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Abstract
This thesis presents an overview of strategies for pricing inflation deriva-
tives. The paper is structured as follows. Firstly, the basic definitions
and concepts such as nominal-, real- and inflation rates are introduced.
We introduce the benchmark contracts of the inflation derivatives mar-
ket, and using standard results from no-arbitrage pricing theory, derive
pricing formulas for linear contracts on inflation. In addition, the risk
profile of inflation contracts is illustrated and we highlight how it’s cap-
tured in the models to be studied studied in the paper.

We then move on to the main objective of the thesis and present
three approaches for pricing inflation derivatives, where we focus in
particular on two popular models. The first one, is a so called HJM
approach, that models the nominal and real forward curves and relates
the two by making an analogy to domestic and foreign fx rates. By
the choice of volatility functions in the HJM framework, we produce
nominal and real term structures similar to the popular interest-rate
derivatives model of Hull-White. This approach was first suggested by
Jarrow and Yildirim[1] and it’s main attractiveness lies in that it results
in analytic pricing formulas for both linear and non-linear benchmark
inflation derivatives.

The second approach, is a so called market model, independently
proposed by Mercurio[2] and Belgrade, Benhamou, and Koehler[4]. Just
like the - famous - Libor Market Model, the modeled quantities are ob-
servable market entities, namely, the respective forward inflation indices.
It is shown how this model as well - by the use of certain approxima-
tions - can produce analytic formulas for both linear and non-linear
benchmark inflation derivatives.

The advantages and shortcomings of the respective models are evelu-
ated. In particular, we focus on how well the models calibrate to market
data. To this end, model parameters are calibrated to market prices of
year-on-year inflation floors; and it is evaluated how well market prices
can be recovered by theoretical pricing with the calibrated model param-
eters. The thesis is concluded with suggestions for possible extensions
and improvements.
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Chapter 1

Introduction

1.1 Inflation Basics

1.1.1 Inflation, nominal value and real value

An investor is concerned with the real return of an investment. That is, interested
in the quantity of goods and services that can be bought with the nominal return.
For instance, a 2% nominal return and no increase in prices of goods and services is
preferred to a 10% nominal return and a 10% increase in prices of goods and services.
Put differently, the real value of the nominal return is subjected to inflation risk,
where inflation is defined as the relative increase of prices of goods and services.

Inflation derivatives are designed to transfer the inflation risk between two par-
ties. The instruments are typically linked to the value of a basket, reflecting prices
of goods and services used by an average consumer. The value of the basket is
called an Inflation Index. Well known examples are the HICPxT(EUR), RPI(UK),
CPI(FR) and CPI(US) indices.

The index is typically constructed such that the start value is normalized to 100
at a chosen base date. At regular intervals the price of the basket is updated and
the value of the index ix recalculated. The real return of an investment can then
be defined as the excess nominal return over the relative increase of the inflation
index.

1.1.2 Inflation Index

Ideally, we would like to have access to index values on a daily basis, so that any
cash flow can be linked to the corresponding inflation level at cash flow pay date.
For practical reasons this is not possible. It takes time to compute and publish the
index value. Due to this, inflation linked cash flows are subjected to a so-called
indexation lag. That is, the cash flow is linked to an index value referencing a
historical inflation level. The lag differs for different markets. For example the
lag for the HICPxt daily reference number is three months. As a consequence,
an investor who wishes to buy protection against inflation, has inflation exposure

1



CHAPTER 1. INTRODUCTION

during the last three months before maturity of the inflation protection instrument.
That is, the last three months it is effectively a nominal instrument.

1.2 Overview of Inflation-Linked Instruments

1.2.1 Inflation-Linked Bond
Definition

An inflation-linked zero coupon bond is a bond that pays out a single cash flow at
maturity TM , consisting of the increase in the reference index between issue date
and maturity. We set the reference index to I0 at issue date (t = 0) and a contract
size of N units. The (nominal) value is denoted as ZCILB(t, TM , I0, N). The
nominal payment consists of

N

I0
I(TM ) (1.2.1)

nominal units at maturity. The corresponding real amount is obtained by normal-
izing with the time TM index value. That is, we receive

N

I0
(1.2.2)

real units at maturity. It’s thus clear that an inflation-linked zero coupon bond pays
out a known real amount, but an unknown nominal amount, which is fixed when we
reach the maturity date.

Pricing

Let Pr(t, TM ) denote the time t real value of 1 unit paid at time TM . Then

N

I0
Pr(t, TM )

expresses the time t real value of receiving N/I0 units at TM , which is the definition
of the payout of the ZCILB. And since the time t real value of the ZCILB is obtained
by normalizing the nominal value with the inflation index we have

ZCILB(t, TM , I0, N)
I(t)

= NPr(t, TM )
I0

(1.2.3)

Defining the bonds unit value as PIL(t, TM ) := ZCILB(t, TM , 1, 1) we get

PIL(t, TM ) = I(t)Pr(t, TM ) (1.2.4)

Thus the price of the bond is dependent on inflation index levels and the real
discount rate.

In practice, as in the nominal bond market, the inflation bonds issued are typ-
ically coupon bearing. The coupon inflation bond can be replicated as the sum of

2



1.2. OVERVIEW OF INFLATION-LINKED INSTRUMENTS

a series of zero coupon inflation bonds. With C denoting the annual coupon rate
, TM the maturity date, N the contract size , I0 the index value at issue date and
assuming annual coupon frequency, the nominal time t value of a coupon bearing
inflation-linked bond is given as

ILB(t, TM , I0, N) = N

I0

[
C

M∑
i=1

PIL(t, Ti) + PIL(t, TM )
]

= I(t)
I0

N

[
C

M∑
i=1

Pr(t, Ti) + Pr(t, TM )
] (1.2.5)

1.2.2 Zero Coupon Inflation Swap
Definition

A zero coupon inflation swap is a contract where the inflation seller pays the inflation
index rate between today and TM , and the inflation buyer pays a fixed rate. The
payout on the inflation leg is given by

N

[
I(TM )
I0

− 1
]

(1.2.6)

Thus, the inflation leg pays the net increase in reference index. The payout on the
fixed side of the swap is agreed upon at inception and is given as

N
[
(1 + b(0, TM ))TM − 1

]
(1.2.7)

where b is the so called breakeven inflation rate. In the market, b is quoted such
that the induced TM maturity zero coupon inflation swap has zero value today. It’s
analogous to the par rates quoted in the nominal swap market.

From the payout of the inflation leg, it’s clear that it can be valued in terms of an
inflation linked and a nominal zero coupon bond. However we shall proceed with a
bit more formal derivation as it will be useful when proceeding to more complicated
instrument types.

Foreign markets and numeraire change

Consider a foreign market where an asset with price Xf is traded. Denote by Qf the
associated (foreign) martingale measure. Assume that the foreign money market
account evolves according to the process Bf . Analogously, consider a domestic
market with domestic money market account evolving according to the process Bd.
Let the exchange rate between the two currencies be modeled by the process H, so
that 1 unit of the foreign currency is worth H(t) units of domestic currency at time
t. Let F = {Ft : 0 ≤ t ≤ TM } be the filtration generated by the above processes.

If we think of Xf as a derivative that pays out Xf (TM ) at time TM , by standard
no-arbitrage pricing theory, the arbitrage free price in the foreign market at time t

3



CHAPTER 1. INTRODUCTION

is

Vf (t) = Bf (t)EQf

[
Xf (TM )
Bf (TM )

∣∣∣∣∣Ft

]
(1.2.8)

Or expressed as a price in the domestic currency

Vd(t) = H(t)Bf (t)EQf

[
Xf (TM )
Bf (TM )

∣∣∣∣∣Ft

]
(1.2.9)

Note, that for a domestic investor who buys the (foreign) asset Xf , the payout at
time TM is Xf (TM )H(TM ). Now consider a domestic derivative which at time TM

pays out Xf (TM )H(TM ). To avoid arbitrage, the price of this instrument must be
equal to price of the foreign asset multiplied with the spot exchange rate. So we get
the relation

H(t)Bf (t)EQf

[
Xf (TM )
Bf (TM )

∣∣∣∣∣Ft

]
= Bd(t)EQd

[
H(TM )Xf (TM )

Bd(TM )

∣∣∣∣Ft

]
(1.2.10)

Pricing

Using well known results from standard no-arbitrage pricing theory, with obvious
choice of notations, we get the time t value of the inflation leg as

ZCILS(t, TM , I0, N) = NEQn

[
e−
∫ TM

t
rn(u)du

(
I(TM )
I0

− 1
)∣∣∣∣Ft

]
(1.2.11)

We draw a foreign currency analogy, namely that real prices correspond to foreign
prices and nominal prices correspond to domestic prices. The inflation index value
then corresponds to the domestic currency/foreign currency spot exchange rate.
Applying the result from (1.2.10) we then obtain

I(t)Pr(t, TM ) = I(t)EQr

[
e−
∫ TM

t
rr(u)du

∣∣∣∣Ft

]
= EQn

[
I(TM ) e−

∫ TM
t

rn(u)du
∣∣∣∣Ft

]
(1.2.12)

Putting this into (1.2.11) yields

ZCILS(t, TM , I0, N) = N

[
I(t)
I(0)

Pr(t, TM ) − Pn(t, TM )
]

(1.2.13)

which at time t = 0 simplifies to

ZCILS(0, TM , I0, N) = N [Pr(0, TM ) − Pn(0, TM )] (1.2.14)

Important to note is that these prices do not depend on any assumptions of the
dynamics of the interest rate market, but rather follow from the absence of arbitrage.
This is an imortant result, as it will enable us to calibrate the real rate discount

4



1.2. OVERVIEW OF INFLATION-LINKED INSTRUMENTS

0 5 10 15 20 25 30

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Maturity(years)

R
at

e(
%

)

Swap Rates (EUR)
Break−Even Inflation Rates (EUR)

Figure 1.1: Quotes for European nominal- and Zero-Coupon Inflation Swaps, 13
jul-2012

curve from prices of index linked zero-coupon swaps by, for each swap, solving the
par value relation. That is , when entering the contract, the value of the pay leg
should equal the receive leg.

