions to one of the states {0, 1, 2, . . . , k} at least
one time. However, if the state that correspond to row i has not been found within
the sample path, then all the columns of that row will be filled with zeroes. As table
3.1 illustrates, the variables k and l are the highest transition states that are found
within the sample path, which define the size of the transition probability matrix.
The size of the moving window w affects the probability distribution of transitions
and it is thereby needed to be specified from statistical analysis. In order to fully
understand the properties of the transition probability matrix (3.1), it is convenient
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to illustrate it by a figure of arbitrary transition state chains followed by three case
examples.

.

p1,1 p2,2

p1,2

p2,1

p3,3

p1,3 p2,3
p3,1 p3,2

p4,4

p1,4

p4,1

p2,4

p4,2

p3,4

p4,3

p5,5

p1,5

p2,5

p3,5

p4,5

p5,1

p5,2

p5,3

p5,4

0 1

2

3 4

Figure 3.1: Transition state chain.

This figure illustrates the transition between states generated by some arbitrary
sample path accompanied by the corresponding transition probabilities as that of
the transition probability matrix (3.1). Notice that this transition chain is not re-
stricted in any way and can be made arbitrarily large just by adding more states.

For the case study, it is assumed that the sample path of the arbitrary stochastic
process {Xt : t = 1, 2, 3, . . . , 14} is xt = [0 1 3 2 3 4 3 5 7 4 3 5 6 2] in one real-
ization. By using a moving window w = 6 trading days, measuring the transition
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between states from trading day t+ 1−w to trading day t, it is possible to estimate
the transition probability matrix (3.1) at each trading day t. The structure of this
transition probability matrix is as follows.

Case 1) l < k

In the first case, it is assumed that t = 6 which gives x6 = 4 from the sample path
above. It can be seen that a transition has occurred from states {0, 1, 2, 3} at least
one time, but not from state 4 to another state. From this reasoning, it is clear that
k = 4 and l = 3 which evidently yields that the transition probability matrix P̂X6 in
Table 3.1 has four rows and five columns. As a last remark, notice that Σk+1

j=1pi,j = 1

for every i in this case.

Case 2) l = k

The case when the transition probability matrix is symmetric is just a matter of
moving one time step to trading day t = 7, which now yields x7 = 3 from the sam-
ple path above. It can be seen that a transition has occurred from states {1, 2, 3, 4}
at least one time but not from state 0 to any other state. It is clear that k = l = 4

which yields that the symmetric transition probability matrix P̂X7 consists of five
rows and five columns. However, notice that Σk+1

j=1pi,j = 0 for i = 1, since state 0
has never transitioned to another state in this case.

Case 3) l > k

The last case is accomplished by moving to trading day t = 14, which gives x14 = 2

from the sample path above. Now a transition has occurred at least one time from
the states {3, 4, 5, 6, 7} to another state, but not from states {0, 1, 2} to any other
state. This yields that k = 6 and l = 7, which generates the transition probability
matrix P̂X14 that consist of eight rows and seven columns, where Σk+1

j=1pi,j = 0 for
i = 1, 2, 3.

3.1.2 Conditional Forecasting

As the probability distribution of the stochastic count processes undergoes condi-
tioning, it is necessary to use a model that accounts for this. In [1], it is stated
that if the random variables X and Y are jointly distributed, then it holds that the
conditional expectation of Y given that X = x is

E[Y |X = x] =
∑
y

ypY |X=x(y). (3.3)
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For each stochastic count process, i.e. active, birth and death of assets, the corre-
sponding transition probability matrix contains the estimated probabilities of mov-
ing from one state to another. They are seen as the true probabilities defining the
probability space of the stochastic count processes At, Bt and Dt when standing
at trading day t. This is interpreted as follows, given that At = at, Bt = bt and
Dt = dt, the random variables At+1, Bt+1 and Dt+1 are distributed according to
P̂At+1|At=at(at+1), P̂Bt+1|Bt=bt(bt+1) and P̂Dt+1|Dt=dt(dt+1) respectively. These are
the conditional probabilities of moving from one state to another and by applying
(3.3) we construct two predictors, 1) where the count process properties of the active
assets are used and 2) where the count process properties of the birth and death of
assets are used. The first predictor is defined as

Ĥt,t+1
a = E[At+1|At = at] =


∑
at+1

at+1P̂At+1|At=at(at+1), if w > 1,

at, if w = 1,
(3.4)

which corresponds to the active assets predictor, where Ĥt,t+1
a is the predicted num-

ber of active assets in the portfolio of trading day t+ 1 when the number of active
assets at trading day t is given. Notice that this predictor does not generate in-
teger values and it is therefore assumed that it is allowed to round the predicted
value in order to fit to the count data. Thus, if dĤt,t+1

a e − Ĥt,t+1
a ≤ 0.5 it fol-

lows that Ĥt,t+1
a = dĤt,t+1

a e (rounded to the closest integer upwards), and otherwise
Ĥt,t+1
a = bĤt,t+1

a c (rounded to the closest integer downwards). The second predictor
is defined as

Ĥt,t+1
b,d = E[At+1|At = at, Bt = bt, Dt = dt]

= E[At +Bt+1 −Dt+1|At = at, Bt = bt, Dt = dt]

