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Abstract

The Basel II accord requires banks to put aside a capital buffer against
unexpected operational losses, resulting from inadequate or failed internal
processes, people and systems or from external events. Under the sophisti-
cated Advanced Measurement Approach banks are given the opportunity to
develop their own model to estimate operational risk. This report focus on
a loss distribution approach based on a set of real data.

First a comprehensive data analysis was made which suggested that the
observations belonged to a heavy tailed distribution. An evaluation of com-
monly used distributions was performed. The evaluation resulted in the
choice of a compound Poisson distribution to model frequency and a piece-
wise defined distribution with an empirical body and a generalized Pareto
tail to model severity. The frequency distribution and the severity distribu-
tion define the loss distribution from which Monte Carlo simulations were
made in order to estimate the 99.9% quantile, also known as the the regula-
tory capital.

Conclusions made on the journey were that including all operational risks
in a model is hard, but possible, and that extreme observations have a huge
impact on the outcome.

Keywords: Operational risk, Advanced Measurement Approaches, Loss Dis-
tribution Approach
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Chapter 1

Introduction

A financial institution is exposed to several major risks, such as market and
credit risk, and are required to put aside a capital buffer against unexpected
losses. With the implementation of the Basel II recommendations and reg-
ulations in Sweden in February 2007 a capital requirement for operational
risk was set under regulation by Finansinspektionen1.

Operational risk is a very broad concept and may include anything from
bank robberies and unauthorized trading to terrorist attacks and natural
disasters. In other words, it is everything that is not credit, systematic or
financial risk, and which arises from the operation of a company’s business
functions.

Opposite to credit risk and market risk which can be exploited to generate
profit, managing operational risk is not used to generate profit. However, it
is still managed to keep losses within a company’s risk appetite.

1.1 Background

Market risk and credit risk have for a long time been the subject of much
debate and research, resulting in considerable progress in the identification,
measurement and management of these risks. The increased globalization
and the progress in financial technology has moved the financial world into
a more complex realm, beyond normal expectations, were highly improbable
and severe events reign. Standard models clearly fail to capture the extreme
events, as we have seen in the 2008 global financial crisis. In other profes-
sional areas flawed models would be unacceptable and never be used. Would
you ever cross a bridge that works most of the time? It leads us into more
philosophical thoughts: Is it even possible to predict the highly improbable
with accurate estimates of its probabilities? And say it does, would it not
mean that the unexpected becomes expected and, by definition, is no longer
improbable? This paper will not dig too deep into questions regarding the

1Finansinspektionen is the Swedish financial services authority.
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use of probability distributions to predict processes over time, but rather use
established methods and risk measures. Although, conventional tools such
as the log-normal distribution and the value at risk measures are challenged.
I can recommend reading The Black Swan by Nassim Nicholas Taleb for
more in-depth discussions regarding these topics.

Many of these highly improbable events such as the terrorist attacks
on September 11, unauthorized trading losses at Barings Bank, resulting
in its collapse in 1995, and other rogue tradings resulting in large losses at
Société Générale2, AIB3 and National Australia Bank4, have contributed to
a growing focus on identification and measurement of operational risk.

Historically, many companies have regarded operational risk as an un-
avoidable cost of doing business. With the decision by the Basel Committee
on Banking Supervision to introduce a capital charge for operational risk as
part of the Basel II framework, identification and measurement of operational
risk is today a real and everyday function of a bank.

1.2 Definition

There are many different definitions of operational risk and many institutions
have adopted their own definition which better reflects their area of business.
However, the Basel Committee (2006) define operational risk as:

"The risk of loss resulting from inadequate or failed internal pro-
cesses, people and systems or from external events"

1.3 Problem Statement

Can operational risk be modeled in a sound and consistent manner and how
should a model for operational risk be designed?

1.4 Purpose

The aim of this thesis is to study and evaluate different methods and ap-
proaches to modeling operational risk and then develop a sound model for
the calculation of capital requirement that fulfills the AMA requirements
(AMA will be explained in the next chapter).

2"Rogue trader blamed for 4.9 billion euro fraud at Société Générale". Agence France-
Presse. 24 January 2008

3"Rogue trader ’Mr Middle America’". BBC News. 7 February 2002.
4"Former NAB foreign currency options traders sentenced". Australian Securities and

Investments Commission. 4 July 2006.
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1.5 Literature Overview

There is plenty of literature covering operational risk and various techniques
and methods modeling it. Most papers are about theoretical approaches
where a couple of operational risk categories with many data points are
selected and used to estimate partial capital requirements. Therefore I would
like to highlight the following articles:

• F. Aue and M. Kalkbrener (2006) present the capital model developed
at Deutsche Bank. The model follows a so called Loss Distribution
Approach (LDA), which will be explained in this paper, and describes
the use of loss data and scenarios, frequency and severity modeling and
the implementation of dependence and the capital calculation.

• Dutta & Perry (2007) perform a comprehensive evaluation of com-
monly used methods and introduce the g-and-h distribution in order
to model the whole severity range with one distribution.

• A. Chapelle, Y. Crama, G. Hübner and J. P. Peters (2007) analyze
the implications of AMA through a study on four categories of two
business lines and two event types of a large financial institution. They
use a mixed model by calibrating one distribution to describe normal
losses and another for extreme losses. They also estimate the impact
of operational risk management on bank profitability.

• K. Böcker and C. Klüppelberg (2005) propose a simple closed-form
approximation for operational value at risk, when loss data are heavy
tailed, and apply the approximation to the pareto severity distribution.

• E. W. Cope, G. Mignola, G. Antonini and R. Ugoccioni (2009) examine
the data sufficiency in internal and external operational loss data and
the difficulties in measuring operational risk.

• A. Colombo and S. Desando (2008) describe the implementation and
development of a scenario based approach to measuring operational
risk at the Italian bank Intesa Sanpaolo.

• E. Cope and G. Antonini (2008) study observed correlations among
operational losses in the ORX database and the implications for diver-
sification benefits when aggregating losses across different operational
risk categories.
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1.6 Terms & Abbreviations

AMA Advanced Measurement Approaches

BEICFs Business Environment and Internal Control Factors

BIA Basic Indicator Approach

BL Business Line

CDF Cumulative Distribution Function

ED External Data

EDA Exploratory Data Analysis

ES Expected Shortfall

ET Event Type

ILD Internal Loss Data

LDA Loss Distribution Approach

ORMF Operational Risk Management Framework

ORX Operational Riskdata eXchange Association, consortium of institu-
tion anonymously collecting operational loss data

PDF Probability Density Function

POT Peaks Over Threshold

QQ-plot Quantile-Quantile plot

SA Standard Approach

SBA Scenario Based Approach

Units of Measure Category for which operational losses that share the
same risk profile are sorted in. Simply named "cells" in this paper.

VaR Value at Risk
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Chapter 2

Theory

In this chapter I will go through the Basel II Framework, different risk mea-
sures, distributional assumptions, extreme value theory, popular AMA mod-
els, simulation methods and a closed form approximation of the loss distri-
bution.

2.1 Basel II Framework

2.1.1 Categorization

The loss data are organized according to the seven official Basel II defined
event types

1. Internal Fraud

2. External Fraud

3. Employment Practices & Workplace Safety

4. Clients, Products, & Business Practice

5. Damage to Physical Assets

6. Business Disruption & Systems Failures

7. Execution, Delivery, & Process Management

and eight defined business lines

1. Corporate Finance

2. Trading & Sales

3. Retail Banking

4. Commercial Banking

5



5. Payment & Settlement

6. Agency Services

7. Asset Management

8. Retail Brokerage

This categorization is based on the principle to organize losses that share
the same basic risk profile and behaviour pattern. Sorting the data in these
categories yields a matrix with 56 buckets, or cells, of data.

2.1.2 Methods

The Basel Committee on Banking Supervision have prescribed guidance for
three types of methods for the calculation of capital requirement for op-
erational risk. Those are the Basic Indicator Approach (BIA), Standard
Approach (SA) and Advanced Measurement Approaches (AMA). The latter
is the most sophisticated of the approaches and is what this thesis is about.
Below follows a short presentation of the different approaches.

Basic Indicator Approach

Is the least complicated method and is based on the annual revenue of the
financial institution. The bank must hold a capital for operational risk based
on a fixed percentage, set to 15% by the Committee, of the past three years
positive average annual gross income. Years where annual gross income is
negative or zero should be excluded from the calculation of the average.

Standardized Approach

In the standardized approach, capital requirements are calculated based on
the annual revenue of each business line. Similar to the BIA, capital charge
is based on a fixed percentage (called beta factors) of the three year positive
average annual gross income, but for each business line.

