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Abstract

In this thesis I describe the essential steps of developing a credit rating sys-
tem. This comprises the credit scoring process that assigns a credit score
to each credit, the forming of rating classes by the k-means algorithm and
the assignment of a probability of default (PD) for the rating classes. The
main focus is on the PD estimation for which two approaches are presented.
The first and simple approach in form of a calibration curve assumes inde-
pendence of the defaults of different corporate credits. The second approach
with mixture models is more realistic as it takes default dependence into
account. With these models we can use an estimate of a country’s GDP to
calculate an estimate for the Value-at-Risk of some credit portfolio.
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Introduction

The Company. This thesis was written at one of Germany’s biggest in-
surance groups: the Debeka-group. Together with the Debeka Bausparkasse
AG it is a prestigious financial services business1. The thesis was written at
the Risk Controlling department at the Debeka Bausparkasse AG.

A Bausparkasse is a bank that offers building loan agreements, so-called
Bauspar-contracts. Entering a Bauspar-contract grants the customer the
possibility to obtain a low-interest loan, which may be used for residential
purposes only. A Bauspar-contract can be described in two phases. In
the first phase the customer saves at least 40% of the Bauspar-sum. The
Bauspar-sum is the amount agreed upon that can be paid to the customer
and consists of the savings amount (at least 40%) and the loan (at most
60%). If the customer withdraws the Bauspar-sum, the second phase of
loan redemption immediately follows the first. The customer’s advantage of
entering this kind of contract is that the loan’s interest rate is quite low2.

The total credit portfolio of the Debeka Bausparkasse AG mainly consists
of debt claims against natural persons but also of debt claims against legal
persons. The granted loans have the form of Bauspar-contracts or common
credits that are intended to be used for residential purposes (within the
meaning of Section 1 Bausparkassen Act, Bausparkassengesetz) as well. Since
all credits are at some risk of default, the borrowers’ default risk has to be
assessed.

For claims against natural persons there is a sufficiently large amount of
data to use score cards based on statistical analysis. This enables an internal
credit rating and the assessment of the default probability (PD) and the loss
given default (LGD) rate. With these values, the Value-at-Risk (VaR) can
be computed for this part of the credit portfolio. The big difference between
testing a natural person’s credit worthiness and testing a legal person’s credit
worthiness lies within the features asked for. A natural person has a job,
children, etc. and a company has a balance sheet, a legal form, etc. so that
the same score card with the same features cannot be used.

1Debeka-Group: Debeka eine Unternehmensgruppe mit Zukunft
2Debeka Bausparkasse AG: Ihr Bausparvertrag und was Sie darüber wissen sollten
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Problem Formulation. There are score cards based on expert opinions
for claims against companies. Due to an insufficient amount of data the
statistics that work well within the Natural Persons’ Business (NPB) do not
give reliable results for the Legal Persons’ Business (LPB). The aim of this
thesis is to find estimates for PD and LGD on the basis of the available data.
With these parameters, an estimate for the VaR shall be given.

Note: In this version of the thesis no real data will be used. The data
used does not relate to the Debeka’s data except for the total amount of
data and the time period which the data stems from.

Content. Chapter 1 starts with a short presentation of the legal back-
ground formed by the Basel regulations. As a Bausparkasse is a kind of
banking institution these regulations are relevant for its lending business.
The Basel regulations give the outline for the credit scoring and credit rat-
ing systems that are introduced thereafter. The rating classes of the rating
system are determined by a clustering method. Furthermore this first chap-
ter briefly presents the commonly used VaR risk measure and shows how to
compute the loan creditor’s expected loss from a lending business.

In Chapter 2 models to find a PD are presented. There are two different
kinds of models that will be studied. The first one is called calibration curve.
The idea is that the default probabilities can be expressed as a function value
of an exponential function. The second kind of model is the mixture model.
In the mixture model a dependence structure among corporate credits is al-
lowed, in contrast to the calibration curve where independence is assumed.
However, the default dependence in the mixture models is eliminated by the
assumption that there is a common factor that influences the corporate cred-
its so much that we can assume independence of the defaults conditional on
the common factor. This is the more advanced approach to PD modeling
and it is the central topic of this thesis. The key question in the mixture
models is how to model the common factor. This thesis presents two alter-
natives: the first one is that the common factor is Normal-distributed and
the second one is that it is Beta-distributed.

Chapter 3 gives a short presentation of the fictional data. The historical
default frequency is presented and the credits are grouped by their scores
into rating classes. These are the rating classes along with their respective
default frequencies that the models from Chapter 2 will use.

In Chapter 4 the estimates for the PD and VaR are presented for all kinds
of models. In one of the mixture models the German GDP data is used as
the Beta-distributed common factor. We will also do a scenario analysis to
study the influence of the GDP growth rate to the VaR estimate.

In Chapter 5 the conclusions are drawn.



Chapter 1

Basics of Credit Evaluation

In this chapter we go through the Basel accords as the legal background of
credit risk measuring. Then we will see how a banking institution values a
credit. It starts with credit scoring, which takes the information on a possible
obligor and enables the classification of the customer to a rating class. These
rating classes can be formed by a clustering method, which is presented
thereafter. The difference between a scoring and a rating system is that a
scoring system does not provide a probability of default for any obligor. The
rating system gives a PD estimate for each rating class. Together with the
credit amount and a loss rate, both the expected loss and the loss distribution
can be studied. From the loss distribution it is just a small step to give an
estimate for VaR, which is presented in the concluding section.

1.1 Regulatory Framework

The Basel Accords. In July 1988 the Basel Committee on Banking su-
pervision published the Basel I guidelines in the hope that these would
"strengthen the soundness and stability of the international banking sys-
tem"1. These guidelines aim at the banking industry of the G-10 states
holding buffer capital in the height of the implemented minimum capital
standards for credit risk2.

In June 2004 a new revised framework of the Basel Accord was published.
This version, the 1988 accord and the additions made in between, was re-
leased in a ’Comprehensive Version’ in June 2006. It is this comprehensive
revised framework that is known as the Basel II Accord. It emphasizes the
computation and management of risk. The key principles of Basel I basically
remained unchanged, but the regulations on risk management got stronger
and also more detailed. The major innovation is the "use of assessments of

1Basel Committee on Banking Supervision (Basel I), p. 3.
2Bank for International Settlements, http://www.bis.org/publ/bcbs04a.htm, accessed

June 13th 2013.
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6 CHAPTER 1. BASICS OF CREDIT EVALUATION

risk provided by banks’ internal systems as inputs to capital calculations"3,
referring to the Internal Ratings-Based Approach that will be presented later
on in this section. The Basel II regulations consist of the three pillars that
are shown in Figure 1.1.

First pillar
Minimum Capital
Requirements

Second pillar
Supervisory Review
Process

Third pillar
Market Discipline

Figure 1.1: Basel II framework.4

This work lies within the area of the first pillar. The pillar describes how
to calculate the capital requirement for three different kinds of risks: credit
risk, operational risk and market risk. Here we will only study credit risk.

The Basel II guidelines have been included into German law. The corre-
sponding laws are the German Banking Act5 (Kreditwesengesetz), the Reg-
ulation governing the capital adequacy of institutions, groups of institutions
and financial holding groups6 (Solvabilitätsverordnung – SolvV, based on
the first and the third pillar of Basel II7) and the Minimum Requirements
for Risk Management5 (Mindestanforderungen an das Risikomanagement –
MaRisk, based on the second pillar of Basel II7).

In December 2010 the Basel III accord was published as an answer to
the financial crisis that started in 2007. This crisis proved that the capital
requirements and the risk management principles from Basel II were not suf-
ficiently strong. The Basel III guidelines require "higher and better-quality
capital, better risk coverage"8 and "measures to promote the build up of
capital that can be drawn down in periods of stress"8. So far the Basel III
Accord has not been incorporated into German law and therefore we will
present the Basel II framework (as in the SolvV) in the following.

3Basel Committee on Banking Supervision (Basel II), p. 2.
4Basel Committee on Banking Supervision (Basel II), p. 6.
5Translation: http : //www.bafin.de/EN/Supervision/BanksF inancialServices

Providers/RiskManagement/riskmanagement_artikel.html (accessed on Feb. 28th,
2013).

6Translation: Deutsche Bundesbank. Note that this and the following transla-
tion(s) concerning the SolvV "is for information purposes only. The original Ger-
man text is binding in all respects". Source: http : //www.bafin.de/SharedDocs/
Aufsichtsrecht/EN/V erordnung/solvv_en_ba.html (accessed on Feb. 28th, 2013).

7Ettmann, Wolff, Wurm: Kompaktwissen Bankbetriebslehre.
8Bank for International Settlements, http://www.bis.org/publ/bcbs189_dec2010.htm ,

accessed on June 13th, 2013.
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Credit Risk. The main focus of the Basel II Accord lies on credit risk,
which is the most dangerous risk (in volume) a creditor faces9. The total
capital charge with respect to SolvV can be computed as a product of the
Exposure At Default (EAD) and some risk weight that depends on the credit
or, more generally, on the financial position

Total Capital Charge =
∑

P ∈ Financial Position

EAD(P )× Risk Weight(P ).

