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Abstract

In this thesis it is shown how to measure the annual loss expectancy of computer
networks due to the risk of cyber attacks. With the development of metrics for
measuring the exploitation difficulty of identified software vulnerabilities, it is
possible to make a measurement of the annual loss expectancy for computer
networks using Bayesian networks. To enable the computations, computer net-
work vulnerability data in the form of vulnerability model descriptions, vulner-
able data connectivity relations and intrusion detection system measurements
are transformed into vector based numerical form. This data is then used to
generate a probabilistic attack graph which is a Bayesian network of an attack
graph. The probabilistic attack graph forms the basis for computing the an-
nualized loss expectancy of a computer network. Further, it is shown how to
compute an optimized order of vulnerability patching to mitigate the annual
loss expectancy. An example of computation of the annual loss expectancy is
provided for a small invented example network.
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Chapter 1

Introduction

Today information is increasingly being stored in electronic form on computers
and computer networks. With the onset of the world wide web, computers that
where once disconnected from each other are now globally connected through
the world wide web. This has meant huge efficiency increases in information
exchange and availability of information but has also meant that computer net-
works are more vulnerable to the security of information being attacked and
compromised. At the same time, more and more functions and services in the
society, some being very vital, both public and private, rely on computers and
computer networks to store their information. For both of these reasons, the
importance of information security in computer networks only grows.

Organizations of different kinds, such as government agencies, corporations
and financial institutions amass a great deal of confidential information. Own-
ers of information are concerned with protecting their information and informa-
tion systems from unauthorized access, modification, use, disclosure, disruption
and destruction. These goals can be formulated by the goal to protect the
confidentiality, integrity and availability of information, also known as the
CIA triad of information security. Confidentiality of information means that
the information is secure from disclosure to unauthorized individuals. Integrity
of information means that the information cannot be modified by unauthorized
users. Availability of information means that the information is available when
it is needed.

More formally, the protection of confidentiality, integrity and availability of
information in information technology has been defined in [1] as:

Confidentiality - The security goal that generates the requirement for pro-
tection from intentional or accidental attempts to perform unauthorized data
reads. Confidentiality covers data in storage, during processing, and while in
transit.

Integrity - The security goal that generates the requirement for protection
against either intentional or accidental attempts to violate data integrity (the
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property that data has not been altered in an unauthorized manner) or system
integrity (the quality that a system has when it performs its intended function
in an unimpaired manner, free from unauthorized manipulation).

Availability - The security goal that generates the requirement for protection
against intentional or accidental attempts to (1) perform unauthorized deletion
of data or (2) otherwise cause a denial of service of data.

The risks posed by cyber attacks, both from attackers on the internet and from
malicious insiders inside the internal network have been hard to measure and
for this reason organizations have had difficulties quantifying these risks [3, p.
13]. The aim of this thesis is to investigate how one can quantify the risks of
cyber attacks posed to computer networks and also quantitatively assess how
modifications of the computer network can decrease these risks in an efficient
manner.

1.1 How to measure the risk of cyber attacks on
a computer network

First, we have to define how to measure the risk of successful attacks on a
computer network. We use a measure that can be used directly in a cost benefit
analysis since it says how much money it’s worth to spend on IT security, the
Annualized Loss Expectancy, ALE [7, p. 32]:

ALE = SLE ∗ARO (1.1)

where SLE is the single loss expectancy and ARO is the annualized rate of
occurrence. Generally speaking, the SLE is, as the expression implies, a measure
of the expected monetary loss when a specific event occurs. The ARO is the
estimated expected number of times for this event to occur in a given year. In
our problem, the event is a certain kind of violation of the CIA of information
of a host in a computer network.

Let the function ALE(hi,j) define the annual loss expectancy from a certain
kind of violation j of the CIA of information on host hi. Let the event hi,j be a
random variable with a probability distribution that gives the probability that
the event will happen a certain number of times in a given year. Then the ALE
of the whole computer network is ALE(network):

ALE(network) =

n∑
i=1

m∑
j=1

ALE(hi,j) =

n∑
i=1

m∑
j=1

SLE(hi,j) ∗ E(hi,j) (1.2)

For us, to estimate this value we must first model the vulnerability of com-
puter networks from cyber attacks.
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Chapter 2

Theory on how to model
computer network
vulnerability

2.1 Modeling the vulnerability of computer net-
works

Due to the complexity of software it is difficult to guarantee that they don’t
contain any flaws. Any flaw in the software that can be used to compromise the
security of information by an intruder is a software vulnerability [9, p. 157]. In
this thesis we will refer to software vulnerabilities as vulnerabilities. In computer
security, the noun exploit is a piece of software, data, or sequence of commands
that make use of a software vulnerability to compromise the information security
of the host with the vulnerability. One particular meaning of the verb exploit,
from the Oxford Dictionaries [14] is make use of (a situation) in a way considered
unfair or underhand. In the context of computer security, an attacker exploits a
vulnerability to gain illegal privilege level on the vulnerable host he is attacking.
In computing, a privilege level defines the level of access to computer resources
on a host by an individual. Examples of more limited privilege levels include the
ability to view and edit files, modify system files, install and use programs or
ability to read a user’s credential. A credential is an attestation of authority to
individuals, giving an individual the right to access certain computer resources
on one or several hosts. The highest possible privilege level that an individual
can have to a hosts computer’s resources is given by the administrator privilege
level on Windows hosts and root privilege level on UNIX hosts.

An attacker gaining illegal privilege on a host is called privilege escalation
and can be measured in the degree of violation to the CIA of information [2].
When an attacker has enough privilege level to a host’s computer resources,
it can be used to attack other hosts that it is connected to. The locality of
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a vulnerability defines from which hosts it can be exploited. Vulnerabilities
that can be exploited from other hosts then the host where the vulnerability
exists are said to be remotely exploitable, whereas vulnerabilities that can
only be exploited from the host where the vulnerability exists are said to be
locally exploitable.

Therefore, to model the privilege level that an attacker can gain on the hosts
in a computer network, we need to know the data connectivity between hosts and
the vulnerabilities present on them and their characteristics. A comprehensive
network vulnerability model is made up of the following six components:

1. Hosts, a model of the hosts connected to the network and the set of vul-
nerabilities on each host

2. Vulnerabilities, a model of vulnerabilities

3. Vulnerable data connectivity relations, a model of the set of vulnerable
data connectivity relations between hosts

4. Attackers, a model of the attackers that try to gain illegal privilege levels
in the computer network

5. Attacks, a model of exploits that an attacker can use to attack vulnera-
bilities

6. IDS, a model of intrusion detection systems

2.1.1 Hosts

Hosts are identified by their network address, and consist of a list of vulnerabil-
ities. Services are software bound to ports that enable the software to send and
receive data to ports on other hosts [4, p. 23], [11, p. 61]. If the service has a
vulnerability, the vulnerability can be accessed and exploited on that port from
other hosts that have a data connectivity relation with that port [3, p. 21], [11,
p. 61, pp. 80-83], we will later return with a definition of a vulnerable data
connectivity relation in subsection 2.1.3. Remotely exploitable vulnerabilities
are therefore associated with a port number, defining from which other hosts the
vulnerability can be exploited. The network vulnerability model only consists of
vulnerabilities that are known, it is not possible to model vulnerabilities whose
existence are not known at the time of the network vulnerability analysis. As
Daniel Bihar states in [4, p. 15], known vulnerabilities are the main entry point
into computer networks, consequently it is not a meaningless task to model the
vulnerability of computer networks because there are unknown vulnerabilities
in computer networks. Attacks on unknown vulnerabilities are called zero day
attacks because network defenders have had zero days to apply a patch on the
vulnerability that is being attacked. In the context of cumputer network se-
curity, a patch is a piece of software that removes a vulnerability from that
software.
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Known vulnerabilities are identified by their CVE-identifier. These are is-
sued by the Common Vulnerabilities and Exposures (CVE) list, a meta vulner-
ability database which is independent from individual vulnerability databases,
maintained by the US government through the not-for-profit corporation MITRE
that manages US government funded research and development centers. CVE
was launched in 1999 and provides a common identifier for known vulnerabil-
ities which can be used across various vulnerability databases. This common
identifier facilitates easier searching and finding of information about common
vulnerabilities from different vulnerability databases and also gives each known
vulnerability a universally accepted name.

2.1.2 Vulnerabilities

The characteristics of a vulnerability are defined by the preconditions and post-
condition of the vulnerability.

Vulnerability preconditions are: The locality of the vulnerability and the set
of attack precondition privilege levels that enable the attack on the vulnerability
from a host.

Vulnerability postcondition is: The attack postcondition privilege level ob-
tained on the host with the vulnerability when the vulnerability has been suc-
cessfully attacked.

In the generic vulnerability description model, a vulnerability description is
defined as a set of 4-tuples:

Definition 2.1 (Generic vulnerability model description). Let H = {h0,
h1, . . . , hn} be the set of vulnerable hosts in a network that can potentially be tar-
geted by an attack in addition to the internet host h0. Let Vi,j be the vulnerability
description of vulnerability vli,j ∈ V L. Let V Li = {vli,1, . . . , vli,m} be the set of
vulnerabilities on vulnerable host hi ∈ H and let V L = V L1 ∪ V L2 ∪ . . . ∪ V Ln
be the total set of vulnerabilities in the network on all hosts H. Let the set of
vulnerability descriptions of all vulnerabilities vli ∈ V Li on host hi ∈ H be given
by Vi = Vi,1 ∪ Vi,2 ∪ . . . ∪ Vi,m and the total set of all vulnerability descriptions
of all vulnerabilities in a network be given by V = V1 ∪ V2 ∪ . . . ∪ Vn.

Let PT be the set of possible postcondition privilege levels that an attacker can
obtain when successfully attacking a vulnerability vl ∈ V L on a host h ∈ H and
let L = {local, remote} be the locality set, giving the locality of a vulnerability
vl ∈ V L. Let PS be the set of privilege levels on a host h ∈ H that enables an
attacker to attack a vulnerability vl ∈ V L from the host h ∈ H.

A generic vulnerability description Vi,j of vulnerability vli,j ∈ V L is modeled
as the 4-ary Cartesian product over the following 4 sets:

- the host hi ∈ H with the vulnerability vli,j ∈ V L, given by the one-element
set Hi = {hi ∈ H}

- the locality l ∈ L of the vulnerability vli,j ∈ V L, given by the one-element
set Li,j = {l ∈ L}
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- the set of attack precondition privilege levels PSi,j ⊆ PS that enable an
attacker to attack vulnerability vli,j ∈ V L from a host h ∈ H

- the attack postcondition privilege level, given by the one-element set PTi,j =
{pt ∈ PT} that an attacker obtains on host hi ∈ H when successfully ex-
ploiting vulnerability vli,j ∈ V L

In the generic vulnerability model, a vulnerability description Vi,j of vulnera-
bility vli,j ∈ V L is modeled as a Cartesian product over the sets Hi, Li,j , PSi,j
and PTi,j, it is a set of 4-tuples:

Vi,j = Hi × Li,j × PSi,j × PTi,j = {(hi, li,j , psi,j , pti,j) : hi ∈ Hi, li,j ∈
Li,j , psi,j ∈ PSi,j , pti,j ∈ PTi,j}

meaning that:

- the vulnerability vli,j ∈ V L is located on host hi ∈ H

- the vulnerability vli,j ∈ V L has locality li,j ∈ Li,j where the one-element
set Li,j = {l ∈ L}

- the vulnerability vli,j ∈ V L can be attacked with attack precondition priv-
ilege level psi,j ∈ PSi,j where PSi,j ⊆ PS from a host h ∈ H

- the vulnerability vli,j ∈ V L gives an attacker attack postcondition privilege
level pti,j ∈ PTi,j, where the one-element set PTi,j = {pt ∈ PT}, on host
hi ∈ H when exploited successfully

2.1.3 Vulnerable data connectivity relations between hosts

To know which vulnerabilities on other hosts an attacker can attack when an
attacker has obtained one of the attack precondition privilege levels ps ∈ PS
on a host hi ∈ H that enable an attack on other vulnerabilities, we need to
know the set of vulnerable data connectivity relations Ci of host hi ∈ H to
port numbers with vulnerabilities on other hosts hj ∈ H, hi ∈ H 6= hj ∈ H.
Data connectivity relations in general are not of interest to a computer network
vulnerability model since they don’t affect the vulnerability of the network to
computer attacks, therefore we only need to model vulnerable data connectivity
relations in the network vulnerability model. The set of vulnerable data con-
nectivity relations from host hi ∈ H is given by a set of triples [11, p. 60]:

Definition 2.3 (Set of vulnerable data connectivity relations from
host hi ∈ H). Let the set of vulnerable data connectivity relations from host
hi ∈ H be denoted by Ci and the total set of vulnerable data connectivity rela-
tions in a network be given by C = C1 ∪ C2 ∪ . . . ∪ Cn. Let the host hi ∈ H be
given by the one-element set Hi = {hi ∈ H}.

We define the set of vulnerable data connectivity relations Ci of host hi ∈ H
as a subset of the 3-ary Cartesian product over the 3 sets Hi, H \Hi and V L \
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V Li, it is a set of triples:

Ci ⊆ Hi×H\Hi×V L\V Li = {(hi, h, vl) : hi ∈ Hi, h ∈ H\Hi, vl ∈ V L\V Li}

meaning that host hi ∈ Hi has a vulnerable data connectivity relation to a port
on host h ∈ H \ Hi, where a remotely exploitable vulnerability vl ∈ V L \ V Li
can be targeted by an attack.

2.1.4 Attackers

The attackers are associated with a set of attacker states AS that they can
potentially obtain. The set of attacker states AS of the attackers tells us the
privilege level that the attackers can potentially obtain on each host in the net-
work. The set of possible attacker states AS of the attackers in a computer
network is given by a set of doubles.

Definition 2.4 (Set of possible attacker states). We define the set of pos-
sible attacker states AS as a subset of the two-ary Cartesian product over the
two sets H and PT, it is a set of doubles:

AS ⊆ H × PT = {(h, pt) : h ∈ H, pt ∈ PT}

meaning that an attacker has obtained the attack postcondition privilege level
pt ∈ PT on host h ∈ H.

2.1.5 Attacks

An attack is an event that is triggered when certain conditions in its environment
are met, the preconditions of the event. The event has a certain effect on its
environment, the postconditions of the event. Our network vulnerability model
contains the attributes of a computer network that are relevant for modelling
computer attacks. Attacks are defined by the preconditions and postcondition
of the vulnerability vlf,g ∈ V L that is being attacked. Thus if an attack ai ∈ Ai
targets target vulnerability vti ∈ V Ti on host hj ∈ H, the attack precondition
privilege level ps ∈ PS of attack ai ∈ Ai is the same as the attack precondition
privilege level ps ∈ PS of target vulnerability vti ∈ V Ti. In the same way, the
attack postcondition privilege level pt ∈ PT of the attack ai ∈ Ai on target
vulnerability vti ∈ V Ti is the same as the attack postcondition privilege level
pt ∈ PT of target vulnerability vti ∈ V Ti.

The preconditions and postcondition of an attack are:
Attack preconditions are: Attacker state (hi, ps) ∈ AS from where the attack

is launched, vulnerable connectivity relation ci ∈ Ci if the attack is launched
against a remote vulnerability and existence of vulnerability vlf,g ∈ V L on
attacked host hf ∈ H.

Attack postcondition is: Attacker state (hf , pt) ∈ AS gained on the attacked
host hf ∈ H when the vulnerability vlf,g ∈ V L has been successfully attacked
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[11, p. 70].
We define the set of possible attacks Ai from host hi ∈ H that can be

launched by an attacker by obtaining attack precondition privilege level ps ∈ PS
on host hi ∈ H as follows:

Definition 2.4 (Set of possible attacks from host hi ∈ H). Let Ai be the
set of possible attacks from host hi ∈ H and let A = A1 ∪ A2 ∪ . . . ∪ An be
the set of possible attacks in the whole network from all hosts H.

We define the set of possible attacks Ai launched from host hi ∈ H as a
subset of the 5-ary Cartesian product over the following 5 sets:

- the host hi ∈ H from where the attack is launched, given by the one-
element set Hi = {hi ∈ H}

- the set of attack precondition privilege levels PS on the host hi ∈ H that
enable an attacker to attack a vulnerability vl ∈ V L from the host hi ∈ H

- the set of target hosts HTi ⊆ H with a target vulnerability vti ∈ V Ti that
an attacker can attack from host hi ∈ H

- the set of target vulnerabilities V Ti ⊆ V L that an attacker can attack from
host hi ∈ H

- the set of attack postcondition privilege levels PT on the target host hti ∈
HTi that an attacker obtains when successfully attacking target vulnera-
bility vti ∈ V Ti on target host hti ∈ HTi

We define the set of possible attacks Ai from source host hi ∈ H as a subset
of the 5-ary Cartesian product over the 5 sets, Hi, PS, HTi, V Ti and PT, it
is a set of 5-tuples:

Ai ⊆ Hi×PS×HTi×V Ti×PT = {(hi, ps, hti, vti, pt) : hi ∈ Hi, ps ∈ PS,
hti ∈ HTi, vti ∈ V Ti, pt ∈ PT}

meaning that:

- an attack can be launched from host hi ∈ H where an attacker has attack
precondition privilege level ps ∈ PS on target vulnerability vti ∈ V Ti on
target host hti ∈ HTi

- the attack gives an attacker attack postcondition privilege level pt ∈ PT on
target host hti ∈ HTi when target vulnerability vti ∈ V Ti is successfully
attacked

Like vulnerabilities, attacks can be defined by their locality, defining if the
attack ai ∈ Ai is launched against a vulnerability vli,j ∈ V L on the same
host hi ∈ H or against a vulnerability vlf,g ∈ V L on another host hf ∈ H,
hf ∈ H 6= hi ∈ H.
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The attack postcondition privilege level pt ∈ PT of an attack ai ∈ Ai on a
host hi ∈ H can be the attack precondition privilege level ps ∈ PS of another
attack aj ∈ Aj from host hj ∈ H. By knowing the characteristics of vulner-
abilities, the preconditions required to exploit them, and the postcondition of
exploiting them, it becomes possible to chain possible attacks a ∈ A together
into a sequence of attacks that achieve a certain goal attacker state as ∈ AS.
This is the information that attack graphs represent.

