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Abstract

This thesis studies the Loss Distribution Approach for modeling of Operational Risk

under Basel II from a practical and general perspective. Initial analysis supports the

use of the Peaks over Threshold method for modeling the severity distributions of

individual cells.

A method for weighting loss data subject to data capture bias is implemented and

discussed. The idea of the method is that each loss event is registered if and only if it

exceeds an outcome of a stochastic threshold. The method is shown to be very useful,

but poses some challenges demanding the employment of qualitative reasoning.

The most well known estimators of both the extreme value threshold and the

parameters in the Generalized Pareto Distribution are reviewed and studied from a

theoretical perspective. We also introduce a GPD estimator which uses the Method-

of-Moments estimate of the shape parameter while estimating the scale parameter by

fitting a specific high quantile to empirical data. All estimators are then applied to

available data sets and evaluated with respect to robustness and data fit.

We further review an analytical approximation of the regulatory capital for each

cell and apply this to our model. The validity of the approximation is evaluated by

using Monte Carlo estimates as a benchmark. This also leads us to study how the rate

of convergence of the Monte Carlo estimates depends on the ”heavy-tailedness” of the

loss distribution.

A standard model for correlation between cells is discussed and explicit expressions

limiting the actual correlation between the aggregated loss distributions in the model

are presented. These bounds are then numerically estimated from data.
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1 Introduction

1.1 Background

Even though operational risk is far from a new concept to anyone in the banking industry, it was for

a long time seen as a risk that could be disregarded or neglected in comparison to credit- or market

risk. The last decades of globalization and deregulation in the financial world has however brought about

larger trading volumes and more diversity in the operating business of many companies and institutions,

which has both increased the risks and the potential losses associated with operational risk. Examples

include the ”Big Bang” reform in Japan 1998, the Financial Services Act of 1999 and the expansion

of the eurozone. This has also triggered the development of new complex financial products, designed

to hedge newly emerged risks or exploit markets that until recently have been illiquid. Simultaneously,

technological innovations has enabled the growth of new services and activities such as online banking

and high frequency trading. The increased speed and complexity of banking services and transactions has

constantly driven the development of operational risk management and associated regulations forward,

even though there exists many examples of lessons that had to be learned the hard way.

The Basel Committee did in 2001 define operational risk as

”The risk of direct or indirect loss resulting from inadequate or

failed internal processes, people and systems or from external events.”

Typical examples include fraud committed by employees, external individuals or organizations, compen-

sation to employees, companies etc. due to damage to people, physical assets or the environment, and

business disruption or losses connected to technical failures, human resources, accidental errors, terrorism

or natural disasters. It is often said that operational risk, as opposed to credit-, market- or insurance

risk, can be characterized by not being subject to speculation or other profit generating investments (for

instance, the sellers of credit default swaps exploit credit risk for their own benefit). Still, the division is

not always that clear cut since many companies are insured against losses attributed to operational risk.

The operational losses from a company can roughly be categorized into two main groups. These are

losses with high frequency and low severity, and losses with low frequency and high severity. Losses with

low frequency and low severity can often be omitted due to their obvious insignificance, while losses with

high frequency and high severity for natural reasons do not exist. Most of the time, focus will lie on the

low frequency/high severity-losses since these are very unpredictable and derives from risks which cannot

be fully insured against. In worst case, the magnitude of a loss of this kind can be so large that it causes

the company serious financial problems, or even leads the company to bankruptcy. We will below study

some historical examples of these low-frequency losses.

When Barings Bank (London) declared bankruptcy in 1995, it was one of the oldest of its kind, having

been founded in 1762. Nick Leeson, employed in 1989, had been assigned to perform low risk trading

which would exploit arbitrage opportunities caused by price differences on exchanges in Japan and Sin-

gapore. Due to holding two positions at the same time (with trading and accounting duties), Leeson was

first able to cover up the fact that he partly had abandoned his primary assignments, and instead had

started to speculate by holding positions for a much longer time than intended. Later, this also allowed

him to hide his losses until they were up to £827 million, much more than Barings total capital at the

time.