Here the set of all financial positions can but does not have to be divided
into the set of positions valued with the Credit Risk Standardized Approach
(CRSA) and the set of positions valued with the Internal Ratings Based
Approach (IRBA). The difference lies within the risk weights; they differ
within the IRBA and the CRSA. Additionally, the CRSA positions have to
be multiplied by 0.0810. To put this formula in one sentence: The minimum
buffer capital that should be held by a banking institution is the sum of its
risk-weighted assets. It should be noted, however, that it is the credit receiver
and his/her credit worthiness that determines the risk weight. The credit’s
features like the lending amount or the interest rate never stand alone but
are always regarded together with the credit receiver when determining the
risk weights.

If a financial institution uses the CRSA to assess the credit risk of stan-
dardized credits in the LPB, the risk weight is 75% (Section 34 SolvV). In
the case that the obligor provides a security, the risk weight is lower, e.g. the
risk weight for Bauspar-credits is 50% (Section 35, Subsection 4 SolvV).

In the IRBA, the risk weight11 is the product of the (estimated) Loss
Given Default (LGD) rate, the maturity M of the financial position and the
difference of the conditional PD (from Section 87 and formula 1 SolvV, see
appendix A) and the estimated PD that is to be estimated in this thesis.
This is

Risk Weight = LGD ·M · (PDcond − PDest). (1.1)

The IRBA requires more work from the banking institution since it re-
quires an internal rating system, but it allows the institution to hold a lower
capital charge. There are two types of the IRBA. When using the basic
IRBA, the Probability of Default (PD) must be calculated within the bank-
ing institution. In the advanced IRBA, estimates for the Exposure at Default
(EAD) and for the Loss Given Default (LGD) have to be computed as well.
Therefore the advanced approach requires every single credit to be looked at
and to be examined under the aspects of risk.

9Hartmann-Wendels, Pfingsten, Weber: Bankbetriebslehre, p. 497.
10Hartmann-Wendels, Pfingsten, Weber: Bankbetriebslehre.
11According to Hartmann-Wendels, Pfingsten, Weber: Banklehre, p. 605.
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Internal Rating Systems. It is the external rating systems that are
known to all of us; Germany’s Federal Financial Supervisory Agency (BaFin)
has registered several credit rating agencies whose rating is accepted when
using the CRSA. Among these are the German Creditreform Rating AG,
S&P and Moody’s 12.

The internal rating systems are unknown to the public, as they are used
within the banking institutions. If the institution wants to use an internal
rating system to judge their obligors, then this rating system has to fulfill
several criteria. These are given in Sections 107-123 SolvV. Some points will
briefly be presented in this section.

A rating system for corporates must have at least seven rating classes
for solvent debtors and one for defaulted obligors. This rating system must
regard risk features of both the obligor and the credit (Section 110, Subsec-
tion 1 SolvV). But these criteria are not named. No matter which informa-
tion enters the scoring process, they must be up to date and the credit rating
itself must be reviewed at least once every year. If the available information
is low, the obligor must be given a more conservative rating (Section 112,
Subsection 2 SolvV). The risk features of the obligor are an indicator of the
obligor’s probability of default. So for example financial strength is an im-
portant criterion at this point. In contrast, the risk features of the credit such
as e.g. the height of given securities is unimportant for the PD assessment
(customer i defaults whether there are securities or not) but it is important
for the calculation of the LGD rate.

Each of the at least eight rating classes is assigned a probability of default,
such that all the credits in one rating class have the same PD. The PD may
be estimated using the historical default data, but its minimum for any rating
class is 0.03% (Section 88, Subsection 4 SolvV).

According to Section 132, Subsection 2 and 3 SolvV the estimate for the
LGD shall be based on the historically realized LGD rates and should be
conservative, i.e. the "LGD estimates [should be] [. . .] appropriate for an
economic downturn if those are more conservative than the long-run aver-
age"13.

Definition of Default. The definition of the event ’default’ can be found
in the SolvV, Section 12514 (the following definition is close to the original
text but has been simplified):

The obligor has defaulted if at least one of the following events
occurs:

12Bafin, Liste der für die Bankaufsichtliche Risikogewichtung anerkannten Ratingagen-
turen samt Mapping.

13Translation by Deutsche Bundesbank, [20].
14Compare also to Debeka Bausparkasse AG: Ausfall.
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1. The obligor probably cannot meet his/her total payment
obligations without making use of his/her securities.
The indications of the improbability of payment are
(a) The institution adjusts the value of the debt
(b) The loan has to be restructured
(c) The institution applies for the insolvency of the obligor
(d) The obligor or a third person files for the insolvency of

the obligor
2. The obligor is overdue for more than 90 succeeding calender

days with a significant part of his/her debt.
Significant part of debt means at least 100 Euro and more
than 2.5% of the total debt.

There is also a possibility of recovery; if none of these criteria above is fulfilled
any longer, then the risk classification has to be done as if the obligor never
had defaulted.

This thesis and the SolvV. The previous text presented a short and
incomplete overview over the SolvV. It is impossible to get all these rules
and regulations correctly (in the sense of complete, with all exceptions and
special cases) and briefly. Therefore, in this thesis I do not even try to get
all the estimates and calculations as postulated in the SolvV. Instead, the
SolvV shall just give the basic framework to this thesis.

What is definitely used is the definition of the default event. With this
definition, each credit is assigned a 1 or a 0, depending on whether the obligor
defaulted or not. In the further use of the word default this means that one
of the default criteria is fulfilled, but this does not necessarily mean that
the obligor is definitely unable to pay back (which is often called ’defaulted’
in the common sense). When referring to a total failure of paying back the
loan and when the creditor starts to liquidate given securities we shall talk
of ’insolvency’ instead.

The Debeka Bausparkasse AG uses the CRSA to calculate risk in the cor-
porate business. The aim is therefore to take a step into the IRBA direction.
This includes looking for PD and LGD estimates.

There is one simple reason why this work can only be seen taking a
step into the IRBA direction: the low amount of data. The original data
set comprises of too few different companies and not a whole five years of
data. This is definitely not enough to found proper statistical analysis which
is the most important prerequisite for the estimation of parameters for the
IRBA. So we have to leave the simple statistical methods that work nicely
in the natural persons business and choose more complex models with some
parameters that can be calibrated to the available data. At least this is what
is done for the PD. For the LGD it turned out that there is too few data for
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any kind of model. As the LGD rate can only be observed from insolvent
companies, some insolvent companies are needed to give this estimate. But
there is only one insolvent company and with that single one, no estimate
for a loss rate given the company’s default can be given.

1.2 Credit Scoring

To check a customer’s degree of credit worthiness, credit scoring is a com-
monly used method. Here, several characteristics of the possible future
obligor are aggregated to a credit score for this customer15. Every scor-
ing system has an interval of integers as domain. Typically, a customer with
a high degree of creditworthiness also achieves a high credit score.

In order to do any of the following, a data set is required. This data set
must stem from several companies and for each company i there must be p
characteristics with values xi = (xi1, . . . , xip). Typically this is information
on the financial background, on the loan that is applied for, on the customer
itself and on the securities. Some of this information must be transformed
in order to enter the calculation of the credit score. As an example, the
legal form as characteristic j of a company is partitioned into limited and
unlimited liability. Then a company’s characteristic ’limited by shares’ is
transformed by the mapping Tj from the set of characteristics into the set of
numbers to the score −1, say. A company whose legal form gives unlimited
liability would e.g. obtain the value +1 in this characteristic. Some charac-
teristics might be considered to be more relevant than others, so they are
weighted with the factors wj for j = 1, . . . , p. The total credit score S for
customer i is then

S(xi) =

p∑
j=1

wj · Tj(xij)

if a simple linear model was chosen16.
The two key questions are which characteristics should be part of the

scoring function and how to assess the weights w.
The first question can be answered by the power curve and the GINI coef-

ficient that are presented in the following. The power curve gives some infor-
mation about the discriminatory power of a rating system and the obligor’s
characteristics. The same holds for the GINI coefficient which is also known
as accuracy ratio. The coefficient concentrates the information from the
power curve into a single number.

The second question on how to assess the weights can be answered by
implementing a logistic or linear regression, but we will not go into this
subject.

15Hartmann-Wendels, Pfingsten, Weber: Banklehre, p. 498.
16This part follows Hartmann-Wendels, Pfingsten, Weber: Banklehre, p. 517.
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Power Curve. To compute the power curve17 take your historical data of
company loans and make sure that each data point is given a value that tells
us whether the customer defaulted or not. Then choose feature number j
of your data for further analysis. Sort the data in increasing order by the
feature you chose, i.e. T (xi1j) ≤ . . . ≤ T (xinj) where there are n credits and
the set {xi1j , . . . , xinj} is equal to the set {x1j , . . . , xnj}.

So far for the preparation. Now take the first x percent of the total
amount of data and count the number of losses that occurred in this group.
Divide this number of defaults by the total number of all defaults to obtain
the value y of the defaulted credits in percentage. Do like this for x =
0, . . . , 100.

The result of this procedure can be seen in Figure 1.2, where a power
curve for some fictional data is displayed. The thick line corresponds to
the computed points (x, y), the dashed line is the power curve of a perfect
model and the diagonal would be a power curve of rating model based on
randomness.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

B

Figure 1.2: Power Curve. The thick line is the power curve of a fairly good
scoring criterion. The dashed line represents the ideal scoring model, whereas
the diagonal stands for a random model that does not give a relation between
the resulting score and the observed default frequency.