NPn(0, TM )[(1 + b(0, TM ))TM − 1] = N [Pr(0, TM ) − Pn(0, TM )] (1.2.15)

which gives us the real discount rate as

Pr(0, TM ) = Pn(0, TM )(1 + b(0, TM ))TM (1.2.16)

where b is the (market quoted) break-even inflation rate and Pn(0, TM ) can be
recovered from bootstrapping the nominal discount curve.

Figure 1.1 shows quotes for break-even inflation rates and nominal swap rates.
The maturities up to the 10-year mark reveal something interesting. The nominal
swap quote is the fixed rate one would demand in exchange for paying floating
cash flows of EURIBOR until maturity. Whereas the break-even inflation quote is
the fixed rate one would would demand in exchange for paying realized inflation

5



CHAPTER 1. INTRODUCTION

rate until maturity. The gap between the two, i.e. that the swap quote is lower,
indicates that expected inflation is higher than expected EURIBOR. This in turn
implies negative real rates. We discuss break-even inflation visavis expected inflation
in more detail in section (1.3.1).

1.2.3 Year On Year Inflation Swap

Definition

The inflation leg on a Year On Year Inflation Swap pays out a series of net increases
in index reference

N
M∑

i=1

[
I(Ti)
I(Ti−1)

− 1
]
ψi (1.2.17)

where ψi is the time in years on the interval [Ti−1, Ti];T0 := 0 according to the
contracts day-count convention.

The fixed leg pays a series of fixed coupons

N
M∑

i=1
ψiC (1.2.18)

Just as for Zero Coupon Inflation swaps , Year On Year Inflation Swaps are quoted
in the market in terms of their fixed coupon. However out of the two, the former
is more liquid , and is considered to be the primary benchmark instrument in the
inflation derivatives market.

Pricing

We can view (1.2.17) as a series of forward starting Zero Coupon Swap Inflation
legs. Then the price of each leg is

YYILS(t, Ti−1, Ti, ψi, N) = NψiE
Qn

[
e−
∫ Ti

t
rn(u)du

(
I(Ti)
I(Ti−1)

− 1
)∣∣∣∣Ft

]
(1.2.19)

If t > Ti−1 so that I(Ti−1) is known then it reduces to the pricing of a regular Zero
Coupon Swap Inflation leg. If t < Ti−1 then we use repeated expectation to get

YYILS(t, Ti−1, Ti, ψi, N)

= NψiE
Qn

[
EQn

[
e−
∫ Ti

t
rn(u)du

(
I(Ti)
I(Ti−1)

− 1
)∣∣∣∣FT −1

]∣∣∣∣Ft

]
= NψiE

Qn

[
e−
∫ Ti−1

t
rn(u)duEQn

[
e

−
∫ Ti

T −1 rn(u)du
(
I(Ti)
I(Ti−1)

− 1
)∣∣∣∣FT −1

]∣∣∣∣Ft

]
(1.2.20)

6



1.2. OVERVIEW OF INFLATION-LINKED INSTRUMENTS

The inner expection is recognized as ZCILS(Ti−1, Ti, I(Ti−1), 1) so that we finally
obtain

YYIIS(t, Ti−1, Ti, ψi, N) = NψiE
Qn

[
e−
∫ Ti−1

t
rn(u)du [Pr(Ti−1, Ti) − Pn(Ti−1, Ti)]

∣∣∣∣Ft

]
= NψiE

Qn

[
e−
∫ Ti−1

t
rn(u)duPr(Ti−1, Ti)

∣∣∣∣Ft

]
−NψiPn(t, Ti)

(1.2.21)

The last expectation can be interpreted as the nominal price of a derivative paying
out at time Ti−1 (in nominal units) the Ti maturity real zero coupon bond price. If
real rates were deterministic then we would get

EQn

[
e−
∫ Ti−1

t
rn(u)duPr(Ti−1, Ti)

∣∣∣∣Ft

]
= Pn(t, Ti−1)Pr(Ti−1, Ti)

= Pn(t, Ti−1) Pr(t, Ti)
Pr(t, Ti−1)

which is simply the nominal present value of the Ti−1 forward price of the Ti ma-
turity real bond. In practice however it’s not realistic to assume that real rates are
deterministic . Real rates are stochastic so that the expectation in (1.2.21) is model
dependent.

1.2.4 Inflation Linked Cap/Floor
Definition

An Inflation-Linked Caplet (ILCLT) is a call option on the net increase in forward
inflation index. Whereas an Inflation-Linked Floorlet (ILFLT) is a put option on
the same quantity. At time Ti the ILCFLT pays out

Nψi

[
ω

(
I(Ti)
I(Ti−1)

− 1 − κ

)]+
(1.2.22)

where κ is the IICFLT strike, ψi is the contract year fraction for the interval
[Ti−1, Ti], N is the contract nominal, and ω = 1 for a caplet and ω = −1 for a
floorlet.

Pricing

Setting K := 1 + κ we get the time t value of the payoff (1.2.22) as

ILCFLT(t, Ti−1, Ti, ψi,K,N, ω)

= NψiE
Qn

[
e−
∫ Ti

t
rn(u)du

[
ω

(
I(Ti)
I(Ti−1)

−K

)]+∣∣∣∣∣Ft

]

= NψiPn(t, Ti)ETi

[[
ω

(
I(Ti)
I(Ti−1)

−K

)]+∣∣∣∣∣Ft

] (1.2.23)
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Figure 1.2: Quotes for Year-On-Year Inflation Caps and Floors, 13 jul-2012.

Where ETi denotes expectation under the (nominal) Ti forward measure. The
price of the Inflation Linked Cap/Floor(ILCF) is obtained by summing up over the
individual Caplets/Florlets. Clearly this price is model dependent as well.

1.3 Inflation and interest rate risk

1.3.1 Breakeven inflation vs expected inflation

Compounding effect

It seems intuitive to think of break-even inflation rate as a measure of expected future
inflation. There are however, a number of problems with that assumption. The first
is a simple compounding effect. Denote the annualized inflation rate between t = 0
and T as

i(0, T ) =
[
I(T )
I0

]1/T

− 1 (1.3.1)

8



1.3. INFLATION AND INTEREST RATE RISK

By the definition of the breakeven-inflation rate and Jensens Inequality we have

[1 + b(0, T )]T = E
[
[1 + i(0, T )]T

]
≥ [1 + E [i(0, T )]]T (1.3.2)

Hence, the break-even rate is an overestimation of future inflation.

Inflation risk premium

The second argument to why break-even rates can not be directly translated into
expected inflation, is that nominal rates are thought to carry a certain inflation risk
premium. A risk averse bond investor would demand a premium(a higher yield) to
compensate for the scenario where realized inflation turns out to be higher than
expected inflation.

Consider a risk-averse investor who wishes to obtain a real return. The investor
can either buy a T -maturity inflation linked bond, receiving a real rate of return
yr(0, T ) or a T -maturity nominal bond, receiving a nominal rate of return yn(0, T ).
Assuming that both bonds are issued today, the real return on the nominal bond is

I0
I(T )

[1 + yn(0, T )]T

whereas the real return for the index linked bond is

[1 + yr(0, T )]T

To compensate for the inflation risk, i.e. the scenario where realized inflation over
[0, T ] turns out be greater than the expected inflation, the risk averse investor
would demand an additional return on yn, in effect demanding a higher yield than
motivated by inflation expectations

[1 + yn(0, T )]T ≥ [1 + yr(0, T )]T E
[
I(T )
I0

]
= [1 + yr(0, T )]T E

[
[1 + i(0, T )]T

]
Denoting the inflation risk premium over [0, T ] as p(0, T ), we can express the nom-
inal return as

[1 + yn(0, T )]T = [1 + p(0, T )]T [1 + yr(0, T )]T E
[
[1 + i(0, T )]T

]
Consequently , break-even inflation rates will include the risk premium , i.e overes-
timate future inflation rates.

Assuming a correction factor c(0, T ) ≥ 0 such that we can rewrite (1.3.2) as

E
[
[1 + i(0, T )]T

]
= [1 + c(0, T )]T [1 + E [i(0, T )]]T (1.3.3)

, then we can express the nominal return in the style of the famous Fisher Equation

1 + yn(0, T ) = [1 + p(0, T )] [1 + yr(0, T )] [1 + c(0, T )] [1 + E [i(0, T )]] (1.3.4)

9



CHAPTER 1. INTRODUCTION

1.3.2 Inflation risk
Since the annually compounded nominal yield yn is defined as

yn(t, T ) = Pn(t, T )−1/T − 1 (1.3.5)

by (1.2.5) and (1.2.16) we can write the price of an ILB in terms of the break-even
inflation curve and the nominal yield curve

ILB(t, TM , I0, N, sb, sn) = I(t)
I0

N

[
C

M∑
i=1

(1 + b(t, Ti) + sb)Ti

(1 + yn(t, Ti) + sn)Ti
+ (1 + b(t, TM ) + sb)TM

(1 + yn(t, TM ) + sn)TM

]
(1.3.6)

where sb and sn should equal zero in order for the price to be fair. Thus it’s clear
that the price is sensitive to shifts in the inflation curve as well as to shifts in the
nominal interest curve.