Advanced Measurement Approaches

The Advanced Measurement Approaches allows a bank to internally develop
its own risk measurement model. The rules under advanced measurement
approaches requires that a bank’s operational loss data captures the op-
erational risks to which the firm is exposed to. The model must include
credible, transparent, systematic and verifiable approaches for weighting in-
ternal operational loss data, external operational loss data, scenario analysis
and BEICFs (Basel Committee, 2011. p. 46) [1].

• Risk measure: Value at Risk
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Business Lines Beta Factor
Corporate Finance 18%
Trading & Sales 18%
Retail Banking 12%
Commercial Banking 15%
Payment & Settlement 18%
Agency Services 15%
Asset Management 12%
Retail Brokerage 12%

Table 2.1: List of beta factors for each business line (Basel Committee, 2006)

• Time horizon: 1 year

• Confidence level: 99.9%

In Sweden there are additional requirements, mostly qualitative, that also
have to be fulfilled1.

There are a variety of AMA models which differs in emphasis and ways
of combining the four data elements. The most common methods used in
modeling operational risk is the popular loss distribution approach (LDA)
followed by scenario based approaches (SBA) (Basel Committee, 2011. p.
34) [1].

2.1.3 The Four Data Elements

The following section have some short descriptions of each of the four data
elements as well as some longer quotes from the Supervisory Guidelines for
the Advanced Measurement Approaches (Basel Committee, 2011) [1]. The
initial number in every quote is simply the numbered subsection from which
the quote is taken from in the Basel document.

Internal Data

The internal loss data are considered the most important input to the model
and are thought to reflect the bank’s risk profile most accurately. The data
are exclusively used in calibrating the frequency parameters and are used in
combination with external data to calibrate the severity distribution. Also
frequency dependencies are analyzed using internal data.

247. While the Basel II Framework provides flexibility in the way
a bank combines and uses the four data elements in its opera-
tional risk management framework (ORMF), supervisors expect

1Ansökan om internmätningsmetod, operativ risk. Finansinspektionen, 2007.

7



that the inputs to the AMA model are based on data that rep-
resent or the bank’s business risk profile and risk management
practices. ILD is the only component of the AMA model that
records a bank’s actual loss experience. Supervisors expect ILD
to be used in the operational risk measurement system (ORMS)
to assist in the estimation of loss frequencies; to inform the sever-
ity distribution(s) to the extent possible; and to serve as an input
into scenario analysis as it provides a foundation for the bank’s
scenarios within its own risk profile. The Committee has ob-
served that many banks have limited high severity internal loss
events to inform the tail of the distribution(s) for their capital
charge modeling. It is therefore necessary to consider the im-
pact of relevant ED and/or scenarios for producing meaningful
estimates of capital requirements.

External

External data can be used to enrich the scarce internal data. They can also be
used to modify parameters derived from internal data, or as input in scenarios
and for benchmarking. Even though external data do not fully reflect the
bank’s risk profile, and are generally more heavy tailed than internal data,
external data can still be more reliable for calibrating the tail distribution
than internal.

248. ED provides information on large actual losses that have
not been experienced by the bank, and is thus a natural comple-
ment to ILD in modelling loss severity. Supervisors expect ED to
be used in the estimation of loss severity as ED contains valuable
information to inform the tail of the loss distribution(s). ED is
also an essential input into scenario analysis as it provides infor-
mation on the size of losses experienced in the industry. Note
that ED may have additional uses beyond providing informa-
tion on large losses for modelling purposes. For example, ED
may be useful in assessing the riskiness of new business lines, in
benchmarking analysis on recovery performance, and in estimat-
ing competitors’ loss experience.

249. While the ED can be a useful input into the capital
model, external losses may not fit a particular bank’s risk profile
due to reporting bias. Reporting bias is inherent in publicly-
sourced ED and therefore focuses on larger, more remarkable
losses. A bank should address these biases in their methodology
to incorporate ED into the capital model.

250. As ED may not necessarily fit a particular bank’s risk
profile, a bank should have a defined process to assess relevancy
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and to scale the loss amounts as appropriate. A data filtering
process involves the selection of relevant ED based on specific
criteria and is necessary to ensure that the ED being used is rel-
evant and consistent with the risk profile of the bank. To avoid
bias in parameter estimates, the filtering process should result in
consistent selection of data regardless of loss amount. If a bank
permits exceptions to its selection process, the bank should have
a policy providing criteria for exceptions and documentation sup-
porting the rationale for any exceptions. A data scaling process
involves the adjustment of loss amounts reported in external data
to fit a bank’s business activities and risk profile. Any scaling
process should be systematic, statistically supported, and should
provide output that is consistent with the bank’s risk profile.

251. To the extent that little or no relevant ED exists for a
bank, supervisors would expect the model to rely more heavily
on the other data elements. Limitations in relevant ED most
frequently arise for banks operating in distinct geographic regions
or in specialised business lines.

Scenario Analysis

Scenarios are used as a complement to historical loss data and are used
where data are scarce. Scenario data are forward looking, unlike external
and internal data, and include events that have not yet occurred. Scenario
analysis is inherently biased, such as anchoring, availability and motivational
biases.

252. A robust scenario analysis framework is an important
element of the ORMF. This scenario process will necessarily be
informed by relevant ILD, ED and suitable measures of BEICFs.
While there are a variety of integrated scenario approaches, the
level of influence of scenario data within these models differs sig-
nificantly across banks.

253. The scenario process is qualitative by nature and there-
fore the outputs from a scenario process necessarily contain sig-
nificant uncertainties. This uncertainty, together with the uncer-
tainty from the other elements, should be reflected in the output
of the model producing a range for the capital requirements es-
timate. Thus, scenario uncertainties provide a mechanism for
estimating an appropriate level of conservatism in the choice of
the final regulatory capital charge. Because quantifying the un-
certainty arising from scenario biases continuous to pose signif-
icant challenges, a bank should closely observe the integrity of
the modelling process and engage closely with the relevant su-
pervisor.
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254. Scenario data provides a forward-looking view of poten-
tial operational risk exposures. A robust governance framework
surrounding the scenario process is essential to ensure the in-
tegrity and consistency of the estimates produced. Supervisors
will generally observe the following elements in an established sce-
nario framework: (a) A clearly defined and repeatable process;
(b) Good quality background preparation of the participants in
the scenario generation process; (c) Qualified and experienced
facilitators with consistency in the facilitation process; (d) The
appropriate representatives of the business, subject matter ex-
perts and the corporate operational risk management function
as participants involved in the process; (e) A structured process
for the selection of data used in developing scenario estimates; (f)
High quality documentation which provides clear reasoning and
evidence supporting the scenario output; (g) A robust indepen-
dent challenge process and oversight by the corporate operational
risk management function to ensure the appropriateness of sce-
nario estimates; (h) A process that is responsive to changes in
both the internal and external environment; and (j) Mechanisms
for mitigating biases inherent in scenario processes. Such biases
include anchoring, availability and motivational biases.

Business Environment & Internal Control Factors

The fourth element and input in an AMA model are the Business Environ-
ment and Internal Control Factors (BEICFs). LDA models mainly depend
on historical loss data which are backward looking. Therefore it is necessary
with the ability to make continuous qualitative adjustments to the model
that reflects ongoing changes in business environment and risk exposure.
There are several ways these adjustment can be made and they can vary a
lot depending on institution and relevant information collecting process.

255. BEICFs are operational risk management indicators that
provide forward-looking assessments of business risk factors as
well as a bank’s internal control environment. However, incorpo-
rating BEICFs directly into the capital model poses challenges
given the subjectivity and structure of BEICF tools. Banks con-
tinue to investigate and refine measures of BEICFs and explore
methods for incorporating them into the capital model.

256. BEICFs are commonly used as an indirect input into the
quantification framework and as an ex-post adjustment to model
output. Ex-post adjustments serve as an important link between
the risk management and risk measurement processes and may
result in an increase or decrease in the AMA capital charge at the
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group-wide or business-line level. Given the subjective nature of
BEICF adjustments, a bank should have clear policy guidelines
that limit the magnitude of either positive or negative adjust-
ments. It should also have a policy to handle situations where
the adjustments actually exceed these limits based on the cur-
rent BEICFs. BEICF adjustments should be well-supported and
the level of supervisory scrutiny will increase with the size of the
adjustment. Over time, the direction and magnitude of adjust-
ments should be compared to ILD, conditions in the business
environment and changes in the effectiveness of controls to en-
sure appropriateness. BEICFs should, at a minimum, be used as
an input in the scenario analysis process.

2.2 Risk Measures

Paragraph 667 of the Basel II Framework states that

"Given the continuing evolution of analytical approaches for op-
erational risk, the Committee is not specifying the approach or
distributional assumptions used to generate the operational risk
measure for regulatory capital purposes. However, a bank must
be able to demonstrate that its approach captures potentially se-
vere ’tail’ loss events. Whatever approach is used, a bank must
demonstrate that its operational risk measure meets a soundness
standard comparable to that of the internal ratings-based approach
for credit risk (i.e. comparable to a one year holding period and
a 99.9th percentile confidence interval)."