17This part follows Ernst&Young, Validierung und Backtesting pp. 40 ff. [13].



12 CHAPTER 1. BASICS OF CREDIT EVALUATION

In the case of Figure 1.2, the thick power curve would be a rather good
example for a rating criterion. In the beginning the slope is high, then it is
slowly decreasing. The explanation for this is rather simple; this happens if
many of the defaulted credits had a low score value in the feature considerd.
The dashed line would picture the case of a feature with optimal discrimi-
natory power. Here the list in increasing order has a block of all defaulted
credits in the beginning. The diagonal is the power curve of an absolutely
random model (with a big sample size) where the defaults are evenly spread
among the sorted list.

With the help of the power curve it is easy to check whether a certain
criterion could be of use in a credit scoring system. But the power curve
is only applicable if this feature can (artificially) be arranged in increasing
order by means of the mapping T (·).

GINI Coefficient. The GINI coefficient, also known as accuracy ratio, is
the following quotient of the surface areas that can be seen in Figure 1.2:

GINI =
A

A+B
.

The higher the coefficient, the better the discriminatory power of a scoring
system in the regarded feature or the credit scoring system in its whole.

If the accuracy ratio is greater than 60%, then the discriminatory power
of the whole rating system is very good, with 50% it is good, with less
than 40% it is rather poor, and with less than 20% it is not sufficient for
practical purposes. For the discriminatory power of single characteristics,
these percentages and their classifications do not hold. Ernst&Young takes
the position that a GINI coefficient of 20% and higher for a single feature is
a sign of a high discriminatory power.

1.3 Credit Rating

The scoring system is the basis of the rating system. Recall from Section 1.1
on legal requirements that an internal rating system for corporate credits
must have at least eight rating classes. In this section it will be described
how to form rating classes by a clustering method. The assessment of a PD
to a rating class is then described in Chapter 2.

The main idea of clustering is to partition a set of I points or in this case
score values p1, . . . , pI into K ≤ I clusters C1, . . . , CK (rating classes). The
optimization problem to be solved is

min
K∑
k=1

I∑
i=1: pi∈Ck

||pi − C̄k||2
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where C̄k is the mean value of all the points in the cluster Ck and || · ||
denotes the Euclidean Norm.

The algorithm described in the following subsection was developed by
Hartigan and Wong and is known as Algorithm AS 136. The formulation of
the algorithm is partly kept close to the original text [15] but was changed
when an easier reading was possible. Subsequently the operating mode is
shown with a one-dimensional example that works for the clustering of score
values into rating classes. Algorithm AS 136 is used by default when using
the R function kmeans.

1.3.1 Clustering Algorithm

Input: I points in N dimensions and a matrix C̄ of size K × N with the
initial cluster centers.

Step 1. Introduce C1 and C2 as vectors of size I. For each point pi find
the closest center k1 (in terms of the Euclidean Norm) and the second closest
center k2 and set C1(i) ← k1 and C2(i) ← k2. C1 tells us for each point in
which cluster this point is contained. If there is more than one cluster that
could be assigned to a point, assign the cluster which comes first in your list
of clusters18.

Step 2. Update the cluster centers C̄ with the cluster means.

Step 3. Introduce the K-dimensional indicator vector L with L[k] = 1
if cluster k belongs to the so-called live set, 0 otherwise. Initially, all the
clusters belong to the live set, i.e. L[k]← 1 for k = 1, . . . ,K.

Step 4: Optimal Transfer (OPTRA) stage.

For all points pi do:
Let pi be in cluster k?.

If this is the first time that the OPTRA stage is reached, continue
with Step 4a.

ElseIf cluster k? has been updated in the last QTRAN stage, then it
belongs to the live set (L[k?]← 1).

ElseIf cluster k? has not been updated in the last I OPTRA steps
assign L[k?]← 0.

If L[k?] = 1 continue with Step 4a,
Else continue with Step 4b.

18This is how it is done in the implementation given in [15], but it could also be done
differently.
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Step 4a.

If there are at least two points in cluster k?, compute

k̂ ← argmink=1,...,K,k 6=k?

{
R2(k)← NC(k) · ||pi − C̄[k]||2

NC(k) + 1

}
and

R2(k?)← NC(k?) · ||pi − C̄[k?]||2

NC(k?)− 1

where NC(k) is the number of points in cluster k.

If R2(k̂) ≥ R2(k?) the clusters stay as they are. Set C2[i]← k̂.

Else assign the cluster k̂ to point i, i.e. C1[i] ← k̂ and C2[i] ← k?.
Update the cluster centers C̄[k̂] and C̄[k?]. Set L[k?] ← 1 and
L[k̂]← 1.

Step 4b. Follow Step 4a, just minimize over the clusters in the live set
only.

Step 5. Stop if L = (0, . . . , 0). Otherwise do Step 1 and Step 2 and
continue with Step 6.

Step 6: Quick Transfer (QTRAN) stage. Set transfer←TRUE.

While (transfer)
transfer←FALSE
For all points pi compute

R1 ←
NC(C1[i]) · ||pi − C̄[C1[i]]||2

NC(C1[i])− 1
and

R2 ←
NC(C2[i]) · ||pi − C̄[C2[i]]||2

NC(C2[i]) + 1
.

If R1 < R2 all clusters remain the same.
Else switch the clusters (C1[i] ↔ C2[i]). Update the cluster

centers. Set transfer←TRUE.

Goto Step 4.

1.3.2 Example: Clustering

Let the points p = (p1, . . . , p6) = (0.5, 1.5, 2.5, 3.5, 6, 10) be given. Fur-
ther, let C̄ = (C̄1, . . . , C̄3) = (0.75, 3, 7) be the initial cluster centers. This
situation is displayed in Figure 1.3.
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0 5 10

p1 p2 p3 p4 p5 p6

C̄1 C̄2 C̄3

Figure 1.3: Points to be clustered and initial cluster centers

Step 1. For point p1 = 0.5 the closest center obviously is C̄1 = 0.75
and the second closest center is C̄2 = 3. So C1[1] ← 1 and C2[1] ← 2.
Continuing like this for all six points leads to C1 = (1, 1, 2, 2, 3, 3) and
C2 = (2, 2, 1, 1, 2, 2). C1 can be seen in Figure 1.4

0 5 10

p1 p2 p3 p4 p5 p6

C̄1 C̄2 C̄3

Figure 1.4: Initial cluster centers C̄ with cluster C1 (ellipses).

Step 2. The first cluster contains the points p1 and p2. So the new cluster
mean is (P1 + P2) · 0.5 = (0.5 + 1.5) · 0.5 = 1. For the other cluster means
do the same. Then C̄ = (1, 3, 8) and the situation is as in Figure 1.5.

0 5 10

p1 p2 p3 p4 p5 p6

C̄1 C̄2 C̄3

Figure 1.5: New cluster centers C̄ with cluster C1.

Step 3. All clusters belong to the live set, therefore set L = (1, 1, 1).

Step 4. Consider p1, which is in cluster k? = 1. As this is the first time
we enter this step, we continue with Step 4a.
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We compute

R2(k?) =
NC(k?) · ||p1 − C̄[k?]||2

NC(k?)− 1
=

2 · ||0.5− 1||2

2− 1
= 0.5

R2(2) =
NC(2) · ||p1 − C̄[2]||2

NC(2) + 1
=

2 · ||0.75− 3||2

2 + 1
= 3.375

R2(3) =
NC(3) · ||p1 − C̄[3]||2

NC(3) + 1
=

2 · ||0.75− 8||2

2 + 1
≈ 35.04

since R2(k?) < R2(2) < R2(3), the clusters stay as they are and we set
C2[1]← 2.

For p2, p3 and p4 nothing happens as well, not even C2 changes. But for
p5 things are different:

R2(k?) =
NC(k?) · ||p5 − C̄[k?]||2

NC(k?)− 1
=

2 · ||6− 8||2

2− 1
= 8

R2(1) =
NC(1) · ||p5 − C̄[1]||2

NC(1) + 1
=

2 · ||6− 1||2

2 + 1
≈ 16.67

R2(2) =
NC(2) · ||p5 − C̄[2]||2

NC(2) + 1
=

2 · ||6− 3||2

2 + 1
= 6

That is, R2(2) is the minimum value. We set C1[5]← 2 and C2[5]← 3, giving
C1 = (1, 1, 2, 2, 2, 3) and C2 = (2, 2, 1, 1, 3, 2). Updating the means of
clusters 2 and 3 gives C̄ = (1, 4, 10) and a new Figure 1.6.

0 5 10

p1 p2 p3 p4 p5 p6

C̄1 C̄2 C̄3

Figure 1.6: New clusters.

The point p6 can be skipped as it is the only point in cluster 3 and we
are done with Step 4.

Step 5. L = (1, 1, 1) so Step 1 and Step 2 should be done; i.e. with the
new cluster means assign to each point the closest and second closest cluster.
The interesting point is p3 as this point could be assigned to both cluster
1 and cluster 2. However, as cluster 1 is the first cluster, C1[3] ← 1 and
C2[3] ← 2. So the new C1 = (1, 1, 1, 2, 2, 3) and C2 = (2, 2, 2, 1, 3, 2).
The new cluster means are C̄ = (1.5, 4.75, 10). In Figure 1.7 the situation
is shown.
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0 5 10

p1 p2 p3 p4 p5 p6

C̄1 C̄2 C̄3

Figure 1.7: Reclustered clusters after the first OPTRA stage.