2.1.6 Intrusion detection systems

An intrusion detection system (IDS) is a device that detects attacks ai ∈ Ai
in computer networks. The IDS produces alarms to the person monitoring
the security of the computer network, a security administrator when it makes
an estimate that an attack is ongoing and records the estimated number of
attempted attacks ai ∈ Ai from host hi ∈ H on a vulnerability vlj,k ∈ V L on
host hj ∈ H [11, p. 61].

IDS devices suffer from two flaws, one is that they don’t detect all attacks
that they are supposed to detect. A false negative is a failure of the IDS to
produce an alarm when an actual attack has taken place. The other flaw is that
an IDS sometimes produces an alarm when no real attack has taken place, this
is called a false positive. To estimate the true number of attempted attacks
ai ∈ Ai from host hi ∈ H on a vulnerability vlj,k ∈ V L on host hj ∈ H one
has to take into account both the number of false negatives that puts the IDS
estimate downward from the true number and the number of false positives
that puts the IDS estimate upward of the true number. The developers of IDS
devices are of course aware of both these flaws and we assume that they develop
IDS devices that come as close as possible to the true count so that these IDS
devices make the best estimates available.

We define the estimated historical average number of attacks in a given time
interval measured by an intrusion detection system of an attack ai ∈ Ai from
host hi ∈ H on a vulnerability vlj,k ∈ V L on host hj ∈ H as a function named
IDSf:

Definition 2.6 (Intrusion detection system values set IDSS). The func-
tion IDSf(x1, x2, y) where x1 ∈ N, x2 ∈ N, y ∈ N and N is the set of natural
numbers, gives the best estimated historical average number of attempted attacks
from host hx1 ∈ H on vulnerability vlx2,y ∈ V L on host hx2 ∈ H in a given
time interval. The estimate is made by an intrusion detection system. The set
of values of the function IDSf(x1, x2, y) that exist in a network is given by the
set IDSS.

2.2 Attack graphs

An attack graph is a directed graph that represents the dependency of attacks
that lead to a goal attacker state as ∈ AS [20, p. 3], [10, p. 10]. A directed
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graph is defined as [25, p. 41, p. 45]:

Definition 2.6 (Directed graph). A directed graph G = (V, D) consists of
a finite set of nodes V and a directed edge set D. For any two distinct nodes
α ∈ V and β ∈ V , the ordered pair (α, β) ∈ D if and only if there is a di-
rected edge from α to β. The edge set D therefore consists of ordered pairs of
nodes. Let V = α1, . . . , αd. The directed graph does not contain any directed
edges of the form (αj , αj) (that is a loop from the node to itself) and any edge
(αj , αk) ∈ D appears exactly once. That is, multiple edges are not permitted.

Based on the definition of a directed graph a general definition of an attack
graph can be given [16, p. 101]:

Definition 2.7 (Attack Graph). Given a set of attacks A and a set of condi-
tions C and two types of edge sets R ⊆ C ×A and S ⊆ A× C, an attack graph
G is a directed graph G(A ∪ C, R ∪ S) (A ∪ C is the set of nodes and R ∪ S
is the set of edges in the directed graph G). Condition nodes represent either
precondition or postcondition attacker states as ∈ AS, the whole set of attack
a ∈ A preconditions, or a single attack a ∈ A precondition in the set of attack
a ∈ A preconditions.

The goal attacker state as ∈ AS can for example be administrative access
on a particular host or access to a database. An attack graph can also show
all possible attacker states AS in the network, showing all possible attack post-
condition privilege levels pt ∈ PT of an attacker on all hosts in the network
by an attacker from outside the network [3, p. 2]. Xinming Ou stated in [10]
that there are two basic approaches of representing attack graphs, the network
state and the exploit dependency attack graph [10, p. 11]. Since then a third
has been proposed and developed by various researchers, a kind of attack graph
that we call the probabilistic attack graph.

2.3 Network state attack graphs

2.3.1 Modeling network vulnerability using model check-
ers

The initial approach in the research community to model the vulnerability of
computer networks was using model checking techniques. This method was
pioneered by Ritchey and Ammann in [9] [10, p. 7]. A model checker is a
tool that assists engineers to automatically and exhaustively identify individual
design flaws in a model of a system. Using off-the-shelf model checkers, the
researchers could avoid custom building special purpose tools for attack graph
generation [10, p. 15]. To check if the system has a flaw, the model is checked
whether it meets a correctness specification. The model is a state machine
defined by variables, initial values for the variables and a description of the
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conditions under which variables may change value. When the variables change
value they cause a state transition. The sum of all possible states of a state
machine is the state space.

The model can be automatically checked by a model checker against a cor-
rectness specification if the model has any flaws. The correctness specifications
are expressed in propositional temporal logic. The model checker performs an
exhaustive search through the state space to determine that each state satisfies
the correctness specification. If the correctness specification is not satisfied, the
model checker will give a counterexample execution, showing the sequence of
states that lead to the violation of the correctness specification [11, p. 3, p. 47],
[9, p. 158], [12, p. 256].

When modeling computer network vulnerability as a state machine, the
model typically looks similar to our model in section 2.2 [9, pp. 159-160], [11,
pp. 59-62]. The main action that triggers other variables to change value, caus-
ing a state transition, is an attacker launching new attacks a ∈ A. The main
variable that changes value after an attack is the set of attacker states AS of
an attacker, when a new attacker state as ∈ AS is added to an attacker’s set of
attacker states AS. The initial values for the variables is the initial attacker state
when the attack starts. For an external attack from the internet, the privilege
level will be set to none on all hosts in the network. Modeling attack’s by an
employee or other trusted individuals, starting privilege levels should be higher
on some hosts reflecting the person’s user privilege on those hosts [9, p. 160].

When applying model checking to a model of network security, the coun-
terexample execution is an attack path to a goal attacker state. The model
needs a failure definition defining which state constitutes a violation of the
correctness specification. The correctness property could be that an external
attacker can never get access to the file server, for example. When the model
checker visits a state where this property is false, the model checker outputs the
sequence of states from the initial state leading to the state that violates that
property. This represents an attack scenario for the network. Eventually a state
will be reached where the correctness property is false or will continue until no
more exploits can be employed, showing that there are no attack scenarios that
violate the given security property [9, p. 161].

2.3.2 How network state attack graphs are generated

In his PhD thesis on scenario graphs and attack graphs [11], Sheyner uses an
adapted model checking technique, a formalism known as a failure scenario
graph to model the vulnerability of computer networks. Unlike regular model
checker’s that give one failure scenario at a time that violate a given correctness
specification in the model, failure scenario graphs show all sequences of states
that lead to a violation of the correctness specification. A particular kind of
failure scenario graph is the network state attack graph. The network state
attack graph shows all possible attack paths to a particular goal attacker state.
This gives the user the ability to prioritize the problem fixing as appropriate.
The first formal treatment of attack graphs in [12] used this approach to define
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an attack graph [13, p. 217]. In the network state attack graph, the nodes
are the states of the network and the edges are the state transitions between
these states. In each state, an attacker’s set of attacker states is included as is
information on all other components of the network vulnerability model. Thus,
the privilege level of an attacker on all hosts in the network is represented in
each node.

2.3.3 Scalability and performance of network state attack
graphs

The network state attack graph suffers from serious scalability problems. For
example, Sheyner et al.’s work in [12] describe a network state attack graph
of a network with 5 hosts and 8 types of vulnerabilities. The modified model
checker NuSMV took 2 hours to generate the attack graph for this network. The
resulting attack graph had 5948 nodes and 68364 edges. The problem is common
for model checker’s and is commonly known as the state explosion problem.
The state explosion problem arises from the combinatorial blow up of the state
space, causing the number of possible states to be exponential to the number of
variables in the model [13, p. 218]. Thus, the number of nodes in the network
state attack graph scales exponentially to the number of vulnerabilities in the
network and there is good reason to doubt whether model checker’s will ever
be able to scale the network vulnerability analysis to networks of even modest
size [13, p. 223]. In [11, p. 64] Sheyner developed an algorithm for his network
state attack graph generator tool that finds a minimal set of defensive measures
that will completely disconnect the initial and final states of the attack graph. A
defensive measure is a measure that renders an attack ineffective. This can mean
removing connectivity relations by adding firewall rules, patching vulnerabilities
or changing privilege levels for users. The algorithm will output a set of possible
attacks that, if removed by defensive measures, will make it impossible for an
attacker to reach his goal attacker state.

2.4 Exploit dependency attack graphs

2.4.1 The monotonicity assumption

Having observed the scalability issues with the model checking approach to gen-
erate network state attack graphs, Ammann et al. were first to propose a more
efficient representation of the attack graph [10, p. 9], the exploit dependency
attack graph in [13]. By making the simple assumption of monotonicity, which
states that the preconditions of a given attack are never invalidated by another
attack, the authors were able to model the attack graph as a directed graph
where the nodes represent a single attacker state as ∈ AS instead of the whole
set of obtained attacker states AS of an attacker as in the network state attack
graph. In the network state attack graph, each order in which the attacker
carries out the exploitations to his goal attacker state is explicitly shown in the
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attack graph, which results in an exponential number of redundant attack paths
that differ only in the order of the attack steps. In the exploit dependency attack
graph on the other hand, once an attacker gains a certain attacker state, the
fact can remain true for the remainder of the vulnerability analysis process [10,
p. 9]. Since the nodes in the exploit dependency attack graph only represent a
single attacker state the representation of the attack graph becomes more effi-
cient. The result is that the number of nodes in the exploit dependency attack
graph scales linearly to the number of vulnerabilities in the network instead of
exponentially as in the network state attack graph [13, p. 223].

2.4.2 Different types of exploit dependency attack graphs

The exploit dependency attack graph shows the relationship between attacks
a ∈ A and attacker states as ∈ AS. The original exploit dependency attack
graph in [13] is a directed graph where the edges are attacks a ∈ A and the
nodes are attacker states as ∈ AS enabling new attacks a ∈ A. Attacker state
nodes are called condition nodes, since an attacker state can be both a precondi-
tion and a postcondition of an attack. Since the number of nodes in the exploit
dependency attack graph scales linearly to the number of vulnerabilities in the
network [10, p. 11], it scales much better then the network state attack graph.
Thanks to this crucial property of exploit dependency attack graphs, the re-
search community has largely adopted this approach ever since it was proposed
in [13]. Currently, there are three software systems that have been developed by
researchers at universities that manage to generate exploit dependency attack
graphs for large networks, Topological Vulnerability Analysis (TVA) [15], Mul-
tihost, multistage Vulnerability AnaLysis (MulVAL) [10] and Network Security
Planning Architecture (NetSPA) [3]. Exploit dependency attack graphs show
the dependency between attacks a ∈ A and possible attacker states as ∈ AS.
This can be done in many different ways however. We will present three types
of exploit dependency attack graphs used by the three main attack graph gen-
eration systems. In all three types, edges are contentless and are only used to
connect nodes of different types in a directed graph.

2.4.3 TVA attack graphs

The attack graph model used in Topological Vulnerability Analysis (TVA) uses
two types of nodes, exploit nodes and security condition nodes [16]. Exploit
nodes represent attacks a ∈ A and security condition nodes represent the attack
postcondition attacker state as ∈ AS of an attack or a single precondition in the
set of preconditions of an attack. The nodes look different depending on type,
exploit nodes are ovals and security condition nodes are clear text [16, p. 4].
Security condition nodes are the elements in the set of preconditions to an attack
a ∈ A, they are attacker states as ∈ AS, the existence of a vulnerability vlf,g ∈
V L on attacked host hf ∈ H or vulnerable data connectivity relation ci ∈ Ci on
host hi ∈ H from where the attack is launched. Since sets of security condition
nodes imply possible attacks and attack nodes imply the attack postcondition
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attacker state as ∈ AS of the attack, no edge goes directly between two security
condition nodes or between two exploit nodes, directed edges only inter-connect
security condition nodes and exploit nodes [16, p. 4]. Exploit nodes have only
one outbound edge pointing to a single security condition node which is the
attack postcondition attacker state as ∈ AS of the attack. Similarly, security
condition nodes that are the set of preconditions to an attack point to exploit
nodes that they are the preconditions to. An example of a TVA attack graph
is depicted in figure 2.1 which has been taken from [16, p. 112].

2.4.4 MulVAL attack graphs

The MulVAL attack graph has three types of nodes, attack-step nodes repre-
sented as oval shaped nodes, privilege nodes represented as diamond shaped
nodes and configuration nodes which are represented as rectangles [18, p. 2].
Attack step nodes represent attacks a ∈ A and privilege nodes represent at-
tacker states as ∈ AS. Configuration nodes represent connectivity relations
ci ∈ Ci, vulnerability descriptions Vf,g of vulnerability vlf,g ∈ V L on attacked
host hf ∈ H and descriptions of certain services on attacked host hf ∈ H for
example. Configuration nodes are network configuration objects that are a part
of the preconditions of an attack a ∈ A and are known to exist in the network re-
gardless of an attacker and that enable the attack-step nodes. Attack-step nodes
and privilege nodes on the other hand represent possibilities that something can
happen, i.e. that an attack a ∈ A can happen or an attacker state as ∈ AS can
be obtained by an attacker. Privilege nodes point to attack-step nodes, attack-
step nodes point to configuration nodes and privilege nodes and configuration
nodes have no outbound edges. This is counter-intuitive, since configuration
nodes imply attack-step nodes and thus should point to these, privilege nodes
imply attack-step nodes and thus should point to these and configuration nodes
don’t depend on the possibility that something must happen and thus should
not have inbound edges. An example of a MulVAL attack graph is depicted in
figure 2.2 which has been taken from [22, p. 10].

2.4.5 NetSPA multi-prerequisite attack graphs

In [5], Lippmann et. al developed the multi-prerequisite graph for their attack
graph generation system NetSPA that scales nearly linearly with the number of
hosts in the network. The multi-prerequisite graph also has three types of nodes,
state nodes, represented as circles, prerequisite nodes, represented as rectangles
and vulnerability instance nodes, represented as triangles. In the multiple-
prerequisite attack graph, state nodes represent attacker states as ∈ AS. Pre-
requisite nodes represent the set of preconditions of one or several attacks a ∈ A.
Vulnerability instance nodes represent attacks a ∈ A. A prerequisite node can
contain several attacker states as ∈ AS if they imply the same set of attacks
a ∈ A. Thus, several state nodes can point to the same prerequisite nodes.
Prerequisite nodes point to vulnerability instance nodes that represent the set
of attacks a ∈ A that the prerequisite node enables. In this way, by intro-
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Figure 2.1: A TVA attack graph
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Figure 2.2: Part of a MulVAL attack graph
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Figure 2.3: A NetSPA Multiple prerequisite attack graph

ducing prerequisite nodes, the number of edges is reduced compared to having
state nodes pointing directly to vulnerability instance nodes, since many state
nodes can imply the same set of attacks. Finally, vulnerability instance nodes
point to a single state node, the attacker state as ∈ AS obtained by launching
the attack represented by the vulnerability instance node. An example of a
multiple-prerequisite graph is depicted in figure 2.3 which has been taken from
[5, p. 124].
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2.4.6 Scalability and performance of exploit dependency
attack graphs

Scalability depends on the software system used, computation power of the com-
puter used by the tool and the complexity of the network analyzed. Computer
power is largely dependent on the time when the test was made, according to
Moore’s law. The systems are tested on large simulated network environments
for two main reasons [3, p. 45]. First, real data are sensitive and reveal net-
work weaknesses that are valuable to an attacker. Therefore, as Lippmann et
al. state in [3, p. 45]: ”As noted above, most system administrators require
us to perform analyses of real networks on site in a physically protected area
and preferably on a computer not connected to any network. They also do not
permit release of attack graphs for real networks. None of these restrictions
apply to simulated networks.” This means that the acquiring of data is difficult
and that attack graph generation results is difficult to present to anyone outside
the organization. Second, simulation studies allow evaluation of attack graph
generation system performance, how much time the system requires to gener-
ate the attack graph and make network security enhancing recommendations,
depending on the size of the network.

In a test of the TVA attack graph generation system, tests are conducted
with relation to the number of hosts in the network [15, p. 153]. Hosts are
grouped into subnets, a subnet contains of 200 hosts, and each simulated host
has the same set of 5 vulnerabilities, and each vulnerability vlf,g ∈ V L can
be attacked remotely from hosts hi ∈ H with vulnerable connectivity relation
(hi, hf , vlf,g). Each subnet has incoming vulnerable connectivity relations from
two other subnets, and symmetrically, outgoing vulnerable connectivity relations
to two other subnets. From one subnet to another, there are 500 vulnerable
connectivity relations to vulnerabilities in the other subnet. Thus there are
2*500 = 1000 incoming and 2 * 500 = 1000 outgoing vulnerable connectivity
relations. The number of subnets is increased to test the scalability of the attack
graph generation system. With this type of network complexity, computation
time grows linearly to the number of hosts. For 40 000 hosts in this type of
network complexity, the TVA attack graph generation system takes 20 s to
generate the attack graph. TVA can automatically compute the minimum set
of attacks that separates starting attacker state as ∈ AS from goal attacker
state as ∈ AS of an attacker and give optimal network security enhancing
recommendations [15, p. 151].

For a simulated network with a complex network environment, MulVAL
generated the attack graph for a simulated network of 1000 hosts in around
1000 s in [17, p. 343]. The computation time is shown to scale between O(n2)
and O(n3) to the number of hosts n for a complex network environment [17, p.
343].

In simulated network environments in NetSPA, hosts are grouped into sub-
nets and tenants. A tenant is a subnet with a firewall between its hosts and
the rest of the network. A firewall is a device that restricts data connectivity
relations between hosts. All hosts in subnet and tenant groups are configured
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alike, meaning that all hosts hi ∈ H in a tenant or subnet group have the same
vulnerabilities vli,j ∈ V L and connectivity relations ci ∈ C to other hosts. The
number of hosts and the number of vulnerabilities per host can be specified
separately for each tenant and subnet [3, p. 48].

For a simulated network with a complex network environment, NetSPA gen-
erated the attack graph for a simulated network of 10000 hosts in around 3 h
in [19, p. 989]. The computation time is shown to grow less then quadratically
for both the simple and complex network type.

By defining the host asset value to each host in the network, reflecting the
monetary value of the information resources on the host to the owners, the
NetSPA system is able to automatically compute the percentage of host asset
values that can be compromised, the network compromised percentage (NCP):

Network Compromised Percentage =

100 ∗
∑
Compromised hostsHost asset value∑

All hostsHost asset value
(2.1)

A host is considered compromised if an attacker has gained either user or
administrator privilege level on the host or is able to cause a denial of service
attack, making the hosts computer resources unavailable to its intended users [3,
p. 14]. NetSPA can also make a prioritized list of recommended changes to the
network based on what vulnerability removals cause the greatest reduction in
NCP [3, pp. 41-42]. The performance of these systems are marked improvements
to the tools that generate network state attack graphs that take much more time
to analyze networks since the number of nodes in network state attack graphs
grow exponentially to the number of vulnerabilities in the network.