= E[At|At = at, Bt = bt, Dt = dt] + E[Bt+1|Bt = bt]

− E[Dt+1|Dt = dt]

=


at +

∑
bt+1

bt+1P̂Bt+1|Bt=bt(bt+1)

−
∑
dt+1

dt+1P̂Dt+1|Dt=dt(dt+1), if w > 1,

at, if w = 1,

(3.5)

which corresponds to the predictor of birth and death of assets, where Ĥt,t+1
b,d is

the predicted number of active assets in the portfolio of trading day t + 1 when
the number of active assets, birth and death of assets are given at trading day t.
This is rounded in the same manner as before in order to obtain integer values from
the estimates. Here, it holds that the outcome of the random variable At+1 can
be described by At + Bt+1 − Dt+1. Since At is known at trading day t, the only
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unknown variables are Bt+1 and Dt+1 which are assumed to be independent of each
other and independent of At from which equation (3.5) holds.

These are the two different 1-day predictors that will be implemented as a leverage
in the optimization model, which will be described in the next section below.

3.2 Portfolio Optimization Approach

The structure of matrices (2.1) and (2.2) forces the optimization routine to be pro-
grammed accordingly in order to generate optimal portfolio weights. The opti-
mal portfolio weights are generated each trading day t by maximizing the modified
Sharpe ratio measure, where modified in this context refers to the expected return
of an asset. Furthermore, transaction costs are supposed to be penalized between
trading days and this is also implemented in the optimization model.

3.2.1 Risk/Return Framework

The three measures that we use to describe the universe of assets are the mean,
standard deviation and correlation between assets’ returns. These quantifying mea-
sures are applied on the assets’ historical time series to calculate the statistics from
it, whereas these statistics are interpreted as the true estimates of the future behav-
ior of the assets. This framework is applied to matrix (2.2) each trading day t, by
first monitoring which assets that are active and then secondly by extracting their
corresponding historical return series from matrix (2.1). The location, i.e. the mean
of the active assets are given by

µi =
1

T

T∑
k=1

rt−ki , for i = 1, . . . , Nt, (3.6)

which corresponds to the unbiased estimate of the sample mean of the observed
returns of asset i. The variable T is the sample size, Nt is the total number of active
assets at trading day t and rnm is the 1-day return of asset m at trading day n in
matrix (2.1). The dispersion, i.e. the variance of the active assets, are given by

σ2i =
1

T − 1

T∑
k=1

(rt−ki − µi)2, for i = 1, . . . , Nt, (3.7)

which is the unbiased estimate of the sample variance of the observed returns of
asset i. The covariance between the active assets’ returns are given by

σij =
1

T − 1

T∑
k=1

(rt−ki − µi)(rt−kj − µj) = σji, for i = 1, . . . , Nt and i 6= j, (3.8)
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and this is the unbiased estimate of the sample covariance of the observed returns
between assets i and j. However, when building a portfolio the importance lies in
the combination of assets and their combined effect on the whole portfolio. At the
end of each trading day t the portfolio return will be given by

rp =

Nt∑
i=1

wiri, for t ≥ 0, (3.9)

which can be written in vector form as wTr, where w = (w1, . . . , wNt)
T and r =

(r1, . . . , rNt)
T is the weight and return vector respectively of the active assets at

trading day t. The expected return of the portfolio is then constructed by taking
expectations on both sides of equation (3.9), which yields

µp =

Nt∑
i=1

wiµi, for t ≥ 0. (3.10)

As earlier, this is given in vector form by wTµ, where µ = (µ1, . . . , µNt)
T is the

expected return vector of the active assets at trading day t. From this, the portfolio
variance is given by

σ2p = E
[
(rp − µp)2

]
= E

[( Nt∑
i=1

wi(ri − µi)
)2]

= E
[ Nt∑
i=1

Nt∑
j=1

wiwj(ri − µi)(rj − µj)
]

=

Nt∑
i=1

(wiσi)
2 +

Nt∑
i=1

Nt∑
j=1

wiwjσij , for i 6= j and t ≥ 0,

(3.11)

which is given in vector form as wTΣw, where Σ = (σij)ij is the sample covariance
matrix of the assets at trading day t. The expected portfolio return wTµ and the
portfolio variance wTΣw are the two measures spanning the universe of performance
and risk in the mean-variance framework. However, the expected return of an asset,
i.e. the mean, does not agree with TII’s view on how their assets are expected
to preform because of their short investment horizon. Frequently, when assets are
activated and added to the trading portfolio their expected returns are negative,
see Figure 2.1 and Figure 2.2. This could result in that capital will not be invested
to those assets in as great extent as wished unless the variance of the portfolio is
lowered. This contradicts the trading strategy of TII since all assets returns are
assigned the same belief. Another performance measure is instead needed in order
to find optimal allocation weights and this is best modeled by letting the expected
return of an asset correspond to its standard deviation, i.e.
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βi = E[ri] =
√

Var(ri), for i = 1, . . . , Nt. (3.12)

Thus, the expected return of the whole portfolio is modified and now given by

βp =

Nt∑
i=1

wiβi, for t ≥ 0, (3.13)

which is given in vector form as wTβ, where β = (β1, . . . , βNt)
T is the modified

expected return vector of the active assets at each trading day t.