2.2.1 Value at Risk

The mathematical definition of Value at Risk at a confidence level α ∈ (0, 1)
is given by the smallest number l such that the probability that the loss
L exceeds l is at most (1 − α). V aRα equals the α-quantile of the loss
distribution2.

V aRα(L) = inf{l ∈ R : P (L > l) ≤ 1− α}
= inf{l ∈ R : FL(l) ≥ α} = F−1

L (α)

Where FL is a continuous and strictly increasing loss distribution function.
Consider an ordered sample independent and identically distributed variables
X1,n ≥ · · · ≥ Xn,n. The empirical quantile function is given by

F−1
n,X(α) = Xbnαc+1,n

2A similar definition can be found in Hult et. al. (2012) with confidence level p defined
as p = 1− α
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Which is also the empirical Value at Risk. Value at Risk has a big weakness
that it ignores the tail beyond α. A risk measure that takes the tail into
consideration is the Expected Shortfall. Some also criticize VaR for trying to
estimate something that is not scientifically possible to estimate, namely the
risks of rare events, and that you are better off with no information at all,
than relying on misleading information3. For other shortcomings with the
risk measure there is a paper published in 2012 by Embrecths et al. called
Model uncertainty and VaR aggregation.

2.2.2 Expected Shortfall

Expected shortfall at confidence level α can be seen as the average loss, given
that the loss exceeds Value at Risk at confidence level α.

ESα(L) =
1

1− α

∫ 1

α
V aRt(L)dt (2.1)

For a loss L with a continuous loss distribution (2.1) can be rewritten as

ESα(L) = E(L|L ≥ V aRα(L))

Expected Shortfall measures what the expected loss is if things get bad,
rather than measuring how bad things can get. Other modifications of Ex-
pected Shortfall is called Avarage Value at Risk (AVaR), Conditional Value
at Risk (CVaR), Tail Value at Risk (TVaR) and Tail Conditional Expecta-
tion (TCE) (H. Hult et al., 2012. p. 178).

2.3 Probability Distributions

The continuous probability distribution of a random variable, X, is defined
as

P (X ≤ x) =

∫ x

−∞
f(t) dt = F (x)

where f(t) is the probability density function and F (x) the cumulative dis-
tribution function. If the distribution of X is discrete, f(t) is called the
probability mass function and F (x) is defined as

F (x) =
∑
t≤x

f(t)

Here follows a couple of distributions that will be used in the thesis. Defi-
nitions were taken from M. P. McLaughlin (2001), G. Blom (2005) and the
Matlab statistic toolbox documentation4.

3Interview with Nassim Taleb, Derivative Strategy,
http://www.derivativesstrategy.com/magazine/archive/1997/1296qa.asp

4http://www.mathworks.se/help/stats/index.html
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2.3.1 Empirical Distribution

The empirical distribution function is a step function that jumps 1/n at
each step in a set of n data points. The standard estimator for empirical
distribution is defined as

F̂n(t) =
#observations ≤ t

n
=

1

n

n∑
i=1

1{xi ≤ t} (2.2)

where the xis are the data points in the sample, and by the strong law of
large numbers, F̂n(t)→ Fn almost surely as n→∞.

Some advantages are that no underlying distribution assumption is needed,
thus no parameters needs to be estimated and it is very flexible. Drawbacks
are that it is entirely based historical data and cannot generate numbers
outside the historical data set. However, I will use a smoothed empirical
CDF where the last element of the output quantile is linearly extrapolated
to make sure it covers the closed interval [0, 1].

2.3.2 Exponential Distribution

The standard exponential distribution is a one parametric continuous distri-
bution with PDF

f(x) =
1

µ
exp−x/µ

where µ is the scale parameter and also the expected value.

2.3.3 Truncated Log-normal Distribution

If Z ∼ N(0, 1) then X = eµ+σZ is log-normal distributed. Operational loss
data are often truncated at a certain reporting threshold and it is therefore
necessary to adjust the log-normal distribution so it takes the truncation
threshold into account. The adjustment is done by re-normalizing the PDF
so that it sums to one, which yields the following PDF5

f(x) =
1

xσ
√

2π
exp

[
−
(

lnx− µ
σ
√

2

)2
]

1

1− F (a)
1{x ∈ (a,∞)}

where a is the lower truncation point of the data and F (a) is the CDF of
X at the truncation point a. To simulate from the truncated log-normal
distribution the inverse CDF is used so that a random variate x can be
defined as

x = F−1(F (a) + U(1− F (a)))

where F−1 is the inverse cumulative distribution function and U a uniform
random variable on [0,1].

5From Dutta & Perry (2007). p. 14.
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2.3.4 Weibull Distribution

The Weibull distribution is a two parametric continuous distribution with
PDF

f(x) =
b

a

(x
a

)b−1
e−(x/a)b

Where a is the scale parameter and b the location parameter.

2.3.5 Log-logistic Distribution

Also known as the Fisk distribution with location parameter µ and scale
parameter σ, has the PDF

f(x) =
(β/α)(x/α)β−1

[1 + (x/α)β]2

The log-logistic CDF can be expressed on closed form

F (x) =
1

1 + (x/α)−β

as well as the inverse CDF

F−1(p) = α

(
p

1− p

)1/β

The log-logistic distribution is similar to the log-normal distribution, but it
has heavier tails.

2.3.6 Gamma Distribution

The gamma PDF is

f(x) =
1

baΓ(a)
xa−1e−x/b

where Γ(·) is the Gamma function, a the shape parameter and b the scale
parameter.

2.3.7 Location-scale Student’s t-distribution

The location-scale Student’s t-distribution is a symmetric continuous distri-
bution similar in shape to the normal distribution, with the exception that it
can produce values that are further from the mean, i.e. it has heavier tails.
The PDF is

f(x) =
Γ(ν+1

2 )

Γ(ν2 )
√
πνσ2

(
1 +

1

ν

(
x− µ
σ

)2
)− ν+1

2
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2.3.8 Poisson Distribution

Poisson distribution is a discrete probability distribution that describes the
probability of a given number of events occurring in a fixed time window,
i.e. the number of traffic accidents in a year. The probability mass function
is defined as

f(k) =
λk

k!
e−λ

The parameter λ is estimated based on desired frequency. If the Poisson
distribution is supposed to generate a yearly frequency, λ is simply the yearly
average of the sample.

λ̂ =
1

n

n∑
i=1

xi

Figure 2.1: A Poisson distribution with λ = 10.

2.3.9 Negative Binomial Distribution

Is a two parametric discrete probability distribution of the number of suc-
cesses in a sequence of Bernoulli trials before a specified number r of failures.
The sucess probability is denoted p and the PDF is

f(k) =

(
r + k − 1

k

)
prqk
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where q = 1 − p and if r is not an integer the binomial coefficient in the
expression is replaced by6

Γ(r + k)

Γ(r)Γ(k + 1)

Figure 2.2: A negative binomial distribution with r = 10 and p = 0.2.

2.4 Peaks Over Threshold

The peaks over threshold (POT) method is part of extreme value theory and
is a way to extrapolate the empirical tail outside the range of the sample. It
turns out that the distribution of excesses Xk − u over a high threshold u
of a sample independent and identically distributed random variables is well
approximated by the generalized Pareto distribution, with CDF

Gγ,β(x) = 1− (1 + γx/β)−1/γ .

Here follows a derivation of the estimator of the quantile function (H. Hult
et al., 2012). Given a sample X1, ..., Xn iid with regularly varying right tail

lim
t→∞

F (tλ)

F (t)
= λρ

6http://www.mathworks.se/help/stats/negative-binomial-distribution.html
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The excess distribution function of X over the threshold u is given by

Fu(x) = P (X − u ≤ x|X > u), x ≥ 0.

We have

Fu(x) =
F (u+ x)

F (u)
=
F (u(1 + x/u))

F (u)

Since F is regularly varying with index −ρ < 0 it holds that

F (tλ)

F (t)
→ λρ

uniformly in λ ≥ 1 as u→∞

lim
t→∞

sup
x>0
|Fu(x)−Gγ,β(u)(x)| = 0

where γ = 1/ρ and β(u) ∼ u/ρ as u → ∞. Now let Nu denote the number
of exceedences of u by X1, ..., Xn. Recall that

F (u+ x) = F (u)Fu(x)

If u is not too far out in the tail then the empirical approximation F (u) ≈
Fn(u) = Nn/n holds. Moreover the approximation

Fu(x) ≈ Gγ,β(u)(x) ≈ G
γ̂,β̂

(x) =

(
1 + γ̂

x

β̂

)−1/γ̂

,

where γ̂ and β̂ are the estimated parameters makes sense. We then get the
tail estimator

̂F (u+ x) =
Nu

n

(
1 + γ̂

x

β̂

)−1/γ̂

,

and the quantile estimator

F̂−1(p) = u+
β̂

γ̂

((
n

Nu
(1− p)

)−γ̂
− 1

)
.