The effect of a parallel shift in the nominal interest curve is then obtained as

∂ILB(t, TM , I0, N, 0, 0)
∂sn

= −I(t)
I0

N

[
C

M∑
i=1

Ti
Pr(t, Ti)

1 + yn(t, Ti)
+ TM

Pr(t, TM )
1 + yn(t, TM )

]
(1.3.7)

And the effect of a parallel shift in the inflation curve as

∂ILB(t, TM , I0, N, 0, 0)
∂sb

= I(t)
I0

N

[
C

M∑
i=1

Ti
Pr(t, Ti)

1 + b(t, Ti)
+ TM

Pr(t, TM )
1 + b(t, TM )

]
(1.3.8)

Since the inflation delta and the nominal yield delta have opposite signs, the net
effect will be small if the inflation and nominal curves are equally shifted. Typically,
a rise in inflation expectation pushes up the nominal interest rates, so it’s natural
to impose some correlation ρn,I between the two, by - for instance - setting sb =
sn × ρn,I . Indeed when modeling the evolution of interest rates and inflation in the
short rate model of Jarrow and Yildirim[1] and the market model of Mercurio[2]
and Belgrade, Benhamou, and Koehler[4], a correlation structure is proposed in the
model dynamics.
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Chapter 2

The HJM framework of Jarrow and
Yildirim

2.1 Definitions

Using a foreign currency analogy, Jarrow and Yildirim reasoned that real prices
correspond to foreign prices, nominal prices correspond to domestic prices and the
inflation index corresponds to the spot exchange rate from foreign to domestic
currency. We introduce the notation which will be used throughout this section.

• Pn(t, T ) : time t price of a nominal zero coupon bond maturing at time T

• I(t): time t value of the inflation index

• Pr(t, T ) : time t price of a real zero-coupon bond maturing at time T

• fk(t, T ): time t instantaneous forward rate for date T where k ∈ {r, n} i.e.

Pk(t, T ) = e−
∫ T

t
fk(t,s)ds

• rk(t) = fk(t, t) : the time t instantaneous spot rate for k ∈ {r, n}

• Bk(t) : time t money market account value for k ∈ {r, n}

2.2 Model specification

Under the real world probability space (Ω,F , P ), Jarrow and Yildirim introduce
the filtration {Ft : t ∈ [0, T ]} generated by the three brownian motions

dWP
n (t), dWP

r (t), dWP
I (t) (2.2.1)

11
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The brownian motions are started at 0 and their correlations are given by

dWP
n (t) dWP

r (t) = ρnrdt

dWP
n (t) dWP

I (t) = ρnIdt

dWP
r (t) dWP

I (t) = ρrIdt

(2.2.2)

Thus, we will be working with a three-factor model.
Given the initial nominal forward rate curve, f∗

n(0, T ), it’s assumed that the
nominal T -maturity forward rate has a stochastic differential under the objective
measure P given by

dfn(t, T ) = αn(t, T )dt+ σn(t, T )dWP
n (t)

fn(0, T ) = f∗
n(0, T )

(2.2.3)

where αn is random and σn is deterministic.
Similarly, given the initial market real forward rate curve, f∗

r (0, T ), it’s assumed
that the real T -maturity forward rate has a stochastic differential under the objective
measure P given by

dfr(t, T ) = αr(t, T )dt+ σr(t, T )dWP
r (t)

fr(0, T ) = f∗
r (0, T )

(2.2.4)

where αn is random and σn is deterministic. The final entity to be modeled is the
inflation index with dynamics

dI(t)
I(t)

= µI(t)dt+ σI(t)dWP
I (t) (2.2.5)

where µI is random and σI is deterministic. The deterministic volatility in (2.2.5)
implies that the inflation index follows a geometric brownian motion so that the
logarithm of the index will be normally distributed.

Jarrow and Yildirim go on to show the evolutions introduced so far are arbi-
trage free and the market is complete if there exists a unique equivalent probability
measure Q such that

Pn(t, T )
Bn(t)

,
I(t)Pr(t, T )

Bn(t)
and I(t)Br(t, T )

Bn(t)
are Q martingales (2.2.6)

Furthermore, by Girsanov’s theorem, given that {dWP
n (t), dWP

r (t), dWP
I (t)} is a

P -Brownian motion, and that Q is a equivalent probability measure, then there
exists market prices of risk {λn(t), λr(t), λI(t)} such that

WQ
k (t) = WP

k (t) −
∫ t

0
λk(s)ds, k ∈ {n, r, I} (2.2.7)

are Q-brownian motions.
Finally, they provided the following proposition, which characterizes the neces-

sary and sufficient conditions on the various price dynamics such that the economy
is arbitrage free.
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Proposition 2.2.1 (Arbitrage Free Term Structure)
Pn(t,T )
Bn(t) , I(t)Pr(t,T )

Bn(t) and I(t)Br(t,T )
Bn(t) are Q martingales if and only if

αn(t, T ) = σn(t, T )
(∫ T

t
σn(t, s)ds− λn(t)

)
(2.2.8)

αr(t, T ) = σr(t, T )
(∫ T

t
σr(t, s)ds− σI(t)ρrI − λr(t)

)
(2.2.9)

µI(t) = rn(t) − rr(t) − σI(t)λI(t) (2.2.10)

(2.2.8) is recognized as the well known HJM drift condition for the nominal
forward rates under the objective probability measure. Analogously, (2.2.9) is the
drift condition for the real forward rates. It is to be noted that the inflation volatility
and the inflation-real rate correlation appears in this expression. Finally (2.2.10) is
a fisher equation(compare with the heuristics in (1.3.4) ), relating nominal and real
interest rates to expected inflation(µI) and inflationary risk premium.

13
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2.3 Zero Coupon Bond term structure

2.3.1 General form
It can be shown(see [5]) that, for k ∈ {n, r}, the log-bond price process can be
written as

lnPk(t, T ) = −
∫ T

t
fk(t, u)du =

= lnPk(0, T ) −
∫ t

0

[∫ T

v
αk(v, u)du

]
dv −

∫ t

0

[∫ T

v
σk(v, u)du

]
dWP

k (v)

+
∫ t

0
rk(v)dv

(2.3.1)

Let

ak(t, T ) = −
∫ T

t
σk(t, u)du (2.3.2)

bk(t, T ) = −
∫ T

t
αk(t, u)du+ 1

2
a2

k(t, T ) (2.3.3)

Then we can write

lnPk(t, T ) = lnPk(0, T ) +
∫ t

0
[rk(v) + bk(v, T )] dv − 1

2

∫ t

0
a2

k(v, T )dv

+
∫ t

0
ak(v, T )dWP

k (v)
(2.3.4)

Or

d lnPk(t, T ) =
[
rk(t) + bk(t, T ) − 1

2
a2

k(t, T )
]
dt+ ak(t, T )dWP

k (t) (2.3.5)

Applying Itô’s lemma yields the bond price process

dPk(t, T )
Pk(t, T

= [rk(t) + bk(t, T )] dt+ ak(t, T )dWP
k (t)

=
[
rk(t) −

∫ T

t
αk(t, u)du+ 1

2
a2

k(t, T )
]
dt+ ak(t, T )dWP

k (t)
(2.3.6)

2.3.2 Jarrow Yildirim drift conditions
Nominal bond price

We note that for the nominal drift condition

αn(t, u) = σn(t, u)
(∫ u

t
σn(t, s)ds− λn(t)

)
= 1

2
d
(
a2

n(t, u)
)

du
+ d (an(t, u))

du
λn(t)

(2.3.7)
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So that with (2.3.6), under P , the dynamics of the nominal zero coupon bond is
given as

dPn(t, T )
Pn(t, T

= [rn(t) − an(t, T )λn(t)] dt+ an(t, T )dWP
n (t) (2.3.8)

and under Q
dPn(t, T )
Pn(t, T

= rn(t)dt+ an(t, T )dWQ
n (t) (2.3.9)

Real bond price

Similarly, for the real drift condition

αr(t, u) = σr(t, u)
(∫ u

t
σr(t, s)ds− σI(t)ρrI − λr(t)

)
= 1

2
d
(
a2

r(t, u)
)

du
+ d (ar(t, u))

du
[σI(t)ρrI + λr(t)]

(2.3.10)

So that under P the dynamics of the real zero coupon bond is given as
dPr(t, T )
Pr(t, T

= [rr(t) − ar(t, T ) {σI(t)ρrI + λr(t)}] dt+ ar(t, T )dWP
r (t) (2.3.11)

and under Q
dPr(t, T )
Pr(t, T

= [rr(t) − ar(t, T )σI(t)ρrI ] dt+ ar(t, T )dWQ
r (t) (2.3.12)

These results, and applying the drift conditions on the forward rates and the infla-
tion index processes and integration by parts on the process I(t)Pr(t, T ), yields the
following proposition

Proposition 2.3.1 (Price processes under the martingale measure)
The following price processes hold under the martingale measure

dfn(t, T ) = −σn(t, T )an(t, T )dt+ σn(t, T )dWQ
n (t) (2.3.13)

dfr(t, T ) = −σr(t, T ) [ar(t, T ) + ρrIσI(t)] dt+ σr(t, T )dWQ
r (t) (2.3.14)

dI(t)
I(t)

= [rn(t) − rr(t)] dt+ σI(t)dWQ
I (t) (2.3.15)

dPn(t, T )
Pn(t, T )

= rn(t)dt+ an(t, T )dWQ
n (t) (2.3.16)

dPr(t, T )
Pr(t, T

= [rr(t) − ar(t, T )σI(t)ρrI ] dt+ ar(t, T )dWQ
r (t) (2.3.17)

dPIL(t, T )
PIL(t, T )

:= d(I(t)Pr(t, T ))
I(t)Pr(t, T )

= rn(t)dt+ σI(t)dWQ
I (t) + ar(t, T )dWQ

r (t) (2.3.18)

We note here that with these expressions, the nominal and real forward rates
are normally distributed, whereas the inflation index is log-normally distributed.
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2.4 Hull-White specification

2.4.1 Nominal term structure

For the nominal economy, Jarrow and Yildirim chose a one factor volatility function
with an exponentially declining volatility of the form

σn(t, T ) = σne
−κn(T −t) (2.4.1)

This yields the zero coupon bond volatility as

an(t, T ) = −
∫ T

t
σn(t, u)du = −σn

∫ T

t
e−κn(u−t)du = −σnβn(t, T ) (2.4.2)

where
βn(t, T ) = 1

κn

[
1 − e−κn(T −t)

]
(2.4.3)

and that the forward rate under Q evolves as

fn(t, T ) = fn(0, T ) + σ2
n

∫ t

0
βn(s, T )e−κn(T −s)ds+ σn

∫ t

0
e−κn(T −s)dWQ

n (s) (2.4.4)