2.5 Probabilistic attack graphs

The exploit dependency attack graph shows us the set of possible attacker states
as ∈ AS and possible attack paths into a computer network. It gives us a qual-
itative view of a networks vulnerability, it says that something is possible, an
attacker has a possibility to obtain an attacker state as ∈ AS in the attack
graph [8, p. 284]. In reality however, some attacker states as ∈ AS are easier
to reach then others [18, p. 1]. To answer the question of how big the possi-
bility of an attacker to reach a certain attacker state as ∈ AS is, quantitative
measures of network security are necessary instead of the qualitative, either se-
cure or insecure view of the regular exploit dependency attack graphs [20, p.
284]. To quantify the risk of attacks to computer networks, various researchers
have proposed what we call the probabilistic attack graph that uses the ex-
ploit dependency attack graph to model the probability distribution for each
attacker state in the attack graph [20], [21], [22]. Modeling these probability
distributions through the probabilistic attack graph will enable us to obtain an
estimation of the ALE(network) which was the goal of this thesis. To model
the probabilistic attack graph, any cycles in the directed graph that represents
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Figure 2.4: A directed graph with a cycle. This is not allowed in Bayesian
networks.

the exploit dependency attack graph have to be removed, thereby creating an
acyclic directed graph. To define a cycle in a directed graph, we first have to
define what a directed path is in a directed graph [25, p. 44]:

Definition 2.8 (Directed path). Let G = (V, D) be a directed graph. A
path of length m from a node α to a node β is a sequence of distinct nodes
(τ0, τ1, . . . , τm) such that τ0 = α and τm = β such that (τi−1, τi) ∈ D for
each i = 1, . . . , m.

A cycle is defined as:

Definition 2.9 (Cycle). Let G = (V, D) be a directed graph. An m-cycle in G
is a sequence of distinct nodes

τ0, . . . , τm−1

such that τ0, . . . , τm−1, τ0 is a path (Definition 2.9). [25, p. 44]

An example of a cycle in a directed graph is given in figure 2.4.
Based on these definitions, a definition of a directed acyclic graph can be

given:

Definition 2.10 (Directed acyclic graph (DAG)). A graph G(V, D) is said
to be a directed acyclic graph if G is a directed graph and there are no m-cycles
in G for any m ≥ 1.

Further, all nodes in the resulting acyclic directed graph have to be transformed
into random variables with probability distributions or conditional probability
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distributions. The directed edges in the directed acyclic graph indicate the
influence between variables, how probability distributions of variables are con-
ditioned on probability distributions of other variables, indicated by inbound
edges from the influencing variables. The conditional probability distribution
of a variable gives the probability that a variable will be in a certain state con-
ditioned on the state of other variables. The state gives the number of times an
attacker obtains an attacker state as ∈ AS in a given period of time. Thus, the
probabilistic attack graph can be defined as an exploit dependency attack graph
where the nodes are variables with discrete probability distributions or discrete
conditional probability distributions and where any cycles have been removed,
thereby creating an acyclic directed graph.

Acyclic directed graphs with nodes that are random variables with proba-
bility distributions or conditional probability distributions have formally been
described as Bayesian networks. Therefore, the probabilistic attack graph is
a type of Bayesian network, a Bayesian network of an attack graph. We will
return with a more formal definition of Bayesian networks in chapter 3.

By modeling the attack graph as a Bayesian network, the expected number
of times an attacker state as ∈ AS will be reached in a given period of time can
be computed for any attacker state as ∈ AS. To enable the modelling of attack
graphs as a Bayesian network, each attack random variable in the probabilis-
tic attack graph depends on the estimated probability that the vulnerability
will be attacked successfully given that all preconditions are satisfied. This has
been enabled by the introduction of standardized vulnerability metrics in vul-
nerability databases that measure exploit difficulty of individual vulnerabilities.
One such standard to measure the exploit difficulty and severity impact of vul-
nerabilities on the information security of the vulnerable host is given by the
Common Vulnerability Scoring System.

2.5.1 The Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS) vulnerability metrics stan-
dard has been developed by FIRST, the Forum of Incident Response and Secu-
rity Teams to measure vulnerability severity impact and exploit difficulty and
was introduced in 2007 [2]. FIRST is an organization that brings together the
government, commercial and academic sectors to improve the computer net-
work security globally. CVSS has been adopted by a number of vulnerability
database providers, each giving their different subjective scores of the different
vulnerability metrics in CVSS, this means that different vulnerability database
providers can possibly provide different CVSS scores for the same vulnerability
[28, p. 56]. CVSS consists of the base score, the temporal score and the envi-
ronmental score. The most commonly provided CVSS vulnerability score is the
CVSS base score which consists of exploitability metrics and impact metrics. In
the exploitability metrics there are three metrics for Access Vector (AV), Attack
Complexity (AC) and Authentication (Au). The exploitability metrics measure
characteristics of the vulnerability that affect the difficulty of exploitation of
the vulnerability. The Access Vector defines the locality of the vulnerability
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and has three values, local, adjacent network and network, which is the same as
remote locality in the terminology of this thesis. Access Complexity measures
the complexity of exploiting the vulnerability and has three levels, low, medium
and high. Authentication defines the number of required authentication steps
required to exploit the vulnerability and has three values, none, single instance
and multiple instances. The impact metric measures the severity of compromise
on each goal of information security, confidentiality, integrity and availability
of information. All three metrics, Confidentiality Impact (C), Integrity Impact
(I) and Availability Impact (A) have three levels, none, partial and complete
impact. Details of what the different levels of vulnerability metrics in the CVSS
vulnerability metric standard mean and what they measure are given in [2].

2.5.2 How to measure the exploit difficulty of vulnerabil-
ities

To model the probability of exploitation of a given vulnerability given that all
the vulnerability preconditions are satisfied, the difficulty for an attacker of ex-
ploiting a vulnerability must be measured. CVSS has two vulnerability metrics
that impact this difficulty, Access complexity (Ac) from the base score and Ex-
ploitability (E) from the temporal score [27, p. 213]. As stated in section 2.6.1,
Access Complexity measures the complexity of exploiting the vulnerability and
has three levels, low, medium and high. The Exploitability metric describes the
availability of exploit code and how functional it is. There are four levels of Ex-
ploitability, from lowest to highest level they are unproven (U), proof-of-concept
(PoC), functional (F) and high (H). Details of what the different Exploitabil-
ity and Access complexity levels mean are given in [2]. In his examination of
information provided by the ten most popular commercial and non-profit vul-
nerability information providers, Schuppenies shows in [28, p. 52] that four
vulnerability information providers provide CVSS impact metrics and that only
one, the National Vulnerability Database (NVD) provides the Access Complex-
ity (AC) metric of an attack as well as level of Authentication (Au) needed
[28, p. 52]. The National Vulnerability Database (NVD) provides vulnerabil-
ity information in XML files and is therefore easily parsed [28, p. 53]. Only
the X-force vulnerability database provides CVSS temporal scores and thus the
Exploitability metric (E) [28, p. 58]. X-force vulnerability information is not
publicly provided in a single file format, such as XML and is instead distributed
over thousands of web pages, making information extraction more difficult. The
right vulnerability can be found from reference links in NVD and in this way
vulnerability information can be extracted in a web-crawling like fashion [28, p.
53]. High Exploitability level will increase the probability of exploitation and
high Access Complexity level will decrease the probability of exploitation of a
vulnerability given that the vulnerability preconditions are satisfied.

Another rich resource of vulnerability information is provided by the non-
public Symantec DeepSight Threat Management System [23, p. 5]. This vul-
nerability database also provides vulnerability metrics that affect the exploit
difficulty of vulnerabilities. One such metric is called Ease of Exploit and is

27



similar to the Exploitability metric (E) in the CVSS temporal score in that
it measures the availability of exploit code and if it is needed at all. It has
three levels, from lowest to highest level they are no exploit available, exploit
available and no exploit required. Another metric that affects the difficulty to
exploit a vulnerability is called Availability and measures the likelihood that
the vulnerable software is running and vulnerable of exploitation at the time
of attack. From lowest to highest level they are circumstantial, user initiated,
time dependent and always. Both high levels of Ease of Exploit and Availabil-
ity will increase the probability of exploitation of a vulnerability given that the
vulnerability preconditions are satisfied. Details of what the different levels of
vulnerability metrics in Symantec DeepSight Threat Management System mean
and what they measure are given in [29].

2.6 Chaining together preconditions and post-
condition of attacks into a sequence of at-
tacks

2.6.1 Modeling vulnerabilities for attack graph generation
in TVA and NetSPA

Chaining together attack precondition privilege levels and attack postcondition
privilege levels of attacks is a big issue in attack graph generation research.
The attack postcondition privilege level pt ∈ PT of one attack a ∈ A can
be the attack precondition privilege level ps ∈ PS of another attack a ∈ A,
thereby enabling a sequence of attacks. All possible sequences of attacks a ∈ A
and the consequence attacker states as ∈ AS by these attacks are represented
in the attack graph. The attack precondition privilege level ps ∈ PS and
attack postcondition privilege level pt ∈ PT of an attack a ∈ A is defined by
the vulnerability vlg,h ∈ V L that is being attacked. Therefore information on
vulnerability preconditions and postcondition is a crucial issue for attack graph
generation research, especially the automatic extraction of this vulnerability
information to avoid labour intensive manual analysis [6, p. 1].

Modeling preconditions and postcondition of vulnerabilities for the TVA at-
tack graph generation system, Jajodia et al. state in [26] that it is very difficult
to automatically extract vulnerability preconditions and postcondition descrip-
tions in vulnerability databases because the vulnerability reporting community
has not defined any standard formal language for specifying such descriptions.
Instead, vulnerability databases usually rely on natural language text to de-
scribe vulnerabilities [26, p. 6]. Therefore, vulnerabilities are modeled manually
in TVA and they state that what is needed is vulnerability descriptions ”written
in a standard, machine-understandable language” [26, p. 17].

In [3, p. 9], Lippmann et al. state that an analysis of the many online
vulnerability databases show that detailed vulnerability descriptions are hard to
obtain. For this reason, the set of NetSPA modeled vulnerability postcondition
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privilege levels PTN = {user, admin, DoS, other} where chosen because
vulnerability information on these postcondition privilege levels where easily
obtained and verified. The four postcondition privilege levels ptn ∈ PTN are
defined as follows:

- user privilege level provides the privilege level of a typical user

- admin privilege level provides the privilege level of an administrator on
Windows hosts and root privilege level on UNIX hosts. Administrator
privilege level is the highest form of privilege level and provides the user
full access to a hosts computer resources.

- DoS or denial of service privilege level gives an attacker the ability to
make the hosts computer resources unavailable to its intended users [3, p.
10]

- other privilege level defines loss of confidentiality and/or integrity for spe-
cific programs or data [3, p. 13]

In NetSPA, the set of modeled attack precondition privilege levels PSN on
a host hi ∈ H that enable an attacker to attack vulnerabilities from that host
hi ∈ H is given by PSN = {user, admin} [5, p. 122] and vulnerability locality
is given by L = {local, remote} [3, p. 10]. Further, in NetSPA it is assumed that
the same set of target vulnerabilities V Ti can be attacked from a host hi ∈ H
with attack precondition privilege levels ”user” and ”admin” [5, p. 122]. The
same assumption is made in the MulVAL system [10, p. 44, p. 104].

Based on the vulnerability precondition privilege level set PSN, postcondi-
tion privilege level set PTN and locality set L, in the NetSPA attack graph
generation system, a NetSPA vulnerability description V Ni,j of vulnerability
vli,j ∈ V L in a computer network is modeled in the following way:

Definition 2.11 (NetSPA vulnerability model description). In the NetSPA
vulnerability model description, a vulnerability description V Ni,j of vulnerability
vli,j ∈ V L is modeled as a 4-ary Cartesian product over the following four sets:

- the vulnerable host hi ∈ H with the vulnerability vli,j ∈ V L, given by the
one-element set Hi = {hi ∈ H}

- the locality of the vulnerability l ∈ L, where L = {local, remote}, given
by the one-element set Li,j = {l ∈ L}

- the set of attack precondition privilege levels PSN on a host hi ∈ H that
enable an attacker to attack vulnerability vli,j ∈ V L from the host hi ∈ H
is given by PSN = {user, admin}

- the attack postcondition privilege level ptn ∈ PTN , where PTN =
{user, admin, DoS, other}, that an attacker obtains when successfully
exploiting vulnerability vli,j ∈ V L on host hi ∈ H is given by the one-
element set PTNi,j = {ptn ∈ PTN}
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In the NetSPA vulnerability description model, a vulnerability description
V Ni,j is modeled as a 4-ary Cartesian product over the 4 sets Hi, Li,j , PSN
and PTNi,j, it is a set of 4-tuples:

Vi,j ⊆ Hi × Li,j × PSN × PTNi,j = {(hi, li,j , psn, ptni,j) : hi ∈ Hi, li,j ∈
Li,j , psn ∈ PSN, ptni,j ∈ PTNi,j}

meaning that

- the vulnerability vli,j ∈ V L is located on host hi ∈ H

- the vulnerability vli,j ∈ V L has locality li,j ∈ Li,j where the one-element
set Li,j = {l ∈ L}

- the vulnerability vli,j ∈ V L can be attacked with attack precondition priv-
ilege level psn ∈ PSN from a host h ∈ H

- the vulnerability vli,j ∈ V L gives an attacker attack postcondition privilege
level ptni,j ∈ PTNi,j, where the one element-set PTNi,j = {ptn ∈ PTN},
on host hi ∈ H when exploited successfully

The developers of NetSPA face the same problems as the developers of TVA
in automatic extraction of vulnerability information [3, p. 11]. Because manual
analysis of vulnerability locality l ∈ L and postcondition privilege level pt ∈ PT
is labour intensive, the researchers developed an automated pattern classifier
that automatically extracts vulnerability information from different sources on
vulnerability locality l ∈ L and postcondition privilege level pt ∈ PT and pro-
vides accurate decisions on correct vulnerability description from multiple data
sources, including textual descriptions of vulnerabilities. For the NetSPA ver-
sion in [3], Lippmann et al. used three vulnerability information sources, the
Nessus vulnerability scanner, the ICAT database and the CVE vulnerability
dictionary. The CVE identifier provides the means to identify a vulnerability
across the different vulnerability databases.

The ICAT database was launched in 1999 by the US government through
the National Institute of Standards and Technology (NIST) and was super-
seded by the publicly available National Vulnerability Database (NVD) in 2005.
The NVD can be accessed and searched for CVE-identified vulnerabilities on
nvd.nist.com. The vulnerability descriptions are available in XML format which
makes automatic vulnerability information extraction easier then on regular web
pages.

At the time of writing [3], the Nessus vulnerability scanner provided both
textual vulnerability descriptions and well defined categorical information on
vulnerability locality and postcondition privilege level while the ICAT database
just provides categorical vulnerability information and the CVE vulnerability
dictionary just provides textual vulnerability descriptions [3, p. 11]. Categorical
values are well defined and easily extracted while in textual descriptions the au-
tomated pattern classifier searches for common phrases that indicate categorical
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values in textual descriptions. Phrases are collected into groups for each cate-
gory. For example, the administrator privilege level category can be indicated
by phrases including ”execute arbitrary code” and ”gain system privileges” [3,
p. 11]. In this way, postcondition privilege level pt ∈ PT for vulnerabilities can
be inferred from the textual descriptions.

2.6.2 Extracting vulnerability information from the Na-
tional Vulnerability Database for attack graph gen-
eration

In the NetSPA attack graph generation system as well as in the MulVAL attack
graph generation system it is assumed that the same set of target vulnerabilities
V Ti can be attacked from a host hi ∈ H with attack precondition privilege levels
”user” and ”admin”. Therefore it is especially important to know which vulner-
abilities have postcondition privilege level ”user” ∈ PTN or ”admin” ∈ PTN ,
allowing an attacker to launch further attacks a ∈ A. In [3, pp. 10-12] Lipp-
mann et al. show how the information on the attack postcondition privilege
levels {user, admin, DoS, other} ∈ PTN of vulnerabilities can be found using
three sources, Nessus vulnerability scanner, the ICAT database and the CVE
vulnerability dictionary. However, ICAT was superseded by the publicly avail-
able National Vulnerability Database (NVD) in 2005. Although the method
of vulnerability description information extraction stays relevant, one of the
sources of these descriptions no longer exists. In [6], Franqueira and Keulen
show how information on vulnerability locality l ∈ L and attack postcondition
privilege level pt ∈ PT can be found in the publicly available National Vulnera-
bility Database (NVD). Because of the CVSS impact metric which was launched
with the CVSS metric standard in 2007, better and more detailed information
on vulnerability postcondition can be found in NVD today then in the old ICAT
database. For non CVSS CIA impact level categories of postcondition privilege
levels pt ∈ PT the authors where able to find the postcondition privilege level
categories PTF = {user, admin, runCode, DoS, obtainCred} from the NVD.
These are defined as

- user privilege level provides the privilege level of a typical user

- admin privilege level means an attacker gains privilege level of an admin-
istrator on Windows hosts and root privilege level on UNIX hosts

- runCode privilege level means an attacker gains the ability to execute
arbitrary code on the vulnerable host

- DoS or denial of service privilege level means an attacker gains the ability
to make the vulnerable host unavailable to its legitimate users

- obtainCred means an attacker gains the ability to obtain credentials for
the vulnerable host
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The NVD also provides the CVSS base score where the postcondition privi-
lege level categories are given by the impact metric. It defines the postcondition
privilege level obtained on a host as the level of impact on the confidentiality,
integrity and availability of information security. The level of impact on a host
on each category of information security is given by three levels of severity of
impact, none, partial and complete.

The authors extracted relevant vulnerability information on locality and
postcondition privilege level pt ∈ PT for attack graph generation on 27,273
CVE-identified vulnerabilities in NVD created between 1999 and 2007 by load-
ing the XML files into an XML database. Information on what phrases indicate
what attack postcondition privilege level and the XML tag where these phrases
can be found in the NVD XML files is described in table 1 in [6, p. 9]. This
information can be used when developing a parser that automatically extracts
vulnerability information from NVD on vulnerability locality and postconditon
privilege level for vulnerabilities found in a network.