3.2.2 Transaction Costs

In a multi period framework where investors are allowed to modify their portfolio
composition, transaction costs between trading days arise, and these transaction
costs need to be accounted for when developing the optimization model. In [4], it is
stated that the transaction cost of buying or selling an instrument is defined as

tc = commission+
( bid
ask
− spread

)
+ θ

√
trade volume
daily volume

, (3.14)

where tc is the total percentage fee for buying or selling an instrument. The com-
mission is the percentage fee charged by the broker in order to make a trade on
the market. The size of the bid/ask-spread of an instrument is one measure of the
liquidity of the market and of the size of the transaction cost which is calculated
as (ask-bid)/ask. The variable θ is a constant that needs to be estimated since it
is dependent on the instrument that is traded and can not be determined in any
other way. The trade volume/daily volume is the ratio of the actual trade size of an
instrument and its daily traded volume which is decided from history. However, the
time spent by a trader to invest in illiquid instruments should also be accounted for
and incorporated in (3.14). For this study it suffice to run the optimization model
for different levels of transaction costs tc. How this affects the trading portfolio will
be revealed when the numerical results are presented to the reader later on.

Trading Portfolio Influenced by Transaction Costs

The difference in portfolio composition between trading day t − 1 and trading day
t together with the transaction cost tc are the driving factors that determines how
large the total cost of the trading portfolio will be on trading day t. Mathematically,
it is defined as tc · |∆wT|1, where |∆w| = |wt −wt−1| is the absolute difference of
the asset weights between trading day t− 1 and trading day t and 1 is the vector of
ones. Notice that the set of active assets between trading days does not necessarily
have to be the same since assets are activated and deactivated at varying frequency.
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High exchange of assets between trading days leads to increased transaction costs
and vice versa. The transaction cost of buying and selling an asset is assumed to be
equal, i.e tc = tc+i = tc−i , and they are paid at the beginning of each trading day.
In [4], it is stated that transaction cost estimates are likely to be of the size 0.01%-
0.05% when 0-50 instruments are traded among the largest markets. This could be
used as a guidance to determine tc, but in this study higher values of transaction
costs are tested as well. This framework will be implemented in the optimization
model, where a penalty parameter is applied in order to lower the transaction costs
between trading days.

3.2.3 Modified Sharpe Ratio Maximization

The choice of optimization model varies between investors, and for TII it is a matter
of investing in the set of active assets at trading day t such that the risk-adjusted
return of the portfolio is maximized at all times. A natural optimization model
would be to maximize the Sharpe ratio which is defined in [5] as

SR(w) =
wTµ− rf√

wTΣw
, w ∈ RNt , (3.15)

where rf denotes the return rate of a risk free asset, e.g. a zero coupon bond. The
maximized value of equation (3.15) is obtained in the trivial case, for constraints
wT1 = 1 and wi ≥ 0 for i = 1, . . . , Nt, by the standard strategy of optimizing the
trade-off problem given by

maximize
w∈RNt

wTµ− λ ·wTΣw

subject to wT1 = 1, (1)

wi ≥ 0, for i = 1, . . . , Nt, (2)

(3.16)

where λ is the penalty parameter. The optimization model (3.16) generates optimal
allocation weights wopt for each λ from which the efficient frontier is constructed.
The efficient frontier is composed of pairs (σp(λ), µp(λ)) of standard deviations and
expected returns of the future optimal portfolio values. This is illustrated for rf = 0

in Figure 3.2 below.
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Figure 3.2: Efficient frontier of optimal portfolio compositions.

This graph indicates that for a correct specification of λ, the maximal Sharpe ratio is
obtained as the tangency portfolio to the efficient frontier. Notice that the tangency
portfolio will move higher along the efficient frontier if rf is increased. The colored
circles below the efficient frontier are non-optimal portfolio compositions in this
mean-variance framework.

Changing the Performance Measure

Since the original performance measure of expected portfolio return µp does not ap-
ply to this framework, it is necessary to adjust the Sharpe ratio measure accordingly.
This is done by replacing µ with β, which yields that

MSR(w) =
wTβ− rf√

wTΣw
, for w ∈ RNt (3.17)

This is called the modified Sharpe ratio measure. Now, the maximized value of (3.17)
is obtained in the trivial case, for constraints wT1 = 1 and wi ≥ 0 for i = 1, . . . , Nt,
by the standard strategy of optimizing the trade-off problem which is given by

maximize
w∈RNt

wTβ− λ ·wTΣw

subject to wT1 = 1, (1)

wi ≥ 0, for i = 1, . . . , Nt, (2)

E[ri] =
√

var(ri), for i = 1, . . . , Nt, (3)

(3.18)

where the correct parameter value of λ generates optimal allocation weights wopt

and maximizes the modified Sharpe ratio of the portfolio.
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Optimal Trading Strategy

By combining the theory and models presented earlier in this chapter all the details
are known in order to present the optimization model. This model will be used
throughout this report when optimal allocation weights are generated when trans-
action costs are taken into account and penalized between trading days. Recall that
the expected return vector µ is replaced by β, where βi = E[ri] =

√
var(ri), and

transaction costs are subtracted from the expected portfolio return each trading day
t. Thus, the model is defined as

maximize
wt∈RNt

wT
t βt − (rf + γ · tc · |∆wT|1)√

wT
t Σtwt

,

subject to wT
t 1 ≤

{
Ĥt,t+1

6 , if Ĥt,t+1 < 6,

1, if Ĥt,t+1 ≥ 6,
(1)

wt = wt−1 + ∆w, (2)

wt ≥ 0, (3)

|∆w| ≤ 1. (4)

(3.19)

This is called the optimal trading strategy when transaction costs are taken into
account and penalized between trading days. This nonlinear model will be solved in
MatLab using fmincon and a built-in Sequential Quadratic Programming algorithm
solver (SQP -solver [5]). The variable γ is the penalty parameter which sets the limit
on how much the total transaction cost is punished between trading days. Increased
values on γ forces the optimal allocation weights at trading day t to be chosen such
that the absolute allocation weight difference between trading day t − 1 and t is
lowered.