, the spot rate as

rn(t) = fn(t, t) = fn(0, t) + σ2
n

∫ t

0
βn(s, t)e−κn(t−s)ds+ σn

∫ t

0
e−κn(t−s)dWQ

n (s)

= fn(0, t) + σ2
n

2

∫ t

0

∂β2
n(s, t)
∂t

ds+ σn

∫ t

0
e−κn(t−s)dWQ

n (s)

= fn(0, t) + σ2
n

2
∂

∂t

(∫ t

0
β2

n(s, t)ds
)

+ σn

∫ t

0
e−κn(t−s)dWQ

n (s)

(2.4.5)

and∫ t

0
rn(u)du = − lnPn(0, t) + σ2

n

2

∫ t

0
β2

n(s, t)ds+
∫ t

0

[
σn

∫ u

0
e−κn(u−s)dWQ

n (s)
]
du

(2.4.6)

We need to do some work in order to evaluate the double integral. Introducing the
process Y (t) =

∫ t
0 e

asdWQ
n (s) we have

d(e−atY (t)) = e−atdY (t) − ae−atY (t)dt = dWQ
n (t) − ae−atY (t)dt (2.4.7)

Integrating, we get

e−atY (t) = WQ
n (t) −

∫ t

0
ae−auY (u)du (2.4.8)
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Inserting the definition of Y (·) in the expression above yields

a

∫ t

0

[
e−au

∫ u

0
easdWQ

n (s)
]
du = WQ

n (t) − e−at
∫ t

0
eaudWQ

n (u)

=
∫ t

0

(
1 − e−a(t−u)

)
dWQ

n (u)

= a

∫ t

0
β(u, t)dWQ

n (u)

(2.4.9)

Applying the result above in (2.4.6), we get∫ t

0
rn(u)du = − lnPn(0, t) + σ2

n

2

∫ t

0
β2

n(s, t)ds+ σn

∫ t

0
βn(s, t)dWQ

n (s) (2.4.10)

Substituting this in the solution to the zero coupon bond price process yields

Pn(t, T ) = Pn(0, T ) exp
{∫ t

0

(
rn(s) − a2

n(s, T )
2

)
ds+

∫ t

0
an(s, T )dWQ

n (s)
}

= Pn(0, T ) exp
{∫ t

0

(
rn(s) − σ2

n

2
β2

n(s, T )
)
ds− σn

∫ t

0
βn(s, T )dWQ

n (s)
}

= Pn(0, T )
Pn(0, t)

exp
{
σ2

n

2

∫ t

0

[
β2

n(s, t) − β2
n(s, T )

]
ds+ σn

∫ t

0
[βn(s, t) − βn(s, T )] dWQ

n (s)
}

(2.4.11)

Noting from (2.4.5) that

−βn(t, T )rn(t) = −βn(t, T )fn(0, t) + σ2
n

∫ t

0

[
β2

n(s, t) − βn(s, T )βn(s, t)
]
ds

+ σn

∫ t

0
[βn(s, t) − βn(s, T )] dWQ

n (s)
(2.4.12)

, then the term inside the exponential in (2.4.11) simplifies to

βn(t, T ) [fn(0, t) − rn(t)]

− σ2
n

2

∫ t

0

[
β2

n(s, t) + β2
n(s, T ) − 2βn(s, T )βn(s, t)

]
ds

= βn(t, T ) [fn(0, t) − rn(t)] − σ2
n

2

∫ t

0
[βn(s, t) − βn(s, T )]2 ds

= βn(t, T ) [fn(0, t) − rn(t)] − σ2
n

4κn
β2

n(t, T )
[
1 − e−2κnt

]
(2.4.13)

So that we get the nominal term structure in terms of the short rate

Pn(t, T ) = Pn(0, T )
Pn(0, t)

exp
{
βn(t, T ) [fn(0, t) − rn(t)] − σ2

n

4κn
β2

n(t, T )
[
1 − e−2κnt

]}
(2.4.14)
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2.4.2 Real term structure

For the real economy, Jarrow and Yildirim chose again chose we a one factor volatil-
ity function with an exponentially declining volatility of the form

σr(t, T ) = σre
−κr(T −t) (2.4.15)

This yields the real zero coupon bond volatility as

ar(t, T ) = −
∫ T

t
σr(t, u)du = −

∫ T

t
σre

−κr(u−t)du = −σrβr(t, T ) (2.4.16)

where
βr(t, T ) = 1

κr

[
1 − e−κr(T −t)

]
(2.4.17)

For the inflation index process we assume a constant volatility, σI . Similar calcula-
tions as in the previous section then renders the real term structure as

Pr(t, T ) = Pr(0, T )
Pr(0, t)

exp
{
σ2

r

2

∫ t

0

[
β2

r (s, t) − β2
r (s, T )

]
ds+ σr

∫ t

0
[βr(s, t) − βr(s, T )]dWQ

r (s)s
}

× exp
{

−ρrIσIσr

∫ t

0
[βr(s, t) − βr(s, T )]ds

}
(2.4.18)

or in terms of the real short rate

Pr(t, T ) = Pr(0, T )
Pr(0, t)

exp
{
βr(t, T ) [fr(0, t) − rr(t)] − σ2

r

4κr
β2

r (t, T )
[
1 − e−2κrt

]}
(2.4.19)

2.5 Year-On-Year Inflation Swap
It turns out that it’s convenient to derive the price of the inflation leg under the
T -forward measure. By (1.2.21) and a change of measure we get

YYIIS(t, Ti−1, Ti, ψi, N) = Nψi

(
Pn(t, Ti−1)ETi−1 [Pr(Ti−1, Ti)| Ft] − Pn(t, Ti)

)
(2.5.1)

So we need to work out the dynamics of Pr(t, T2) under the T1-forward measure.
Applying the toolkit specified in Proposition (A.1.1) in (2.3.17), we get the following
dynamics for Pr(t, T2) under the T1-forward measure

dPr(t, T2)
Pr(t, T2)

= [rr(t) − ar(t, T2)σI(t)ρrI + ar(t, T2)an(t, T1)ρnr] dt+ ar(t, T1)dW T1
r (t)

(2.5.2)
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with solution

Pr(t, T2) = Pr(0, T2) exp
{∫ t

0
(rr(s) − ar(s, T2)σI(s)ρrI + ar(s, T2)an(s, T1)ρnr) ds

}
× exp

{
−
∫ t

0

a2
r(s, T2)

2
ds+

∫ t

0
ar(s, T2)dW T1

r (s)
}

(2.5.3)

And after some straightforward calculations we find that

Pr(t, T2)
Pr(t, T1)

= Pr(0, T2)
Pr(0, T1)

E
(∫ t

0
[ar(s, T2) − ar(s, T1)] dW T1

r (s)
)

× exp
{∫ t

0
[ar(s, T2) − ar(s, T1)] [an(s, T1)ρnr − σI(s)ρrI − ar(s, T1)] ds

}
(2.5.4)

where E denotes the Doléans-Dade exponential, defined as

E(X(t)) = exp
{
X(t) − 1

2
⟨X,X⟩ (t)

}
(2.5.5)

So that, with t = T1 we get

Pr(T1, T2) = Pr(0, T2)
Pr(0, T1)

E
(∫ T1

0
[ar(s, T2) − ar(s, T1)] dW T1

r (s)
)

× exp
{∫ T1

0
[ar(s, T2) − ar(s, T1)] [an(s, T1)ρnr − σI(s)ρrI − ar(s, T1)] ds

}
(2.5.6)

Or

Pr(T1, T2) | Ft = Pr(t, T2)
Pr(t, T1)

E
(∫ T1

t
[ar(s, T2) − ar(s, T1)] dW T1

r (s)
)

× eC(t,T1,T2)

(2.5.7)
, where

C(t, T1, T2) =
∫ T1

t
[ar(s, T2) − ar(s, T1)] [an(s, T1)ρnr − σI(s)ρrI − ar(s, T1)] ds

(2.5.8)
Hence

ET1 [Pr(T1, T2) | Ft] = Pr(t, T2)
Pr(t, T1)

eC(t,T1,T2) (2.5.9)

So we see that the expectation of the future real zero bond price under the nominal
forward measure is equal to the current forward price of the real bond, multiplied
by a correction factor. The factor depends on the volatilities and correlations of the
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nominal rate, the real rate and the inflation index. Applying (2.5.9) in (2.5.1) gives
us

YYIIS(t, Ti−1, Ti, ψi, N) = Nψi

[
Pn(t, Ti−1) Pr(t, Ti)

Pr(t, Ti−1)
eC(t,Ti−1,Ti) − Pn(t, Ti)

]
(2.5.10)

Straightforward calculations shows that the correction term can be explicitly com-
puted as

C(t, Ti−1, Ti) = σrβr(Ti−1, Ti)
[
βr(t, Ti−1)

(
ρr,IσI − 1

2
βr(t, Ti−1)

+ ρn,rσn

κn + κr
(1 + κrβn(t, Ti−1))

)
− ρn,rσn

κn + κr
βn(t, Ti−1)

] (2.5.11)

This term accounts for the stochasticity of real rates. Indeed it vanishes for σr = 0.
The time t value of the inflation linked leg is obtained by summing up the values

of all payments.

YYIIS(t, T ,Ψ, N) = Nψι(t)

[
I(t)

I(Tι(t)−1)
Pr(t, Tι(t)) − Pn(t, Tι(t))

]

+N
M∑

i=ι(t)+1
ψi

[
Pn(t, Ti−1) Pr(t, Ti)

Pr(t, Ti−1)
eC(t,Ti−1,Ti) − Pn(t, Ti)

]
(2.5.12)

where we set T := {T1, · · · , TM }, Ψ := {ψ1, · · · , ψM }, ι(t) = min {i : Ti > t} and
where the first cash flow has been priced according to the zero coupon inflation leg
formula derived in (1.2.13). Speficially, at t = 0

YYIIS(0, T ,Ψ, N) = Nψ1 [Pr(0, T1) − Pn(0, T1)]

+N
M∑

i=2
ψi

[
Pn(0, Ti−1) Pr(0, Ti)

Pr(0, Ti−1)
eC(0,Ti−1,Ti) − Pn(0, Ti)

]
(2.5.13)

The advantage of the Jarrow-Yildirim model is the simple closed formula it results
in. However, the dependence on the real rate parameters, such as the volatility of
real rates is a significant drawback, as it is not easily estimated.