In April 2010 the oil rig Deepwater Horizon, leased by the oil and gas company BP and located about

60 km south-east of the coast of Louisiana, exploded and caused the death of 11 employees. The explosion

further caused the rig to sink, and enormous amounts of oil immediately started to leak into the Gulf of
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Mexico. The incident led to huge losses for the fishing and tourism industries, and is by many regarded

as the worst man-made environmental disaster in the US to date. As of February 2013, BP had paid out

$42 billion in compensations, but the total economic loss for BP is expected to follow from the conclusion

of the still ongoing legal proceedings.

In the same month, a volcano eruption in Iceland caused an ash cloud to be formed and sent into

the upper part of the atmosphere. Previous experiences had shown that volcanic ash had the potential

to damage aircraft engines in air, and since no adequate tests of this effect had been performed, airspace

regulators decided to cancel nearly all flights in northern Europe for more than a week. The biggest eco-

nomic losses following the event could be found in the airline industry and industries largely dependent on

importing/exporting, not to mention lost revenue as a consequence of the many delays and cancellations

of cultural events and meetings.

1.2 Regulations

The Basel Committee of Banking Supervision was established in 1974, with the aim of stabilizing banking

and currency markets. The Committee released the Capital Accord, now commonly referred to as Basel

I, in 1988. The accord primarily regulated credit risk, although also other types of risks were implicitly

covered. Market risk was explicitly included in the updated guidelines, released in 1996, and two years

later, drafts of Basel II were published.

The first mention of any capital requirement directly related to operational risk was in January 2001

when the Basel Committee publicized a consultative document focusing on the subject. Basel II, a more

complete, flexible and modern framework in comparison to its predecessor, was released in 2004, while

minor changes and additions were published during the subsequent years.

The committee has no formal legal authority, and the aim of the guidelines is merely to formulate

broad standards which encourage convergence of risk measurement approaches, while at the same time

allowing for different, locally tailored implementations. It is then the responsibility of national central

banks and other institutions to decide on how to carry out and regulate these frameworks, in whichever

form they consider most suitable for their specific needs and circumstances. Basel III was agreed upon

in 2011 and is expected to be fully implemented in 2018. The European implementation have been con-

structed by the European Commission, and is called the Capital Requirements Directive IV.

The Basel accord consists of three pillars. The first one deals with credit, market and operational risk,

while the second describes how banks and regulators should assess the risks from the first pillar, and also

acknowledges risks not covered by the first pillar. The last pillar aims to encourage transparency of the

process in which corporations meet the requirements of the first and the second pillar.

The first pillar describes three approaches of varying complexity and sensitivity for the modeling of

operational risk. The most primitive is the Basic Indicator Approach in which the regulatory capital is

calculated as a percentage of the average gross income from the last three years (years with negative gross

income excluded). The Standardized Approach is somewhat more detailed, and entails the calculation of

gross income for several different business lines. These numbers are then multiplied by specific factors for

each business line which give the respective capital charges, and the total capital requirement is simply

the sum of the charges for the individual business lines.

This thesis will focus on the Advanced Measurement Approach (AMA), which allows banks to them-

selves model operational risks under loose guidelines provided by the Basel committee. AMA is ordinarily

implemented using the Loss Distribution Approach (LDA) described in section 2.1. International banks

with ”significant risk exposures” are expected to implement AMA and cannot go back to a simpler ap-

proach once AMA has been implemented (see paragraphs 647 and 648 in International Convergence of

2



Capital Measurement and Capital Standards (2006)).

1.3 Statement of Purpose

Operational risk modeling involves some very specific challenges related to robustness. First of all, the

available data is often insufficient and unreliable. While the Basel guidelines encourages an estimation

of the 0.999-quantile of the yearly aggregated loss, no bank has access to anything close to a thousand

observations of annual losses with relevant risk characteristics. Furthermore, losses from databases such

as ORX seldom specify which bank that reported a specific loss, and it is therefore in practice difficult

to motivate any rejection of extreme losses. On top of this, the accounting practices might differ between

database members, which means that the BL-ET specification cannot be assumed to be identical amongst

all members. The responsibility of mapping the losses into the correct business line and event type can

seldom exclusively be handed to a specific expert team at each company, but will to some extent have to

be performed by many different employees, which increases the risk of misspecifications.