One of the key elements in the POT method is to find a suitable high
threshold u where the GPD approximation is valid, yet not too high were
not enough data are available. One approach is to start with a rather low
threshold and examining the GPD goodness-of-fit with the excess data by
comparing respective quantiles in a quantile-quantile-plot. Then repeat the
procedure with a slightly higher threshold and gradually increase it until the
best fit is found.
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2.5 Dependence

There are several ways to analyze dependency in the data. There might be
dependencies between the number of occurrences or severity impact within a
cell and between cells. If the number of losses in a cell are not independent of
each other they are not Poisson distributed. In that case, it might be more
appropriate to model the frequency with a negative binomial distribution.

Under the standard LDA model, frequency and severity distributions
within a cell are assumed independent and the severity samples are inde-
pendent and identically distributed. The high quantile of the total annual
loss distribution is computed by simply adding together the high quantiles
of the loss distribution for each BL/ET cell. Summing the quantiles implies
a perfect correlation among the cells. To avoid this assumption, typically
three methods are considered to implement dependence in the model (E.
Cope and G. Antonini, 2008)

1. The frequency distribution between cells are dependent

2. The severities between cells are dependent

3. The aggregated loss between cells are dependent

It is often difficult to define dependencies between severities. One ap-
proach is to introduce common "shock models" affecting several cells simul-
taneously (Lindskog and McNeil, 2003). Dependencies of the aggregated loss
distributions between different cells in the ORX database have been analyzed
by E. Cope and G. Antonin (2008) with the following conclusion:

" (...) most of the correlations among quarterly aggregate losses
are low, generally less than 0.2, and rarely exceeding 0.4. More-
over, the correlation structures of individual banks appear to be
largely homogeneous. A formal statistical test for the equality
of correlation matrices indicated that the majority of individual
banks’ correlation matrices were found to be statistically equal
to the average correlation matrix. Therefore, the average corre-
lation matrix is representative of the correlation of most ORX
members."

Model dependency between random frequency variables can be done by sort-
ing the number of loss occurrences in buckets of periods and estimate correla-
tions such as Pearson’s correlation coefficient and Kendall’s rank correlation.
The estimated correlation can be used to specify the correlation matrix for
different copulas which in turn can describe the dependence structure be-
tween the random variables. The most commonly used copula in AMA is
the Gaussian copula. (Basel Committee, 2009. p. 50) [3].
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2.5.1 Copula

A copula is a sort of distribution function that is used to describe the de-
pendence structure between random variables. The d-dimensional Gaussian
copula GGaR is defined as (H. Hult et al., 2012. p. 303.)

GGaR (u) = P (Φ(X1) ≤ u1, ...,Φ(Xd) ≤ ud) = Φd
R(Φ−1(u1), ...,Φ−1(ud)),

where Φd
R is the distribution function of X, R is the linear correlation matrix

and Φ the standard normal distribution function. Let F1, ..., Fn be frequency
distributions and C a copula. Then C(F1(x1), ..., Fn(xn)) specifies the n-
variate frequency distribution.

Figure 2.3: Example of Gaussian copula with linear correlation 0.5 and
marginal distributions transformed to Poisson.

The d-dimensional Student’s t copula Ctν,R is defined (H. Hult et al.,
2012. p. 303.)

Ctν,R(u) = P (tν(X1) ≤ u1, ..., tν(Xd) ≤ ud) = tdν,R(t−1
ν (u1), ..., t−1

ν (ud))

Figure 2.4: Example of Student’s t copula with linear correlation 0.5 and
marginal distributions transformed to Poisson.
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2.6 Scenario Based Approach

Unlike traditional techniques, scenario analysis uses expert opinion as input
rather than historical data. A common approach is to calibrate an underly-
ing distribution, often a log-normal distribution for severity and Poisson for
frequency, based on expert judgment estimates on frequency, most frequent
loss and worst case loss of an operational risk.

There are many ways to interpret the worst case scenario, including a
fixed high quantile, worst single loss in a period and a quantile of sever-
ity distribution with a probability level depending on average frequency (A.
Colombo and S. Desando, 2008). Scenario analysis typically includes some
degree of bias and subjectivity. Biases in scenario analysis development pro-
cesses can include overconfidence, motivational bias, availability bias, parti-
tion dependence, and anchoring (Federal Reserve System, 2011)7.

Another issue is that the implied severity distribution is often assumed
log-normal distributed without further ado. If the implied severity distribu-
tion is assumed log-logistic distributed, the worst case (WC) loss is regarded
as the p-quantile8 and typical loss (M) as the median (50% quantile) the
relationship between these inputs and the distribution parameters can eas-
ily be obtained using the quantile function. The scale parameter α can be
expressed as:

M = F−1(0.5) = α

(
0.5

1− 0.5

)1/β

⇒ α = M

And the shape parameter β as follows

WC = F−1(p) = α

(
p

1− p

)1/β

⇒ (WC)β = Mβ p

1− p

⇒ p

1− p
=

(
WC

M

)β
⇒ ln

p

1− p
= β ln

WC

M

⇒ β =
ln p

1−p

ln WC
M

And if the underlying distribution is assumed log-normal, most occuring loss

7http://www.occ.gov/news-issuances/bulletins/2011/bulletin-2011-21a.pdf
8Typically a very high quantile, such as p = 0.99
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as the mode and worst case the p-quantile we get the following relationship:

M = mode(X) = eµ−σ
2
, X ∼ LN(µ, σ2)

⇒ µ = lnM + σ2

And the standard deviation σ

WC = eµ+σΦ−1(p)

⇒ ln(WC) = ln(M) + σ2 + σΦ−1(p)

⇒ (σ +
1

2
Φ−1(p))2 − 1

4
(Φ−1(p))2 = lnWC − lnM

⇒ σ +
1

2
Φ−1(p) =

√
lnWC − lnM +

1

4
(Φ−1(p))2

⇒ σ = −1

2
Φ−1(p) +

√
lnWC − lnM +

1

4
(Φ−1(p))2

where Φ−1(p) is the inverse standard normal CDF (or quantile function).

2.7 Loss Distribution Approach

A general model for measuring operational risks is the loss distribution ap-
proach. It arises if the number N of internal operational losses and the
severity X of a single loss are assumed to be independent random variables.
One can interpret it as two different dice which are thrown one after another.
The first die represents the number of operational losses and the second die
the single loss severity. If the first die is thrown and shows the number n
the second die has to be thrown n times. If xi is the result of throw i, the
respective loss is given by

l = x1 + ...+ xn =
n∑
i=1

xi

The random total loss L before throwing any dice is given by

L = X1 + ...+XN =

N∑
i=1

Xi

and the aggregated loss distribution function G(x) is then given by

G(x) = P (L ≤ x).

This model is called the Standard Loss Distribution Approach (LDA) and
requires the determination of the probability distribution of the the frequency
of operational loss events and the conditional probability distribution of the
severity of operational losses given an operational loss event.
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2.8 Monte Carlo Method

Since the loss distribution can not be represented on analytical form, one
of the most common approaches to estimate it is by using Monte Carlo
simulations. A number of losses are simulated and aggregated from the
underlying frequency and severity distributions to form a potential one year
loss. This step is then repeated a large number of times, say n times, resulting
in an empirical loss distribution, which is a reasonably good approximation
of the "true" loss distribution. The Value at Risk with confidence level α,
also known as the α-quantile, can then simply be read from the distribution
as the n− bn · αc largest value.

2.8.1 Remarks

One problem with the Monte Carlo method is that the underlying distribu-
tions have to be known over the whole possible region. Since the severity
and frequency distributions are fitted to historical data, which often con-
tains few data points and data from different sources (internal and external
etc.), Monte Carlo simulations may yield unstable in estimates of the high
quantiles of heavy tailed distributions.