2.6 Inflation Linked Cap/Floor
We recall that the inflation index, I(t), is log-normally distributed under Q. Under
the nominal forward measure, the inflation index I(Ti)

I(Ti−1) preserves a log-normal
distribution. Thus, (1.2.23) can be calculated when we know the expectation of the
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ratio and the variance of it’s logarithm. Using the fact that if X is a log-normally
distributed random variable with E[X] = m and Std[ln(X)] = v then

E
[
[ω (X −K)]+

]
= ωmΦ

(
ω

ln m
K + 1

2v
2

v

)
− ωKΦ

(
ω

ln m
K − 1

2v
2

v

)
(2.6.1)

The conditional expectation of I(Ti)/I(Ti−1) is obtained directly from (1.2.19) and
(2.5.10)

ETi

[
I(Ti)
I(Ti−1)

∣∣∣∣Ft

]
= Pn(t, Ti−1)

Pn(t, Ti)
Pr(t, Ti)
Pr(t, Ti−1)

eC(t,Ti−1,Ti) (2.6.2)

Since a change of measure has no impact on the variance, it can be equivalently
calculated under the martingale measure. By standard calculations it can then be
shown that

VarTi

[
ln I(Ti)
I(Ti−1)

∣∣∣∣Ft

]
= V 2(t, Ti−1, Ti) (2.6.3)

, where

V 2(t, Ti−1, Ti) = σ2
n

2κn
β2

n(Ti−1, Ti)
[
1 − e−2κn(Ti−1−t)

]
+ σ2

I (Ti − Ti−1)

+ σ2
r

2κr
β2

r (Ti−1, Ti)
[
1 − e−2κr(Ti−1−t)

]
− 2ρnr

σnσr

(κn + κr)
βn(Ti−1, Ti)βr(Ti−1, Ti)

[
1 − e−(κn+κr)(Ti−1−t)

]
+ σ2

n

κ2
n

[
Ti − Ti−1 + 2

κn
e−κn(Ti−Ti−1) − 1

2κn
e−2κn(Ti−Ti−1) − 3

2κn

]
+ σ2

r

κ2
r

[
Ti − Ti−1 + 2

κr
e−κr(Ti−Ti−1) − 1

2κr
e−2κr(Ti−Ti−1) − 3

2κr

]
− 2ρnr

σnσr

κnκr

[
Ti − Ti−1 − βn(Ti−1, Ti) − βr(Ti−1, Ti) + 1 − e−(κn+κr)(Ti−Ti−1)

κn + κr

]
+ 2ρnI

σnσI

κn
[Ti − Ti−1 − βn(Ti−1, Ti)] − 2ρrI

σrσI

κr
[Ti − Ti−1 − βr(Ti−1, Ti)]

(2.6.4)

The quantities derived in this section then yields the Caplet/Floorlet price as

ILCFLT(t, Ti−1, Ti, ψi,K,N, ω) =

ωNψiPn(t, Ti)
[
Pn(t, Ti−1)
Pn(t, Ti)

Pr(t, Ti)
Pr(t, Ti−1)

eC(t,Ti−1,Ti)Φ
(
ωdi

1(t)
)

−KΦ
(
ωdi

2(t)
)]

di
1(t) =

ln Pn(t,Ti−1)
KPn(t,Ti)

Pr(t,Ti)
Pr(t,Ti−1) + C(t, Ti−1, Ti) + 1

2V
2(t, Ti−1, Ti)

V (t, Ti−1, Ti)
di

2(t) = d1 − V (t, Ti−1, Ti)
(2.6.5)
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Just as for the year-on-year inflation swap, the price depends on the volatility of
real rates. In the following sections we will present two market models that have
been proposed as an alternative for valuation of inflation linked instruments. The
models strive to arrive at valuation formulas , where the input parameters are more
easily determined than in the short rate approach of the Jarrow-Yildirim model.
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Chapter 3

Market Model I - A Libor Market Model
for nominal and real forward rates

3.1 Year-On-Year Inflation Swap
By a change of measure, the expectation in (1.2.21) can be rewritten as

Pn(t, Ti−1)ETi−1 [Pr(Ti−1, Ti)| Ft] = Pn(t, Ti)ETi

[
Pr(Ti−1, Ti)
Pn(Ti−1, Ti)

∣∣∣∣Ft

]
= Pn(t, Ti)ETi

[ 1 + τi · Fn(Ti−1, Ti−1, Ti)
1 + τi · Fr(Ti−1, Ti−1, Ti)

∣∣∣∣Ft

] (3.1.1)

where τi denotes year fraction between Ti−1 and Ti and Fk : k ∈ {n, r} denotes
the simply compounded forward rate. The expectation can be evaluated if we
know the distribution of simply compounded nominal and real forward rates under
the nominal Ti-forward measure. This inspired Mercurio[2] to choose them as the
quantities to model, with the following dynamics under QTi

n

dFn(t, Ti−1, Ti)
Fn(t, Ti−1, Ti)

= σn,idWn,i(t) (3.1.2)

And under QTi
r

dFr(t, Ti−1, Ti)
Fr(t, Ti−1, Ti)

= σr,idWr,i(t) (3.1.3)

To obtain the dynamics of the real forward rate under QTi
n , we compute the drift

adjustment using Proposition (A.1.1) to find that under QTi
n

dFr(t, Ti−1, Ti)
Fr(t, Ti−1, Ti)

= −σr,iσI,iρI,r,idt+ σr,idWr,i(t) (3.1.4)

where σn,i and σr,i are positive constants and ρI,r,i is the instantaneous correlation
between I(·, Ti) and Fr(·, Ti−1, Ti).
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AND REAL FORWARD RATES

Since I(t)Pr(t, T ) is the price of the inflation linked bond, which is a traded
asset in the nominal economy, it holds that the forward inflation index

I(t, Ti) = I(t)Pr(t, Ti)
Pn(t, Ti)

(3.1.5)

is a martingale under QTi
n , where it is proposed to follow log-normal dynamics

dI(t, Ti)
I(t, Ti)

= σI,idWI,i(t) (3.1.6)

where σI,i is a positive constant and WI,i is a QTi
n brownian motion.

Mercurio noted that under QTi
n and conditional on Ft the pair

(Xi, Yi) =
(

ln Fn(Ti−1, Ti−1, Ti)
Fn(t, Ti−1, Ti)

, ln Fr(Ti−1, Ti−1, Ti)
Fr(t, Ti−1, Ti)

)
(3.1.7)

is distributed as a bivariate normal random variable with mean vector and covari-
ance matrix, respectively given by

MXi,Yi =
[
µx,i(t)
µy,i(t)

]
, VXi,Yi =

[
σ2

x,i(t) ρn,r,iσx,i(t)σy,i(t)
ρn,r,iσx,i(t)σy,i(t) σ2

y,i(t)

]
(3.1.8)

where

µx,i(t) = −1
2
σ2

n,i(Ti−1 − t), σx,i(t) = σn,i

√
(Ti−1 − t)

µy,i(t) =
[
−1

2
σ2

r,i − ρI,r,iσI,iσr,i

]
(Ti−1 − t), σy,i(t) = σr,i

√
(Ti−1 − t)

We recall the fact that the bivariate density fXi,Yi(x, y) of (Xi, Yi) can be decom-
posed in terms of the conditional density fXi|Yi

(x, y) as

fXi,Yi(x, y) = fXi|Yi
(x, y)fYi(y)

where

fXi|Yi
(x, y) = 1

σx,i(t)
√

2π
√

1 − ρ2
n,r,i

exp

−

[
x−µx,i(t)

σx,i(t) − ρn,r,i
y−µy,i(t)

σy,i(t)

]2
2(1 − ρ2

n,r,i)


fYi(y) = 1

σy,i(t)
√

2π
exp

−1
2

[
y − µy,i(t)
σy,i(t)

]2


Noting that

Fn(Ti−1, Ti−1, Ti) = eXiFn(t, Ti−1, Ti)
Fr(Ti−1, Ti−1, Ti) = eYiFr(t, Ti−1, Ti)
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3.1. YEAR-ON-YEAR INFLATION SWAP

, the expectation in (3.1.1) can be calculated as∫ +∞

−∞

∫+∞
−∞ (1 + τiFn(t, Ti−1, Ti)ex)fXi|Yi

(x, y)dx
1 + τiFr(t, Ti−1, Ti)ey

fYi(y)dy

=
∫ +∞

−∞

1 + τiFn(t, Ti−1, Ti)e
µx,i(t)+ρn,r,iσx,i(t)

y−µy,i(t)
σy,i(t) + 1

2 σ2
x,i(t)[1−ρ2

n,r,i]

1 + τiFr(t, Ti−1, Ti)ey
fYi(y)dy

=
{

by µx,i(t) = −1
2
σ2

x,i(t) and variable substitution z = y − µy,i(t)
σy,i(t)

}

=
∫ +∞

−∞

1 + τiFn(t, Ti−1, Ti)eρn,r,iσx,i(t)z− 1
2 σ2

x,i(t)ρ
2
n,r,i

1 + τiFr(t, Ti−1, Ti)eµy,i(t)+σy,i(t)z
1√
2π
e− 1

2 z2
dz

so that

YYIS(t, Ti−1, Ti, ψi, N)

= NψiPn(t, Ti)
∫ +∞

−∞

1 + τiFn(t, Ti−1, Ti)eρn,r,iσx,i(t)z− 1
2 σ2

x,i(t)ρ
2
n,r,i

1 + τiFr(t, Ti−1, Ti)eµy,i(t)+σy,i(t)z
1√
2π
e− 1

2 z2
dz

−NψiPn(t, Ti)
(3.1.9)