2.6.3 Statistical analysis of vulnerability information in
the National Vulnerability Database

In [6], Franqueira and Keulen analyze how privilege levels inferred from tex-
tual descriptions relate to the CVSS impact scores and also how common the
different attack postcondition privilege levels and localities are for the total set
of CVE-identified vulnerabilities in NVD between 1999 and 2007. All vulnera-
bilities with attack postcondition privilege level ”admin” have complete impact
on all categories of CIA in the CVSS base score impact metrics. Thus, vulner-
abilities that are found to have complete CIA impact in the CVSS base score
impact metric can be classified as vulnerabilities with postcondition privilege
level ”admin” even though this can not be inferred from textual descriptions
[6, p. 13]. DoS impacts heavily on availability, thus 3695 out of 3964 (93.2%)
of complete Availability impact metric category vulnerabilities cause ”DoS” in
textual descriptions. From this strong correlation the authors assume vulner-
abilities with complete Availability impact can be classified as vulnerabilities
with ”DoS” attack postcondition privilege level even though this can not be
inferred from textual descriptions [6, p. 14]. The ”user” privilege level always
results in partial CIA impact where all three categories of impact metrics, con-
fidentiality, integrity and availability have partial impact, although partial CIA
impact does not necessarily result in ”user” privilege level, it can also result in
”no privilege” and ”other” privilege level. Thus, nothing can be inferred from
CVSS impact metrics on postcodition privilege level ”user”.

Further interesting results from their analysis of the NVD show that 97.1% of
vulnerabilities require no credentials, the privilege level given by ”obtainCred”,
to be exploited based on the authentication metric category in CVSS. Only 0.5%
of vulnerabilities have the postconditon privilege level ”obtainCred” as inferred
from phrases from their textual description [6, p. 9].

By the definition of the NetSPA vulnerability model of the set of attack
precondition privilege levels PSN = {user, admin}, an interesting question
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is how common it is for vulnerabilities to have attack postcondition privi-
lege level ”user” ∈ PTN or ”admin” ∈ PTN , resulting in the possibility to
launch new attacks a ∈ A. For vulnerability descriptions Vi,j of a vulnerability
vli,j ∈ V L, their analysis shows that 9.8% of vulnerabilities have vulnerabil-
ity descriptions that contain the 4-tuple (hi, remote, admin, admin) ∈ Vi,j and
6.8 % of vulnerabilities have vulnerability descriptions that contain the 4-tuple
(hi, remote, admin, user) ∈ Vi,j . This shows that 16.6 % of vulnerabilities can
be exploited remotely and result in ”user” or ”admin” privilege level.

This is a pretty large share and a conclusion can be made that vulnera-
bilities that have one of the attack postcondition privilege levels ”user” ∈ PT
or ”admin” ∈ PT that result in the possibility to launch new attacks a ∈ A
and deeper penetration into computer networks and are remotely exploitable
is pretty large and that these vulnerabilities indeed pose a great risk to com-
puter networks. The danger from this kind of vulnerabilities to the security of
computer networks should be analyzed with the help of attack graphs or better,
probabilistic attack graphs since they affect the security of the whole network
and not just the security of the vulnerable host.

2.6.4 Modeling privilege levels ”read credentials” and ”abil-
ity to change firewall rules”

When an attacker has obtained postcondition privilege level pt ∈ PT ability
to ”read credentials” on a host, an attacker can use the credentials to obtain
trust relationships between hosts in the network [19, p. 990]. If a host hj ∈ H
trusts another host hi ∈ H it means that a user on host hi ∈ H can access
another host hj ∈ H without authentication [11, p. 61]. The result is that
an attacker has obtained new possibilities of remote attacks a ∈ A from other
attacker states as ∈ AS where the privilege level is ps ∈ PS on other hosts
h ∈ H in the network.

The privilege level ”change firewall rules” has the same effect on the attack
graph. By changing the firewall rules, an attacker presumably changes the
firewall rules so that new vulnerable data connectivity relations c ∈ C are added
in the network, thereby creating opportunities for new remote attacks a ∈ A
from other attacker states as ∈ AS where the privilege level is ps ∈ PS on other
hosts h ∈ H in the network [19, p. 10].

Both these privilege levels affect the privilege levels on other possible attacker
states as ∈ AS in the attack graph unlike other attack postcondition privilege
levels that do not affect the privilege levels at other possible attacker states.

Although it is possible to manually determine where credentials are and
what they protect, Lippmann et al. have not developed any tool that can
automatically determine where credentials are and what they protect for the
NetSPA system version in [5, p. 122]. Nor does NetSPA model the privilege
level that enables an attacker to change firewall rules because of the difficulty
of automatically model both these postcondition privilege levels [19, p. 990].
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Chapter 3

Bayesian networks

3.1 The causal network

A causal network is a directed graph where the nodes represent variables and
the edges indicate how the variables influence each other [24, p. 26]. It gives a
qualitative view of the dependencies among variables [25, p. 38]. The directed
edges connecting the nodes represent the causality between the variables in the
network. Outbound edges from a variable A indicate which other variables that
the variable A influences. Inbound edges to variable A indicate what other
variables influence the state of variable A. When talking about the influence
between variables in a causal network, the terminology of family relations is
used, if there is an edge from B to A then B is a parent of A, and A is a child of
B [24, p. 26]. The set of parent variables of a variable C is denoted pa(C) [24,
p. 36]. Influence between variables are quantified with conditional probability
distributions [24, p. 32].

3.2 Discrete probability distributions and dis-
crete conditional probability distributions

Since probabilistic attack graphs are Bayesian networks consisting of discrete
random variables, we will here describe the theory of discrete random variables.
A random variable is an object that unlike other variables does not have a single,
fixed value, instead it can take on a set of possible different values where each
value is associated with a probability that the random variable will have that
value. A random variable must be in one of its mutually exclusive and exhaustive
states. For discrete random variables the set of states associated with a random
variable is finite and the state space of a discrete random variable is denoted
by sp(A) = (a1, a2, . . . , an). That the states are mutually exclusive ensures
that the random variable is in only one state, and that the states are exhaustive
ensures that the variable is in one of its states [24, p. 7]. The probability that
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B
A b1 b2 b3
a1 0.4 0.3 0.6
a2 0.6 0.7 0.4

Table 3.1: An example of a conditional probability table P (A | B) for the binary
variable A given the ternary variable B. For each state of B the probabilities of
A must sum up to 1.

a discrete random variable A with state space sp(A) = (a1, a2, . . . , an) is in
each of its states is given by the discrete probability distribution P(A):

P (A) = (x1, . . . , xn); x1 ≥ 0;

n∑
i=1

xi = 1, (3.1)

where xi is the probability of A being in state ai [24, p. 7].
The influence between variables is quantified with conditional probability

distributions. A conditional probability distribution P (A | B) defines the out-
come of a variable A given the outcome of a variable B. Let X be a discrete
random variable, then | sp(X) | denotes the number of states of X [24, p. 135].
The discrete conditional probability distribution P (A | B) contains | sp(A) |
∗| sp(B) | conditional probabilities that specify the probabilities of the outcome
of each state ai ∈ sp(A) given the outcome of each state bj ∈ sp(B). For each
state bj ∈ sp(B), the probabilities of A must sum to 1:

n∑
i=1

P (A = ai | B = bj) = 1 for each bj ∈ sp(B) (3.2)

Discrete conditional probability distributions are usually represented in ta-
bles, table 3.1 gives an example of a conditional probability distribution table
P (A | B).

When the state of a variable is known, it is said that the random variable
is instantiated, affecting the probability distribution of other random variables
that it influences [24, p. 26]. If a variable is instantiated it is also said that
evidence of the state of a variable has been received. For example in the above
example if it is known that the discrete random variable B is in the state b1,
then we know that the discrete probability distribution of the variable becomes

P (A | B = b1) = (0.4, 0.6)

More generally, the discrete conditional probability distribution
P (A | B1, B2, . . . , Bn) defines the outcome of a variable A given the outcome of
the variables B1, B2, . . . , Bn. The discrete conditional probability distribution
P (A | B1, B2, . . . , Bn) contains | sp(A) | ∗

∏n
i=1 | sp(Bi) | conditional prob-

abilities that specify the probabilities of the outcome of each state ai ∈ sp(A)
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Figure 3.1: A directed acyclic graph (DAG), representing a Bayesian network.
The probabilities to specify are P (A), P (B), P (C | A, B), P (E | C), P (D | C),
P (F | E) and P (G | D, E, F ).

given each configuration of the states b1,j ∈ sp(B1), b2,k ∈ sp(B2), . . . , bn,f ∈
sp(Bn) [24, p. 34].

3.3 Definition of Bayesian networks

A causal network with no cycles and conditional probability tables attached to
each variable in the causal network is a Bayesian network (see figure 4.1).

Definition 3.1 (Bayesian network). A Bayesian network consists of the
following [24, p. 33]:

- A set of random variables and a set of directed edges between the random
variables.

- Each random variable has a set of mutually exclusive states.

- The random variables together with the directed edges form an acyclic
directed graph (traditionally abbreviated DAG); a directed graph is acyclic
if there is no directed path A1, . . . , An so that A1 = An.

- To each random variable A with parents B1, . . . , Bn, a conditional prob-
ability table P (A | B1, . . . , Bn) is attached.

An example of a Bayesian network is given in fig. 3.1 which has been taken
from [24, p. 34].
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Chapter 4

Probabilistic attack graph
generation model

4.1 Vulnerability model for probabilistic attack
graph generation

In our probabilistic attack graph vulnerability model, we model vulnerability
descriptions based on two criteria. The vulnerability model should be as precise
as possible in defining attack postcondition privilege level and be available from
the publicly available NVD as described by Frankueira and Keulen in [6, p. 9].

4.1.1 Modeling precondition privilege levels psp ∈ PSP
and locality l ∈ L

We model vulnerability attack precondition privilege level and locality in the
same way as in the NetSPA attack graph generation system. Thus, as in
NetSPA, the set of modeled precondition privilege levels PSP on a host h ∈ H
that enable an attacker to attack vulnerabilities from that host h ∈ H is given by
the set PSP = {user, admin} in our vulnerability model [5, p. 122]. Further,
as in NetSPA and MulVAL, it is assumed that the same set of target vulnerabil-
ities vti ∈ V Ti on target hosts hti ∈ HTi can be attacked by attack precondition
privilege levels ”user” ∈ PSN and ”admin” ∈ PSN from a host hi ∈ H [5, p.
2], [10, p. 44, p. 104]. Following the NetSPA model on the vulnerability locality
set, we model two vulnerability localities, ”local” and ”remote”, given by the
locality set L = {local, remote}. The locality of vulnerabilities can be found
in the access vector in CVSS in NVD that consists of the three categories ”lo-
cal”, ”adjacent network” and ”network”. Here, the ”network” category means
”remote” locality and the ”adjacent network” category refers to vulnerabilities
that can be accessed with wireless technologies like Bluetooth and print drivers.
Vulnerabilities that have locality ”adjacent network” in CVSS consist of only
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0.2 % of vulnerabilities found in the NVD vulnerability database between 1999
and 2007 and are modeled as remotely exploitable in our model.

4.1.2 Modeling postcondition privilege levels pt ∈ PT

We model the set of vulnerability postconditions as they do in the NetSPA
model where the NetSPA model set of vulnerability postcondition privilege lev-
els is given by PTN = {user, admin, DoS, other} [3, p. 10] where the privilege
levels in PTN are defined as in section 2.6.1. In our model the ”other” post-
condition privilege level category is replaced by the much more detailed CIA
impact level combinations from CVSS CIA impact levels.

A privilege level as defined by the CVSS impact metric is given by the
level of violation on the CIA of information security from the illegal privilege
level. To describe CVSS impact level descriptions we use abbreviations for the
CIA category that is impacted followed by a colon followed by an abbreviation
for the impact level, this impact level description is done for all categories of
CIA. The CIA category confidentiality has the abbreviation C, integrity has the
abbreviation I and availability has the abbreviation A, among impact levels,
impact level none has abbreviation N, impact level partial has abbreviation P
and impact level complete has abbreviation C. In this way, an impact level none
on confidentiality, complete on integrity and partial on availability is described
as ”C: N - I: C - A: P”. Since there is a strong correlation between CIA impact
level ”C: N - I: N - A: C” and privilege level ”DoS” in the NVD database [6,
p. 14], all vulnerabilities with CIA impact level descriptions ”C: N - I: N - A:
C” are classified as ”DoS” privilege level. In the same way, vulnerabilities with
CIA impact level descriptions ”C: C - I: C - A: C” are classified as privilege
level ”admin” [6, p. 13].

The set of postcondition privilege levels as defined by CVSS CIA impact level
descriptions is given by all combinations of CVSS CIA impact levels except for
the impact level combinations ”C: N - I: N - A: C” and ”C: C - I: C - A: C” that
if found in a vulnerability description of a vulnerability is reclassified as attack
postcondition privilege level ”DoS” and ”admin” respectively. In all cases of
defining the attack postcondition privilege level of a vulnerability, if a textual
description is found on a vulnerability that implies on attack postcondition
privilege levels ”user”, ”admin” and ”DoS”, then this vulnerability is classified
with postcondition privilege level categories ”user”, ”admin” and ”DoS” instead
of the CVSS CIA impact level description.

Let the set of privilege levels that are defined by all combinations of CVSS
CIA impact levels except for the CIA impact level combinations ’C: N - I: N - A:
C’ and ’C: C - I: C - A: C’ be given by the set CIAI. In our vulnerability model,
the set of possible attack postcondition privilege levels that an attacker can ob-
tain when successfully attacking a vulnerability vl ∈ V L on a host h ∈ H is given
by the postcondition privilege level set PTP = CIAI ∪ {user, admin, DoS}.

The privilege levels ”read credentials” and ”change firewall rules” affect the
privilege levels at other attacker states in the attack graph. Both privilege levels
are very dangerous since they enable remote attacks a ∈ A from other attacker
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states as ∈ AS then the one where the privilege level is obtained. In a simplified
way they could be modeled by simply placing the monetary loss value on the at-
tacker states where the privilege levels are ”read credential” or ”change firewall
rules” at a very high level. The information necessary to know which vulner-
abilities in the network that have these attack postcondition privilege levels is
not provided in NVD. It can be a vulnerability that for example provides ad-
ministrative access on a host and thereby gives an attacker the ability to change
firewall rules or read credentials, but the information on which vulnerabilities
provide these attack postcondition privilege levels is network specific and not
general, therefore this information has to be provided by the network security
administrator.

4.1.3 Modeling the exploit difficulty of vulnerabilities

To model the conditional probability of exploiting a vulnerability for probabilis-
tic attack graph generation we need to model the exploit difficulty of vulnerabil-
ities. Here, we use the exploitability metric from the CVSS temporal score and
access complexity metric from the CVSS base score. We use the combination of
CVSS exploitability metric and CVSS access complexity metric to give a vulner-
ability an exploit difficulty value. A high exploit difficulty value means that the
vulnerability is hard to exploit while a low exploit difficulty value means that
a vulnerability is easy to exploit. The exploitability metric is only provided by
the X-force vulnerability database and is publicly provided, but distributed on
thousands of web pages. Therefore it is harder to extract this information then
the access complexity metric which is provided by NVD in XML file format.
But, ideally, an exploit difficulty value should be a function of both these met-
ric values to be as accurate as possible.

Definition 4.1 (Exploit difficulty function ED). To define the exploit dif-
ficulty function ED we first need to define the exploitability value function E
and the access complexity value function AC. The exploitability function E(x,
y) where x ∈ N and y ∈ N maps the exploitability metric value of vulnerability
vlx,y ∈ V L into a numerical exploitability value. The range of E(x, y) is given
by the set R(E) = {1.5, 3, 4.5, 6}.

If vulnerability vlx,y ∈ V L has exploitability metric value high, then E(x, y)
= 1.5
If vulnerability vlx,y ∈ V L has exploitability metric value functional, then E(x,
y) = 3
If vulnerability vlx,y ∈ V L has exploitability metric value proof-of-concept, then
E(x, y) = 4.5
If vulnerability vlx,y ∈ V L has exploitability metric value unproven, then E(x,
y) = 6

The access complexity function AC(x, y) where x ∈ N and y ∈ N maps the ac-
cess complexity metric value of vulnerability vlx,y ∈ V L into a numerical access
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complexity value. The range of AC(x, y) is given by the set R(AC) = {2, 4, 6}.

If vulnerability vlx,y ∈ V L has access complexity metric value low, then AC(x,
y) = 2
If vulnerability vlx,y ∈ V L has access complexity metric value medium, then
AC(x, y) = 4
If vulnerability vlx,y ∈ V L has access complexity metric value high, then AC(x,
y) = 6

The exploit difficulty function ED(x, y) where x ∈ N and y ∈ N gives the exploit
difficulty value of vulnerability vlx,y ∈ V L. The exploit difficulty function ED(x,
y) is given by

ED(x, y) = (E(x, y) +AC(x, y))/1.2 (4.1)

The range of ED is given by R(ED) ⊆ [35/12, 10]

4.1.4 Probabilistic vulnerability model description

Based on the vulnerability locality set L = {local, remote}, attack precondition
privilege level set PSP = {user, admin}, attack postcondition privilege level
set PTP = CIAI ∪ {user, admin, DoS}, and range of the exploit difficulty
function ED, given by the numerical values in the range R(ED) of the function
ED, our probabilistic vulnerability model description for probabilistic attack
graph generation is defined in the following way:

Definition 4.2 (Probabilistic vulnerability model description). Let the
set of privilege levels that are defined by all combinations of CVSS CIA impact
levels except for the CIA impact level combinations ’C: N - I: N - A: C’ and ’C:
C - I: C - A: C’ be given by the set CIAI. In our vulnerability model, the set
of possible attack postcondition privilege levels that an attacker can obtain when
successfully attacking a vulnerability vl ∈ V L on a host h ∈ H is given by the at-
tack postcondition privilege level set PTP = CIAI ∪{user, admin, DoS}. Let
the set of probabilistic vulnerability descriptions of all vulnerabilities vl ∈ V Li
on host hi ∈ H be given by V Pi = V Pi,1 ∪ V Pi,2 ∪ . . . ∪ V Pi,m and the total
set of probabilistic vulnerability descriptions of all vulnerabilities vl ∈ V L in a
network be given by V P = V P1 ∪ V P2 ∪ . . . ∪ V Pn.