Constraint (1) is a budget constraint, where the right hand side is the threshold
of the whole investment at trading day t. This threshold is determined by the 1-
day prediction on the number of assets in the portfolio of trading day t + 1. The
predictor Ĥt,t+1 is either Ĥt,t+1

a or Ĥt,t+1
b,d , depending on which is suited better in

terms of statistical performance. If the number of active assets at trading day t+1 is
below six assets, then the total investable amount is the predicted number of assets
divided by six, otherwise the total amount is allowed to be invested.

Constraint (2) is another budget constraint, stating that the allocation weight of
each asset at trading day t is given by the allocation weight of each asset at trading
day t − 1 plus the change in allocation weight of each asset between trading day
t− 1 and trading day t.

Constraint (3) is the minimum allocation weight of each asset at trading day t
which indicates that no short selling of any asset is allowed.
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Constraint (4) is the maximum change of allocation weights between trading day
t− 1 and trading day t.

3.3 Risk Measure

Holding a portfolio over time is connected with risk due to reigning market con-
ditions. An unexpected market movement can have great impact on the portfolio,
which in worst case can result in a major trading loss. Therefore, it is of great
importance to understand the riskiness of holding a portfolio. In order for TII
to understand the riskiness of their trading portfolio, it is necessary to use a risk
measure to model the probable loss distribution.

At the beginning of each trading day t the optimal allocation weights are gen-
erated from model (3.19), and from these weights the optimal portfolio rp is con-
structed. The outcome of rp is not known until the end of trading day t, and rp is
therefore seen as a random variable with unspecified distribution at the beginning
of each trading day t. Therefore, Value-at-Risk (VaR), which perhaps is the most
commonly known risk measure, developed by financial engineers at J.P. Morgan,
can be used to model the loss distribution of the portfolio rp. VaR is a measure
related to percentiles of loss distributions, and represents the predicted maximum
loss at a specified probability level α ∈ (0, 1). The mathematical definition of VaR
is given at the confidence level α by

VaRα(X) = min{x ∈ R : P(x+X < 0) ≤ α}

= min{x ∈ R : 1−P(−X ≤ x) ≤ α}

= min{x ∈ R : P(L ≤ x) ≥ 1− α}

= F−1L (1− α),

(3.20)

where X = V1 − V0 = V0rp is the change in value generated from the random
portfolio return rp at the end of trading day t. Without loss of generality the
invested capital V0 is set to e1. The variable L = −X is interpreted as the portfolio
loss, where negative values of L indicate gains and positive values indicate losses. A
formal definition of (3.20) is given by [6]: "VaR summarizes the expected maximum
loss (or worst loss) over a target horizon within a given confidence interval." For
example, if a portfolio has a one day 1% VaR of e1 million, this means that there
is a probability of 1% that the portfolio will fall in value by more than e1 million
over a one day period. Informally, a loss of e1 million or more on this portfolio is
expected to happen on 1 day in 100. In order to fully understand the implication of
this definition an illustration is made in Figure 3.3 below.
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Figure 3.3: VaR of a portfolio loss distribution at confidence level α = 0.05.

This graph illustrates a possible loss distribution of the portfolio X = V0rp, where
VaR0.05(X) and the total probability of the allowed maximum loss are depicted in
the figure.

Equation (3.20) is the mathematical definition of VaR at confidence level α and in
order for this to apply to the framework which is under study here, a model of this
definition has to be established. The chosen candidate for this task is the empirical
Value-at-Risk which is introduced below.

3.3.1 Empirical Value-at-Risk (E-VaR)

This is the nonparametric form of VaR and instead of trying to specify the distri-
bution of the random portfolio return rp at the beginning of each trading day t, e.g.
Normal or Student’s t, the portfolio return rp can instead be specified by historical
data to simulate its loss distribution. Given a sufficient amount of historical data,
this method can give a realistic loss distribution of the portfolio since it accounts for
times when major market movements such as market crashes has occurred. How-
ever, the downside of using historical simulations is that the model assumes that the
distribution of returns in the future is similar of those in the past, which might not
necessarily be true. A possible way of minimizing this problem is by updating the
historical data to reflect the difference between the historical volatility of the market
variable and its current volatility. The latter will unfortunately not be studied here
since it is beyond the scope of this thesis. The database of historical value changes is
generated at the beginning of each trading day t when the portfolio rp is constructed
according to the optimal allocation weights wopt

t and the equal allocation weights
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weq
t . At this stage it is possible to apply the theory in [7], which states that the

empirical estimate of VaRα(X) now is given by

V̂aRα(X) = Lb(t−1)αc+1,t−1, (3.21)

where L1,t−1 ≥ · · · ≥ Lt−1,t−1 is the ordered sample of historical value changes
between trading days, interpreted as earlier. Furthermore, t − 1 is the sample size
of the historical database which grows in size as t increases. The problem that
arises when t is small is that the database contains too few values in order for the
estimate of VaRα(X) to be accurate, and it is only possible to simulate more values
by applying Monte Carlo simulation which once again is beyond the scope of this
thesis. An illustration of the estimate of VaRα(X) is given in Table 3.2.