Some care needs to be taken when valuing the whole inflation leg. We can’t simply
sum up the values in (3.1.9). To see this, note that by (3.1.5) and the assumption
of simply compounded rates we have

I(t, Ti)
I(t, Ti−1)

= 1 + τiFn(t, Ti−1, Ti)
1 + τiFr(t, Ti−1, Ti)

(3.1.10)

Thus, if we assume that σI,i, σn,i and σr,i are positive constants then σI,i−1 cannot
be constant as well. It’s admissable values are obtained by equating the quadratic
variations on both side of (3.1.10). For instance, if nominal and real forward rates
as well as the forward inflation index were driven by the same brownian motion,
then equating the quadriatic variations in (3.1.10) yields

σI,i−1 = σI,i + σr,i
τiFr(t, Ti−1, Ti)

1 + τiFr(t, Ti−1, Ti)
− σn,i

τiFn(t, Ti−1, Ti)
1 + τiFn(t, Ti−1, Ti)

Mercurio applied a "freezing procedure" where the forward rates in the diffusion
coefficient on the right hand side of (3.1.10) are frozen at their time 0 value, so that
we can still get forward inflation index volatilities that are approximately constant.
In the case where all processes are driven by the same brownian motion, equating
the quadratic variations would yield

σI,i−1 ≈ σI,i + σr,i
τiFr(0, Ti−1, Ti)

1 + τiFr(0, Ti−1, Ti)
− σn,i

τiFn(0, Ti−1, Ti)
1 + τiFn(0, Ti−1, Ti)
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Thus, applying this approximation for each i, we can still assume that the volatil-
ities σI,i are all constant. The time t value of the inflation leg is then given by

YYIIS(t, T ,Ψ, N) = Nψι(t)

[
I(t)

I(Tι(t)−1)
Pr(t, Tι(t)) − Pn(t, Tι(t))

]

+N
M∑

ι(t)+1
ψiPn(t, Ti) ×

∫ +∞

−∞

1 + τiFn(t, Ti−1, Ti)eρn,r,iσx,i(t)z− 1
2 σ2

x,i(t)ρ
2
n,r,i

1 + τiFr(t, Ti−1, Ti)eµy,i(t)+σy,i(t)z
1√
2π
e− 1

2 z2
dz − 1


(3.1.11)

where we set T := {T1, · · · , TM }, Ψ := {ψ1, · · · , ψM }, ι(t) = min {i : Ti > t} and
where the first cash flow has been priced according to the zero coupon inflation leg
formula derived in (1.2.13).

At t = 0 we get

YYIIS(0, T ,Ψ, N) = Nψ1 [Pr(0, T1) − Pn(0, T1)]

+N
M∑
2
ψiPn(0, Ti) ×

∫ +∞

−∞

1 + τiFn(0, Ti−1, Ti)eρn,r,iσx,i(0)z− 1
2 σ2

x,i(0)ρ2
n,r,i

1 + τiFr(0, Ti−1, Ti)eµy,i(0)+σy,i(0)z
1√
2π
e− 1

2 z2
dz − 1


= N

M∑
1
ψiPn(0, Ti) ×

∫ +∞

−∞

1 + τiFn(0, Ti−1, Ti)eρn,r,iσx,i(0)z− 1
2 σ2

x,i(0)ρ2
n,r,i

1 + τiFr(0, Ti−1, Ti)eµy,i(0)+σy,i(0)z
1√
2π
e− 1

2 z2
dz − 1


(3.1.12)

The price depends on the following parameters: the instantaneous volatilities of
nominal and real forward rates and their correlations for each payment time Ti :
{1 < i <= M}; and the volatilities of forward inflation indices and their correlations
with real forward rates for each payment time Ti : {1 < i <= M}.

This formula looks looks more complicated than (2.5.12) both in terms of input
parameters and the calculations involved. Even with approximations made, we fail
to arrive at a closed-form valuation formula for a benchmark inflation derivative.
And as in the Jarrow and Yilidrim model, the price depends on a number of real
rate parameters that may be difficult to estimate.

3.2 Inflation Linked Cap/Floor
Applying iterated expectation on (1.2.23) we get

ILCFLT(t, Ti−1, Ti, ψi,K,N, ω)

= NψiPn(t, Ti)ETi

[[
ω

(
I(Ti)
I(Ti−1)

−K

)]+∣∣∣∣∣Ft

]

= NψiPn(t, Ti)ETi

[
ETi

[[
ω

(
I(Ti)
I(Ti−1)

−K

)]+∣∣∣∣∣FT −1

]∣∣∣∣∣Ft

]

= NψiPn(t, Ti)ETi

[ 1
I(Ti−1)

ETi

[
[ω (I(Ti) − I(Ti−1)K)]+

∣∣∣FT −1
]∣∣∣Ft

]
(3.2.1)
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3.2. INFLATION LINKED CAP/FLOOR

It is clear the the evaluation of the outer expectation depends on if one models
the forward inflation index(as presented in Market Model II), or the forward rates,
which is the approach of Market Model I.

Assuming log-normal dynamics of the forward inflation index as defined in
(3.1.6) and using that I(Ti) = I(Ti, Ti), yields the inner expectation as

ETi

[
[ω (I(Ti) −KI(Ti−1))]+

∣∣∣FT −1
]

= ETi

[
[ω (I(Ti, Ti) −KI(Ti−1, Ti−1))]+

∣∣∣FT −1
]

= ωI(Ti−1, Ti)Φ

ω ln I(Ti−1,Ti)
KI(Ti−1,Ti−1) + 1

2σ
2
I,i(Ti − Ti−1)

σI,i
√
Ti − Ti−1


− ωKI(Ti−1)Φ

ω ln I(Ti−1,Ti)
KI(Ti−1,Ti−1) − 1

2σ
2
I,i(Ti − Ti−1)

σI,i
√
Ti − Ti−1


Hence

ILCFLT(t, Ti−1, Ti, ψi,K,N, ω)

= ωNψiPn(t, Ti)ETi

 I(Ti−1, Ti)
I(Ti−1, Ti−1)

Φ

ω ln I(Ti−1,Ti)
KI(Ti−1,Ti−1) + 1

2σ
2
I,i(Ti − Ti−1)

σI,i
√
Ti − Ti−1


−KΦ

ω ln I(Ti−1,Ti)
KI(Ti−1,Ti−1) − 1

2σ
2
I,i(Ti − Ti−1)

σI,i
√
Ti − Ti−1

∣∣∣∣∣∣Ft


(3.2.2)

And by the definition of I(Ti−1, Ti−1) in (3.1.5), and the choice to model simply
compounded real and nominal forward rates, we note that

I(Ti−1, Ti)
I(Ti−1, Ti−1)

= 1 + τiFn(Ti−1, Ti−1, Ti)
1 + τiFr(Ti−1, Ti−1, Ti)

(3.2.3)

, so that we get the Caplet/Floorlet price as

ILCFLT(t, Ti−1, Ti, ψi,K,N, ω)

= ωNψiPn(t, Ti)ETi

[ 1 + τiFn(Ti−1, Ti−1, Ti)
1 + τiFr(Ti−1, Ti−1, Ti)

Φ
(
ωdi

1(t)
)

−KΦ
(
ωdi

2(t)
)∣∣∣∣Ft

]

di
1(t) =

ln 1+τiFn(Ti−1,Ti−1,Ti)
K[1+τiFr(Ti−1,Ti−1,Ti)] + 1

2σ
2
I,i(Ti − Ti−1)

σI,i
√
Ti − Ti−1

di
2(t) = di

1(t) − σI,i

√
(Ti − Ti−1)

(3.2.4)

We recall the assumption that nominal and real forward rates evolve according
to (3.1.2) and (3.1.4) and utilize Mercurios freezing procedure described earlier,
yielding constant forward inflation index volatilities volatilities. Again we use that,
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under these assumptions, the pair (3.1.7) is distributed as a bivariate normal random
variable with mean vector and covarience matrix given by (3.1.8). And so we can
evaluate the expectation in (3.2.4).

The dimensionality of the problem can be reduced by assuming deterministic
real rates. As a consequence, the future rate Fr(Ti−1, Ti−1, Ti) is simply equal to
the current forward rate Fr(t, Ti−1, Ti), so that we can write the Caplet/Floorlet
price as

ILCFLT(t, Ti−1, Ti, ψi,K,N, ω)

= ωNψiPn(t, Ti)ETi

[ 1 + τiFn(Ti−1, Ti−1, Ti)
1 + τiFr(t, Ti−1, Ti)

Φ
(
ωdi

1(t)
)

−KΦ
(
ωdi

2(t)
)∣∣∣∣Ft

]
(3.2.5)

And since the nominal forward rate Fn(·, Ti−1, Ti) evolves as specified in (3.1.2), we
have

ILCFLT(t, Ti−1, Ti, ψi,K,N, ω)

= ωNψiPn(t, Ti)
∫ ∞

−∞
J(x) 1

σn,i

√
2π(Ti−1 − t)

e
− 1

2

(
x+ 1

2 σ2
n,i(Ti−1−t)

σn,i
√

Ti−1−t

)2

dx
(3.2.6)

where

J(x) := 1 + τiFn(t, Ti−1, Ti)ex

1 + τiFr(t, Ti−1, Ti)
Φ

ω ln 1+τiFn(t,Ti−1,Ti)ex

K[1+τiFr(t,Ti−1,Ti)] + 1
2σ

2
I,i(Ti − Ti−1)

σI,i
√
Ti − Ti−1


−KΦ

ω ln 1+τiFn(t,Ti−1,Ti)ex

K[1+τiFr(t,Ti−1,Ti)] − 1
2σ

2
I,i(Ti − Ti−1)

σI,i
√
Ti − Ti−1


The time 0 price of the Inflation Indexed Cap/Floor is then obtained by summing
up the respective caplets/floorlets

ILCF(0, T ,Ψ,K,N, ω) =
M∑

i=1
ILCFT(0, Ti−1, Ti, ψi,K,N, ω)

= ωNψ1
[
Pr(0, T1)Φ

(
ωdi

1(0)
)

−KPn(0, T1)Φ
(
ωdi

2(0)
)]

+ ωN
M∑

i=2
ψiPn(0, Ti)

∫ ∞

−∞
J(0, x) 1

σn,i
√

2πTi−1
e

− 1
2

(
x+ 1

2 σ2
n,i

Ti−1
σn,i

√
Ti−1

)2

dx

(3.2.7)

The advantage of Market Model I, is that it is based on modeling observable quanti-
ties, i.e. the individual forward rates. A clear disadvantage in comparison with the
Jarrow-Yildirim model is the , relatively, more complicated Caplet/Floorlet prices.
Even though we made the unrealistic simplification that real rates are deterministic,
we still end up with a "non closed-form" price formula.