2.9 Analytical Approximation

When loss data are heavy-tailed, or more precisely subexponential, there
exists a simple closed-form approximation of the high quantile shown by
Klüppelberg and Böcker (2006). A non-negative random variable X belongs
to the subexponential distribution family if

lim
x→∞

P (X1 + ...+Xn > x)

P (X > x)
= n, n ≥ 2

The subexponentiality implies that the sum of operational losses are most
likely large due to a single large loss rather than several smaller losses. The
aggregated loss distribution G(x) can be written as

G(x) = P (L ≤ x)

=

∞∑
n=0

P (N = n)P (L ≤ x|N = n)

=

∞∑
n=0

P (N = n)P (X1 + ...Xn ≤ x)

=

∞∑
n=0

P (N = n)Fn(x)
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where F is the distribution function of X and Fn is the n-fold convolution
of F . N is the random frequency variable. Assuming that the severities
X1, . . . , Xn are subexponential with distribution function F , and assume
that for some ε > 0

∞∑
n=0

(1 + ε)np(n) <∞

Then, the aggregated loss distribution G(x) is subexponential with tail be-
havior given by

G(x) ∼ E(N)F (x), x→∞ (2.3)

Where E(N) is the expected frequency and G(x) = 1−G(x) and F (x) = 1−
F (x) (Klüppelberg and Böcker, 2006. Theorem 1.3.5 in appendix). Hence,
according to (2.3) we get

G(x) ≈ 1− E(N)(1− F (x))

The value at risk at confidence α of the aggregated loss distribution G(x)
is defined the α-quantile of the aggregated loss distribution

V aRα(X) = G−1(α)

and consequently

α = G(V aRα(X)) ≈ 1− E(N)(1− F (V aRα(X))

⇒ F (V aRα(X)) ≈ 1− 1− α
E(N)

, α close to 1

Which leads to

V aRα(X) ≈ F−1

(
1− 1− α

E[N ]

)
, α close to 1 (2.4)

What is interesting about the result is that according to this approxi-
mation, operational value at risk only depends on the tail of the severity
distribution, and ignores the body. Furthermore, since the expected fre-
quency is sufficient, calibrating some counting process, such as Poisson or
negative binomial, is not necessary. Just the sample mean is needed.

Recall the estimator of the generalized Pareto quantile explained in the
peaks over threshold section.

F̂−1(p) = u+
β̂

γ̂

((
n

Nu
(1− p)

)−γ̂
− 1

)

Since the generalized Pareto distribution is a subexponential distribution
for γ > 0 we may use (2.4) to obtain the analytical Value at Risk for the
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generalized Pareto model. We get

V aRα(X) ≈ F̂−1

(
1− 1− α

E[N ]

)
= u+

β̂

γ̂

((
n

Nu

(
1− α
E[N ]

))−γ̂
− 1

)

A comparison of the analytical VaR and monte carlo simulated VaR is shown
in Figure 2.5.

Figure 2.5: Comparison of analytical VaR with monte carlo simulated VaR
based on a Poisson process and a generalized Pareto severity distribution.
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Chapter 3

Data

The operational loss data used in this thesis consist of internally collected
data by the bank and external data privately released by a consortium of
institutions. This section will present some characteristics of the data, an
exploratory data analysis and also some challenges in measuring operational
risk from loss data. Note that all losses have been multiplied by a constant
to anonymize the data.

3.1 Exploratory Data Analysis

EDA is an approach promoted by John Tukey to analyze data sets, often
visually, in order to assess assumptions on which hypotheses and appropriate
statistical models can be selected.1 The following EDA was performed on
all internal and external data available.

Min 25% 50% 75% Max
0 590.87 2469.46 9073.85 41544970.92

Table 3.1: Min/max and quartilels of modified internal data

These five number statistics are functions of the empirical distribution
and are defined for all distributions unlike moments such as the mean and
standard deviation. Nevertheless, the moments are also computed and dis-
played in Table 3.2 below.

Mean Std. deviation Skewness Kurtosis
53883.26 868820.96 42.68 1995.02

Table 3.2: Min/max and quartiles of modified internal data

1In 1977 John Tukey published the book Exploratory Data Analysis.
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The sample shows a significant difference in the mean and median which
may be caused by a heavy right tail. The high kurtosis indicates that the
high standard deviation is a result of extreme observations, far from the
sample’s mean.

Figure 3.1: Time series and histogram of internal loss data

Figure 3.2: Time series and histogram of external loss data. Note that the
external data are truncated at a certain threshold.

The data show that there are two types of losses, the high frequency low
severity losses and the low frequency high severity losses. It is possible that
the tail and the body do not necessarily belong to the same distribution.
In Figure 3.3 the empirical quantiles are compared to the quantiles of some
reference distributions in a QQ-plot to determine whether the data have
heavier or lighter tails than the reference distributions.
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Figure 3.3: QQ-plots of loss data against selected reference distributions.
In the top left plot we see that the curve deviates up from the dashed line,
indicating that the data are heavier than exponential. Top right indicates
that the data are heavier than log-normal, though it is a better fit than
exponential. Lower plots suggest that if the data are fitted to a generalized
Pareto distribution, the shape parameter γ should lie between 0.5 and 1. We
have indeed heavy tailed data.

3.2 Characteristics of Data

Heavy tailed data can be observed in nearly every category of the external
operational losses, regardless of event type or business line. There are some
implications working with heavy tailed data which E. W. Cope et. al. (2009)
sum up in three pieces, together with some examples from H. Hult. et. al.
(2012).

1. Instability of estimates - A single observation can have a drastic impact
on the estimated variables, even when there is a large underlying data
set.

2. Dominance of sums - Annual total operational losses for a cell will
typically be driven by the most extreme losses. From H. Hult. et. al.
(2012) p. 257 we get that for subexponential variables X1, . . . , Xn

lim
x→∞

P (max (X1, . . . , Xn) > x)

P (X1 + · · ·+Xn > x)
= 1.
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The interpretation is that the sum takes a very large value due to
precisely one of the terms taking a very large value and the sum of the
remaining terms being small.

3. Dominance of mixtures - If losses that are generated in two different
cells are pooled together, the tail distribution of the total losses will
generally follow the distribution of the cell with the heavier tailed dis-
tribution of the two of them. Let X and Y be losses from two different
business lines. Suppose that X has a distribution function with a reg-
ularly varying right tail and |Y | has a finite order of moments. This
gives the expression

lim
x→∞

P (X + Y > x)

P (X > x)
= 1,

which shows that only the loss variable with the heaviest right tail
matters for probabilities of very large losses. (H. Hult. et. al., 2012.
p. 261)

3.3 Data Sufficiency

Recall the standard empirical estimator (2.2) from chapter 2

F̂n(t) =
1

n

n∑
i=1

1{xi ≤ t}

and notice that the sum is Bin(n, F (t))-distributed. The relative error is the
standard deviation of the estimator divided by the estimated quantity, i.e.

V ar(F̂n(t))1/2

F (t)
= n−1/2

(
1

F (t)
− 1

)1/2

A natural requirement is that the standard deviation of the estimator must
not be greater than the probability to be estimated. Under this requirement
n ≈ 1/F (t), which is very large due to F (t) being very small (H. Hult, 2012.
p. 203).

3.4 Scaling & Weighting

Integrating external data in the internal loss database requires an appropri-
ate scaling technique. Most research propose some non-linear relationship
between a loss and firm size, i.e. gross income or equity. The only thing that
can be associated with a loss in the consortium database is the region where
the loss occurred and the size of the loss. Therefore any scaling method
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where firm size is involved can not be carried through. More on scaling can
be found in E. Cope and A. Labbi (2008).

Figure 3.4: QQ-plot of external vs. internal loss data

We see that the external data have a heavier right tail than the internal
data, so simply mixing the two data sets will most likely lead to an over-
estimation of capital. However, mixing the data may yield more realistic
results by applying a weighted sum to the internal and external distribution
functions:

F (x) = wintFint(x) + wextFext(x), wint + wext = 1.
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Chapter 4

Method

In this chapter different methods and approaches based on the theory will be
evaluated and culminate in a model, which will be described in more detail.
Assumptions and methods are judged according to different performance
measures proposed by Dutta and Perry, 2007.

• Good Fit - Statistically, how well does the method fit the data?

• Realistic - If a method fits well in a statistical sense, does it generate
a loss distribution with a realistic capital estimate?

• Well-Specified - Are the characteristics of the fitted data similar to the
loss data and logically consistent?

• Flexible - How well is the method able to reasonably accommodate a
wide variety of empirical loss data?

• Simple - Is the method easy to apply in practice, and is it easy to
generate random numbers for the purposes of loss simulation?

4.1 Modeling Frequency

The frequency plays an important role in the estimation of capital. The
two most common discrete parametric distributions for modeling frequency
of operational losses are the Poisson distribution and the negative binomial
distribution1.

To determine which of the two frequency distribution proposed meet the
different performance measures best, a quick analysis is carried through. If
the mean and the variance is of the same magnitude, the Poisson distribution
is an appropriate choice. A variance that is higher than the sample mean,
suggests a negative binomial distribution. Only internal data from the past

1Observed range of practice in key elements of Advanced Measurement Approaches.
Basel Committee, 2009
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five years are considered relevant and are used in the calibration. No external
data are being used here since internal data reflects the banks loss profile
more accurately and calibrating frequency parameters requires fewer data
points.