k 1 2 3 · · · t− 3 t− 2 t− 1

Lk,t−1 L1,t−1 L2,t−1 L3,t−1 · · · Lt−3,t−1 Lt−2,t−1 Lt−1,t−1

V̂aR0.05(X) = Lb50·0.05c+1,t−1 = Lb2.5c+1,t−1 = L3,t−1

for α = 0.05 at trading day t = 51

Table 3.2: Estimate of VaRα(X) from ordered sample of value changes

This table shows explicitly how the value change of L = −X is ordered and how
VaRα(X) is estimated from the database each trading day t. The probability of
losing more than or equal to e300 000 is determined by the company to be less
than 5%. If the trading portfolio is supported to take positions which correspond to
its accepted VaRα(X), then theoretically it holds that V0 ≤ e300000/V̂aR0.05(X).
V0 is the capital that could be invested in the portfolio each trading day t if the
investor wants to be as close to the risk tolerance level as possible. However, this
is absolutely not standard procedure and investors do not invest according to this
because of the risk of producing wrong estimates from the model, which could then
have catastrophic impact on the portfolio.
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Chapter 4

Numerical Results

4.1 Autocorrelation in Count Process Data

Autocorrelation refers to the correlation of a time series, in this case a count process,
with its own past and future values. Positive autocorrelation might be considered a
specific form of “persistence”, i.e. the tendency of a system to remain in the same
state from one observation to the next. Four figures will be presented below to
illustrate the autocorrelation from the times series of counts corresponding to active
assets, surviving assets, birth and death of assets respectively.
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Figure 4.1: Autocorrelation of active assets.
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Figure 4.2: Autocorrelation of surviving assets.

These graphs indicate that the count process of the active and surviving assets has a
trend since the sample autocorrelation in the left hand graph of both Figure 4.1 and
Figure 4.2 exhibit a slow decay as the lag increases. The right hand graph of both
Figure 4.1 and Figure 4.2 indicate that the data is highly persistent, i.e. positive
movements from the mean tend to be followed by positive movements in the next
step and vice versa.
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Figure 4.3: Autocorrelation of birth of assets.
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Figure 4.4: Autocorrelation of death of assets.

The graphs show no indication on a trend in the data and furthermore that the
count process of births and deaths are highly random. However, this supports
the dependence structure model constructed in Chapter 3 earlier to be applicable.
Below are some statistics of the count processes gathered in order to illustrate their
properties.

active surviving birth of death of
statistic assets assets assets assets

min. count 0 0 0 0

max. count 21 20 9 5

median 7 6 0 1

mode 6 5 0 0

mean 7.767 6.836 0.931 0.925

variance 13.168 11.481 1.658 0.946

Table 4.1: Statistical properties of count processes.

The graphs above together with these statistics indicate that an appropriate AR(1)-
process is applicable, which by all means must posses properties of modeling a count
process. In [8], it is stated that predictions are based on the integer valued AR(1)-
process, which models the counts to evolve as a birth and death (survival) process.
This means that the count at trading day t is considered to be the sum of new arrivals
at time t and survivors from time t− 1. In contrast to the usual applications of this
model, which assumes that the arrival process is Poisson distributed, it is allowed
for the arrivals to follow any distribution within a specified finite set of distributions
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in the integer class. Three distributions are used to model the arrival process of the
count data of this paper and they are the Poisson distribution, Binomial distribution
and Negative Binomial distribution. They are respectively appropriate for arrivals
that are equi-dispersed (mean and variance equal), under-dispersed (variance less
than mean) and over-dispersed (variance greater than mean). In Table 4.1, the
variance-mean ratio of the birth process is approximately 1.78 which indicates that
a Negative Binomial distribution should be most appropriate as a model of the
arriving assets in this context. Unfortunately has this model not been able to be
applied in this thesis due to the complex nature of the theories associated with this
model and because of the time frame of this thesis.

4.2 Backtest of 1-Day Predictors
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Figure 4.5: Sample one of 1-day predictions from Ĥt,t+1
a and Ĥt,t+1
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These graphs illustrate the accuracy of the predictors Ĥt,t+1
a (left hand graph of

Figure 4.5 and Figure 4.6) and Ĥt,t+1
b,d (right hand graph of Figure 4.5 and Figure

4.6) for w = {1, 25, 50, 75, 100, 200, 300, 400, 500}. The 1-day prediction of the num-
ber of active assets are here studied for trading day t = [600, 620] and trading day
t = [800, 820]. The blue solid line corresponds to the actual number of active assets
at each trading day t and the markers +, ◦, ∗, ·,×,�, �,M,O correspond to each w
respectively that have been used as an input parameter to the predictors. As can
be seen, a large amount of the 1-day predictions are clustered which indicate that
the predictors tend to generate similar values. However, there are two qualitative
differences between the predictors that can be seen in the figure above. The cluster
effect is both greater and more accurate for the Ĥt,t+1

b,d predictor compared to the
Ĥt,t+1
a predictor and this seems to hold for all sizes of w. The drawback of these

predictors is that they do not manage to be accurate when large jumps occur be-
tween trading day t and trading day t+1. This is most likely due to the "smoothing
effect" of the conditional expected value applied in equations (3.4) and (3.5).