28



Chapter 4

Market Model II - Modeling the forward
inflation indices

4.1 Year-On-Year Inflation Swap
Both the Jarrow-Yildirim Model and Market Model I share the drawback that
they depend on the volatility of real rates, which might be a difficult parameter to
estimate. To remedy this, a second market model has been proposed by Mercurio[2]
and Belgrade, Benhamou, and Koehler[4]. In Market Model I, Mercurio modeled
the respective nominal and real forward rates for each forward date Ti. The core
property of Market Model II is the choice to model each respective forward inflation
index I(·, Ti).

Using that I(Ti) = I(Ti, Ti) and that I(t, Ti) is a martingale under QTi
n we can

write, for t < Ti−1

YYIIS(t, Ti−1, T, ψi, N) = NψiPn(t, Ti)ETi

[
I(Ti)
I(Ti−1)

− 1
∣∣∣∣Ft

]
= NψiPn(t, Ti)ETi

[ I(Ti, Ti)
I(Ti−1, Ti−1)

− 1
∣∣∣∣Ft

]
= NψiPn(t, Ti)ETi

[ I(Ti−1, Ti)
I(Ti−1, Ti−1)

− 1
∣∣∣∣Ft

] (4.1.1)

The dynamics of I(t, Ti) under QTi
n is given by (3.1.6). Applying the toolkit in

proposition (A.1.1) yields the dynamics of I(t, Ti−1) under QTi
n as

dI(t, Ti−1)
I(t, Ti−1)

= σI,i−1

[
−τiσn,iFn(t, Ti−1, Ti)

1 + Fn(t, Ti−1, Ti)
ρI,n,idt+ dWI,i−1(t)

]
(4.1.2)

where σI,i−1 is a positive constant, WI,i−1 is a QTi
n -Brownian motion with

dWI,i−1(t)dWI,i(t) = ρI,idt
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and ρI,n,i is the instantaneous correlation between I(·, Ti−1) and Fn(·, Ti−1, Ti)
We see that the dynamics of I(·, Ti−1) underQTi

n depends on the nominal forward
rate Fn(t, Ti−1, Ti). To simplify the calculation in (4.1.1), Mercurio proposed to
freeze the drift in (4.1.2) at it’s current time t value. By this freezing procedure
I(Ti−1, Ti−1)|Ft is lognormally distributed also under QTi

n . And since integration
by parts on d I(t,Ti)

I(t,Ti−1) yields

d
I(t, Ti)

I(t, Ti−1)
= σI,i−1

[
τiσn,iFn(t, Ti−1, Ti)
1 + Fn(t, Ti−1, Ti)

ρI,n,i + σI,i−1 − σI,iρI,i

]
dt

+ σI,i−1dWI,i−1(t) + σI,idWI,i(t)
(4.1.3)

, freezing the drift at it’s time-t value and noting the resulting log-normality of
I(t,Ti)

I(t,Ti−1) , enables us to calculate the expectation in (4.1.1) as

ETi
n

[ I(Ti−1, Ti)
I(Ti−1, Ti−1)

∣∣∣∣Ft

]
= I(t, Ti)

I(t, Ti−1)
eDi(t)

where

Di(t) = σI,i−1

[
τiσn,iFn(t, Ti−1, Ti)
1 + τiFn(t, Ti−1, Ti)

ρI,n,i + σI,i−1 − σI,iρI,i

]
(Ti−1 − t)

Thus

YYIIS(t, Ti−1, Ti, ψi, N) = NψiPn(t, Ti)
[ I(t, Ti)

I(t, Ti−1)
eDi(t) − 1

]
= NψiPn(t, Ti)

[
Pn(t, Ti−1)Pr(t, Ti)
Pr(t, Ti−1)Pn(t, Ti)

eDi(t) − 1
] (4.1.4)

And we get the value of the inflation leg as

YYIIS(t, T ,Ψ, N) = Nψι(t)Pn(t, Tι(t))
[

I(t, Tι(t))
I(Tι(t)−1)

− 1
]

+N
M∑

i=ι(t)+1
ψiPn(t, Ti)

[ I(t, Ti)
I(t, Ti−1)

eDi(t) − 1
]

= Nψι(t)

[
I(t)

I(Tι(t)−1)
Pr(t, Tι(t)) − Pn(t, Tι(t))

]

+N
M∑

i=ι(t)+1
ψi

[
Pn(t, Ti−1) Pr(t, Ti)

Pr(t, Ti−1)
eDi(t) − Pn(t, Ti)

]
(4.1.5)

where we set T := {T1, · · · , TM }, Ψ := {ψ1, · · · , ψM }, ι(t) = min {i : Ti > t} and
where the first cash flow has been priced according to the zero coupon inflation leg
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formula derived in (1.2.13). In particular at t = 0

YYIIS(0, T ,Ψ, N) = N
M∑

i=1
ψiPn(0, Ti)

[ I(0, Ti)
I(0, Ti−1)

eDi(0) − 1
]

= Nψ1 [Pr(0, T1) − Pn(0, T1)]

+N
M∑

i=2
ψi

[
Pn(0, Ti−1) Pr(0, Ti)

Pr(0, Ti−1)
eDi(0) − Pn(0, Ti)

]

= N
M∑

i=1
ψi Pn(0, Ti)

[1 + τiFn(0, Ti−1, Ti)
1 + τiFr(0, Ti−1, Ti)

eDi(0) − 1
]

(4.1.6)

This expression above has the advantage of using a market model approach com-
bined with yielding a fully analytical formula. In addition, contrary to Market
Model I, the correction term does not depend on the volatility of real rates.

A drawback of the formula is that the approximation used when freezing the
drift may be rough for longer maturities. In fact, the formula above is exact only
when the correlations between I(·, Ti−1) and Fn(·, Ti−1, Ti) are assumed to be zero
so that the nominal forward rate is zeroed out from Di.

4.2 Inflation Linked Cap/Floor
From (4.1.3) and again freezing the drift at it’s time t value, we obtain

ln I(Ti−1, Ti)
I(Ti−1, Ti−1)

∣∣∣∣Ft ∼ N

( I(t, Ti)
I(t, Ti−1)

+Di(t) − V 2
i (t), V 2

i (t)
)

(4.2.1)

where
Vi(t) :=

√[
σ2

I,i−1 + σ2
I,i − 2ρI,iσI,i−1σI,i

]
[Ti−1 − t] (4.2.2)

Choosing to model the forward inflation-index in (3.2.1) then yields

ILCFLT(t, Ti−1, Ti, ψi,K,N, ω)

= ωNψiPn(t, Ti)

 I(t, Ti)
I(t, Ti−1)

eDi(t)Φ

ω ln I(t,Ti)
KI(t,Ti−1) +Di(t) + 1

2V2
i (t)

Vi(t)


−KΦ

ω ln I(t,Ti)
KI(t,Ti−1) +Di(t) − 1

2V2
i (t)

Vi(t)


= ωNψiPn(t, Ti)

[1 + τiFn(t, Ti−1, Ti)
1 + τiFr(t, Ti−1, Ti)

eDi(t)Φ
(
ωdi

1(t)
)

−KΦ
(
ωdi

2(t)
)]

di
1(t) =

ln 1+τiFn(t,Ti−1,Ti)
K[1+τiFr(t,Ti−1,Ti)] +Di(t) + 1

2V2
i (t)

Vi(t)
di

2(t) = di
1(t) − Vi(t)

(4.2.3)
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where

Vi(t) :=
√
V 2

i (t) + σ2
I,i (Ti − Ti−1)

The price at time t of the Cap/Floor is obtained by summing up the individual
caplets

ILCFL(t, T ,Ψ,K,N, ω)

=
M∑

i=1
ILCFLT(t, Ti−1, Ti, ψi,K,N, ω)

= ωN
M∑

i=1
ψiPn(t, Ti)

[1 + τiFn(t, Ti−1, Ti)
1 + τiFr(t, Ti−1, Ti)

eDi(t)Φ
(
ωdi

1(t)
)

−KΦ
(
ωdi

2(t)
)]
(4.2.4)

As in the YYIS price (4.1.6), the Cap/Floor price depends on the instantaneous
volatilities of forward inflation indices and their correlations, the instantaneous
volatilities of nominal forward rates and the instantaneous correlations between
forward inflation indices and nominal forward rates. And again, there is no depen-
dency on the volatilities of real rates and the formula is analytic.
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Chapter 5

Calibration

5.1 Nominal- and Real Curves
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Figure 5.1: Calibrated Euro Zero-Coupon Curves, 13 jul-2012

We need to extract the nominal zero-coupon rates, Pn(0, Ti) from the swap
quotes, S(Ti), that we showed in Figure 1.1. The fixed leg on the EUR denominated
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Figure 5.2: Calibrated Euro Forward Curves, 13 jul-2012

swaps rolls on a yearly basis, yielding the simple relation

S(Ti) = − 1 − P (0, Ti)∑i
j=1 P (0, Tj)

(5.1.1)

, so that for all maturities {Ti, i > 0}, we can iteratively back out the zero-coupon
rates as

P (0, Ti) =
1 − S(Ti)

∑i−1
j=0 P (0, Tj)

1 + S(Ti)
P (0, T0) = P (0, 0) := 1

(5.1.2)

To obtain the real zero-coupon rates, we take the break-even inflation rates, b(Ti),
that we showed in Figure 1.1 and apply (1.2.16), i.e.