We define a probabilistic vulnerability model description V Pi,j of vulnerabil-
ity vli,j ∈ V L as a 5-ary Cartesian product over the following 5 sets:

- the vulnerable host hi ∈ H with the vulnerability vli,j ∈ V L, given by the
one-element set Hi = {hi ∈ H}

- the locality l ∈ L of the vulnerability vli,j ∈ V L, where L = {local, remote},
given by the one-element set Li,j = {l ∈ L}
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- the set of attack precondition privilege levels PSP on a host hi ∈ H that
enable an attacker to attack a vulnerability vl ∈ V L from the host hi ∈ H
is given by PSP = {user, admin}

- the attack postcondition privilege level, given by the one-element set PTPi,j =
{ptp ∈ PTP} that an attacker obtains when successfully exploiting vulner-
ability vli,j ∈ V L on host hi ∈ H

- the exploit difficulty value ED(i, j) ∈ R(ED), given by the one-element
set EDi,j = {ED(i, j) ∈ R(ED)}

We define a probabilistic vulnerability model description V Pi,j ∈ V P of vul-
nerability vli,j ∈ V L as a 5-ary Cartesian product over the 5 sets Hi, Li,j , PSP,
PTPi,j and EDi,j, it is a set of 5-tuples:

V Pi,j = Hi × Li,j × PSP × PTPi,j × EDi,j = {(hi, li,j , psp, ptpi,j , edi,j) :
hi ∈ Hi, li,j ∈ Li,j , psp ∈ PSP, ptpi,j ∈ PTPi,j , edi,j ∈ EDi,j}

meaning that

- the vulnerability vli,j ∈ V L is located on host hi ∈ H

- the vulnerability vli,j ∈ V L has locality li,j ∈ Li,j where the one-element
set Li,j = {l ∈ L}

- the vulnerability vli,j ∈ V L can be attacked with attack precondition priv-
ilege level psn ∈ PSP from a host h ∈ H

- the vulnerability vli,j ∈ V L gives an attacker attack postcondition privilege
level ptpi,j ∈ PTPi,j where the one element-set PTPi,j = {ptp ∈ PTP}
on host hi ∈ H when exploited successfully

- the vulnerability vli,j ∈ V L has exploit difficulty value ED(i ,j)

4.2 Generating a probabilistic attack graph

4.2.1 Probabilistic attacks

Attacks are defined by the vulnerability that is attacked, thus the set of pos-
sible attacks Ai from a host hi ∈ H is defined by the vulnerability model that
is being used. Defined by our vulnerability model description for probabilistic
attack graph generation, the set of possible attacks APi from a host hi ∈ H is
defined as:

Definition 4.3 (Set of possible probabilistic attacks from host hi ∈ H).
Let APi be the set of possible probabilistic attacks from host hi ∈ H and let
AP = AP1 ∪ AP2 ∪ . . . ∪ APn be the set of possible probabilistic attacks in the
whole network from all hosts H.
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We define the set of possible probabilistic attacks APi launched from host
hi ∈ H as a subset of the 6-ary Cartesian product over the following 6 sets:

- the vulnerable host hi ∈ H from where the attack is launched, given by the
one-element set Hi = {hi ∈ H}

- the set of attack precondition privilege levels PSP on the host hi ∈ H
that enable an attacker to attack a vulnerability vlf,g ∈ V L from the host
hi ∈ H

- the set of target vulnerabilities V Ti ⊆ V L that an attacker can attack from
host hi ∈ H

- the set of target hosts HTi ⊆ H with a vulnerability vti ∈ V Ti that an
attacker can attack from host hi ∈ H

- the set of attack postcondition privilege levels PTP on the host hti ∈ HTi
that an attacker can obtain when successfully attacking target vulnerability
vti ∈ V Ti on host hti ∈ HTi

- the set of possible exploit difficulty values, given by the range of ED, R(ED)

We define the set of possible attacks Ai from source host hi ∈ H as a subset
of the 6-ary Cartesian product over the 6 sets, Hi, PSP, V Ti, HTi, PTP and
R(ED), it is a set of 6-tuples:

APi ⊆ Hi×PSP×HTi×V Ti×PTP×R(ED) = {(hi, psp, hti, vti, ptp, ED(f, g)) :
hi ∈ Hi, psp ∈ PSP, hti ∈ HTi, vti ∈ V Ti, ptp ∈ PTP, ED(f, g) ∈ R(ED)}

meaning that

- a probabilistic attack can be launched from host hi ∈ H where an attacker
has attack precondition privilege level ps ∈ PS on target vulnerability vti ∈
V Ti on target host hti ∈ HTi that has exploit difficulty value ED(f, g)

- the probabilistic attack gives an attacker attack postcondition privilege level
pt ∈ PT on target host hti ∈ HTi when vulnerability vti ∈ V Ti is success-
fully attacked

The probabilistic attack graph is solely determined by the set of vulnerabil-
ities VL in a network, the set of vulnerability descriptions of all vulnerabilities
in a network VP, the set of IDS values in a network given by the set IDS and
the set of vulnerable data connectivity relations C in a network.

This can partly be understood by studying the attack preconditions of an
attack. From section 2.1.5 we know that the preconditions of an attack are
defined as:

Attack preconditions are: Precondition privilege level psp ∈ PSP on host
hi ∈ H from where the attack is launched, vulnerable data connectivity relation
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ci ∈ Ci if the attack is launched against a remote host and existence of a
vulnerability vlf,g ∈ V L on attacked host hf ∈ H.

Both vulnerabilities vl ∈ V L and vulnerable data connectivity relations
c ∈ C are known to exist in a network unlike attacks ap ∈ AP and attacker
states as ∈ AS that represent possibilities of events and conditions respectively
that are enabled by the existence of vulnerabilities vl ∈ V L, their descriptions
V Pi,j and vulnerable data connectivity relations c ∈ C. The event of an attack
ap ∈ AP creates a condition in the environment when an attacker obtains
an attacker state as ∈ AS, enabling a new attack ap ∈ AP , this sequence of
attacks is repeated until the whole probabilistic attack graph has been generated
where all possible sequences of attacks and the resulting attacker states from
these attacks are represented in an acyclic directed graph. As described in
section 2.5, a probabilistic attack graph is an exploit dependency attack graph
where the attack and attacker state nodes have been transformed into discrete
random variables with discrete probability distributions or discrete conditional
probability distributions and where all cycles have been removed.

To be able to chain together all possible attacks ap ∈ AP into a sequence of
attacks and find all possible attacker states as ∈ AS that are a result of these
attacks we need to find out how the set of possible attacks APi from a host
hi ∈ H in the network is implied based on network vulnerability data.

4.2.2 Implying attacks ap ∈ AP and attacker states as ∈ AS
from network vulnerability data

As described in section 2.1.5, attacks can be of two kinds, local and remote,
where local attacks are attacks that are launched against the same host hi ∈ H
as the host hi ∈ H that they are launched from and remote attacks are attacks
that are launched against other hosts hj ∈ H then the host hi ∈ H, hj ∈ H 6=
hi ∈ H, from where the attack is launched.

From each host where an attacker has attack precondition privilege level
psp ∈ PSP where PSP = {user, admin}, the set of possible attacks api ∈ APi
is the same for the attacker when having attack precondition privilege level
”user” and ”admin”. However, for an attacker there is no reason to launch a
local attack if he has obtained privilege level ”admin” on host hi ∈ H since the
”admin” privilege level provides the highest privilege level available and launch-
ing new attacks on the same host to gain a higher privilege level is impossible.
The privilege level ”user” on the other hand does not provide an attacker with
full access to the computer’s resources (at least not in all cases) and thus, local
attacks will only be launched if an attacker has privilege level ”user”, for exam-
ple to obtain the higher privilege level ”admin”. Thus, from an attacker state
(hi, user) ∈ AS, the whole set of possible attacks api ∈ APi from host hi ∈ H
can be launched, while from attacker states (hi, admin) ∈ AS, only the subset
of remote attacks will be launched from host hi ∈ H. Attacks ap ∈ AP are
implied in the following way from network vulnerability data:

Definition 4.4 (Implying a possible attack api ∈ APi from host hi ∈ H
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from network vulnerability data). Let the set of possible local attacks from
host hi ∈ H be given by ALi and the set of possible remote attacks from host
hi ∈ H be given by ARi. The total set of attacks from host hi ∈ H is given by
APi = ALi ∪ARi.

A local attack ali ∈ ALi is implied in the following way:

(hi, user) ∈ AS ∧ vli,j ∈ V Li ∧ (hi, local, user, ptpi,j , edi,j) ∈ V Pi,j −→
(hi, user, vli,j , hi, ptpi,j , edi,j) ∈ ALi

A remote attack ari ∈ ARi is implied in the following way:

(hi, prp) ∈ AS ∧ (hi, hf , vlf,g) ∈ Ci ∧ vlf,g ∈ V L \ V Li ∧
(hf , remote, prp, ptpf,g, edf,g) ∈ V Pf,g ∧ prp ∈ {user, admin} −→
(hi, prp, hf , vlf,g, ptpf,g, edf,g) ∈ ARi ∧ prp ∈ {user, admin}

From an attack ap ∈ AP , the resulting attacker state as ∈ AS is implied in
the following way:

Definition 4.5 (Implying a resulting attacker state as ∈ AS from an
attack ap ∈ AP ). An attacker state as ∈ AS is implied in the following way:

(hi, prp, hf , vlf,g, ptpf,g, edf,g) ∈ APi −→ (hf , ptpf,g) ∈ AS

4.2.3 Generating a probabilistic attack graph from net-
work vulnerability data

The set of vulnerabilities that exist in a network VL are described by the vul-
nerability description data set VP and therefore don’t have to be taken into
account when defining the vulnerability of a network. Therefore, a collection of
data that determines the probabilistic attack graph of a network is a set VD,
the network vulnerability data set defined as V D = V P ∪ C ∪ IDSS. It is
the union of the descriptions of the vulnerabilities that are known to exist in a
network, the vulnerable data connectivity relations that are known to exist in
a network and the set of IDS measurements in a network.

Attack graphs are of most interest when showing the set of possible attacker
states AS that an attacker can obtain from outside although they can be gen-
erated with starting privilege level psp ∈ PSP from a host inside the network
modeling the starting privilege level of an employee or other trusted individual
with access to some hosts or several hosts computer resources. But most com-
monly, the attack graphs of biggest interest are those that show the sequence of
attacks that can be made from outside the network.

From the perspective of the attack graph, a group of hosts that have the
same set of vulnerabilities and the same set of inbound and outbound vulnerable
data connectivity relations are treated as a single host [3, pp. 37-38]. Such a
group of hosts is called a host group. If one of the hosts in a host group can
be compromised then all of the hosts in a host group can be compromised.
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Therefore an attacker state as ∈ AS can either represent the privilege level of
the attacker on one host or on a whole host group.

A probabilistic attack graph generation process must start by generating
all possible attacks from the host where an attacker has precondition privilege
level psp ∈ PSP from the start. From these attacks, the set of implied attacker
states must be found. In this set of attacker states new attacks must be implied
from the attacker states where the privilege level is ”user” or ”admin”.

This process is repeated so that new layers of attacks and attacker states
are added to the probabilistic attack graph. Each attack ap ∈ AP in a new
layer of attacks must be checked if it hasn’t been launched already, if it has,
this attack must be removed. In the same way, each attacker state as ∈ AS in
a new layer must be checked, if the attacker state doesn’t exist already, a new
node is created in the acyclic directed graph. If it already exists, the edge is
simply drawn to the existing node and in this case it has to be controlled if the
new edge has created a cycle in the directed graph. This is done by control-
ling if the attacker state node to which the edge is drawn becomes an ancestor
node to itself, if it does, a cycle has been created and this edge has to be re-
moved. A node γ is an ancestor of a node α if and only if there is a directed path
from γ to α. The set of ancestor nodes A(α) of a node α is defined as [25, p. 44]:

Definition 4.6 (Ancestor). Let G = (V, D) be a directed graph. A node
γ is an ancestor of a node α if and only if there is a directed path from γ to α.
The set of ancestors A(α) of a node α is defined as

A(α) = {β ∈ V | ∃τ = (τo, . . . , τk) : τ0 = β, τk = α, (τj , τj+1) ∈ D, j =
0, 1, . . . , k}.

That an edge that is drawn to a node α so that the node α becomes an ancestor
node to itself creates a cycle can be proven in the following way. Let G = (V,
D) be a directed graph. Let A(α) be the set of ancestor nodes of a node α and
let β ∈ A(α). It can be proven that the creation of a directed edge (α, β) ∈ D
will create a cycle in G:

From definition 4.6 we know that an ancestor node β ∈ A(α) is the node β
in a path β, . . . , α. If a directed edge (α, β) ∈ D is added to D, then a path
β, . . . , α, β is created.

The path β, . . . , α, β is a cycle and is not allowed in Bayesian networks
and therefore not allowed in the probabilistic attack graph. Therefore it must
be removed in the probabilistic attack graph generation process.

Layers of new attacks and attacker states are added in the probabilistic at-
tack graph generation process until no new attacks and attacker states can be
added according to the rules of the probabilistic attack graph generation pro-
cess. When no new attacks can be added, the probabilistic attack graph has
been generated for the network based on the network vulnerability data set VD.
The result is the probabilistic attack graph where attack ap ∈ AP nodes and
attacker states as ∈ AS nodes are discrete random variables:
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Definition 4.7 (Probabilistic attack graph). Given a set of attack dis-
crete random variables X and a set of attacker state discrete random variables
Y where X ∩ Y = � and two directed edge sets U ⊆ Y ×X and V ⊆ X × Y , a
probabilistic attack graph is an acyclic directed graph G(X ∪ Y, U ∪ V ).

4.2.4 Discrete conditional probability distributions for at-
tack ap ∈ AP and attacker state as ∈ AS random
variables

X(hi, psp, hj , vlj,k, ptp, ED(j, k)) denotes the attack random variable that gives
the probability that the attack (hi, psp, hj , vlj,k, ptp, ED(j, k)) ∈ AP will be
launched a certain number of times in a certain time interval. Y (hi, ptp) de-
notes the attacker state random variable that gives the probability that the
attacker state (hi, ptp) ∈ AS will be reached a certain number of times in a
certain time interval. Both attack random variables and attacker state random
variables have Poisson distributions. A Poisson distribution X ∼ Po(λ) with
parameter λ > 0 is a discrete probability distribution that expresses the proba-
bility of a given number of events k occurring in a fixed interval of time if these
events occur with a known average rate λ = E(X) and independently of the
time since the last time. A random variable X that has a Poisson distribution
is defined as [30, p. 55]:

Definition 4.8 (Poisson distribution). If a random variabe X has the prob-
ability distribution

P (X = k) = λk · e−λ/k!, k = 0, 1, 2, . . . , λ > 0 (4.2)

it is said that X has a Poisson distribution with paramter λ > 0, X ∼ Po(λ).
The positive real number λ is equal to the expected value E(X) of X, λ =

E(X).

For attacker state random variables the Poisson distribution gives us the proba-
bility that an attacker state as ∈ AS will be reached a certain number of times
in a given period of time by an attacker. For attack random variables the Pois-
son distribution gives us the probability that an attack a ∈ A will be launched
a certain number of times in a given period of time.

Attack random variables are always implied by a single attacker state as ∈
AS and therefore have conditional probability distributions that are conditioned
on the single attacker state random variable that implies the attack ap ∈ AP .
Attack random variables are defined in the following way:

Definition 4.9 (Discrete conditional probability distribution for attack
random variables X(hi, psp, hj , vlj,k, ptp, ED(j, k))). Suppose that the
attack (hi, psp, hj , vlj,k, ptp, ED(j, k)) ∈ AP is launched successfully with av-
erage probability k given that an attacker has obtained the precondition attacker
state (hi, psp) ∈ AS for the attack (hi, psp, hj , vlj,k, ptp, ED(j, k)) ∈ AP . In
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the probabilistic attack graph (hi, psp) ∈ AS is the parent of (hi, psp, hj , vlj,k,
ptp, ED(j, k)) ∈ AP . Let y = E(Y (hi, psp)), meaning that the attacker state
(hi, psp) ∈ AS will be reached on average y number of times in a certain time
interval. Then (X(hi, psp, hj , vlj,k, ptp, ED(j, k)) | Y (hi, psp)) ∼ Po(k · y).

Attacker state random variables can be implied by one or more attack ran-
dom variables. Let the set of attacks ap ∈ AP that imply the attacker state
as ∈ AS be given by the set PRE(as ∈ AS). If an attack ap ∈ AP that implies
the attacker state as ∈ AS is launched successfully, the attacker state as ∈ AS
is obtained with probability one. Since attack random variables of the attacks in
PRE(as ∈ AS) have Poisson distributions, the attacker state random variable
implied by the attack random variables of the attacks in PRE(as ∈ AS) gets a
Poisson distribution that is the sum of the Poisson distributions of the attack
random variables of the attacks in PRE(as ∈ AS). A Poisson distribution that
is the sum of other Poisson distributed variables is defined in the following way:

Definition 4.10 (Sum of Poisson distributed variables). If Xi ∼ Po(λi),
i = 1, . . . , n are independent, and λ =

∑n
i=1 λi, then Y =

∑n
i=1Xi ∼ Po(λ).

Based on the definition of the sum of Poisson distributed variables, attacker
state random variables are defined in the following way:

Definition 4.11 (Discrete conditional probability distributions for at-
tacker state random variables Y (hj , ptp)). Let the set of attacks that imply
the attacker state (hj , ptp) ∈ AS be given by the set PRE((hj , ptp) ∈ AS). In
the probabilistic attack graph, the attacks in PRE((hj , ptp) ∈ AS) are the par-
ents of (hj , ptp) ∈ AS. Let X1, X2, . . . , Xn be the attack random variables
of the attacks in PRE((hj , ptp) ∈ AS). Xi ∼ Po(λi), i = 1, . . . , n and let
λ =

∑n
i=1 λi. Then (Y (hj , ptp) | X1, X2, . . . , Xn) = (

∑n
i=1Xi) ∼ Po(λ).

In a small example of a probabilistic attack graph in figure 4.1 it is shown how
both attack and attacker state discrete random variables have discrete condi-
tional probability distributions that are conditioned on the discrete probability
distributions of the parents.