From these graphs above, it is difficult to state which size of w that is optimal in
order to generate the most accurate 1-day prediction, but a qualified guess would be
w = 1. That is, the 1-day prediction on the number of active assets in the portfolio
at trading day t + 1 is at. To gain support to this assumption, we evaluate the
1-day prediction models by the use of statistical measures to reveal their overall
performance. The result from this study is summarized in Table 4.2 below.
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4.3 Sharpe Ratios and Portfolio Performances

Figure 4.7: Annualized Sharpe ratios of optimal/benchmark trading strategy after
transaction costs are subtracted from the portfolio return each trading day t.
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The graphs in Figure 4.7 illustrates the three dimensional shape of the annualized
Sharpe ratio of the two trading portfolios for different tc and γ values. It is clear
that the optimal trading strategy (multicolored plane) outperforms the benchmark
trading strategy (purple colored plane) for low tc values. As can be seen, penalizing
transaction costs between trading days often result in increased annualized Sharpe
ratio values. However, high γ values combined with high tc values has a negative
impact . The benchmark trading strategy is independent of γ and thereby the
shape of the annualized Sharpe ratio is flat, solely dependent on the transaction
cost variable tc. The high amount of activated and deactivated assets, see Figure
2.9, impact the annualized Sharpe ratio negatively since turnovers increases and
thereby transaction costs increases when allocation weights are chosen optimally
each trading day.

SRoptimal (annualized)

tc (%)

γ 0 0.0125 0.025 0.0375 0.050 0.0625 0.075 0.0875 0.1

0 2.243 2.087 1.93 1.772 1.615 1.459 1.302 1.145 0.9885

1 2.243 2.082 1.944 1.794 1.646 1.497 1.357 1.208 1.073

2 2.243 2.094 1.948 1.794 1.644 1.522 1.382 1.259 1.148

3 2.243 2.098 1.937 1.804 1.666 1.54 1.446 1.354 1.223

4 2.243 2.097 1.933 1.796 1.696 1.594 1.445 1.306 1.158

5 2.243 2.09 1.942 1.808 1.737 1.598 1.466 1.29 1.149

6 2.243 2.087 1.94 1.843 1.737 1.588 1.43 1.264 1.199

7 2.243 2.083 1.947 1.861 1.703 1.54 1.394 1.248 1.029

8 2.243 2.071 1.963 1.837 1.673 1.419 1.332 1.17 1.028

SRbenchmark (annualized)

tc (%)

γ 0 0.0125 0.025 0.0375 0.050 0.0625 0.075 0.0875 0.1

ind. 1.767 1.695 1.623 1.551 1.48 1.408 1.336 1.264 1.192

Table 4.3: Numerical values of annualized Sharpe ratios of optimal/benchmark trad-
ing strategy.
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Figure 4.8: Two dimensional illustration of Figure 4.7 for tc = 0, 0.00025, 0.00050,

0.00075, 0.001.

This graph illustrates the two dimensional aspect of how the annualized Sharpe
ratios of the optimal trading strategy (black colored line) and the benchmark trading
strategy (blue colored line) vary for increased γ values. From top to bottom, the
black and blue colored lines correspond to tc = 0, 0.00025, 0.00050, 0.00075, 0.001

respectively and it can be seen for tc ≥ 0.001 there is no longer any positive effect
from choosing weights optimally, except for γ = 3 and γ = 6.
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Figure 4.9: Two dimensional illustration of Figure 4.7 for γ = 0.
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This graph illustrates the annualized Sharpe ratio of the optimal trading strategy
(black colored line) and the benchmark trading strategy (blue colored line) when
γ = 0, i.e no emphasis is put on reducing transaction costs between trading days
when optimal weights are computed. It can be seen that the annualized Sharpe
ratio of the optimal trading strategy is linear and for tc ≈ 0.00070, the two trading
strategies are equal in performance.
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Figure 4.10: Accumulated portfolio returns of optimal/benchmark trading strategy
for tc = 0, 0.00025, 0.00050, 0.00075, 0.001 and γ = 0.