Step 6. We start with p1.

R1 =
NC(C1[1]) · ||p1 − C̄[C1[1]]||2

NC(C1[1])− 1
=

3 · ||0.5− 1.5||2

2
= 1.5

R2 =
NC(C2[1]) · ||p1 − C̄[C2[1]]||2

NC(C2[1]) + 1
=

4 · ||0.5− 4.75||2

5
= 14.45

Since R1 < R2, we go to the next point. For points p2 and p3 the same is
the case. For p4 we obtain

R1 =
NC(C1[4]) · ||p4 − C̄[C1[4]]||2

NC(C1[4])− 1
=

2 · ||3.5− 4.75||2

1
= 3.125

R2 =
NC(C2[4]) · ||p4 − C̄[C2[4]]||2

NC(C2[4]) + 1
=

1 · ||3.5− 1.5||2

2
= 2

Now R1 > R2 and we switch the clusters C1[4] ← 1 and C2[4] ← 2. The
new situation is displayed in Figure 1.8 and the new cluster means are C̄ =
(2, 6, 10).

0 5 10

p1 p2 p3 p4 p5 p6

C̄1 C̄2 C̄3

Figure 1.8: Reclustering within the first QTRAN stage.

We continue. Since the number of points in cluster 3 is one, we skip point
p6 and start again with the while-loop because there was a transfer. However,
there is no transfer the second time we enter the for-loop, so recalling that
there was an update in clusters 1 and 2, we go to step 4.

Step 4. Since clusters 1 and 2 have been updated in the last QTRAN stage
and since cluster 3 has been updated in the last 3 OPTRA steps, we still
have L = (1, 1, 1). However, there is no update necessary at this step.

Step 5. We do step 1 and step 2. There we do not update anything at all.
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Step 6. Since nothing has happened since the last time we were here, there
will not happen anything here either.

Step 4. No cluster has been updated in the last QTRAN stage and not in
the last I OPTRA steps, so the live set is empty, i.e. L = (0, 0, 0).

Finally we enter step 4b, but since the live set is empty, there is nothing
to do here.

Step 5. The algorithm terminates. The result is given by C1, telling us for
each point in which cluster it is contained. Also interesting is C̄, the vector
of cluster means. Figure 1.8 shows the final result.

1.4 Expected Loss and Value-at-Risk

Now we know how to form rating classes and in the next chapter we will see
how to assess a PD to each rating class. But we still need a risk measure
in order to calculate the risk a banking company faces. In this context the
expected loss (EL) and the Value-at-Risk measure are quantities that often
are used. But prior to the introduction of these risk quantities we specify
the Exposure at Default (EAD) and the Loss Given Default (LGD) rate.

The EAD is the amount of money the obligor is legally obligated to pay
at the time the calculations for the EL or VaR are done. In the easy case of
assets from the balance sheet the EAD is the amount of the loan that still
has to be payed back plus the interest on the loan (and eventually plus some
other debt). In the more complicated case of off-balance sheet positions, an
estimate of the EAD is requested19. These positions might be a credit that
the banking institution has offered to a customer, but that is not used so
far. In this case, the estimate of the EAD is 75% of the "undrawn part of a
credit line"20.

The LGD is given in percentage and describes the part of the EAD that
will be lost in the case of a company’s default. Typically the LDG depends
upon given securities. For example, the LGD might be 5% if the security is
a savings account or 90% if there are no given securities.

Both EAD and LGD are often ’given’. These two factors should be
random variables as neither the EAD nor the LGD are known prior to default.
Often there are securities whose liquidation costs a different amount than
expected or that vary in value themselves. Therefore the LGD might be
different to what was expected in the first place. And the EAD can increase
or decrease from one day to the other.

Anyway, in the real data set the estimates for the EAD and LGD have
been computed. As there was just one insolvent company from that we

19Source: Ernst&Young, Fachkonzept LDG-Modell.
20Supervisory conversion factor; Section 101, Subsection 2.1.b SolvV [20].
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could get an LGD rate, no statistical means could be used to model this
rate. Nevertheless, there was a way such that an estimate could be assigned.

To have the same data structure for the real and the fictional data, both
the values for the EAD and the LGD are given for this report. Therefore
it remains just to estimate the PD for each obligor. This is all we need to
calculate EL and VaR.

Expected Loss. The expected loss (EL) from a lending business for a
single credit i is the product

ELi = EADi · LGDi · PDi (1.2)

where PDi is the Probability of Default for customer i, LGDi and EADi

correspondingly. For a portfolio of credits the EL is the sum of the ELi
of the single credits i with the assumption that the PDs are independent.
There will not be any problem if one customer has more than one credit, as
all the credits of a customer will be added together to a credit commitment.

Value-at-Risk. To obtain a value for this common risk measure, we have
to simulate from the loss distribution. The loss from investing in commitment
i is (today)

Li = EADi · LGDi ·Xi

and the total portfolio loss is

L =
n∑
i=1

Li =
n∑
i=1

EADi · LGDi ·Xi (1.3)

where there are n commitments and Xi is the binary default indicator, i.e.
if Xi = 1 then company i defaults. X is an n-dimensional random vector
following some distribution. AsX is binary, a Bernoulli distribution is a good
choice. The question is how to assess the probability p in the Bernoulli(p)
distribution and this will be answered in Chapter 2. With equation (1.3)
we can simulate from the loss distribution. The output will be viewed as a
sample from the loss distribution L21.

Based on a random sample {L1, . . . , Lm} of size m the empirical distri-
bution function Fm,L is given by

Fm,L(l) =
1

m

m∑
k=1

1{Lk≤l}

where 1 is the indicator function. The empirical quantile function is then

F−1
m,L(p) = min{x : Fm,L(l) ≥ p}.

21Source: Hult, Lindskog, Hammerlid, Rehn, Risk and Portfolio Analysis.
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In Hult et al., Risk and Portfolio Analysis, it is shown in Chapter 7 that the
empirical quantile is

F−1
m,L(1− p) = Lbmpc+1,m

where L1,m ≥ . . . ≥ Lm,m is the ordered sample and bxc denotes the integer
part of x.

So when calculating the VaR, this will be

V aRp = Lbmpc+1,m,

the (bmpc+ 1)th largest value of the simulated sample from the loss distri-
bution.

Note that when calculating VaR, we use today’s EAD and LGD and
yearly default rates. So the VaR here is in principle the (bmpc+ 1)th largest
amount of money that could be lost if all commitments that are to default
during the next year default tomorrow (without changed values for EAD and
LGD).

The title of this thesis contains ’Credit’ Value-at-risk. But there is no
real difference between Credit VaR and VaR. When using Credit VaR, it is
most often referred to the VaR being calculated with time horizon being one
year. But the VaR is often calculated with a much shorter time horizon such
as 10 days for example. In the following we will return to the shorter VaR
notation but keep in mind that the time period for which it is computed is
one year.



Chapter 2

Models to estimate a PD

Three different ways are presented in this chapter how to calculate a PD: a
calibration curve and two mixture models.

2.1 Calibration Curve

There is an easy way to determine default probabilities if there is a possibility
to score credits and if a historical data base is available. The historical
data must contain both defaulted and non-defaulted credits along with their
scores1.

To determine the calibration curve firstly sort the data by its scores. Then
form R groups (buckets) and calculate the historical default frequency D̂r for
r = 1, . . . , R within the buckets. The buckets may be rating classes resulting
from a cluster analysis.

Here we use an exponential regression equation to determine the func-
tional relation between the rating class r and the empirical default frequency
DFr for rating class r, i.e. it should hold that:

DFr = b0 · eb1r r = 1, . . . , R. (2.1)

Now the statistic software R can be used to solve the optimization prob-
lems

(P1) min
R∑
r=1

|b0 · eb1r −DFr| · wr

(P2) min

R∑
r=1

(
b0 · eb1r −DFr

)2
· wr

where wr is the fraction of commitments in rating class r.
1This section is based upon from Hartmann-Wendels, Pfingsten, Weber: Banklehre,

pp. 528 ff.

21
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With the estimates for the parameters b̂0 and b̂1, the estimated proba-
bility of default ˆPDr for each rating class r can be calculated analogously
to (2.1):

ˆPDr = b̂0 · eb̂1r, r = 1, . . . , R. (2.2)

Note that Section 88, Subsection 4 SolvV determines a lower bound of
0.03% for the probability of default, hence it holds that

PDr = max
{

ˆPDr, 0.0003
}

r = 1, . . . , R.

Now we leave the simple PD model that did not regard any possible
dependence structure of company defaults. But default dependence cannot
be neglected as the default of some company influences the companies that
depend in some way on the defaulted company. Just that this is very difficult
to model. The mixture models find another way to express dependence.

2.2 Mixture Models

With these mixture models it is possible to model the default event without
knowing the dependence structure among companies. If a stochastic ’com-
mon factor’ is given, independence of the company defaults may be assumed
conditional on this factor. The common factor typically is an indicator for
the health of a country’s economy2.