Moreover, it is often neither reasonably nor desirable to increase the capital allocation related to

specific business lines in an all too careless manner. For this reason, the thesis will particularly study how

we can reduce the risk of any severe overestimation without losing sight of data sensitivity and modeling

consistency. By constructing an efficient and robust simulation procedure, we hope to aid future estima-

tions and inferences. Our aim can be summarized as providing an answer to the following:

How can modeling and implementation decisions help to improve the performance

of the Loss Distribution Approach with respect to robustness and efficiency?

1.4 Outline of the Thesis

Chapter 1 serves to introduce the reader to the subject at hand and its historical as well as regulatory

context. The object of the thesis is presented together with a brief summary of some of the main obstacles

and challenges in operational risk modeling.

Chapter 2 reviews the necessary theory with an emphasis on practical problems of applying Extreme

Value Theory (EVT) to operational risk models. The basis of the typical LDA model is described, together

with the most commonly used probability distributions, analytical approximations of sought key figures,

and some aspects of correlation modeling. Furthermore, some elementary robustness theory is studied

and applied to Generalized Pareto Distribution (GPD) - estimators.

In Chapter 3, the available data is presented and we go through the process of filtering the data. A

method to scale the probabilities of loss observations subject to data capture bias is reviewed and applied

to our data sets.

Chapter 4 describes those analysis procedures employed in the subsequent chapter which requires

a bit more detailed description. It introduces the MoMom-Q estimator and explains the implemented

estimation and simulation procedures.

The main results of the thesis are presented in chapter 5. The chapter includes studies of both

possible severity distributions, parameter estimators for the GPD, and different threshold estimators. One

section studies the convergence rate of Monte Carlo (MC) estimates of capital requirements, and another

compares the MC estimates to analytical approximations. The robustness with respect to outliers of high

severity, as well as the stability in terms of the threshold choice, is studied for several different parameter

estimators. The next to last section discusses cell aggregation from a practical and regulatory perspective.

Finally, theoretical bounds on the correlation of aggregated loss distributions given a specific correlation

3



model in the LDA is applied to the final model of the thesis. This then gives some numerical results

supporting the notion that the assumption of perfect correlation in between cells is all too conservative

with the given correlation model.

The results are then summarized in Chapter 6 along with some general conclusions that can be drawn

from the study. At last, Chapter 7 gives some suggestions on how further studies of the subject could

proceed, while also pointing out some of the limitations of the thesis.

4



2 Preliminary Theory

2.1 The Loss Distribution Approach

Let us assume that we have divided our observations into business lines (BLs) and event types (ETs).

The total loss in cell (i, j), i.e. the losses in business line i emerging from event type j during the time

interval [t, t + τ ], is determined by the independent stochastic variables Ni,j (the total number of losses

in the cell) and Xk
i,j (the size of the k:th loss in the cell) and can be written as

Si,j =

Ni,j∑
k=1

Xk
i,j .

From here on, the indexes denoting the cell in question will be omitted due to notational convenience.

We will then denote the probability distribution function (pdf) of the loss frequency of a given cell

by fev(n), where n ∈ N ∪ {0}. Similarly, the pdf of the loss severity in the same cell can be written as

fsev(x), where obviously fsev(x) = 0 for x < 0. Furthermore, we can express the pdf of S as

fagg(s) =


∞∑
n=1

fev(n)fn∗sev(s) , s > 0

fev(0) , s = 0 ,

where fn∗sev(x) is the n-fold convolution of fsev(x) with itself, i.e.

fn∗sev(x) =


f1∗
sev(x) = fsev(x)

f2∗
sev(x) = fsev(x) ∗ fsev(x) =

∞∫
−∞

fsev(x− y)fsev(y)dy

fn∗sev(x) = f
(n−1)∗
sev (x) ∗ fsev(x), n > 2

We will use τ = 1 year throughout the thesis.