The graphs in Figure 4.10 illustrate the accumulated portfolio returns generated
by the optimal trading strategy (black color) and the benchmark trading strategy
(blue color) when transaction costs are subtracted each trading day t. The black
and blue solid lines correspond to tc = 0 and the black and blue dashed lines corre-
spond to tc = 0.00025 (top left hand graph), tc = 0.00050 (top right hand graph),
tc = 0.00075 (bottom left hand graph) and tc = 0.001 (bottom right hand graph).
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4.4 Transaction Costs

Figure 4.11: Aggregated transaction costs of optimal/benchmark trading strategy.
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The graphs in Figure 4.11 illustrate the shape of the aggregated transaction cost and
how it depends on tc and γ, where the multicolored plane and purple colored plane
once again correspond to the optimal and benchmark trading strategy respectively.
When the γ values increase the aggregated transaction cost of the optimal trading
strategy decreases, and as γ grows large the aggregated transaction cost tend to
converge to its corresponding minimum limit, for each tc. For γ = 0 and tc = 0.001,
it can be seen from Table 4.4 below that 41.8% of the invested capital from trading
day t = 63 to trading day t = 1000 is paid as transaction costs when the optimal
trading strategy is used. However, for γ = 8 it can be seen that the aggregated
transaction cost of the optimal trading strategy is lowered to 27.1%, compared to
the benchmark trading strategy where the aggregated transaction cost is 27.3%.

TCoptimal (aggregated)

tc (%)

γ 0 0.0125 0.025 0.0375 0.050 0.0625 0.075 0.0875 0.1

0 0 0.0523 0.1046 0.1569 0.2092 0.2615 0.3138 0.3661 0.4184

1 0 0.0479 0.0946 0.1408 0.1858 0.2301 0.2738 0.3166 0.3590

2 0 0.0473 0.0930 0.1369 0.1796 0.2203 0.2602 0.2994 0.3370

3 0 0.0469 0.0913 0.1336 0.1739 0.2122 0.2492 0.2856 0.3204

4 0 0.0465 0.0898 0.1301 0.1687 0.2050 0.2396 0.2747 0.3058

5 0 0.0460 0.0883 0.1275 0.1640 0.1994 0.2331 0.2657 0.2975

6 0 0.0456 0.0869 0.1246 0.1604 0.1945 0.2265 0.2562 0.2871

7 0 0.0452 0.0855 0.1223 0.1563 0.1895 0.2212 0.2496 0.2783

8 0 0.0449 0.0843 0.1199 0.1538 0.1854 0.2154 0.2410 0.2707

TCbenchmark (aggregated)

tc (%)

γ 0 0.0125 0.025 0.0375 0.050 0.0625 0.075 0.0875 0.1

ind. 0 0.0341 0.0681 0.1022 0.1363 0.1703 0.2044 0.2385 0.2726

Table 4.4: Numerical values of aggregated transaction costs of optimal/benchmark
trading strategy.
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Figure 4.12: Two dimensional illustration of Figure 4.11 for tc = 0, 0.00025, 0.00050,

0.00075, 0.001.

This graph illustrates the two dimensional view of the aggregated transaction cost
generated by the optimal trading strategy (black colored line) and the benchmark
trading strategy (blue colored line). The lines in Figure 4.13 above correspond, from
bottom to top, to tc = 0, 0.00025, 0.00050, 0.00075, 0.001 respectively. It can be seen
that the effect of penalizing transaction costs between trading days is greater for
large values compared to small values of tc.
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Figure 4.13: Two dimensional illustration of Figure 4.11 for γ = 0.
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This graph illustrates for γ = 0 the linear evolvement between the aggregated trans-
action costs of the optimal trading strategy (black colored line) and the benchmark
trading strategy (blue colored line), i.e. when no emphasis is put on minimizing
transaction costs between trading days.

4.5 Allocation Weights
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Figure 4.14: Total allocation weight of optimal trading strategy for tc = 0.00025,

0.00050, 0.00075, 0.001 and γ = 0, 4, 8 (top to bottom).
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Figure 4.15: Total allocation weight of benchmark trading strategy for tc = 0.00025,

0.00050, 0.00075, 0.001.

Figure 4.14 and Figure 4.15 illustrate, for different γ values, the sum of the allocation
weights each trading day t of the optimal and benchmark trading strategy. The
optimal-weighted portfolio (black solid line, black dashed line, black dotted line,
black dashed-dotted line) and the equal-weighted portfolio (blue solid line, blue
dashed line, blue dotted line, blue dashed-dotted line) correspond to tc = 0.00025,
0.00050, 0.00075, 0.001 respectively. For γ = 0 it can be seen for which trading days
t the predictor has been connected and lowered the leverage of the investment of
the optimal and benchmark trading startegy. When γ increases, it can be seen in
Figure 4.14 how the sum of allocation weights have been changed in order for the
optimization model (3.19) to find optimal allocation weights. These optimal weights
are chosen such that the goal function of (3.19) is maximized when transaction costs
are minimized at the same time. These pictures are studied in more detail below,
where a smaller time frame is under observation.
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Figure 4.16: Inspection of total allocation weight of optimal trading strategy for
tc = 0.00025, 0.00050, 0.00075, 0.001 and γ = 0, 4, 8 (top to bottom).
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Figure 4.17: Inspection of total allocation weight of benchmark trading strategy for
tc = 0.00025, 0.00050, 0.00075, 0.001.

These graphs illustrate a detailed view on how the sum of the allocation weights
evolve between trading day t = 63 and trading day t = 70, where it can be seen in
Figure 4.16 how the outcome depends on the variables tc and γ. Below are the weight
distributions illustrated of the affected assets during this time frame, which compare
the optimal-weighted asset composition with the equal-weighted asset composition
between trading day t = 63 and trading day t = 70.
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Figure 4.18: Allocation weight distribution of optimal trading strategy for tc = 0.001

and γ = 0, 4, 8 (top to bottom).
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Figure 4.19: Allocation weight distribution of benchmark trading strategy for tc =

0.001.