Generally, we notice a higher number of occurrences in recent years com-
pared to past years, which may interfere in the parameter estimation. This
difference is most likely due to an increase in reporting frequency and not in
the actual loss frequency. An example of parameter estimates and goodness-
of-fit tests are presented in the table below.

Distribution Poisson N. binomial
Parameter 1 5.6 5.9
Parameter 2 - 0.51

χ2-test 0.249 0.415
K-S test 0.551 0.640
Empirical variance 11.3 11.3

Table 4.1: Estimated parameters of frequency distributions and the p-values
of Kolmogorov-Smirnov and χ2 goodness-of-fit tests. Parameter 1 corre-
sponds to λ̂ for Poisson and r̂ for negative binomial. Paramater 2 corre-
sponds only to the p̂ parameter for negative binomial, since Poisson only
have one parameter.

Based on the Kolmogorov-Smirnov and χ2 goodness-of-fit tests none of
the null hypotheses at significance level 5% are rejected. Even though the
variance is higher than the sample mean the primary choice of frequency
distribution is, due to its flexibility and simplicity, the Poisson distribution.
Also, the analytical approximation of the high-end quantile of the loss dis-
tribution revealed that the actual choice of frequency distribution is less
important.

4.2 Modeling Severity

Severity is much harder to model than frequency and requires a lot more
data points. The choice of how to model severity has usually a much higher
impact on the capital than the choice of how to model the frequency. All
severities are assumed independent and identically distributed. Three differ-
ent modeling techniques are performed.

4.2.1 Method 1

First, commonly used parametric distributions such as the log-normal, weibull
and log-logistic distributions are fitted to the whole data set. Also a location-
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scale student’s t distribution is fit to log losses, using both maximum like-
lihood (MLE) and least squares (LSE) to estimate the parameters. LSE is
used due to the log-likelhood function typically beging rather flat and small
changes in the data can result in big changes in the parameter estimates, as
explained by H. Hult et al., (2012). Figure 4.1 contains the resulting QQ-
plots and Figure 4.2 contains the corresponding histograms with the imposed
density function. Plots are in log scale. Parameters are shown in Table 4.2

Figure 4.1: Empirical quantiles compared with parametric distributions fit-
ted to data. Upper plots: Normal left, logistic right. Lower plot: Student’s
t left, Weibull right.
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Figure 4.2: Histogram of log losses with imposed density function. Upper
left: Normal distribution fitted to log losses. Upper right: Logistic distri-
bution fitted to log losses. Lower left: Student’s t distribution fitted to log
losses. Lower right: Log transformed Weibull fitted to losses.

Distribution Log-normal Weibull Log-logistic Student’s t (MLE) Student’s t (LSE)
Parameter 1 7.68737 6704.08 2144.73 7.67062 7.68737
Parameter 2 2.24207 0.421686 0.81873 1.83439 1.91251
Parameter 3 - - - 5.74174 7.11015
F̂−1(0.999) 2.23 · 106 6.56 · 105 9.88 · 106 3.93 · 107 1.92 · 107

Table 4.2: Estimated parameters of the distributions fitted to the whole data
set

At first glance, they all seem to fit the data pretty well. Looking closer
at the high quantile, which is the main driver of capital, we see that Weibull,
as expected, has the lowest severity and Student’s t the highest. Monte
Carlo simulations on cell level2 yields that the Student’s t distribution gives
unrealistically high capital estimates and is therefore discarded. Likewise is
the Weibull distribution discarded due to very low capital estimates. What
is left is the log-normal distribution which gives a capital estimate lower
than the current capital, and log-logistic distribution which has the best
goodness-of-fit.

To verify how well the log-normal distribution fits operational loss data,
a truncated log-normal distribution is fitted to the external data, which con-
tains more extreme observations than the internal loss data. The probability

2Parameter estimates on cell level are presented in Results.
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distribution is defined as the usual PDF renormalized with the CDF evalu-
ated at the truncuation xTrunc.

1

1− F (xTrunc;µ, σ)
f(x;µ, σ)

and then the parameters µ̂ = 1.682 and σ̂ = 0.323 are estimated using
maximum likelihood.

Figure 4.3: Histogram of external log data with imposed truncated normal
distribution.

Now, generating numbers from the truncated distribution can be done
using the estimated inverse CDF

x = F̂−1(F̂ (xTrunc) + U · (1− F̂ (xTrunc)))

The problem here is that F̂ (xTrunc) ≈ 1, which means that the truncated
normal fit with the external data are so far in the right tail that it practically
makes it impossible to simulate from the distribution. Compared to the
relative good log-normal fit with internal data signals that the tail indeed
has different characteristics than the body and as a consequence, finding one
distribution that fits well over the entire range is hard.

4.2.2 Method 2

Difficulties in fitting one distribution to the entire range leads us in to the sec-
ond severity modeling approach. Namely, using a mixed model with different
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body and tail distributions. First, a couple of commonly used distributions
are evaluated, as seen in Figure 4.4

Figure 4.4: Left: QQ-plots of empirical quantiles versus quantiles of paramet-
ric distributions fitted to data above the threshold. Right: Corresponding
histograms with imposed probability density function in log scale. Distribu-
tions are from top to bottom: Exponential, Generalizde pareto, Gamma and
Weibull.

The generalized Pareto distribution has the best fit, thus the peaks over
threshold method is applied to extrapolate losses beyond the historical data.
However, fitting a different generalized Pareto distribution for each cell can
not be done with internal data only, and using unscaled external data yields
too high estimates of the tail. However, with the assumption that the ex-
treme tail of all severity distributions across all cells have something in com-
mon, all internal losses are combined to provide better information on ex-
treme tail of the severity distribution. Starting at a low threshold, which is
gradually increased until a good fit is achieved at about the top 6% of all
losses, giving the estimates(

γ̂, β̂
)
≈ (0.79568, 136866)

Theory also predicts the shape parameter to stabilize as the threshold be-
comes large. However, as seen in Figure 4.5 no stabilization can be noted,
but the QQ-plot in Figure 4.6 indicates a rather good fit.
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Figure 4.5: Estimated shape parameter γ as a function of threshold in per
cent, where a generalized Pareto distribution has been fit to the data above
various thresholds.

Figure 4.6: QQ-plot of loss data above a threshold versus fitted generalized
Pareto distribution.
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Below the POT threshold we model the body of the distribution using
the weighted sum of the smoothed empirical distribution function of internal
and external data. Losses below the external reporting threshold does not
affect capital estimate and are not in the model. The frequency is adjusted
by only counting the number of internal losses above the external reporting
threshold. The resulting mixed severity distribution is described below and
can be seen in Figure 4.7.

F (x) =

{
F1(x) x < u
F1(u) + (1− F1(u))F2(x) u ≤ x

where F1 is the weighted empirical distribution of the body and F2 is the
generalized Pareto distribution of the tail.

Figure 4.7: The resulting mixed severity distribution is the green line
consisting of the smoothed empirical weighted sum body and generalized
Pareto tail. The higher quantile of the piecewise distribution function is
F̂−1(0.999) = 4.37 · 106.

4.2.3 Method 3

The third method is to not make any distributional assumptions at all. The
severity distribution is defined as the weighted sum applied on the interpo-
lated empirical cumulative distribution functions for the internal and exter-
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nal data over the whole region, including the tail. Since the external data
have more observations in the right tail, beyond the range of the internal
data, the external empirical distribution works rather good as a substitute
to extrapolating from a parametric distribution.

F (x) = wintFint(x) + wextFext(x)

where wint + wext = 1. A sample of the distribution in one cell can be seen
in Figure 4.8

Figure 4.8: Empirical tail distributions of internal and external data, and
the resulting weighted sum of in green. The higher quantile of the resulting
weighted empirical distribution function is F̂−1(0.999) = 5.87 · 106.

4.3 Scenario Analysis

Several of the cells have no data, or very few data points. Cells with no
recorded losses in the entire internal loss record are considered to not be
exposed to any risk and is therefore left out of the model. Cells with too few
losses to make any statistical analysis are being replaced by scenario analysis.
Frequency is still estimated based on the few internal losses we have. Even
if there is only one recorded loss in the five year data span, the frequency
will simply be estimated as once every five year. I will propose a way to
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estimate worst case (WC) scenario and typical loss (M) from external loss
data by using a pivot cell. The assumption that the ratio between different
cells quantiles and the pivot cell in the external data are the same as the
ratio between the internal pivot cell and the other internal data cell quantiles
makes it possible to estimate WC and M for cells with little or no internal
data.