2.2 Risk Measures

The guidelines from the Basel committee does not specify which risk measure to use in AMA. We

will therefore present all three measures which are mentioned in the guidelines (see paragraph 220 in

Operational Risk - Supervisory Guidelines for the Advanced Measurement Approaches).

The most well known risk measure today is Value-at-Risk (VaR). To illustrate the use of VaR, consider

the stochastic variable L which represents the loss from some given investment during the time interval

[t, t + τ ]. VaRα(L) then equals the smallest threshold value l for which the probability that L exceeds l

is not greater than the confidence level α. Mathematically, this can be written as

VaRα(L) = inf {l : P(L > l) ≤ α} = inf {l : FL(l) ≥ 1− α},

which obviously is equal to F−1
L (1 − α) when FL is continuous and strictly increasing (as should be the

case under most practical circumstances). You should be aware of the fact that other definitions of VaR

might denote this by VaR1−α(L) and that there also exists definitions which discounts the prevailing

risk-free interest rate during [t, t+ τ ] from the value of the VaR.
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VaR is often criticized since it completely ignores the shape of the distribution beyond the chosen

confidence level. With this in mind, it is not hard to imagine two loss distributions with identical VaR

whose implied risks differ greatly. This motivates the introduction of Expected Shortfall (ES), sometimes

also called Conditional Value at Risk (CVaR). ESα(L) is the average value of VaRβ(L) given 0 ≤ β ≤ α
(with all β:s given the same weight), i.e.

ESα(L) =
1

α

α∫
0

VaRβ(L)dβ.

From the definition, it should be clear that it is not possible to ”hide risk in the tail” using ES, as

opposed to when using VaR. For this and other reasons, ES has lately been gaining more recognition at

the expense of VaR.

Another practical risk measure is Median Shortfall (MS). Median shortfall is simply the capital that

needs to put away to ensure that you with probability 1/2 will cover all losses above some threshold. This

can be expressed as

MSα(L) = VaRα(L) + inf
{
l : P(L−VaRα(L) ≤ l|L > VaRα(L)) ≥ 1/2

}
.

2.3 The Poisson Distribution

The Poisson distribution is the standard choice of frequency distribution. This can be motivated by the

fact that the length of time between two events should be exponentially distributed, since the exponential

distribution is the unique distribution that is synonymous with ”lack of memory” (see theorem 2.2 in

Enger and Grandell (2006), i.e.

P (X > x+ y |X > y) = P (X > x)⇐⇒ X ∈ Exp(λ).

In other words, the fact that no internal fraud was reported last month does not mean that the probability

suddenly is greater (or smaller), ceteris paribus, that an internal fraud will be reported this month. This

means that the number of reported events starting from some time t0 can be described by a Poisson

process, and further that the total number of losses in the interval [t, t + τ ] is Poisson distributed (see

section 8.1 in Gut (2009)).

2.4 Extreme Value Theory

EVT is often employed when estimating the severity distribution. This section gives a short summary of

the theoretical foundation of the most commonly used techniques.

Definition: Consider the i.i.d. variables, X,X1, ..., Xn, and define the variableMn byMn = max(X1, ..., Xn).

If there exists cn ∈ (0,∞) and dn ∈ (−∞,∞) such that

lim
n→∞

P

(
Mn − dn

cn
≤ x

)
= FH(x),

where FH(x) is the cumulative distribution function (cdf) of some variable H, then X is said to be in

the Maximum Domain of Attraction of H (written X ∈MDA(H)).
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First Theorem in Extreme Value Theory (the Fisher-Tippett-Gnedenko Theorem): IfX ∈MDA(H),

then H belongs to the Generalized Extreme Value (GEV) distribution, defined by the cdf

FHξ(x) =

{
exp

{
−(1 + ξx)−1/ξ

}
, ξ 6= 0

exp {−e−x} , ξ = 0,

for 1 + ξx > 0 and ξ ∈ R.