4.2.5 Calibrating the discrete conditional probability dis-
tributions P (X(hi, psp, hj, vlj,k, ptp, ED(j, k)) | Y (hi, psp))
of attacks with information from IDS devices

We recall from definition 4.9 that an attack random variable has a conditional
probability distribution (X(hi, psp, hj , vlj,k, ptp, ED(j, k)) | Y (hi, psp)) ∼
Po(k · y). The parameter k is the average probability that an attack will be
successful given that the attack preconditions are satisfied. It is obvious that
the value of the probability parameter k depends on the skill of the attacker
launching the attack. Of course the skill depends on the attacker and the
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probability parameter k should reflect the skill of the average attacker.
Given this logic, the question is, how do we know the different values of k

for attack random variable conditional probability distributions? We know that
the success of an attack depends on the exploit difficulty value ED(i,j) of the
vulnerability that is being attacked. A high exploit difficulty value should affect
the probability parameter k downwards. This means that the value k should
correspond to an exploit difficulty value ED(i,j), a given exploit difficulty value
always implies the same probability parameter k and also the higher exploit
difficulty value ED(i,j) the lower the probability parameter k. But this still
doesn’t tell us what a good estimate of k is exactly.

Here, historical data of attack intensity from IDS devices can help us to get
the right expected value of attack intensity E(X(hi, psp, hj , vlj,k, ptp, ED(j, k)) |
Y (hi, psp)). We recall from section 2.6.1 that the function IDSf(i, f, g) gives a
count of the estimated historical average number of attacks from host hi ∈ H
on vulnerability vlf,g ∈ V L on host hf ∈ H over a given time interval. Since the
attack precondition privilege levels are given by the set PSP = {user, admin},
there are two attacker states, (hi, user) ∈ AS and (hi, admin) ∈ AS that give
an attacker the ability to launch attacks from a host hi ∈ H. Thus, the ex-
pected number of attacks from host hi ∈ H on vulnerability vlf,g ∈ V L on host
hf ∈ H is given by the expected value E(X(hi, user, hf , vlf,g, ptp, ED(f, g))+
X(hi, admin, hf , vlf,g, ptp, ED(f, g))).

We have established that the attack probability parameter k corresponds
to an exploit difficulty value ED(f, g), where a higher exploit difficulty value
ED(f, g) implies a lower attack probability value k. Let the set of attack
probability parameters k be given by the set K = {k1, k2, . . . , k12}, where
k1 < k2 < . . . < k12, there are twelve attack probability parameter values since
each attack probability parameter value k ∈ K corresponds to an exploit dif-
ficulty value and there are twelve different exploit difficulty values in R(ED).
Here k1 corresponds to the highest exploit difficulty value, k2 corresponds to
the next highest exploit difficulty value and so on until k12 that corresponds
to the lowest exploit difficulty value. We do not know the attack probability
parameter values k ∈ K, but the probability parameters k ∈ K must be chosen
so that the expected number of attacks E(X(hi, user, vlf,g, hf , ptp, ED(f, g)) +
X(hi, admin, vlf,g, hf , ptp, ED(f, g))) from host hi ∈ H on vulnerability vlf,g ∈
V L on host hf ∈ H is as close as possible to historical data on attack inten-
sity IDSf(i, f, g) from IDS devices where IDS data is available. This can be
done by testing many different values for all k ∈ K, and in that way see which
combination of values gives the best fit with historical data from IDS devices.
Different values of the probability parameters k ∈ K as long as the probabil-
ity parameters k ∈ K remain in the right order can be tested by using Monte
Carlo methods, where each probability k ∈ K has a defined domain of possible
probability values and these values are generated randomly from a probabilistic
distribution over the domain.

Let the expected number of attacks function

APE(i, f, g) = E(X(hi, user, hf , vlf,g, ptp, ED(f, g)))+
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E(X(hi, admin, hf , vlf,g, ptp, ED(f, g))) (4.3)

For the network vulnerability data set VD, the attack probabilities k ∈ K
must be chosen so that the function

f1 =
∑

IDSf(i,f,g)∈IDSS

(IDSf(i, f, g)−APE(i, f, g))2 is minimized (4.4)

while k1 < k2, k2 < k3, k3 < k4, k4 < k5, k5 < k6, k6 < k7, k7 < k8, k8 <
k9, k9 < k10, k10 < k11, k11 < k12

In this way the probability parameters k ∈ K are calibrated so that the ex-
pected number of attacks values APE(i, f, g) correspond as closely as possible
to the historical data from the IDS device.

We show what the minimization function value is for a small example proba-
bilistic attack graph in figure 4.1. In this example the set IDSS consists of the fol-
lowing IDSf(i,f,g) function values: IDSS = {IDSf(0, 1, 1) = 7/year, IDSf(0, 1, 2) =
5/year, IDSf(0, 1, 3) = 4/year}. Here k4, k6 and k9 must be chosen so that
the function

f1 =
∑

IDSf(i,f,g)∈IDSS

(IDSf(i, f, g)−APE(i, f, g))2 =

= (IDSf(0, 1, 1)− E(X(h0, admin, h1, vl1,1, user, 5.42)))2+

(IDSf(0, 1, 2)− E(X(h0, admin, h1, vl1,2, user, 6.67)))2+

(IDSf(0, 1, 3)− E(X(h0, admin, h1, vl1,3, user, 7.50)))2 =

= (7− k9 · λ)2 + (5− k6 · λ)2 + (4− k4 · λ)2 is minimized

while k4 < k6, k6 < k9

4.2.6 Computing optimized order of vulnerability patch-
ing to mitigate monetary loss from cyber attacks

While the exploit dependency attack graph shows the relationship between pos-
sible attacks ap ∈ AP and possible attacker states as ∈ AS, it shows what is
possible without any quantification of these possibilities, the probabilistic at-
tack graph quantifies the expected number of times these attacks ap ∈ AP are
launched and the number of times the attacker states as ∈ AS are reached. By
disabling a vulnerability vlf,g ∈ V L, and thereby removing it from the network
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(h1, user)  AS has probability distribution ∈
Y(h1, user) = (X(h0, admin, h1, vl1,1, user, 5.42) +
X(h0, admin, h1, vl1,2, user, 6.67) +
X(h0, admin, h1, vl1,3, user, 7.50)) ~ 
Po(k4 · λ + k6 · λ + k9 · λ) = Po(λ(k4 + k6 + k9))

(h0, admin)  AS has∈
probability distribution 
Y(h0, admin) ~ Po(λ)

(h0, admin, h1, vl1,1, user, 5.42)  AP∈
 has probability distribution 

 X(h0, admin, h1, vl1,1, user, 5.42) ~ Po(k9·λ)

(h0, admin, h1, vl1,2, user, 6.67)  AP∈
 has probability distribution 

 X(h0, admin, h1, vl1,2, user, 6.67) ~ Po(k6·λ)

IDSf(0, 1, 1) = 7/year IDSf(0, 1, 2) = 5/year IDSf(0, 1, 3) = 4/year

(h0, admin, h1, vl1,3, user, 7.50)  AP∈
 has probability distribution 

 X(h0, admin, h1, vl1,3, user, 7.50) ~ Po(k4·λ)

Figure 4.1: In this small example of a probabilistic attack graph it is shown
how both attacks and attacker state random variables have discrete probability
distributions that are conditioned on the discrete probability distributions of the
parents. The probability parameter values k4, k6 and k9, each corresponding to
an exploit difficulty value must be calibrated with data from IDS devices.
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vulnerability data set VD, it is possible to compute how E(Y (hi, ptp)) changes
for the different attacker state random variables in the network. If each possible
attacker state random variable in the network gets a monetary loss value, a single
loss expectancy, it also becomes possible to compute the annual loss expectancy
for the network, ALE(network). Let the single loss expectancy if an attacker
reaches an attacker state (hi, ptp) ∈ AS be given by SLE((hi, ptp) ∈ AS). The
annualized rate of occurrence for an attacker to reach attacker state as ∈ AS is
given by E(Y (hi, ptp)). Thus,

ALE(network) =
∑

(hi,ptp)∈AS

SLE((hi, ptp) ∈ AS) ∗ E(Y (hi, ptp)) (4.5)

Here, the network security administrator must give an estimate of
SLE((hi, ptp) ∈ AS) for each attacker state (hi, ptp) ∈ AS. By patching one
vulnerability vlf,g ∈ V L at a time, thereby disabling the corresponding attacks
ap ∈ AP on that vulnerability vlf,g ∈ V L, it is possible to compute how the
patch affects the expected number of times each attacker state as ∈ AS in the
network is reached E(Y (hi, ptp)) by an attacker. In this way it is possible to
compute which patch affects ALE(network) most, giving the network security
administrator the ability to know with mathematical certainty which vulner-
abilities carry the biggest monetary loss on the network. At the same time,
ALE(network) quantifies how much money it is worth spending on security
measures to mitigate monetary loss. In this way it is possible to compute a pri-
ority list of vulnerabilities to patch and how much money it is worth spending
on network security ALE(network) only by knowing the network vulnerability
data set VL.

4.3 Mathematical representation of network vul-
nerability data

The probabilistic attack graph is solely determined by the network vulnerability
data set V D = V P ∪ C ∪ IDSS. To enable the computation of the probabilis-
tic attack graph and be able to compute the probability distribution of each
attacker state as ∈ AS in the probabilistic attack graph, the network vulner-
ability data set of a given network must be transformed into numerical form.
Since vulnerability descriptions V Pi,j are sets of tuples and vulnerable data
connectivity relations c ∈ C are tuples, it is easy to transform these into vector
form. This is done by simply transforming the sets in the Cartesian products
that the vulnerability data tuples vd ∈ V D are members of into numerical form.
Then the corresponding Cartesian product that the network vulnerability data
tuples are members of become transformed into sets of tuples in numerical form.
After this stage a tuple is obtained where all elements are numbers, this tuple
is then transformed into vector form. A set that is transformed into numerical
form will simply get the N character at the end of the set name meaning that for
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example the numerical representation of the PTP set is denoted by PTPN. Net-
work vulnerability data sets that are in vector form have a V at the end of the
set name. For example a vulnerability description set V Pi,j that is transformed
into vector form gets the name V PVi,j .

4.3.1 Transformation of vulnerability description tuples
vpi,j ∈ V Pi,j into vector form

From definition 4.2 we know that a vulnerability description element vpi,j ∈
V Pi,j is a 5-tuple and a member of the following Cartesian product:

vpi,j ∈ H × L× PSP × PTP ×R(ED)

H is the set of hosts in the network and hosts are enumerated where hi ∈ H
denotes host number i in the network, thus the numerical representation of
host hi ∈ H is i ∈ HN . To denote the transformation of sets into numeri-
cal representations of sets or the transformation of set elements into numeri-
cal representation of set elements the imply symbol −→ is used, for example
hi ∈ H −→ i ∈ HN .

The first element in the numerical form of a network vulnerability data tuple
vd ∈ V D is given by the set named type denoted by T that gives the type of
computer network vulnerability data used, T = {vp, c, ids, ap, as} where vp
denotes that it is a vulnerability description vp ∈ V P data type, c denotes that
it is a vulnerable data connectivity relation c ∈ C data type, ids denotes that
it is an IDSf(i, f, g) ∈ IDSS value data type, ap denotes that it is an attack
ap ∈ AP data type and as denotes that it is an attacker state as ∈ AS data
type. The type set transformation T −→ TN is given by:

vp ∈ T −→ 1 ∈ TN
c ∈ T −→ 2 ∈ TN
ids ∈ T −→ 3 ∈ TN
ap ∈ T −→ 4 ∈ TN
as ∈ T −→ 5 ∈ TN

The host set transformation H −→ HN is given by:

hi ∈ H −→ i ∈ HN

The locality set transformation L −→ LN is given by:

local ∈ L −→ 1 ∈ LN
remote ∈ L −→ 2 ∈ LN

The attack precondition privilege level set transformation PSP −→ PSPN
is given by:
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”user” ∈ PSP −→ 1 ∈ PSPN
”admin” ∈ PSP −→ 2 ∈ PSPN

The attack postcondition privilege level set transformation PTP −→ PTPN is
given by:

”user” ∈ PTP −→ 1 ∈ PTPN
”admin” ∈ PTP −→ 2 ∈ PTPN
”DoS” ∈ PTP −→ 3 ∈ PTPN
”C : N − I : N −A : P” ∈ PTP −→ 4 ∈ PTPN
”C : N − I : P −A : N” ∈ PTP −→ 5 ∈ PTPN
”C : N − I : P −A : P” ∈ PTP −→ 6 ∈ PTPN
”C : N − I : P −A : C” ∈ PTP −→ 7 ∈ PTPN
”C : N − I : C −A : N” ∈ PTP −→ 8 ∈ PTPN
”C : N − I : C −A : P” ∈ PTP −→ 9 ∈ PTPN
”C : N − I : C −A : C” ∈ PTP −→ 10 ∈ PTPN
”C : P − I : N −A : N” ∈ PTP −→ 11 ∈ PTPN
”C : P − I : N −A : P” ∈ PTP −→ 12 ∈ PTPN
”C : P − I : N −A : C” ∈ PTP −→ 13 ∈ PTPN
”C : P − I : P −A : N” ∈ PTP −→ 14 ∈ PTPN
”C : P − I : P −A : P” ∈ PTP −→ 15 ∈ PTPN
”C : P − I : P −A : C” ∈ PTP −→ 16 ∈ PTPN
”C : P − I : C −A : N” ∈ PTP −→ 17 ∈ PTPN
”C : P − I : C −A : P” ∈ PTP −→ 18 ∈ PTPN
”C : P − I : C −A : C” ∈ PTP −→ 19 ∈ PTPN
”C : C − I : N −A : N” ∈ PTP −→ 20 ∈ PTPN
”C : C − I : N −A : P” ∈ PTP −→ 21 ∈ PTPN
”C : C − I : N −A : C” ∈ PTP −→ 22 ∈ PTPN
”C : C − I : P −A : N” ∈ PTP −→ 23 ∈ PTPN
”C : C − I : P −A : P” ∈ PTP −→ 24 ∈ PTPN
”C : C − I : P −A : C” ∈ PTP −→ 25 ∈ PTPN
”C : C − I : C −A : N” ∈ PTP −→ 26 ∈ PTPN
”C : C − I : C −A : P” ∈ PTP −→ 27 ∈ PTPN

In the exploit difficulty range set R(ED) the values are already numerical and
thus this set is already in numerical form and doesn’t have to be transformed.

We introduce a set VLN that gives the number of the vulnerability vli,j ∈
V L, it gives the number j of a vulnerability vli,j ∈ V L on host hi ∈ H, V LN ⊆
N.

The numerical representation of a vulnerability description element vpnf,g ∈
V PNf,g is a member of the 7-ary Cartesian product over the 7 sets, TN =
{1, 2, 3, 4, 5}, HN ⊆ N, V LN ⊆ N, LN = {1, 2}, PSPN = {1, 2}, PTPN =
[1, 27] ∩ N and R(ED) ⊆ [35/12, 10]:

vpnf,g ∈ TN ×HN × V LN × LN × PSPN × PTPN ×R(ED)
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To exemplify the transformation of a vulnerability description element vpi,j ∈
V Pi,j into its numerical representation vpni,j ∈ V PNi,j and then into vector
form vpvi,j ∈ V PVi,j we give two examples:

(h1, remote, admin, admin, 5.83) ∈ V P1,2 −→ (1, 1, 2, 2, 2, 2, 5.83) ∈
V PN1,2 −→ [1 1 2 2 2 2 5.83] ∈ V PV1,2

(h5, remote, admin,
′C : NI : CA : C ′, 8.33) ∈ V P5,3 −→ (1, 5, 3, 2, 2, 10, 8.33) ∈

V PN5,3 −→ [1 5 3 2 2 10 8.33] ∈ V PV5,3

4.3.2 Transformation of vulnerable data connectivity re-
lation tuples c ∈ C into vector form

From definition 2.3 we know that a vulnerable data connectivity relation ci ∈ Ci
is a 3-tuple and a member of the following Cartesian product:

ci ∈ Hi ×H \Hi × V L \ V Li

The one-element host set transformation Hi −→ HNi is given by:

hi ∈ Hi −→ i ∈ HNi

The host set transformation H \Hi −→ HN \HNi is given by:

hf ∈ H \Hi −→ f ∈ HN \HNi

The vulnerability set transformation V L \ V Li −→ V LN \ V LNi is given by:

vlf,g ∈ V L \ V Li −→ g ∈ V LN \ V LNi

We have that HNi = {i}, HN \HNi ⊆ N \HNi and V LN \ V LNi ⊆ N.

The numerical representation of a vulnerable data connectivity relation ci ∈ Ci
is a member of the 4-ary Cartesian product over the 4 sets, TN = {1, 2, 3}, HNi =
{i}, HN \HNi ⊆ N \HNi and V LN \ V LNi ⊆ N:

cni ∈ TN ×HNi ×HN \HNi × V LN \ V LNi

To exemplify the transformation of a vulnerable data connectivity relation
ci ∈ Ci into its numerical representation cni ∈ CNi and then into vector form
cvi ∈ CVi we give two examples:

(h1, h5, vl5,4) ∈ C1 −→ (2, 1, 5, 4) ∈ CN1 −→ [2 1 5 4] ∈ CV1

(h2, h3, vl3,3) ∈ C2 −→ (2, 2, 3, 3) ∈ CN2 −→ [2 2 3 3] ∈ CV2
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4.3.3 Transformation of IDSf(i, f, g) values into vector
form

The numerical representation of an IDS value IDSf(i, f, g) = 4/year ∈ IDSS
is given by the tuple (3, i, f, g, 4) ∈ IDSSN where the first element denotes
that it is an IDS type of data tuple and the fifth element gives the number
of attacks in a given historical period of time. To exemplify the transforma-
tion of an IDS value IDSf(i, f, g) = y/year into its numerical representation
idsn ∈ IDSSN and then into vector form idsv ∈ IDSSV we give two examples:

IDSf(2, 5, 3) = 5/year ∈ IDSS −→ (3, 2, 5, 3, 5) ∈ IDSSN −→ [3 2 5 3 5] ∈
IDSSV

IDSf(4, 2, 2) = 3/year ∈ IDSS −→ (3, 4, 2, 2, 3) ∈ IDSSN −→ [3 4 2 2 3] ∈
IDSSV

4.3.4 Mathematical representation of a probabilistic at-
tack graph

A probabilistic attack graph is solely determined by the set of possible attacker
states AS and set of possible probabilistic attacks AP, implied by the network
vulnerability data set VD according to definition 4.4 and 4.5. Therefore a prob-
abilistic attack graph can be represented mathematically by representing the
set of probabilistic attacks AP and attacker states AS in mathematical form.