The mixture model belongs to the static credit risk models. In these
models the loss of a portfolio in one year is estimated. Here it is not impor-
tant when a default happens, it is only cared if a company defaults. This is
modeled by a random variable indicating the default event3.

Consider N companies that are solvent today. Introduce the binary ran-
dom variable Xi for each company i = 1, . . . , N as a default indicator. If
Xi = 1 then company i defaults within the next year, else Xi = 0 and com-
pany i does not default. An assumption of the Bernoulli mixture model is
that the probability of default is a function of the common factor Z, so for
company i the probability of default is

P (Xi = 1|Z = z) = πi(z)

where πi : R 7→ [0, 1]. The even stronger assumption is that the probabilities
of default of the N companies are independent conditional on the common

2This chapter follows McNeil, Frey, Embrechts and Hult, Lindskog, Hammerlid, Rehn.
3The opposite models are dynamic models often used to evaluate credit derivatives.

In these models a stochastic process is used to model the portfolio value as it changes over
time.
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factor Z:

P (X = x|Z = z) =

N∏
i=1

P (Xi = xi|Z = z).

As X ∈ {0, 1}, it holds that

P (X = x|Z = z) =

N∏
i=1

πi(z)
xi(1− πi(z))1−xi . (2.3)

The formal definition is as follows:

Definition 2.1 Given the common factor (and random variable) Z, the N-
dimensional random vector X follows a Bernoulli mixture model with
factor Z if there are functions πi : R 7→ [0, 1], 1 ≤ i ≤ N , such that
the components of X are independent Bernoulli random variables satisfying
P (Xi = 1|Z = z) = πi(z).4

It is to emphasize that the PD is not πi(Z), as this is the probability of
default conditional on the economical indicator Z. Instead, the probability
of default PDi for company i has to be the same for all possible scenarios
for Z, and is thus given by

PDi = E[πi(Z)] =

∫ ∞
−∞

πi(z)fZ(z)dz

where fZ(z) is the probability density function of the common factor Z.

So it remains to specify the so-called mixing variable πi(z). Two ways
will be presented in the following: The first approach uses a Probit-link and
the common factor Z is Standard Normal-distributed. Here a score value
or a rating class can be used to influence πi(z). In the second approach a
Beta distribution is fitted to historical economical data, i.e. Z has a Beta
distribution.

2.2.1 Bernoulli Mixture Model without economical data:
Probit-Normal mixing distribution

If there is no reliable economical data available, the mixing variable πi(Z)
might be modeled with a Probit-Normal mixing distribution.

The mixing variable is defined as

πi(z) = P (Xi = 1|Z = z) = Φ(µ+ csi + σz) (2.4)

4Very close to in McNeil, Frey, Embrechts: Quantitative Risk Management, Definition
8.10.
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where Φ denotes the cumulative distribution function of the standard Normal
distribution, µ is the intercept, si is a score value, c and σ are weights
and Z ∼ N(0, 1). Note that the score of a customer with a high credit
worthiness must be a small value (and the score of a customer with a low
credit worthiness must be a high value) as Φ is strictly increasing. Inserting
equation (2.4) into equation 2.3 gives

P (X = x|Z = z) =
N∏
i=1

Φ(µ+ csi + σz)xi(1− Φ(µ+ csi + σz))1−xi

as conditional probability. The unconditional probability of default for com-
pany i is then again computed via integration over the common factor Z:

PDi = E[Φ(µ+ csi + σZ)] =

∫ ∞
−∞

Φ(µ+ csi + σz)φ(z)dz (2.5)

where φ denotes the probability density of the Standard Normal distribution.

Now we know how to compute the PD of a single company. But what
about the PD of a rating class? In the remaining part of this section, we
disregard the single companies and study rating classes instead. Therefore
the companies are grouped by their score value into rating classes.

Assume that there are k different rating classes. Define the mixing vari-
able for each rating class as

πr(z) = Φ(µr + σz) for r = 1, . . . , k (2.6)

where µr is the intercept for rating class r. Further, Φ is the Standard Normal
probability distribution function and σ > 0 is again a scaling parameter.

The unconditional probability of default for a company in rating class r
is then

PDr = E[Φ(µr + σZ)] =

∫ ∞
−∞

Φ(µr + σz)φ(z)dz (2.7)

Now we want to know the probability that M companies default. Write
nr for the number of companies in rating class r and let Mr be a random
variable for the number of defaulted companies in rating class r. By inserting
equation (2.6) into equation (2.3), we obtain for the conditional probability
on Z that m = m1, . . . ,mk firms in the rating classes r = 1, . . . , k default:

P (M = m|Z = z) =
k∏
r=1

(
nr
mr

)
Φ(µr + σz)mr(1− Φ(µr + σz))nr−mr . (2.8)

The binomial coefficient in (2.8) arises because Mr is the sum of nr Ber-
noulli(Φ(µr + σz)) random variables. The point here for the appearance of
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the Binomial(nr, Φ(µr +σz)) distribution is that the conditional probability
of default is the same for the companies within one group. Also the uncon-
ditional probability can be computed; for a rating class r the unconditional
probability that exactly m = mr out of n = nr credits default is

P (M = m) =

∫ ∞
−∞

(
n

m

)
Φ(µr + σz)m(1− Φ(µr + σz))n−m · φ(z)dz.

Now we know how to compute both the PD of single companies and rating
classes. What remains is to find the parameters µ, c or µr and σ. These can
be computed by Maximum Likelihood (ML) Estimation. Therefore recall
that the ML estimator Θ̂ is given by

Θ̂ = argmaxΘ

k∏
r=1

fY ;Θ(Yr)

where fY ;Θ is the density function of the random variable Y as a function
of Θ. Back to the the actual problem with µr and σ in (2.8). Since the
number of defaults Mr within a rating class is dependent on the outcome of
the random variable Z, we are dealing with the joint density fM,Z;µ,σ of the
random vector M and the random variable Z. The bivariate density can be
factored as

fM,Z;µ,σ = fM |Z;µ,σ · fZ

where fZ is the standard Normal density. If there is data on the number
of companies within a rating class and the number of defaulted companies
within the rating class from the years t = 1, . . . , T available, the density
fM |Z;µ,σ of M conditional on Z is

fM |Z;µ,σ(nt,r,mt,r, zt) = P (Mt,r = mt,r|Zt = zt)

=

(
nt,r
mt,r

)
Φ(µr + σzt)

mt,r(1− Φ(µr + σzt))
nt,r−mt,r .

Here the number of companies n = (nt,r) and the number of defaulted com-
panies m = (mt,r) in rating class r at time t is given and in matrix form. M
is a random matrix.

Then the preliminary Likelihood function for the rating classes becomes

Lprelim. = argmaxµ,σ
T∏
t=1

k∏
r=1

(
nt,r
mt,r

)
Φ(µr + σzt)

mt,r

(1− Φ(µr + σzt))
nt,r−mt,r · φ(zt).
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Preliminary because this function still depends on the outcome of Z. Getting
rid of the dependence on the outcome of Z leads us to the final Likelihood
function:

L = argmaxµ,σ

∫ ∞
−∞

. . .

∫ ∞
−∞

T∏
t=1

k∏
r=1

(
nt,r
mt,r

)
Φ(µr + σzt)

mt,r

(1− Φ(µr + σzt))
nt,r−mt,r · φ(zt)dz1 . . . dzT .

Assuming that Z1, . . . , ZT is not only Standard Normal but also independent
gives the nicer expression

L = argmaxµ,σ
T∏
t=1

∫ ∞
−∞

k∏
r=1

(
nt,r
mt,r

)
Φ(µr + σzt)

mt,r

(1− Φ(µr + σzt))
nt,r−mt,r · φ(zt)dzt

for the Likelihood function. To simplify further, the log-Likelihood function
is

LL = argmaxµ,σ
T∑
t=1

log(

∫ ∞
−∞

k∏
r=1

(
nt,r
mt,r

)
Φ(µr + σzt)

mt,r

(1− Φ(µr + σzt))
nt,r−mt,r · φ(zt)dzt) (2.9)

and it can easily be solved using R or some other software. Finally, we have
the parameters needed to compute the PD from equation (2.7) (for the PD
from (2.5) the LL function is computed analogously).

2.2.2 Bernoulli Mixture Model with Economical Data:
Beta Mixing Distribution

The common factor Z is of great importance in the mixture models as condi-
tional on just this factor, independence of the defaults is assumed. McNeil,
Frey and Embrechts refer to the book by Duffie and Singleton who found a
negative correlation between GDP growth rates and default rates. As the re-
garded portfolio consists of credits given to German customers, the German
GDP growth rates5 will be studied in Section 4.3.

In general, the common factor is some economical indicator which is
denoted by the random vector Z. In the Bernoulli mixture model with a
Beta mixing distribution Z is assumed to be Beta(a,b) distributed. Then
the density of Z is

g(z) =
1

β(a, b)
za−1(1− z)b−1 for z ∈ (0, 1), a, b > 0

5Published by Eurostat, see appendix C.
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where

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0
za−1(1− z)b−1dz, for a, b > 0

and Γ(·) denotes the Gamma function. Further, the expected value and the
variance are given by

E[Z] =
a

a+ b
and Var(Z) = E[Z]

b

(a+ b)(a+ b+ 1)
. (2.10)

If, in practice, there is historical data on the economical indicator avail-
able, both the expected value and the variance can be computed. From the
equations in (2.10) we get

a =
bE[Z]

1− E[Z]
and b =

E[Z]

Var(Z)
+ E[Z]− 1 (2.11)

and with the condition that

0 <
V ar(Z)

1 + V ar(Z)
< E[Z] < 1 (2.12)

it is fulfilled that a > 0 and b > 0. For more details see appendix B.