The internal cell with most data points is selected as the pivot. The
same external cell is selected and the 50% and 99% quantiles are computed
representing the typical loss and the worst case loss. Now the same quantiles
for every external cell is computed and divided by the 50% and 99% quantiles
in the external pivot cell to get the external quantile ratios. Now the implied
internal quantiles of an internal cell with few data points can be computed by
taking the internal pivot cell quantiles and multiply it with the corresponding
external cells quantile ratio. These quantiles are then used to estimate either
log-normal parameters or log-logistic parameters as described in Chapter
2. With the selected severity distribution and frequency distribution the
aggregated loss distribution can be generated and contribute to the estimated
capital. Since scenarios are only used where there are very few internal losses,
it will naturally have a relatively small impact on the total capital estimate,
so to simplify, the whole severity is modeled by one distribution. WC, M
and the frequency can of course be changed based on expert opinions.

4.4 Dependency & Correlations

The number of internal losses for each business line and event type are sorted
into yearly and quarterly buckets. Estimating correlations are hard. Espe-
cially with the scarce data that operational losses consist of. Since we use
five years of data, we only have five buckets of annual data for each business
line and event type. Even though it is the yearly correlation we are after,
sorting them on a quarterly basis seems more reliable. However even though
there are more buckets of data, each bucket will contain less number of oc-
currences and it will be more sensitive on errors in the loss reporting date.
The quarterly estimated Pearson’s correlation coefficients and Kendall tau
rank correlation coefficient between business lines are estimated, of which
the latter is presented in Figure 4.9
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Figure 4.9: Kendall τ rank correlation coefficient of quarterly frequency
between the eight business lines.

The observed correlations are rather low as expected, rarely exceeding
0.3. The correlation matrix could be used to specify a copula in order to
model frequency dependency between business lines.

4.5 Aggregated Loss Distribution

Samples from the loss distributions are generated using Monte Carlo simu-
lations. For each cell a number N is simulated from its calibrated frequency
distribution. Then N amount of losses are simulated from the correspond-
ing severity distribution and are summed up. This sum corresponds to a
possible annual loss in that cell. This step is repeated 10 000 times to get
a large sample of the cell specific loss distribution. Now, assuming a perfect
correlation between the 99.9% quantiles of each cell the V aR99.9% of each
cell can be added together to get the total capital requirement, as suggested
by the Basel Committee. However, by assuming independence between the
high quantiles, diversification benefits can be utilized and all the samples in
all cells can be summed up to create a sample from the total aggregated loss
distribution, from which the 99.9% quantile can be read off. Implementing
dependency in the model yields on average an 8.3% higher capital compared
to the full independent assumption (Basel Comittee, 2009. p. 5) [4]. Since
correlations between cells are low, a full independence assumption is made
over the more conservative perfect correlation assumption.
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Figure 4.10: Total aggregated loss distribution with the 99.9% quantile and
its mean marked.

There are some rare cases when dealing with really heavy tailed distri-
butions where the full dependence assumption actually yields a lower capital
estimate than the independent assumption. This deviation has to do with
value at risk not being subadditive, i.e.

V aRα(X + Y ) � V aRα(X) + V aRα(Y )

This can be shown with a simple example from H. Hult et. al. (2012)
p. 260. Consider two independent nonnegative random variables X1 and
X2 with common distribution function F with a regularly varying tail F =
1− F with index γ−1 ∈ (0, 1). For sufficiently large x it can be shown that
P(X1 +X2 > x) > P(2X1 > x). For p ∈ (0, 1) sufficiently large

F−1
X1

(p) + F−1
X2

(p) = 2F−1
X1

(p) = F−1
2X1

(p)

= min {x : P(2X1 > x) ≤ 1− p}
< min {x : P(X1 +X2 > x) ≤ 1− p}
= F−1

X1+X2
(p).

This holds for γ−1 close to 1. The conclusion is that the sum of the quan-
tiles for two independent and identically distributed random variables is not
necessarily greater than the quantile of the sum.

4.6 Allocation

Allocating the capital back to business lines are done by using expected
shortfall. We choose a confidence level α such as the expected shortfall at
confidence α corresponds to the 99.9% quantile, i.e.

E(L|L ≥ V aRα(L)) = V aR0.999(L)
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Then the cell specific expected shortfall at confidence level α is computed on
every cell and summed up. The cell specific expected shortfall divided by the
sum of expected shortfall times the total economic capital is the allocated
economic capital to that cell. Value at Risk can also be used but the reason
expected shortfall is preferred is due to it being sub-additive and it takes the
tail beyond the 99.9% quantile in to consideration. Allocated capital within
the same business line is summed up to obtain the individual business line
capital, which can be compared to the standardized approach.

4.7 Qualitative Adjustments

Qualitative adjustments can be done to

• the frequency parameters,

• the severity parameters

• or directly to the estimated capital for different business lines.

The idea is to implement some scoring mechanism based on BEICFs such
key risk indicators (KRIs) and risk self assessments (RSA) from which an
adjustment up or down to the capital can be made. To explore which BEICFs
are the most suitable has been out of scoop of this project. Below is an
example of capital can be adjusted based on a score.

Figure 4.11: Example of how a qualitiative adjustment based on some scoring
mechanism can look like

4.8 Model Description

Here follows a more straight walk through of the model

43



4.8.1 Data Selection, Analysis & Mapping Process

The corresponding loss accounting date, business line, event type, region and
gross loss amount for every single data point in the internal and external loss
database is loaded into Matlab. Dates, event types, business lines and regions
are converted into numbers according to the tables below.

# Business Lines Event Type
1 Corporate Finance Internal Fraud
2 Trading & Sales External Fraud
3 Retail Banking Employment Practices & Workplace Safety
4 Commercial Banking Clients, Products & Business Practice
5 Payment & Settlement Damage to Physical Assets
6 Agency Services Business Disruption & System Failures
7 Asset Management Execution, Delivery & Process Management
8 Retail Brokerage
9 Insurance (excluded)
# External Region Internal Region
1 Africa Sweden
2 Asia/Pacific Baltic
3 Eastern Europe International
4 Latin America & Caribbean
5 North America
6 Western Europe & System Failures

Table 4.3: Numbers assigned to business lines, event types and regions

The first internal loss accounting date is identified as well as the last
date. A limit for which data are relevant is set to five years before the last
loss accounting date. Thereafter a 7x8 sized matrix is constructed, where
each cell corresponds to a business line and an event type.

Now the model scans through all the internal loss data and maps every
loss to its correct BL/ET cell, but only if the loss occurred after the relevant
date, i.e. loss accounting date is no older than five years. Older losses are
stored in a separate matrix, since we still might want to use these when
modeling the severity. Each loss is also adjusted for inflation. After deter-
mining how many years ago the loss occurred the models goes through the
past years annual inflation rates and adjust the loss accordingly.

The mapping process is now repeated for three new matrices which cor-
respond to the three regions Sweden, Baltics and International. E.g. in the
Sweden matrix only losses that occurred in Sweden no longer than five years
ago are selected and mapped to the corresponding BL/ET cell. In a similar
way, all external data are converted into SEK and mapped to a new matrix.

The data in every cell in all matrices are now analyzed and inspected
with histograms to look for any anomalies. Certain internal losses are dis-
carded due to errors made in the reporting process and a few losses are
adjusted down due to a fixed amount had been added to them which caused
irregularities in the data set.
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Figure 4.12: Example of data irregularities before and after adjusted.

The mean, median, min/max-values, standard deviation, skewness, kur-
tosis and number of occurrences is computed and stored. The number of
occurrences for all internal losses over the past five year can be seen in Ta-
ble 4.4 (not the actual figures).

BL/ET 1 2 3 4 5 6 7 8
1 109 NaN NaN 21 NaN 54 NaN 438
2 141 NaN NaN 260 117 126 NaN 205
3 NaN 2 NaN 108 43 NaN 86 81
4 NaN NaN 60 NaN NaN 336 NaN NaN
5 NaN NaN NaN 153 NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN NaN NaN NaN
7 NaN NaN NaN NaN NaN NaN NaN NaN

Table 4.4: Numbers of occurences (Illustrative only)

4.8.2 The Calibration & Simulation Process

Now the model goes through every cell, starting with commercial banking at
position (1,1) and goes down the column, cell by cell, calibrating frequency,
severity and estimating aggregated loss distribution using monte carlo simu-
lations, until it reaches the last cell (7,8) in Retail Brokerage. First it checks
that the cell is not empty. If it is empty, the model check for data older than
5 years. If it is still empty, the cell is left out of the model and it starts with
a new cell.

4.8.3 Calibrating Frequency

For every cell that is not empty a Poisson distribution is fit by calibrating
its parameter, taking the number of losses over the past five years in that
cell divided by the number of years the relevant data set spans. In our
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case five years. The Poisson parameter is simply the yearly mean of the
sample’s occurrence. All frequencies between cells are currently assumed to
be independent of each other.