Pr(0, Ti) = Pn(0, Ti)(1 + b(Ti))Ti

The resulting nominal and real spot rates are shown in Figure 5.1. The correspond-
ing forward rates are displayed in Figure 5.2.
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5.2 Simplified Jarrow-Yildirim Model
As a starting point for our calibration, we consider a simplistic model with the
following evolution of the inflation index

dI(t)
I(t)

= [rn(t) − rr(t)] dt+ σIdW
Q
I (t) (5.2.1)

where the nominal and real short rates, rn(.) and rr(.), are (unrealistically) assumed
to be deterministic. And the inflation index volatility, σI , is constant. In this model,
the Fisher equation is still preserved since.

EQ
[
I(T )
I(t)

∣∣∣∣Ft

]
= e

∫ T

t
rn(u)−ru(u)du (5.2.2)

Note that, by Proposition (2.3.1) , this model is equivilant to the Jarrow-Yildirim
model with σn = σr = 0. Since there is then a 1-1 correspondence between Year-On-
Year Floor price and implied volatility, we can recover the implied Floor volatility
surface, as shown found in Figure 5.3.

The Floorlet volatility surface is constructed as follows. First, we construct the
Floorlet prices by bootstrapping the quoted Year-On-Year Floor prices. Since we
are only dependent on the inflation index volatility parameter, we may then - for
each Floorlet with expiry Ti and strike Ki - imply the corresponding inflation index
volatility σTi,Ki . The result is displayed in Figure 5.4.

Clearly, the skew shape of the Floor surface and the rifled wing shape of the
Floorlet surface indicates that the assumption of a single constant volatility is not
realistic. However, the simplistic model can still be of some use. When pricing
Inflation Caps/Floors, it can be utilized as a volatility parameter(by interpolating
in strike and expiry dimensions) to retrieve the appropriate volatility.
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Figure 5.3: EUR Year-On-Year Inflation Floor Volatilities, 13 jul-2012
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Figure 5.4: EUR Year-On-Year Inflation Floorlet Volatilities, 13 jul-2012
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5.3 Jarrow Yildirim Model

5.3.1 Calibrating nominal volatility parameters to ATM Cap volatilities
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Figure 5.5: EUR ATM Cap Volatility Curve, 13 jul-2012

By the choice of nominal volatility function, pricing a nominal Cap under the
J-Y model renders the well known Hull-White Cap/Floor valuation formula. We
may then estimate the nominal volatility parameters with the following scheme. For
each maturity Ti, we observe the ATM Cap (Black) volatility quote, σATM

i , shown
in figure 5.5, and the accompanying ATM strike level KATM

i . We can then fit the
nominal volatility parameters κn, σn by performing a least squares optimization
over

CapHull-White(t, Ti, ψi,K
ATM
i , σn, κn) − CapBlack(t, Ti, ψi,K

ATM
i , σATM

i )

From the resulting theoretical Hull-White prices we then back out the implied Black
volatility. The result is shown in Figure 5.6. The fit is not too bad in the long end of
the curve. In the short end, we suffer from the limitations of our choice of nominal
volatility function. The exponentially declining form of volatility can not recover
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the "hump" observed in the short end of the curve. However, note that although it
was the choice of Jarrow and Yildirim , the J-Y framework is not limited to Hull-
White term structures. We are free to choose other volatility functions for a better
fit to Cap/Floor volatilities.

The implementation of nominal volatility structure calibration is a subject in
itself and is beyond the scope of this thesis. We simply point out that we are free to
choose a nominal volatility structure, other than that of Hull-White. For instance,
had we set σn(t, T ) = σ then we would have rendered a Ho-Lee term structure.
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Figure 5.6: EUR Market vs Model ATM Cap volatilities, 13 jul-2012

5.3.2 Fitting parameters to Year-On-Year Inflation Cap quotes

The remaining parameters to estimate are {κr, σr, σI , ρnr, ρIr ρIn}. All these param-
eters enter the YoY inflation Cap/Floor valuation formula, so that we may attempt
to calibrate to market prices. However, given the indicative shape of the volatility
surface recovered in the previous section, we know that we cannot fit to the whole
surface. Removing the two OTM contracts at strike 0 and 0.5 still results in high
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relative errors as shown in Figure 5.7. Excluding the longer dated contracts from
the calibration (Figure 5.8), still results in a poor fit.

We conclude that we must restrict ourself to the (closest to) ATM contract and
restrict the expiry dimension to get a reasonable fit, as shown in figure in 5.9. The fit
in the expiry dimension can be improved by choosing more sophisticated volatility
functions for the real rate and the inflation index. The presence of a "strike skew"
however, makes calibration unfeasible for non ATM contracts.
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Figure 5.7: Relative Error, EUR Year-on-Year Inflation Floor Model Prices, 13
jul-2012
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Figure 5.8: Relative Error, EUR Year-on-Year Inflation Floor Model Prices, 13
jul-2012
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5.4 Market Model II

5.4.1 Nominal volatility parameters
For each maturity Ti we need to estimate the volatility , σn,i, of the (simply com-
pounded) nominal forward rate Fn(·, Ti). By the log-normal dynamics of Fn(·, Ti)
we get an automatic calibration to the quoted (Black) cap volatility σATM

i .

5.4.2 Fitting parameters to Year-On-Year Inflation Cap quotes
The remaining parameters to estimate, for each each maturity {Ti, i > 2}, are

{σI,i−1, σI,i, ρI,i, ρI,n,i}

The fitting procedure is run iteratively. That is, σI,1 is directly obtained from the
1-Year Floor, since it depends on no other unknown parameters. We then proceed
to use least squares estimation to fit the rest of the parameters to the corresponding
Floor prices. The resulting price error surface is plotted in Figure 5.10.

Since each expiry has it’s own set of parameters, there is no need to restrict
the number of contracts in the expiry dimension. The skew in the strike dimension
however, results in a poor fit if we want to include non ATM contracts. From
the figure, it’s clear that if we assume constant volatility in the expiry dimension,
then OTM contracts are underpriced and ITM contracts are overpriced. As in
the J-Y model, we must restrict ourselves to (close to) ATM contracts to recover
market prices. Or alternatively, take the "practitioners approach" and imply a set
of parameters for each Expiry/Strike pair.

43



CHAPTER 5. CALIBRATION

0
0.5

1.5

2.5

1
2

3
4

5
6

7
8

9
10

−30

−20

−10

0

10

20

Strike(inflation rate)Maturity(years)

R
el

at
iv

e 
E

rr
or

(%
)

Figure 5.10: Relative Error, EUR ATM Year-on-Year Inflation Floor Market Model
II Prices, 13 jul-2012

44



Chapter 6

Conclusions and extensions

6.1 Conclusions

In this thesis, we have presented the market for inflation derivatives and compared
three approaches for pricing standard contracts.

The first approach is a HJM framework where we have set a Hull-White term
structure both for the nominal and the real economy. The result is analytically
tractable prices for Year-On-Year Inflation Swaps and Caps/Floors. A practical
downside is that it requires real rate parameters that are not trivial to estimate.
Furthermore, the model cannot be reconciled with the the full volatility surface of
inflation Caps/Floors. That is, since the model does not account for the "inflation
smile" it can only be calibrated to ATM contracts.

The second approach is a market model were the modeled quantities are the
simply compounded nominal and real forward rates. The advantage of this approach
is that is that it models observable quantities, i.e. the forward rates. The downside
is that it leads to non-closed form prices of the standard contracts. And it still
requires the estimation of real rate parameters. Finally, the forward rate is assumed
to follow a Log-Normal distribution, which may not be a realistic assumption in the
presence of negative real forward rates.

The third approach models the respective forward inflation indices. By usage
of "drift freezing" approximations , this approach leads to closed form prices of the
standard contracts. And there is no dependence on real rate parameters. Fur-
thermore, the nominal volatility parameter is automatically calibrated to quoted
nominal cap volatilities. And since each respective forward inflation index is mod-
eled, adding contracts in the expiry dimension has no negative impact on calibration
performance. Of the models evaluated, this approach seems the most promising. In
the strike dimension however, the smile effect makes it difficult to reconcile OTM
contracts.
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6.2 Extensions
In light of the conclusions drawn so far, a natural next step is to attempt to take
the inflation smile into account. There has been research in this area. Mercurio
and Damiano[6] extend Market Model II by by a stochastic volatility framework
with ’Heston’ dynamics. They produce smile consistent closed-form formulas for
inflation-indexed caplets and floorlets.

Taking a different approach, Kenyon[8] proposed that by the low inflation volatil-
ities, it’s natural to model the Year-on-Year inflation rate itself, with a normal dis-
tribution. He proceeds with proposing normal-mixture models and normal-gamma
models to take the smile effect into account. The result is closed form price formulas
that well recover the inflation smile.

As a final note, Mercurio and Damiano[7] developed a framework that leads
to SABR-like dynamics for forward inflation rates, and closed-form prices for the
standard contracts.
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Appendix

A.1 Change of numeraire
The following proposition is taken directly from [3].

Proposition A.1.1 (A change of numeraire toolkit)
Consider a n-vector diffusion process whose dynamics under QS is given by

dX(t) = µS
X(t) + σX(t)CdWS(t)

where WS is n-dimensional standard Brownian motion, µS(t) is a n × 1 vector ,
σX(t) is a n × n diagonal matrix and the n × n matrix C is introduced to model
correlation, with ρ := CC ′

Let us assume that the two numeraires S and U evolve under QU according to

dS(t) = (· · · )dt+ σS(t)CdWU (t)
dU(t) = (· · · )dt+ σU (t)CdWU (t)

where both σS(t) and σU (t) are 1×n vectors , WU is n-dimensional standard Brow-
nian motion and CC ′ = ρ. Then, the drift of the process X under the numeraire U
is

µU
X(t) = µS

X(t) − σX(t)ρ
(
σS(t)
S(t)

− σU (t)
U(t)

)′
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