Now we have a distribution for Z. The mixing variable πi(Z) denoting
the probability of default conditional on Z for company i is now

P (Xi = 1|Z = z) = πi(z) = z

where Z ∼ Beta(a, b).
For the unconditional probability of default p we obtain

p = E[πi(Z)] = E[Z] =
a

a+ b
.

Let now M = X1 + . . . + Xn. Then the probability of the default of m
out of n companies given the information z is

P (M = m|Z = z) =

(
n

m

)
zm(1− z)n−m

and the unconditional probability of the default is

P (M = m) =

∫ 1

0

(
n

m

)
zm(1− z)n−m 1

β(a, b)
za−1(1− z)b−1dz

=

(
n

m

)
1

β(a, b)

∫ 1

0
zm+a−1(1− z)n−m+b−1dz

=

(
n

m

)
β(m+ a, n+ b−m)

β(a, b)
.
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Chapter 3

Data Base

Since one customer often has more than one credit, it makes more sense
to regard loan commitments instead of single credits. Such a commitment
groups several credits of one customer or it groups several credits of several
customers that are related in some financial way. The advantage of using
commitments instead of several credits for each customer is that if an obligor
defaults, just the commitment has to be marked as defaulted.

The data set that will be used has been copy/pasted, changed, shifted
and multiplied by my favorite (random) numbers. So the data does no longer
represent the Debeka Bausparkasse AG’s data. By using the changed data
set the results from the three different models can be compared. The only
thing that was kept the same is the low number of data points and the time
period from 2008/03 to 2013/01 (but the number of commitments in a time
step has been changed sometimes).

Historical Default frequency. To compute the historical default fre-
quency, the historical data of the commitments is studied. The aim is to
estimate the one-year PD. First all the historical one-year default frequencies
are calculated, that is, from January to January, from February to February,
... evaluate the quotient

# defaulted commitments between time t− 12 and t
# commitments

,

where t = 2008/03, . . . , 2013/01. The number of commitments and the num-
ber of defaulted commitments relates to the number of commitments that
have already been valid and were non-defaulted loan contracts at time t−12
[11]. The historical default rate based on commitments can be seen in Fig-
ure 3.1.
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Figure 3.1: Historical default rate based on commitments. The straight line
is the average PD of 0.0249.

Scores and Rating classes. In Figure 3.2 the distribution of the credit
commitments’ score values is shown.
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Figure 3.2: Score values.
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The scores are now grouped into the rating classes by R’s kmeans algo-
rithm. At first we have to determine how many rating classes we want to
obtain. Say we want to have the legal minimum of 8 rating classes. Here
we have one rating class reserved for the defaulted credits that must not be
part of the clustering. Observe that we want to find the historical default
frequencies for the seven other rating classes and therefore we cannot sepa-
rate the defaulted credits from the healthy ones. Second, we must assume
that the credit scores that were obtained cover all the seven rating classes
for solvent commitments.

So we run the kmeans algorithm in R on seven clusters. We run the
algorithm for a couple of times as it only gives local minima and we choose
the lowest local minimum.

The distribution of the commitments into the rating classes is as in Ta-
ble 3.1. We observe a nicely shaped distribution of the commitments into
the clusters. The calculated default frequencies tend to increase with the
rating class. This coincides with other empirical studies that have already
shown that the default rate increases when credit worthiness decreases1.

Table 3.1: Credit commitments in 7 clusters. Second row: Cluster mean.
Third row: Distribution into the clusters. Fourth row: Default frequency.

Rating class 1 2 3 4 5 6 7
Cluster mean 41.65 28.82 17.71 10.75 2.16 -4.49 -22.77

Fraction (in %) 2.38 6.90 15.97 25.28 29.59 16.59 3.31
Default freq. (in %) 0.00 1.00 0.43 1.91 4.31 3.74 8.33

Based on the values in Table 3.1, the model fitting can begin.

1Frankfurt School of Finance and Management, Working Paper No. 179: Ratingver-
fahren: Diskriminanzanalyse versus Logistische Regression
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Chapter 4

Testing the Models on Data

Using the fictional data presented in the previous chapter we can start testing
the introduced models. First the calibration curve is calculated giving default
rates for all rating classes. Then the mixing models are tested as well.

4.1 Calibration Curve

The calibration curve is a simple way of obtaining default probabilities from
historical default frequencies. It is intended to be used if there are score
values or rating classes available. Now rating classes are used.

We use the empirical default frequencies and the weights from the previ-
ous chapter to solve the optimization problems (P1) and (P2). In Table 4.1
and in Figure 4.1 the input values and results are displayed. The calibration
curve fitted with the linear optimization problem gives the more extreme fit.

Table 4.1: Estimated default probabilities for the calibration curve and the
empirical default frequency (DF) that was used to calibrate the curve.

Rating class 1 2 3 4 5 6 7
Emp. DF(%) 0.00 1.00 1.00 1.91 4.31 4.31 8.33
(P1)-PD(%) 0.42 0.69 1.15 1.91 3.17 5.26 8.72
(P2)-PD(%) 0.59 0.90 1.37 2.10 3.21 4.90 7.49

For the VaR calculations we will only use the result from (P1) as the
estimated default probability is higher than the empirical default frequency
in rating classes with a large expected number of defaults.
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Figure 4.1: Default probabilities in dependence of rating classes. The his-
torical default frequencies are displayed as circles. The dashed calibration
curve corresponds to the optimization problem (P1) and the continuous line
corresponds to the quadratic optimization problem (P2).

4.2 Probit-Normal Mixing Distribution

When using the normal mixture model, the input data is two matrices:

ntr is the number of commitments at time t in rating class r,

mtr is the number of defaulted commitments at time t in rating class r,

where t = 2009/03, . . . , 2013/01 and r = 2, . . . , 7 (as no defaults occur in rat-
ing class 1). These matrices are plugged into the log-likelihood function (2.9)
and solved in R.

The estimated PD as in equation (2.7) in the Bernoulli mixture model
with a normal mixing distribution has been calculated and can be seen in
Table 4.2 as PDoutput. As the minimum PD for any rating class is 0.03%,
and since the PDs should be increasing with the rating class, the PDs that
result from the model are adjusted to the PD in Table 4.2.
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Table 4.2: The normal mixture model. PDoutput: the PDs for the rating
classes estimated by the model. PD: the adjusted PDs s.t. the minimum
PD is 0.03% and s.t. the PDs are nondecreasing with increasing rating class.

Rating class 1 2 3 4 5 6 7
PDoutput (%) - 0.00 0.90 2.07 6.33 4.62 0.01

PD (%) 0.03 0.03 0.90 2.07 6.33 6.33 6.33

4.3 Beta Mixing Distribution

As there seems to be a connection between a country’s GDP and the default
rate of its companies (as suggested by Duffie and Singleton), a function of
the German GDP will serve as common factor. The historical German GDP
per capita in Euro is displayed in the upper plot of Figure 4.2. The data is
now transformed:

Let GDPt be the value of the GDP in year/month t = 2008/03, . . . ,
2013/01. Then introduce

LGDPt = log

(
GDPt

GDPt−12

)
for t = 2009/03, . . . , 2013/01.

The result is displayed in the lower plot of Figure 4.2.
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Figure 4.2: Upper plot: historical German GDP per capita in Euro from
2008/03 to 2013/01. Lower plot: German log-GDP-growth rates.
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Because the Beta distribution does only take positive values, we have
to transform the LGDP values, i.e. we have to find a function τ such that
τ(LGDP ) 7→ [0, 1]. A general function is

τ(LGDP ) = Φ(σ(LGDP − µ))

where Φ denotes the cumulative distribution function of the Standard Nor-
mal distribution. Then the parameters σ and µ have to be found.

Here we use the historical frequencies within the rating classes. We
want to determine the parameters σr and µr for each rating class such that
Φ(σr(LGDPt − µr)) is the same as the empirical default frequency DFr,t in
rating class r at time t. Therefore solve for each rating class r

min

2013/01∑
t=2009/03

(DFrt − Φ(σr(LGDPt − µr)))2 .

In Figure 4.3 a histogram of the common factor Zr = Φ(σr(LGDP − µr))
is shown along with the fitted beta distribution for the rating classes 5 to
7. For rating class 1 this method can not yield any proper results as the
empirical default frequency is zero. In the following we therefore assume a
deterministic default probability of 0.03% for rating class 1.

Table 4.3 contains the parameter estimates ar and br for the beta dis-
tribution along with the estimate of PDOutput = E[Zr] = ar

ar+br
. With

these parameters it is possible to simulate the mixing variable πr(Z) = Z
where Z is Beta-distributed and r is the rating class. Alternatively, if we
have an estimate of the future GDP, we can also use the representation of
Zr = Φ(σr(LGDP − µr)) along with the parameters µr and σr to obtain a
deterministic PD for each rating class. The parameters µr and σr are also
given in Table 4.3.