4.3.5 Transformation of attacks ap ∈ AP into vector form

From definition 4.3 we know that a probabilistic attack is a 6-tuple and a mem-
ber of the following Cartesian product:

api ∈ Hi × PSP ×HTi × V Ti × PTP ×R(ED)

The transformations of the sets PSP, PTP, R(ED) into numerical form is given
in section 4.2.6. The one-element host set transformation Hi −→ HNi is given
by:

hi ∈ Hi −→ i ∈ HNi

The host set transformation HTi −→ HTNi is given by:

hf ∈ HTi −→ f ∈ HTNi

The vulnerability set transformation V Ti −→ V TNi is given by:

vlf,g ∈ V Ti −→ g ∈ V TNi
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The first element of an attack in numerical form is given by the type set TN.
To be able to represent the probabilistic attack graph in numerical form it is
necessary to define in which layer in the probabilistic attack graph the attacks
ap ∈ AP and attacker states as ∈ AS are situated, therefore the second ele-
ment of an attack in numerical form apn ∈ APN is given by the layer set LA
that gives the layer of attack ap ∈ AP in the probabilistic attack graph. To
know the expected number of times that an attack ap ∈ AP is launched over
a given period of time, the ninth element in an attack ap ∈ AP in numerical
form apn ∈ APN is given by the set EAP which gives the expected number
of times an attack ap ∈ AP is launched in a given period of time. In this way
the probability distribution P (X(hi, psp, hj , vlj,k, ptp, ED(j, k))) of the attack
(hi, psp, hj , vlj,k, ptp, ED(j, k)) ∈ AP is given, since E(X(hi, psp, hj , vlj,k, ptp,
ED(j, k)) = λ and X(hi, psp, hj , vlj,k, ptp, ED(j, k)) ∼ Po(λ). Thus, the nu-
merical representation of an attack ap ∈ AP is a stochastic variable with a given
probability distribution and expected value of an attack ap ∈ AP . It is a mem-
ber of the 9-ary Cartesian product over the 9 sets, TN = {1, 2, 3, 4, 5}, LA ⊆
N, HNi ⊆ N, PSPN = {1, 2}, HTNi ⊆ N, V TNi ⊆ N, PTPN = [1, 27] ∩
N, R(ED) ⊆ [35/12, 10] and EAP ⊆ R+:

apni ∈ TN ×LA×HNi×PSPN ×HTNi×V TNi×PTPN ×R(ED)×EAP

To exemplify the transformation of an attack ap ∈ AP into its numerical rep-
resentation apn ∈ APN and then into vector form apv ∈ APV we give two
examples:

(hi, user, hf , vlf,g, ”C : N − I : C −A : N”, 5.83) ∈ APi −→
(4, x, i, 1, f, g, 8, 5.83, y) ∈ APNi −→ [4 x i 1 f g 8 5.83 y] ∈ APVi

(hi, admin, hf , vlg,f , ”C : C − I : N −A : P”, 6.25) ∈ APi −→
(4, x, i, 1, f, g, 21, 6.25, y) ∈ APNi −→ [4 x i 1 f g 21 6.25 y] ∈ APVi

4.3.6 Transformation of attacker states as ∈ AS into vector
form

From definition 2.4 we know that an attacker state is a double and a member
of the following Cartesian product:

as ∈ H × PTP

The transformation of the postcondition privilege level set PTP and vulner-
able host set H is given in section 4.2.6. The first element in the attacker state
AS in numerical form is given by the type set T and the second element is given
by the layer set LA that gives the layer of attacker state as ∈ AS in the proba-
bilistic attack graph. The fifth element is given by the set EAS which gives the
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expected number of times an attacker state as ∈ AS is reached in a given period
of time. In this way the probability distribution P (Y (hi, ptp)) of the attacker
state (hi, ptp) ∈ AS is known since E(Y (hi, ptp)) = λ and Y (hi, ptp) ∼ Po(λ).

Thus, the numerical representation of an attacker state as ∈ AS is a stochas-
tic variable with a given probability distribution and expected value of an at-
tacker state as ∈ AS. It is a member of the 5-ary Cartesian product over the
5 sets, TN = {1, 2, 3, 4, 5}, LA ⊆ N, HN ⊆ N, PTPN = [1, 27] ∩ N and
EAS ⊆ R+:

asn ∈ TN × LA×HN × PTPN × EAS

To exemplify the transformation of an attacker state as ∈ AS into its numerical
representation asn ∈ ASN and then into vector form asv ∈ ASV we give two
examples:

(hi, DoS) ∈ AS −→ (5, x, i, 3, y) ∈ ASN −→ [5 x i 3 y] ∈ ASV

(hi,
′C : P−I : N−A : P ′) ∈ AS −→ (5, x, i, 12, y) ∈ ASN −→ [5 x i 12 y] ∈

ASV

4.3.7 Implying possible attacks ap ∈ AP and attacker states
as ∈ AS from network vulnerability data in numeri-
cal form

Using the numerical representation of network vulnerability data, attacks ap ∈
AP and attacker states as ∈ AS, we give one example each of remote attacks
ari ∈ ARi and attacker states as ∈ AS implied from the network vulnerability
data set VD, attacks api ∈ APi and attacker states as ∈ AS in numerical form.
Using regular representation of vulnerable data connectivity relation ci ∈ Ci,
vulnerability description element vpf,g ∈ V Pf,g and attacker states as ∈ AS for
implying a remote attack:

(hi, user) ∈ AS ∧ (hi, hf , vlf,g) ∈ Ci ∧ (hf , remote, user,
′C : P − I :

C − A : N ′, 6.25) ∈ V Pf,g −→ (hi, user, hf , vlf,g,
′C : P − I : C − A :

N ′, 6.25, y) ∈ ARi

Using numerical representation for implying the same remote attack ari ∈ ARi
in numerical form arni ∈ ARNi:

(5, x, i, 1, y) ∈ ASN ∧ (2, i, f, g) ∈ CNi ∧ (1, f, 2, 1, 17, 6.25) ∈
V PNf,g −→ (4, x, i, 1, f, g, 17, 6.25, y) ∈ ARNi

Using regular representation of attacks api ∈ APi for implying an attacker
state as ∈ AS:
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(hi, user, hf , vlf,g,
′C : P − I : C − A : N ′, 6.25) ∈ APi −→ (hf ,

′C :
P − I : C −A : N ′) ∈ AS

Using numerical representation for implying the same attacker state as ∈ AS
in numerical form asn ∈ ASN :

(4, i, 1, f, g, 17, 6.25) ∈ APNi −→ (5, x, f, 17, y) ∈ ASN
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Chapter 5

Probabilistic attack graph
for an invented example
network

5.1 Network vulnerability data in vector form
for an invented example network

We will test our method by computing the expected number of times each
attacker state as ∈ AS is reached in a year in an invented example network.
The graphical representation of the example network is given in figure 5.1. We
will use sections 4.3.1 - 4.3.3 to transform the vulnerable data set V D = V P ∪
C ∪ IDSS from the invented example network to vector form and use this data
to generate the probabilistic attack graph and ALE(network).

Transformation of vulnerability description tuples vpi,j ∈ V Pi,j in the in-
vented example network into vector form vpvi,j ∈ V PVi,j :

(h1, remote, admin,
′C : P−I : C−A : N ′, 7.08) ∈ V P1,1 −→ [1 1 1 2 2 17 7.08] ∈

V PV1,1
(h1, remote, admin, admin, 5.83) ∈ V P1,2 −→ [1 1 2 2 2 2 5.83] ∈ V PV1,2
(h2, remote, admin,

′C : P−I : P−A : P ′, 7.5) ∈ V P2,1 −→ [1 2 1 2 2 15 7.5] ∈
V PV2,1
(h2, remote, admin,

′C : P−I : N−A : C ′, 4.58) ∈ V P2,2 −→ [1 2 2 2 2 13 4.58] ∈
V PV2,2
(h2, remote, admin, user, 6.25) ∈ V P2.3 −→ [1 2 3 2 2 1 6.25] ∈ V PV2,3
(h3, remote, admin, user, 5.42) ∈ V P3.1 −→ [1 3 1 2 2 1 5.42] ∈ V PV3,1
(h3, remote, admin,

′C : N−I : C−A : C ′, 8.33) ∈ V P3,2 −→ [1 3 2 2 2 10 8.33] ∈
V PV3,2
(h4, remote, admin, admin, 2.92) ∈ V P4,1 −→ [1 4 1 2 2 2 2.92] ∈ V PV4,1
(h4, remote, admin,

′C : C−I : N−A : P ′, 4.58) ∈ V P4,2 −→ [1 4 2 2 2 21 4.58] ∈
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Figure 5.1: Part of a graphical representation of network vulnerability data for
an invented example network
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V PV4,2
(h4, remote, admin, user, 8.33) ∈ V P4,3 −→ [1 4 3 2 2 1 8.33] ∈ V PV4,3
(h4, local, user, admin, 2.92) ∈ V P4,4 −→ [1 4 4 1 2 1 2.92] ∈ V PV4,4
(h5, remote, admin, DoS, 4.17) ∈ V P5,1 −→ [1 5 1 2 2 3 4.17] ∈ V PV5,1
(h5, remote, admin, admin, 7.08) ∈ V P5,2 −→ [1 5 2 2 2 2 7.08] ∈ V PV5,2
(h5, remote, admin,

′C : C−I : P−A : N ′, 4.58) ∈ V P5,3 −→ [1 5 3 2 2 23 4.58] ∈
V PV5,3

Transformation of vulnerable data connectivity relations c ∈ C of the invented
example network into vector form cv ∈ CV :

(h0, h1, vl1,1) ∈ C −→ [2 0 1 1] ∈ CV
(h0, h1, vl1,2) ∈ C −→ [2 0 1 2] ∈ CV
(h0, h2, vl2,1) ∈ C −→ [2 0 2 1] ∈ CV
(h0, h2, vl2,2) ∈ C −→ [2 0 2 2] ∈ CV
(h0, h2, vl2,3) ∈ C −→ [2 0 2 3] ∈ CV
(h1, h3, vl3,1) ∈ C −→ [2 1 3 1] ∈ CV
(h1, h3, vl3,2) ∈ C −→ [2 1 3 2] ∈ CV
(h1, h4, vl4,1) ∈ C −→ [2 1 4 1] ∈ CV
(h1, h4, vl4,2) ∈ C −→ [2 1 4 2] ∈ CV
(h2, h4, vl4,1) ∈ C −→ [2 2 4 1] ∈ CV
(h2, h4, vl4,2) ∈ C −→ [2 2 4 2] ∈ CV
(h2, h4, vl4,3) ∈ C −→ [2 2 4 3] ∈ CV
(h3, h5, vl5,1) ∈ C −→ [2 3 5 1] ∈ CV
(h3, h5, vl5,2) ∈ C −→ [2 3 5 2] ∈ CV
(h4, h5, vl5,2) ∈ C −→ [2 4 5 2] ∈ CV
(h4, h5, vl5,3) ∈ C −→ [2 4 5 3] ∈ CV
(h4, h1, vl1,1) ∈ C −→ [2 4 1 1] ∈ CV

Transformation of IDSf(i, f, g) ∈ IDSS values of the invented example net-
work into vector form:

IDSf(0, 1, 1) = 8/year ∈ IDSS −→ [3 0 1 1 8] ∈ IDSSV
IDSf(1, 4, 1) = 5/year ∈ IDSS −→ [3 1 4 1 5] ∈ IDSSV
IDSf(4, 5, 3) = 3/year ∈ IDSS −→ [3 4 5 3 3] ∈ IDSSV

Using these transformations of the network vulnerability data set VD, the in-
vented example network is described in mathematical form by the following
network vulnerability data set in vector form VDV:

VDV = {[1 1 1 2 2 17 7.08], [1 1 2 2 2 2 5.83], [1 2 1 2 2 15 7.5], [1 2 2 2
2 13 4.58], [1 2 3 2 2 2 6.25], [1 3 1 2 2 1 5.42], [1 3 2 2 2 10 8.33], [1 4 1 2 2 2
2.92], [1 4 2 2 2 21 4.58], [1 4 3 2 2 1 8.33], [1 5 1 2 2 3 4.17], [1 5 2 2 2 2 7.08],
[1 5 3 2 2 23 4.58], [2 0 1 1], [2 0 1 2], [2 0 2 1], [2 0 2 2], [2 0 2 3], [2 1 3 1], [2 1
3 2], [2 1 4 1], [2 1 4 2], [2 2 4 1], [2 2 4 2], [2 2 4 3], [2 3 5 1], [2 3 5 2], [2 4 5
2], [2 4 5 3], [3 0 1 1 8], [3 1 4 1 5], [3 4 5 3 3]}
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5.2 Using the network vulnerability data set in
vector form VDV to imply the probabilistic
attack graph for the invented example net-
work

By using sections 4.2.1, 4.2.2 and 4.3 we will use the network vulnerability data
set in vector form VDV of the example network in section 5.1 to generate a
probabilistic attack graph for an attacker that starts the attack from the inter-
net. The probabilistic attack graph is represented mathematically by presenting
the expected number of times attacks ap ∈ AP can be launched and attacker
states as ∈ AS can be reached in a given period of time.

The probabilistic attack graph set in vector form PAV for a computer net-
work is solely defined by the set of attacker states AS and set of attacks AP. To
be able to compute the expected number of times each attacker state as ∈ AS
can be reached in the probabilistic attack graph we need to define the attack
probabilities K. The range of the exploit difficulty function ED is given by the
set R(ED), each value in R(ED) corresponds to an attack probability k ∈ K.
The range of the exploit difficulty function ED is given by the exploit difficulty
range set

R(ED) = {2.92, 4.17, 4.58, 5.42, 5.83, 6.25, 6.67, 7.08, 7.50, 8.33, 8.75, 10}

In our probabilistic attack graph for the invented example network in section
5.1 each exploit difficulty value ED(i, j) corresponds to an attack probability
k ∈ K of a successful attack in the following way:

k = (11 - ED(i,j))/10

Thus the attack probabilities set K in ascending order is given by:

K = {0.10, 0.23, 0.27, 0.35, 0.39, 0.43, 0.48, 0.52, 0.56, 0.64, 0.68, 0.81}

The attack probability values k ∈ K are implied in the following way by the
exploit difficulty values ED(i,j) for attacks ap ∈ AP :

10 ∈ R(ED) −→ 0.10 ∈ K
8.75 ∈ R(ED) −→ 0.23 ∈ K
8.33 ∈ R(ED) −→ 0.27 ∈ K
7.50 ∈ R(ED) −→ 0.35 ∈ K
7.08 ∈ R(ED) −→ 0.39 ∈ K
6.67 ∈ R(ED) −→ 0.43 ∈ K
6.25 ∈ R(ED) −→ 0.48 ∈ K
5.83 ∈ R(ED) −→ 0.52 ∈ K
5.42 ∈ R(ED) −→ 0.56 ∈ K
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4.58 ∈ R(ED) −→ 0.64 ∈ K
4.17 ∈ R(ED) −→ 0.68 ∈ K
2.92 ∈ R(ED) −→ 0.81 ∈ K

With these attack probabilities that correspond to each possible exploit dif-
ficulty value ED(i,j) we can compute the average number of times each possi-
ble attacker state as ∈ AS can be reached in the probabilistic attack graph.
The probabilistic attack graph is depicted graphically in figure 4.2. The whole
probabilistic attack graph for the invented computer network is implied mathe-
matically below. Expected values given by the fifth value for attacker states in
vector form and the ninth element for attacks in vector form give the expected
number of attacks ap ∈ AP launched and number of attacker states as ∈ AS
reached in a year by an attacker.

Layer 1 of possible attacks ap ∈ AP :

[5 1 0 1 10] ∧[2 0 1 1] ∧ [1 1 1 2 2 17 7.08] −→ [4 1 0 1 1 1 17 7.08 3.920]
[5 1 0 1 10] ∧ [2 0 1 2] ∧ [1 1 2 2 2 2 5.83] −→ [4 1 0 1 1 2 2 5.83 5.170]
[5 1 0 1 10] ∧ [2 0 2 1] ∧ [1 2 1 2 2 15 7.5] −→ [4 1 0 1 2 1 15 7.5 3.500]
[5 1 0 1 10] ∧ [2 0 2 2] ∧ [1 2 2 2 2 13 4.58] −→ [4 1 0 1 2 2 13 4.58 6.420]
[5 1 0 1 10] ∧ [2 0 2 3] ∧ [1 2 3 2 2 2 6.25] −→ [4 1 0 1 2 3 2 6.25 4.750]

Layer 2 of possible attacker states as ∈ AS:

[4 1 0 1 1 1 17 7.08 3.920] −→ [5 2 1 17 7.961]
[4 1 0 1 1 2 2 5.83 5.170] −→ [5 2 1 2 5.170]
[4 1 0 1 2 1 15 7.5 3.500] −→ [5 2 2 15 3.500]
[4 1 0 1 2 2 13 4.58 6.420] −→ [5 2 2 13 6.420]
[4 1 0 1 2 3 2 6.25 4.750] −→ [5 2 2 2 4.750]

Layer 2 of possible attacks ap ∈ AP :

[5 2 1 2 5.170] ∧ [2 1 3 1] ∧ [1 3 1 2 2 1 5.42] −→ [4 2 1 2 3 1 1 5.42 2.884]
[5 2 1 2 5.170] ∧ [2 1 3 2] ∧ [1 3 2 2 2 10 8.33] −→ [4 2 1 2 3 2 10 8.33 1.380]
[5 2 1 2 5.170] ∧ [2 1 4 1] ∧ [1 4 1 2 2 2 2.92] −→ [4 2 1 2 4 1 2 2.92 4.177]
[5 2 1 2 5.170] ∧ [2 1 4 2] ∧ [1 4 2 2 2 21 4.58] −→ [4 2 1 2 4 2 21 4.58 3.319]
[5 2 2 2 4.750] ∧ [2 2 4 1] ∧ [1 4 1 2 2 2 2.92] −→ [4 2 2 2 4 1 2 2.92 3.838]
[5 2 2 2 4.750] ∧ [2 2 4 2] ∧ [1 4 2 2 2 21 4.58] −→ [4 2 2 2 4 2 21 4.58 3.050]
[5 2 2 2 4.750] ∧ [2 2 4 3] ∧ [1 4 3 2 2 1 8.33] −→ [4 2 2 2 4 3 1 8.33 1.268]

Layer 3 of possible attacker states as ∈ AS:

[4 2 1 2 3 1 1 5.42 2.884] −→ [5 3 3 1 2.884]
[4 2 1 2 3 2 10 8.33 1.380] −→ [5 3 3 10 1.380]
[4 2 1 2 4 1 2 2.92 4.177] −→ [5 3 4 2 9.040]
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[4 1 0 1 1 1 17 7.08 3.920]  APV0∈ [4 1 0 1 1 2 2 5.83 5.170]  APV0∈ [4 1 0 1 2 1 15 7.5 3.500]  APV0∈

[4 1 0 1 2 2 13 4.58 6.420]  APV0∈ [4 1 0 1 2 3 1 6.25 4.750]  APV0∈

[5 2 1 17 7.961]  ASV∈

[5 2 2 13 6.420]  ASV∈

[5 2 1 2 5.170]  ASV∈

[5 2 2 1 4.750]  ASV∈

[5 2 2 15 3.500]  ASV∈

[4 2 1 2 3 1 1 5.42 2.884]  APV1∈

[4 2 1 2 3 2 10 8.33 1.380]  APV1∈ [4 2 1 2 4 1 2 2.92 4.177]  APV1∈

[4 2 1 2 4 2 21 4.58 3.319]  APV1∈ [4 2 2 1 4 1 2 2.92 4.177]  APV2∈

[4 2 2 1 4 3 1 8.33 1.268]  APV2∈

[4 2 2 1 4 2 21 4.58 3.050]  APV2∈

[5 3 3 1 2.884]  ASV∈

[5 3 3 10 1.380]  ASV∈

[5 3 4 21 6.369]  ASV∈

[5 3 4 1 1.268]  ASV∈

[5 3 4 2 9.040]  ASV∈

[5 1 0 1 10]  ASV∈

[4 3 3 1 5 1 3 4.17 1.970]  APV3∈

[4 3 3 1 5 2 2 7.08 1.131]  APV3∈

[4 3 4 1 5 2 2 7.08 0.497]  APV4∈ [4 3 4 1 1 1 17 7.08 0.497]  APV4∈ [4 3 4 2 5 2 2 7.08 3.544]  AP4∈

[4 3 4 1 5 3 23 4.58 0.814]  APV4∈ [4 3 4 1 4 4 2 2.92 1.025]  APV4∈

[4 3 4 2 5 2 2 7.08 3.544]  AP4∈[4 3 4 2 5 2 2 7.08 3.544]  APV4∈
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Figure 5.2: Graphical representation of the probabilistic attack graph for the
invented example network

[4 2 1 2 4 2 21 4.58 3.319] −→ [5 3 4 21 6.369]
[4 2 2 1 4 1 2 2.92 3.838] −→ [5 3 4 2 9.040]
[4 2 2 1 4 2 21 4.58 3.050] −→ [5 3 4 21 6.369]
[4 2 2 1 4 3 1 8.33 1.268] −→ [5 3 4 1 1.268]

Layer 3 of possible attacks ap ∈ AP :

[5 3 3 1 2.884] ∧ [2 3 5 1] ∧ [1 5 1 2 2 3 4.17] −→ [4 3 3 1 5 1 3 4.17 1.970]
[5 3 3 1 2.884] ∧ [2 3 5 2] ∧ [1 5 2 2 2 2 7.08] −→ [4 3 3 1 5 2 2 7.08 1.131]
[5 3 4 1 1.268] ∧ [2 4 5 2] ∧ [1 5 2 2 2 2 7.08] −→ [4 3 4 1 5 2 2 7.08 0.497]
[5 3 4 2 9.040] ∧ [2 4 5 2] ∧ [1 5 2 2 2 2 7.08] −→ [4 3 4 2 5 2 2 7.08 3.544]
[5 3 4 1 1.268] ∧ [2 4 5 3] ∧ [1 5 3 2 2 23 4.58] −→ [4 3 4 1 5 3 23 4.58 0.814]
[5 3 4 2 9.040] ∧ [2 4 5 3] ∧ [1 5 3 2 2 23 4.58] −→ [4 3 4 2 5 3 23 4.58 5.804]
[5 3 4 1 1.268] ∧ [2 4 1 1] ∧ [1 1 1 2 2 17 7.08] −→ [4 3 4 1 1 1 17 7.08 0.497]
[5 3 4 2 9.040] ∧ [2 4 1 1] ∧ [1 1 1 2 2 17 7.08] −→ [4 3 4 2 1 1 17 7.08 3.544]
[5 3 4 1 1.268] ∧ [1 4 4 1 1 2 2.92] −→ [4 3 4 1 4 4 2 2.92 1.025]

Layer 4 of possible attacker states as ∈ AS:

[4 3 3 1 5 1 3 4.17 1.970] −→ [5 4 5 3 1.970]
[4 3 3 1 5 2 2 7.08 1.131] −→ [5 4 5 2 5.172]
[4 3 4 1 5 2 2 7.08 0.497] −→ [5 4 5 2 5.172]
[4 3 4 2 5 2 2 7.08 3.544] −→ [5 4 5 2 5.172]
[4 3 4 1 5 3 23 4.58 0.814] −→ [5 4 5 23 6.618]
[4 3 4 2 5 3 23 4.58 5.804] −→ [5 4 5 23 6.618]
[4 3 4 1 1 1 17 7.08 0.497] −→ [5 2 1 17 7.961]
[4 3 4 2 1 1 17 7.08 3.544] −→ [5 2 1 17 7.961]
[4 3 4 1 4 4 2 2.92 1.025] −→ [5 3 4 2 9.040]
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asn ∈ ASN Single loss expectancy in USD Annualized rate of occurence

(5, x, 1, 17, y) ∈ ASN 150 8.0
(5, x, 1, 2, y) ∈ ASN 300 5.2
(5, x, 2, 15, y) ∈ ASN 150 3.5
(5, x, 2, 13, y) ∈ ASN 150 6.4
(5, x, 2, 2, y) ∈ ASN 300 4.8
(5, x, 3, 1, y) ∈ ASN 150 2.9
(5, x, 3, 10, y) ∈ ASN 200 1.4
(5, x, 4, 2, y) ∈ ASN 300 9.0
(5, x, 4, 21, y) ∈ ASN 150 6.4
(5, x, 4, 1, y) ∈ ASN 150 1.3
(5, x, 5, 3, y) ∈ ASN 200 2.0
(5, x, 5, 2, y) ∈ ASN 600 5.2
(5, x, 5, 23, y) ∈ ASN 300 6.6

Table 5.1: Single loss expectancy and annualized rate of occurrence for possible
attacker states in the invented example network

To compute ALE(network) we need to put a single loss expectancy on each
attacker state in the probabilistic attack graph for our invented network. The
single loss expectancy and annualized rate of occurrence are given in table 4.1.

Based on these values we can compute ALE(network) for our invented ex-
ample network:

ALE(network)= 150*7.961+300*5.17+150*3.5+150*6.42+300*4.75+150*2.884
+200*1.38+300*9.04+150*6.369+150*1.268+200*1.97+600*5.172+300*6.618
≈ 16000 USD

5.3 Conclusion and future improvements

We have shown what data is needed and where it can be found to compute
ALE(network) for any computer network and also how to compute the op-
timized order of vulnerability patching. We have been able to compute the
ALE(network) for a small invented example network. For the future, work re-
mains on the automation and scalability of these computations, so that the
computer network vulnerability analysis process becomes mathematically pre-
cise and automatic instead of labour intensive and based on human intuition
and experience as it is today.
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Appendix A

Implying the probabilistic
attack graph from network
vulnerability data

A.1 MATLAB code for automatic generation of
attacks apv ∈ APV and attacker states asv ∈
ASV in vector form except for the expected
value element

AS1=[5 1 0 1];

CV = [2 0 1 1; 2 0 1 2; 2 0 2 1; 2 0 2 2; 2 0 2 3; 2 1 3 1;...
2 1 3 2; 2 1 4 1; 2 1 4 2; 2 2 4 1; 2 2 4 2; 2 2 4 3; ...
2 3 5 1; 2 3 5 2; 2 4 5 2; 2 4 5 3; 2 4 1 1];

VPV = [1 1 1 2 2 17 7.08; 1 1 2 2 2 2 5.83; 1 2 1 2 2 15 7.5;...
1 2 2 2 2 13 4.58; 1 2 3 2 2 2 6.25; 1 3 1 2 2 1 5.42;...
1 3 2 2 2 10 8.33; 1 4 1 2 2 2 2.92; 1 4 2 2 2 21 4.58;...
1 4 3 2 2 1 8.33; 1 4 4 1 2 1 2.92; 1 5 1 2 2 3 4.17;...
1 5 2 2 2 2 7.08; 1 5 3 2 2 23 4.58];

CV1=[]; VPV1=[]; AS1i=[]; AP1=[];

for i=1:length(CV(:,1))
if CV(i,2)==AS1(3)
CV1 = [CV1; CV(i,:)];
else
CV1 = CV1;
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end
end
CV1

for i=1:length(CV1(:,1))
for j=1:length(VPV(:,1))
if CV1(i,3)==VPV(j,2) & CV1(i,4)==VPV(j,3)
VPV1=[VPV1; VPV(j,:)];
else
VPV1=VPV1;
end
end
end
VPV1

for i=1:length(AS1(:,1))
for j=1:length(CV1(:,1))
if AS1(i,3)==CV1(j,2) & AS1(i,4)==1
AS1i=[AS1i; AS1(i,:)];
elseif AS1(i,3)==CV1(j,2) & AS1(i,4)==2
AS1i=[AS1i; AS1(i,:)];
else
AS1i=AS1i;
end
end
end
AS1i

for i=1:5
AP1 = [AP1; 4, 1, AS1i(i,3), AS1i(i,4), CV1(i,3), CV1(i,4), ...
VPV1(i,6), VPV1(i,7)];
end
AP1

CV2=[]; VPV2=[]; AS2=[]; AP2=[]; AS2i=[];

for j=1:length(AP1(:,1))
AS2 = [AS2; 5 2 AP1(j,5) AP1(j,7)];
end
AS2

for i=1:length(CV(:,1))
for j=1:length(AS2u(:,1))
if CV(i,2)==AS2u(j,3) & AS2u(j,4)==1
CV2=[CV2; CV(i,:)];
elseif CV(i,2)==AS2u(j,3) & AS2u(j,4)==2
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CV2=[CV2; CV(i,:)];
else
CV2=CV2;
end
end
end
CV2

for i=1:length(CV2(:,1))
for j=1:length(VPV(:,1))
if CV2(i,3)==VPV(j,2) & CV2(i,4)==VPV(j,3)
VPV2=[VPV2; VPV(j,:)];
else
VPV2=VPV2;
end
end
end
VPV2

AS2u=unique(AS2,’rows’);

for i=1:length(AS2u(:,1))
for j=1:length(CV2(:,1))
if AS2u(i,3)==CV2(j,2) & AS2u(i,4)==1
AS2i=[AS2i; AS2u(i,:)];
elseif AS2u(i,3)==CV2(j,2) & AS2u(i,4)==2
AS2i=[AS2i; AS2u(i,:)];
else
AS2i=AS2i;
end
end
end
AS2i

for i=1:length(CV2(:,1))
AP2 = [AP2; 4, 2, AS2i(i,3), AS2i(i,4), CV2(i,3), CV2(i,4), ...
VPV2(i,6), VPV2(i,7)];
end
AP2

CV3=[]; VPV3=[]; AS3=[]; AP3=[]; AS3i=[];

for j=1:length(AP2(:,1))
AS3 = [AS3; 5 3 AP2(j,5) AP2(j,7)];
end
AS3
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AS3u=unique(AS3,’rows’),

for i=1:length(CV(:,1))
for j=1:length(AS3u(:,1))
if CV(i,2)==AS3u(j,3) & AS3u(j,4)==1
CV3=[CV3; CV(i,:)];
elseif CV(i,2)==AS3u(j,3) & AS3u(j,4)==2
CV3=[CV3; CV(i,:)];
else
CV3=CV3;
end
end
end
CV3

for i=1:length(CV3(:,1))
for j=1:length(VPV(:,1))
if CV3(i,3)==VPV(j,2) & CV3(i,4)==VPV(j,3)
VPV3=[VPV3; VPV(j,:)];
else
VPV3=VPV3;
end
end
end
VPV3

CV3u=unique(CV3,’rows’)

for i=1:length(CV3u(:,1))
for j=1:length(AS3u(:,1))
if AS3u(j,3)==CV3u(i,2) & AS3u(j,4)==1
AS3i=[AS3i; AS3u(j,:)];
elseif AS3u(j,3)==CV3u(i,2) & AS3u(j,4)==2
AS3i=[AS3i; AS3u(j,:)];
else
AS3i=AS3i;
end
end
end
AS3i

for i=1:length(CV3(:,1))
AP3 = [AP3; 4, 3, AS3i(i,3), AS3i(i,4), CV3(i,3), CV3(i,4), ...
VPV3(i,6), VPV3(i,7)];
end

70



AP3

AS4=[];

for j=1:length(AP3(:,1))
AS4 = [AS4; 5 4 AP3(j,5) AP3(j,7)];
end
AS4

AS1, AP1, AS2, AP2, AS3, AP3, AS4

A.2 Computation of expected values for attacker
state as ∈ AS and attack ap ∈ AP random
variables

Computation of expected values for attacks ap ∈ AP and attacker states as ∈
AS. Sometimes attacks ap ∈ AP imply attacker states as ∈ AS that have al-
ready been implied by other attacks ap ∈ AP in earlier layers. In this case new
computations have to be made of the expected value of the implied attacker
state as ∈ AS. Therefore each expected value, both for attacker state as ∈ AS
and attack ap ∈ AP random variables, has a number in brackets, showing for
each expected value how many times computations have been made up to that
computation for that expected value. When all computations have been made,
the expected value with the highest value in brackets gives the true attacker
state as ∈ AS or attack ap ∈ AP expected value.

E([4 1 0 1 1 1 17 7.08 y] ∈ APV ) (1) = 10*(11-7.08)/10 = 3.92
E([4 1 0 1 1 2 2 5.83 y] ∈ APV ) (1) = 10*(11-5.83)/10 = 5.17
E([4 1 0 1 2 1 15 7.5 y] ∈ APV ) (1) = 10*(11-7.5)/10 = 3.5
E([4 1 0 1 2 2 13 4.58 y] ∈ APV ) (1) = 10*(11-4.58)/10 = 6.42
E([4 1 0 1 2 3 2 6.25 y] ∈ APV ) (1) = 10*(11-6.25)/10 = 4.75

E([5 2 1 17 y] ∈ ASV ) (1) = 3.92
E([5 2 1 2 y] ∈ ASV ) (1) = 5.17
E([5 2 2 15 y] ∈ ASV ) (1) = 3.5
E([5 2 2 13 y] ∈ ASV ) (1) = 6.42
E([5 2 2 2 y] ∈ ASV ) (1) = 4.75

E([4 2 1 2 3 1 1 5.42 y] ∈ APV ) (1) = 5.17*(11-5.42)/10 = 2.885
E([4 2 1 2 3 2 10 8.33 y] ∈ APV ) (1) = 5.17*(11-8.33)/10 = 1.380
E([4 2 1 2 4 1 2 2.92 y] ∈ APV ) (1) = 5.17*(11-2.92)/10 = 4.177
E([4 2 1 2 4 2 21 4.58 y] ∈ APV ) (1) = 5.17*(11-4.58)/10 = 3.319
E([4 2 2 1 4 1 2 2.92 y] ∈ APV ) (1) = 4.75*(11-2.92)/10 = 3.838
E([4 2 2 1 4 2 21 4.58 y] ∈ APV ) (1) = 4.75*(11-4.58)/10 = 3.050
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E([4 2 2 1 4 3 1 8.33 y] ∈ APV ) (1) = 4.75*(11-8.33)/10 = 1.268

E([5 3 3 1 y] ∈ ASV ) (1) = 2.885
E([5 3 3 10 y] ∈ ASV ) (1) = 1.380
E([5 3 4 2 y] ∈ ASV ) (1) = 4.177 + 3.838 = 8.015
E([5 3 4 21 y] ∈ ASV ) (1) = 3.319 + 3.050 = 6.369
E([5 3 4 1 y] ∈ ASV ) (1) = 1.268

E([4 3 3 1 5 1 3 4.17 y] ∈ APV ) (1) = 2.885*(11-4.17)/10 = 1.971
E([4 3 3 1 5 2 2 7.08 y] ∈ APV ) (1) = 2.885*(11-7.08)/10 = 1.131
E([4 3 4 1 5 2 2 7.08 y] ∈ APV ) (1) = 1.268*(11-7.08)/10 = 0.497
E([4 3 4 2 5 2 2 7.08 y] ∈ APV ) (1) = 8.015*(11-7.08)/10 = 3.142
E([4 3 4 1 5 3 23 4.58 y] ∈ APV ) (1) = 1.268*(11-4.58)/10 = 0.814
E([4 3 4 2 5 3 23 4.58 y] ∈ APV ) (1) = 8.015*(11-4.58)/10 = 5.146
E([4 3 4 1 1 1 17 7.08 y] ∈ APV ) (1) = 1.268*(11-7.08)/10 = 0.497
E([4 3 4 2 1 1 17 7.08 y] ∈ APV ) (1) = 8.015*(11-7.08)/10 = 3.142
E([4 3 4 1 4 4 2 2.92 y] ∈ APV ) (1) = 1.268*(11-2.92)/10 = 1.025

E([5 4 5 3 y] ∈ ASV ) (1) = 1.971
E([5 4 5 2 y] ∈ ASV ) (1) = 1.131 + 0.497 + 3.142 = 4.770
E([5 4 5 23 y] ∈ ASV ) (1) = 0.814 + 5.146 = 5.960
E([5 2 1 17 y] ∈ ASV ) (2) = 3.92 + 0.497 + 3.142 = 7.559
E([5 3 4 2 y] ∈ ASV ) (2) = 4.177 + 3.838 + 1.025 = 9.040

E([4 3 4 2 5 2 2 7.08 y] ∈ APV ) (2) = 9.040*(11-7.08)/10 = 3.544
E([4 3 4 2 5 3 23 4.58 y] ∈ APV ) (2) = 9.040*(11-4.58)/10 = 5.804
E([4 3 4 2 1 1 17 7.08 y] ∈ APV ) (2) = 9.040*(11-7.08)/10 = 3.544

E([5 4 5 2 y] ∈ ASV ) (2) = 1.131 + 0.497 + 3.544 = 5.172
E([5 4 5 23 y] ∈ ASV ) (2) = 5.804 + 0.814 = 6.618
E([5 2 1 17 y] ∈ ASV ) (3) = 3.92 + 0.497 + 3.544 = 7.961
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