Remarks

Dependencies between cells may be modeled with a copula, specified by a
correlation matrix, and with marginal distributions transformed to Poisson.
Dependence is not currently modeled due to too much uncertainty in the
estimation of correlation and choice of dependence structure.

4.8.4 Calibrating Severity

First of all the generalized Pareto tail is calibrated numerically on all internal
losses according to the peaks over threshold method. Then, for every cell
with above 10 data points, the severity distribution is calibrated with a
mixed model. The empirical CDF for both internal and external data are
computed. The empirical CDF is a step function. To smooth it we take the
midpoint at each jump. To ensure that the smoothed CDF covers the closed
interval [0, 1] the first and last elements of are linearly extrapolated using
the adjacent slope of the piecewise linear CDF. Now to apply the weighted
sum on the internal and external interpolation nodes they have to be of
equal length. Therefore all nodes are cumulated and non unique values are
removed. The cumulated nodes are evaluated in both the CDFs resulting
in two empirical estimators, F̂ext and F̂int, of equal length which we can
apply a weighted sum to. The generalized Pareto distribution can then be
"glued" on to the empirical weighted sum. The weighted sum estimator F̂ is
evaluated at the threshold parameter u, which yields the upper probability
where the generalized Pareto distribution begins.

4.8.5 Scenario Analysis

Cells few data points have the frequency calibrated exactly as before, but
the severity distribution is calibrated with a log-normal (can be changed to
log-logistic) distribution. The parameters are calibrated using typical loss
(M) and worst case (WC) scenario estimated by multiplying the internal
pivot cell to the current external loss cell ratio.

4.8.6 Capital Calculation

The aggregated loss distribution is estimated for each cell by Monte Carlo
simulation. A random number n, is drawn from the corresponding Pois-
son distribution. Then n losses from the severity distribution is drawn and
summed up. If the severity distribution is a mixed model with empirical
body and pareto tail, n uniform variables on the interval [0,1] are instead
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generated. Then for every n less than the upper probability where the gen-
eralized Pareto tail begins a loss from the weighted empirical distribution
is interpolated. And for every n larger or equal to the upper probability
level a loss from the generalized Pareto distribution is generated. These are
all summed up and this step is repeated 10000 times to get the cell specific
loss distribution. The 99.9% quantile of the cell specific aggregated loss dis-
tribution is computed and stored in the matrix. When all cells have been
evaluated, all aggregated loss distributions are summed to get the total ag-
gregated loss distribution, from which the 99.9% quantile is computed and
compared to the sum of all cell specific 99.9% quantiles.
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Chapter 5

Results

Log-normal Weibull Log-logistic
Cell µ σ a b α β

1 7.98 2.58 9854.87 0.47 3640.95 0.68
2 7.32 2.10 4469.47 0.44 1422.26 0.84
3 8.02 2.66 10332.46 0.49 3827.63 0.66
4 8.32 1.68 9642.73 0.55 3904.95 1.15
5 7.37 1.94 4179.93 0.50 1556.20 0.93
6 6.85 2.54 3811.34 0.32 699.24 0.72
7 7.41 1.79 4227.73 0.50 1394.09 1.08
8 6.90 1.59 2247.93 0.55 934.49 1.20
9 10.27 2.16 86217.69 0.46 27446.67 0.79
10 10.02 2.90 81688.18 0.49 32859.63 0.61
11 9.32 2.13 29514.11 0.59 13095.19 0.87
12 9.05 2.80 35033.01 0.37 7707.89 0.61
13 2.57 3.09 73.76 0.26 7.54 0.64
14 5.86 2.64 1234.49 0.47 424.11 0.62
15 6.34 2.31 1790.16 0.46 578.25 0.72
16 8.70 1.48 13171.11 0.61 5377.61 1.23
17 9.85 2.22 66156.68 0.36 12964.89 0.87
18 9.81 1.63 45169.38 0.43 16317.61 1.18
19 9.70 2.13 45316.93 0.57 18214.99 0.78

Table 5.1: Estimated parameters of log-normal, weibull and log-logistic dis-
tribution on cell level.
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MLE LSE
Cell µ σ ν µ σ ν

1 7.98 2.58 3999005.41 7.99 2.88 64.59
2 7.29 1.97 16.86 7.32 1.93 10.57
3 8.02 2.66 1938524.16 8.02 2.88 31.33
4 8.22 1.09 2.90 8.32 1.21 3.78
5 7.37 1.68 7.61 7.37 1.65 5.35
6 6.49 2.03 5.28 6.85 2.18 5.04
7 6.99 1.00 2.11 7.41 1.21 2.75
8 6.76 0.98 2.54 6.90 1.19 4.22
9 10.27 2.16 6939667.79 10.27 2.31 113.35
10 10.09 2.83 38.35 10.02 2.98 14.90
11 9.51 1.71 5.52 9.32 1.66 3.16
12 9.05 2.80 5559061.55 9.05 2.98 ∞
13 1.22 0.87 1.08 2.57 1.89 1.97
14 5.86 2.64 5169736.78 5.86 3.04 ∞
15 6.34 2.31 5284308.24 6.34 2.39 ∞
16 8.51 1.02 2.96 8.70 1.10 2.14
17 8.76 0.81 1.23 9.85 1.44 1.43
18 9.66 1.18 4.13 9.81 1.08 2.60
19 9.70 2.13 3701628.06 9.70 2.58 ∞

Table 5.2: Estimated parameters of Student’s t distribution on cell level.
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V aR99.9%

Cell Monte Carlo Analytical
1* 7 -
2* 28 -
3* 30 -
4* 2 -
5 39 38
6 16 12
7 57 58
8 13 16
9* 1 -
10 12 15
11 17 24
12 44 36
13 27 28
14* 1 -
15* 2 -
16 51 24
17* 2 -
18 22 20
19* 1 -
20* 13 -
21* 1 -
22 7 7
23* 33 -
24* 1 -
25* 5 -
26* 24 -
27* 1 -
28 25 37
29* 1 -
(*) Based on scenario analysis
Perfect correlated V aR99.9% 480
Independent V aR99.9% 161

Table 5.3: The 99.9% quantiles for each cell based on 10 000 monte carlo sim-
ulations from a mixed empirical+pareto distribution and the 99.9% quantiles
based on the analytical approximation. The perfect correlated V aR99.9% is
the sum of all 99.9% quantiles on cell level, assuming a perfect correlation.
The independet V aR99.9% is the 99.9% quantile of the total aggregated loss
distribution, i.e. the sum of independent samples from the loss distributions
on cell level.
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Chapter 6

Concluding Chapter

In this last chapter we will summarize the conclusions that can be drawn
from this thesis together with suggestions of further research.

6.1 Conclusions & Thoughts

Modeling operational risk seems very easy at first. Take a sample of data,
fit a frequency distribution and a severity distribution and start simulating
losses. And perhaps for certain cells with many data points it is relatively
easy. But operational risk is such a wide concept and to develop a model
that must include all types makes it really hard. Especially when you have
less data in a cell than you have fingers on your hands. And even if you have
a lot of data, one single observation can have a huge impact on the outcome.
Nevertheless, there are some techniques and methods that have proven to
work well.

We saw that fitting one distribution over the whole range of data worked
for some internal cells, where log-normal and log-logistic had the best good-
ness of fit, but it did not work well with heavier tailed cells and external
data. Instead the empirical-pareto mixed model had the best goodness of fit
and was able to generate a loss distribution with realistic capital estimates.
A shortcoming is that the tail is calibrated entirely on sparse internal tail
data, which makes it very sensitive to extreme observations. With scaled
external data we could get a denser tail which would make the estimates
more stable. The analytical approximation seemed to coincide well with the
monte carlo simulations at higher quantiles. But it is also very sensitive to
its parameter estimates. Finally, using the external empirical distribution
instead of extrapolating losses beyond internal loss range from a parametric
distribution worked well, but yielded a slightly higher estimated capital than
in the case with the mixed model.
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6.2 Dependence

Generally, there are very little evidence of strong correlations and depen-
dence structures among operational losses. This observation can obviously
in no reasonable way be interpreted as ’evidence of no correlation’. But for
now, no dependence is currently in the model, instead full independence is
assumed. If the only option to not include any dependence in the model
is to assume perfect correlation between the aggregated loss quantiles, then
there is much reason to incorporate some sort of dependency in the model,
and do further research on the estimation of correlations and the choice of
dependence structure.

6.3 Scaling

To make estimates of the tail more stable, external data must be added.
Finding a good way to scale or filter external loss data would make the
modeling a lot easier.

6.4 Final Words...

Last but not least actual BEICFs needs to be implemented in the model, as
well as expert opinions on scenario input and perhaps even correlations in
the future.
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