Table 4.3: The beta mixture model. PD is the adjusted PD s.t. the minimum
PD is 0.03% and s.t. the PDs are nondecreasing with increasing rating class.

Rating class 1 2 3 4 5 6 7
Parameter a - 291.24 0.38 29.29 3.02 3.78 54717
Parameter b - 56056 84.82 1895 81.41 114.71 1274054
Parameter µ - -4.14 -0.23 -1.01 -0.25 -0.30 -27.44
Parameter σ - -0.62 -11.45 -2.11 -6.72 -5.97 -0.06
PDOutput (%) - 0.52 0.45 1.52 3.58 3.19 4.12

PD(%) 0.03 0.52 0.52 1.52 3.58 3.58 4.12
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Figure 4.3: Histograms of the common factor along with the fitted Beta-
distribution.
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4.4 Estimates for Expected Loss and Value-at-Risk

Now that we have estimates for the PD in all models we can compute the
Expected Loss and we can simulate the Value-at-Risk.

In order to compare the PDs resulting from the various models, see Ta-
ble 4.4. In Table 4.5 the PDs that are used for the EL and VaR calculations
are shown. These PDs respect the minimum PD of 0.03% according to the
SolvV and that the PD should be nondecreasing with increasing rating class.
Further, the latter table shows the

EL =

n0∑
i=1

EADi · LGDi · PDi

estimate, where i = 1, . . . , n0 are the credits in the current time period. PDi

is given by the estimates of the PD values in Table 4.5 and depends on the
rating class.

Table 4.4: Historical default frequencies and estimated unconditional default
probabilities for the three models given in percentage.

Rating class 1 2 3 4 5 6 7
emp. DF 0.00 1.00 0.43 1.91 4.31 3.74 8.33

Calibration 0.42 0.69 1.15 1.91 3.17 5.26 8.72
Normal mixture - 0.00 0.90 2.07 6.33 4.62 0.01

Beta mixture - 0.52 0.45 1.52 3.58 3.19 4.12

Table 4.5: Estimated unconditional default probabilities for the three models
given in percentage and EL in EUR.

Rating class 1 2 3 4 5 6 7 EL
Calibration 0.42 0.69 1.15 1.91 3.17 5.26 8.72 107086

Normal mixture 0.03 0.03 0.90 2.07 6.33 6.33 6.33 86878
Beta mixture 0.03 0.52 0.52 1.52 3.58 3.58 4.12 56334

For the VaR estimate we have to run several simulations. We calculate
5000 values for

L =

n0∑
i=1

EADi · LGDi ·Xi,

where Xi is Bernoulli-distributed with probability given by the model we
want to use and depending both on the random factor Z and on the rating
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class of the credit i. Then we can evaluate

V aRp = Lb5000pc+1,5000

for p = 0.01 and p = 0.05. The VaR estimates from the three models are
shown in Table 4.6. For the code, see appendix D.

Table 4.6: VaR estimates.1

V aR0.01 V aR0.05

Calibration 765211 643799
Normal mixture 740537 643799

Beta mixture 650416 446559

The VaR estimates are not the way we would expect. If we take a look
at Tables 3.1 and 4.5, about 70% of the data is in the rating classes 4, 5
and 6, and for all these rating classes the estimated PD from the calibration
curve is lower than the estimated unconditional PD from the Normal model.
But the observation V aRCalibration0.01 > V aRNormal0.01 can be explained by the
data set: most of the credits that are large in volume are in the upper rating
classes 1 to 3 and here, the estimated PD from the calibration curve is higher
than the estimated unconditional PD from the Normal model.

The Beta model yields reasonable VaR estimates given the estimated
unconditional PDs.

4.5 Scenario Analysis

The Beta mixture model can easily be used for a scenario analysis on GDP
growth rates. We want to use the representation Zr = Φ(σr(LGDP − µr))
which, given a fixed value for LGDP , then gives a deterministic default
probability for rating class r.

Let therefore G be the expected one-year GDP growth rate, e.g. G = 0.03
which corresponds to an expected GDP growth rate of 3%. First we have to
calculate the LGDP value that is used. The relation is LGDP = log(1+G).
Together with the parameters µr and σr for each rating class (see Table 4.3)
the one-year VaR estimates can be calculated. For the scenarios that the
GDP growth rate is −3%, 0% and +3%, the VaR estimate is displayed in
Table 4.7.

1There is no error in the values for V aR0.05.
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Table 4.7: VaR estimates from the Beta mixture model with different sce-
narios.

GDP growth -3% 0% +3%
V aR0.01 666642 657109 648892
V aR0.05 505454 465335 440913

We observe that the VaR estimates for the different scenarios are as
we would expect them to be. If the GDP growth rate is negative the VaR
estimates increase and if the GDP growth rate is positive, the VaR estimates
decrease. Also the VaR estimate obtained by the Beta model from Table 4.6
suits this picture: The historical GDP growth rate is most often positive
(see Figure 4.2) and therefore it is reasonable that the previous estimate is
somewhere close to the scenario where the GDP growth rate is positive.

Considering Figure 4.4, it can be said that an increase of +3% of the
GDP results for this data set in at least a 1%-decrease for V aR0.01.
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Chapter 5

Conclusion

We have seen that there are various ways to calculate default probabilities.
The method of the calibration curve is a simple model that assumes inde-
pendence among defaults. The more sophisticated the mixture models are
closer to reality as they allow default dependence. However, this dependence
could easily be modeled by the common factor.

All the models work on rating classes and they could theoretically be
used on score values instead (this would correspond to more rating classes).
However, in practice there will be limitations on the amount of data such
that the models work better with rating classes.

The calibration curve is the most simple model of the presented ones. But
it is also the model with the lowest amount of input data: Just the rating
classes and the corresponding historical default frequencies were used.

The Bernoulli models both take the total amount of companies and the
amount of defaulted ones at different times into account. The Beta mix-
ture model even takes GDP growth rates as input Data. This makes the
Beta mixture model somewhat superior to the Normal mixture model, if we
accept the assumption that the GDP growth rate and the default rate are
correlated1.

The problem is, however, that we now have three different estimates
for the Value-at-Risk. On the one hand they are justified by the way the
PDs emerged. On the other hand we do not know which PDs are the best
estimates. This problem can only be solved by the permanent collection of
data. This way we can update the estimates for the PDs on the basis of more
data and we can also check the quality of today’s PD and VaR estimates by
backtesting.

We can conclude that we have to wait for the future to find out which
model describes reality best.

1The historical default frequencies of the fictional data set used in this version is just
slightly positive correlated with the GDP growth rate. But for these theoretical purposes
we can be ok with the assumption.
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Appendix A

Conditional PD according to
Section 87 SolvV

The conditional PD is given by

PDcond = Φ

(
(1− ρ)−0.5 · Φ−1(PDest) +

(
ρ

1− ρ

)0.5

· Φ−1(0.999)

)

= Φ

(
Φ−1(PDest) +

√
ρΦ−1(0.999)

√
1− ρ

)
(A.1)

where PDest is the PD that is estimated in this thesis and ρ is a value for
the correlation with the economical factor (see Section 89 SolvV). Φ(·) is the
cumulative Standard Normal distribution function and Φ−1 is its inverse. In
the following it will very briefly be described how this formula arises. For
more (complete) information on the following the book Quantitative Risk
Management by McNeil et al. [18] is recommended.

First, let Y ∈ {0, 1}n be the default indicator (i.e. Yi = 1 if company i
defaults).

Let the n-dimensional random vector X follow a factor model1, that is
X =

√
ρF +

√
1− ρε where ρ is a (correlation) parameter, F ∼ N(0, 1) is a

random vector of common factors and ε is a standard normally distributed
random vector with independent components and it is independent from F .

Let then (X, d) be a threshold model2. We only explain what is needed:
That is, if X is any n-dimensional random vector of asset returns or asset
values and if d is an n-dimensional vector of deterministic values that are
the threshold values, then this simple threshold model indicates the default
of company i if Xi < di. Hence we have

Xi < di ⇐⇒ Yi = 1.

1See Definition 3.33 in [18].
2See Definition 8.4 in [18].
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Now the random vectors X and Y follow a Bernoulli mixture model (see
Chapter 2)3 if conditional on the one-dimensional common factor Ψ, their
components are independent Bernoulli and satisfy

P (Yi = 1|Ψ = ψ) = P (Xi < di|Ψ = ψ) = pi(ψ)

Set Ψ = −F and we obtain for the conditional probability

X|Ψ=ψ = −√ρψ +
√

1− ρε ∼ Φn(−√ρψ,
√

1− ρ2
I).

Where I is the n × n identity matrix. The covariance matrix happens to
be a diagonal matrix as the components of ε are independent and standard
normally distributed.

Therefore for each company i,

pi(ψ) = P (Xi < di|Ψ = ψ) = Φ

(
di +

√
ρψ

√
1− ρ

)
.

Now we still need a value for the threshold di. Here comes the estimated
PD for company i into the equation. The threshold will be the quantile
value of the estimated PD, so di = Φ−1(PDest

i ). Using the same technique
for the common factor ψ, a large value for the common factor is used: ψ =
Φ−1(0.999) ≈ 3.09.