These graphs illustrate how the allocation weights are distributed among the as-
sets between trading day t = 63 and trading day t = 70. From the information
matrix (2.2), it is found that the affected assets during this time period are assets
47, 50, 51, . . . , 65. They are invested as the optimal trading strategy suggests accord-
ing to Figure 4.18 as γ is increased. This should be compared to the benchmark
trading strategy in Figure 4.19. See Table 4.5 below for more details.
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4.6 VaR Estimates
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Figure 4.20: VaR0.05 estimates of optimal trading strategy for tc = 0.00025, 0.00050,
0.00075, 0.001 and γ = 0, 4, 8 (top to bottom).
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Figure 4.21: VaR0.05 estimates of benchmark trading strategy for tc = 0.00025,
0.00050, 0.00075, 0.001.

These figures compares the VaR0.05 estimates of the optimal trading strategy in Fig-
ure 4.20 and the benchmark trading strategy in Figure 4.21. By studying the pictures
it is clear that the optimal trading strategy generates much more stable estimates for
all tc and all γ compared to the benchmark trading strategy. Furthermore, are the
spikes of the estimates less frequently occurring when optimal allocation weights are
used to construct the portfolio in comparison to being equal-weighted. This is not
surprising since the optimization model (3.19) generates optimal allocation weights
that maximizes the ratio of expected portfolio return and portfolio variance. Thus,
a lowered variance results in more stable VaR-estimates. The capital that is at most
allowed to be invested each trading day is V0 ≤ e300000/V̂aR0.05, where V̂aR0.05 is
the estimate on each trading day t in the graphs above.
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4.7 Figures

Figure 4.22: Annualized Sharpe ratio of optimal/benchmark trading strategy after
transaction costs are subtracted from the portfolio return each trading day t.
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Figure 4.23: Aggregated transaction costs of optimal/benchmark trading strategy.

Figure 4.22 and Figure 4.23 illustrate the outcome when 25% of the capital is in-
vested equally among the assets when using the optimal trading strategy compared
to the benchmark trading strategy.
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Figure 4.24: Annualized Sharpe ratio of optimal/benchmark trading strategy after
transaction costs are subtracted from the portfolio return each trading day t.
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Figure 4.25: Aggregated transaction costs of optimal/benchmark trading strategy.

Figure 4.22 and Figure 4.23 illustrate the outcome when 50% of the capital is in-
vested equally among the assets when using the optimal trading strategy compared
to the benchmark trading strategy.
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Figure 4.26: Annualized Sharpe ratio of optimal/benchmark trading strategy after
transaction costs are subtracted from the portfolio return each trading day t.
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Figure 4.27: Aggregated transaction costs of optimal/benchmark trading strategy.

Figure 4.22 and Figure 4.23 illustrate the outcome when 75% of the capital is in-
vested equally among the assets when using the optimal trading strategy compared
to the benchmark trading strategy.
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Chapter 5

Conclusions

In this thesis we give a thorough comparison between an optimal trading strat-
egy and a benchmark trading strategy when transaction costs between trading days
are taken into account. Optimal allocation weights are generated by maximizing the
modified Sharpe ratio when transaction costs are penalized. The modification of the
expected return of an asset is implemented in the optimization in order to reflect
TII’s belief on how assets are expected to perform in the future. These allocation
weights are invested in the portfolio accordingly and the performance is compared
to an equal-weighted portfolio approach. It is found that a mixture of being 50%
to 75% equal-weighted and 50% to 25% optimal-weighted, respectively, each trad-
ing day increases the annualized Sharpe ratio of the portfolio, compared to being
100% equal-weighted. This portfolio composition is used to determine the capital
allowed to be invested at each trading day and this is computed from the VaR0.05

estimates of the portfolio. Furthermore, it is found that the effect of penalizing
transaction costs between trading days is in fact a lower aggregated transaction cost
of the optimal portfolio. When the penalty parameter γ is increased the aggregated
transaction cost decreases. However, too high values of the penalty parameter γ
and of the transaction costs tc can interfere with the feasibility region of the opti-
mization mode, which could yield non-optimal solutions. This is an area that could
be studied further.

Since the study in this thesis is based on recreated data reflecting the true confiden-
tial data, it is necessary for TII to apply the models obtained on true data, with the
actual transaction costs they face from trading, in order to determine which trading
model is best suited in their daily business.

As mentioned earlier, another way to predict the number of portfolio assets of the
next coming day is to use an integer valued AR(1)-process as a foundation. This
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would produce values which agree with the properties of the data obtained with
the model established in this thesis when the latter is rounded. The number of
portfolio assets predicted by using an integer valued AR(1)-process do not need to
be rounded, and is therefor a better prediction than the prediction generated from
the model in this thesis. This should therefore be studied further in detail, and the
models and theory that apply is given in [8].

Changing the performance measure, i.e. the expected return of an asset, could re-
sult in a large difference in the optimal-weighted portfolio performance. Thus, it
is advisable to study the impact of this by searching for different approaches, and
analyzing the result of these.

The amount of capital that is invested during this analyzed time frame is large. It
would therefore be interesting and of great importance to see how the discounting
effect on the invested capital affects the outcome of the portfolio performance when
using the two trading strategies.
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