So the conditional PD as in (A.1) could be explained. In the SolvV,
Section 90, the minimum and maximum value of the correlation is given, ρ ∈
[0.12, 0.24] for corporate credits. In the left plot of Figure A.1 the conditional
PD as a function of the estimated PD is shown. In the right plot of the same
figure, the difference of conditional minus estimated PD, that goes into the
calculation of the risk weight (1.1), is displayed. Let us call that difference
PDD. We observe that the function PDD(x) = PDcond(x) − PDest(x) on
the right hand side attains its maximum value at 27%. Further we can see
that the estimated default probabilities that are less than 45% are adjusted
to the larger PDD whereas estimated default probabilities that are bigger
than 45% are diminished. This observation should be kept in mind whenever
a rating system is implemented and its default probabilities are assessed.

3Alternatively see Definition 8.10 in [18].
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Figure A.1: Left plot: conditional PD in dependence of the estimated PD
(x-axis). The correlation parameter was chosen to be 0.18. Right plot: Dif-
ference of conditional PD and estimated PD with identity function.
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Appendix B

Beta Distribution

The Beta-distribution depends on two parameters and it takes values on the
interval [0, 1]. It is a continuous distribution. Let Z ∼ Beta(a, b).

Density. The density of Z is given by1

f(z) =
1

β(a, b)
za−1(1− z)b−1 for z ∈ (0, 1), a, b > 0,

where the gamma function appears in β(a, b):

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0
za−1(1− z)b−1dz, for a, b > 0.

Recall that for the Gamma function it holds that Γ(a + 1) = a · Γ(a). The
density for different parameters (a, b) can be viewed in Figure B.1.

Expected Value.

E[Z] =

∫ 1

0
z · 1

β(a, b)
za−1(1− z)b−1dz =

1

β(a, b)

∫ 1

0
za(1− z)b−1dz

=
β(a+ 1, b)

β(a, b)
=

Γ(a+ b)

Γ(a)Γ(b)
· Γ(a+ 1)Γ(b)

Γ(a+ 1 + b)

=
Γ(a+ b)

Γ(a)
· aΓ(a)

(a+ b)Γ(a+ b)
=

a

a+ b
(B.1)

Variance

Var(Z) = E[Z2]− E[Z]2

1See also: Hult, Lindskog, Hammerlid, Rehn, p. 322.
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Figure B.1: The density of the Beta(a, b) distribution for parameters (2, 8)
(solid line), (1.5, 8) (dashed line) and (2, 4) (dotted line).

With

E[Z2] =

∫ 1

0
z2 · 1

β(a, b)
za−1(1− z)b−1dz =

1

β(a, b)

∫ 1

0
za+1(1− z)b−1dz

=
β(a+ 2, b)

β(a, b)
=

Γ(a+ b)

Γ(a)Γ(b)
· (a+ 1)aΓ(a)Γ(b)

(a+ b+ 1)(a+ b)Γ(a+ b)

=
a(a+ 1)

(a+ b+ 1)(a+ b)
,

this gives

Var(Z) =
a(a+ 1)

(a+ b+ 1)(a+ b)
− a2

(a+ b)2

=
ab

(a+ b)2(a+ b+ 1)
= E[Z]

b

(a+ b)(a+ b+ 1)
. (B.2)
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Calculating a and b from E[Z] and Var(Z). From the equation for the
expected value (B.1) we get

E[Z] =
a

a+ b
⇐⇒ a =

bE[Z]

1− E[Z]
.

Assume for now that b > 0. To fulfill a > 0, it is essential that 0 < E[Z] < 1.
Then check that indeed b > 0; equation (B.2) gives:

Var(Z) = E[Z]
b

(a+ b)(a+ b+ 1)
= E[Z]

b

( bE[Z]
1−E[Z] + b)( bE[Z]

1−E[Z] + b+ 1)

=
bE[Z]

b(b+ 1− E[Z])
=

E[Z]

b− E[Z] + 1
,

and solving for b yields

b =
E[Z]

Var(Z)
+ E[Z]− 1.

b is positive if

E[Z] >
V ar(Z)

1 + V ar(Z)︸ ︷︷ ︸
>0

.

As we know, the sample mean Z̄ = 1
n(Z1 + . . . Zn) → E[Z] as n → ∞ for

some sample {Z1, . . . , Zn}. So given the sample mean z̄ and the variance
s2 of some empirical data, the parameters a > 0 and b > 0 for the beta
distribution can be computed if

0 <
s2

1 + s2
< z̄ < 1.



50 APPENDIX B. BETA DISTRIBUTION



Appendix C

Historical German GDP Data

The Data on Germany’s GDP can be found on the homepage of Eurostat
(epp.eurostat.ec.europa.eu/portal/page/portal/national_accounts/data/
database)1. It is displayed in Table C.1.

1Accessed on May 28th, 2013. Title: Vierteljährliche Volkswirtschaftliche Gesamtrech-
nungen BIP und Hauptkomponenten - Jeweilige Preise (namq_gdp_c).
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Table C.1: German GDP per capita in Euro. Observe that the values in
February, May, August and and November were given whereas the GDP for
the other months was calculated by linearization.

month 200803 200804 200805 200806 200807 200808 200809
GDP 7600 7600 7600 7567 7533 7500 7467

month 200810 200811 200812 200901 200902 200903 200904
GDP 7433 7400 7300 7200 7100 7133 7167

month 200905 200906 200907 200908 200909 200910 200911
GDP 7200 7233 7267 7300 7333 7367 7400

month 200912 201001 201002 201003 201004 201005 201006
GDP 7400 7400 7400 7467 7533 7600 7633

month 201007 201008 201009 201010 201011 201012 201101
GDP 7667 7700 7700 7700 7700 7767 7833

month 201102 201103 201104 201105 201106 201107 201108
GDP 7900 7900 7900 7900 7933 7967 8000

month 201109 201110 201111 201112 201201 201202 201203
GDP 7967 7933 7900 7933 7967 8000 8033

month 201204 201205 201206 201207 201208 201209 201210
GDP 8067 8100 8100 8100 8100 8100 8100

month 201211 201212 201301
GDP 8100 8133 8167



Appendix D

Simulation of Value-at-Risk in
R

# Model : Ca l i b ra t i on Curve
##########################

PD=c (0 . 0041 , 0 .0069 , 0 .0115 , 0 .0191 , 0 .0317 , 0 .0526 , 0 .0872)
L=numeric (5000)
f o r ( l in 1 : l ength (L) ){

f o r ( i in 1 : n0 ){
P=rbinom (1 ,1 ,PD[ f ind_rat ing_c la s s ( Score [ i ] ) ] )
L [ l ]=L [ l ]+EAD[ i ]∗LGD[ i ]∗P

}
}
VaR01 [ v]= quan t i l e (L , probs=c ( 0 . 9 9 ) , na . rm=FALSE, names=TRUE)
VaR05 [ v]= quan t i l e (L , probs=c ( 0 . 9 5 ) , na . rm=FALSE, names=TRUE)

# Model : Normal Mixture
#######################

mu=c (0 ,0 , −2.37 , −2.039 ,−1.53 , −1.53 ,−1.53 )
sigma=−0.000997
L=numeric (5000)
PD_temp=numeric (7 )
f o r ( l in 1 : l ength (L) ){

Z=rnorm (1)
f o r ( r in 3 : 7 ) {

PD_temp[ r ]=pnorm(mu[ r ]+sigma∗Z)
}
PD_temp[1 ]=0 .0003
PD_temp[2 ]=0 .0003
f o r ( i in 1 : n0 ){

P=rbinom (1 ,1 ,PD_temp[ f ind_rat ing_c la s s ( Score [ i ] ) ] )
L [ l ]=L [ l ]+EAD[ i ]∗LGD[ i ]∗P

}
}
VaR01 [ v]= quan t i l e (L , probs=c ( 0 . 9 9 ) , na . rm=FALSE, names=TRUE)
VaR05 [ v]= quan t i l e (L , probs=c ( 0 . 9 5 ) , na . rm=FALSE, names=TRUE)

53



54 APPENDIX D. SIMULATION OF VALUE-AT-RISK IN R

# Model : Beta Mixture
#####################

a=c (0 , 291 , 291 , 29 .29 , 3 . 02 , 3 . 02 , 54717 )
b=c (0 , 56056 , 56056 , 1895 .89 , 81 .41 , 81 .41 , 1274054)
L=numeric (5000)
PD_temp=numeric (7 )
f o r ( l in 1 : l ength (L) ){

f o r ( r in 2 : 7 ) {
PD_temp[ r ]= rbeta (1 , a [ r ] , b [ r ] )

}
PD_temp[1 ]=0 .0003
f o r ( i in 1 : n0 ){

P=rbinom (1 ,1 ,PD_temp[ f ind_rat ing_c la s s ( Score [ i ] ) ] )
L [ l ]=L [ l ]+EAD[ i ]∗LGD[ i ]∗P

}
}
VaR01=quan t i l e (L , probs=c ( 0 . 9 9 ) , na . rm=FALSE, names=TRUE)
VaR05=quan t i l e (L , probs=c ( 0 . 9 5 ) , na . rm=FALSE, names=TRUE)
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