Remark 1: Notice that the support of Hξ, i.e.
{
x ∈ R : fHξ(x) 6= 0

}
, is

x > −1
ξ , ξ > 0

x < −1
ξ , ξ < 0

x ∈ R , ξ = 0.

Remark 2: It is reasonable to assume that all standard continuous distributions belong to MDA(Hξ)

(See Embrechts et al. (2005), section 7.1.2).

Second Theorem in Extreme Value Theory (the Pickands-Balkema-de Haan Theorem): Assume

that X,X1, ..., Xn are i.i.d. and belongs to the domain of attraction of some H, and denote the conditional

excess distribution function by Fu(x) = P(X − u ≤ x|X > u) for some u ∈ R. It then holds that

lim
u↑xF

sup
0<x<xF−u

|Fu(x)−Gξ,β(x)| = 0,

where Gξ,β denotes the Generalized Pareto Distribution (GPD) function, i.e.

Gξ,β(x) =

{
1− (1 + ξ xβ )−1/ξ , ξ 6= 0

1− e−
x
β , ξ = 0,

for {
0 ≤ x , ξ ≥ 0

0 ≤ x ≤ −β
ξ , ξ < 0,

β ∈ (0,∞) (the scale parameter) and ξ ∈ (−∞,∞) (the shape parameter). xF is the right endpoint

of X, i.e. xF = sup {x ∈ R : F (x) < 1}.

The Block Maxima Method is a straightforward application of the first fundamental theorem in EVT

where one will fit the GEV distribution to data consisting of the largest losses from some specified

equidistant time intervals. This method is seldom used when modeling operational risk, since it rejects

almost all data points and take no consideration to the distribution of the aggregated losses. A more

practical method is Peaks Over Threshold (POT), in which you choose some convenient threshold u and

try to fit the GPD to all loss data which exceeds u. The typical choice for the estimation of the severity

distribution below the threshold is the Empirical Distribution Function (edf), in general defined by
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F̂X(x) =
1

n

n∑
i=1

1{xi < x},

where x1, ..., xn are observations of the stochastic variable X and 1(·) denotes the indicator function.

2.5 Approximations of Risk Measures

Böcker and Klüpperberg (2005) noted that the VaR of an aggregated loss variable S with the associated

severity cdf Fsev(x) can be approximated by

VaRα(S) ≈ F−1
sev

(
1− α

E[N ]

)
, (1)

given that Fsev is subexponential (see definition 1.3.3 in Embrechts et al. (1997)) and

∞∑
n=0

(1 + ε)nfev(n) <∞, (2)

for some ε > 0. With the modeling of Fsev(x) as a piecewise distribution with an empirical body and a

GPD in the upper tail, this can be estimated by (see section 8.2 in the appendix)

VaRα(S) ≈ u+
β

ξ

((
Nlosses>u

Nlosses

E[N ]

α

)ξ
− 1

)
, (3)

where Nlosses denotes the total number of observations and Nlosses>u the number of observations ex-

ceeding the threshold u. In the same manner the expected shortfall can be estimated by

ESα(S) ≈ u− β

ξ
+

β

ξ(1− ξ)

(
Nlosses>u

Nlosses

E[N ]

α

)ξ
.

2.6 Parameter Estimation for the Generalized Pareto Distribution

This section will review some methods for estimating the parameters in the GPD. It is generally harder to

estimate the shape parameter than the scale parameter, why research has focused on the former problem.

Also notice that with ξ given, β will only scale the independent variable in the pdf. Throughout the

section we will assume that we have access to n ordered observations xn ≤ ... ≤ x2 ≤ x1, which are

exceedances (over some threshold u), derived from a larger set of observations.

2.6.1 Hill’s Estimator

Hill (1975) introduced what would become known as the Hill estimator,

ξ̂Hk =
1

k

k∑
i=1

ln(xi)− ln(xk+1),

β̂Hk =
xk+1

ξ̂Hk

(
k

n

)ξ̂Hk
.

8



Beirlant et al. (2004) presents four natural ways to introduce this estimator, all based on the upper

tail behaviour of the GPD. As should be intuitively clear, the bias in the estimate of ξ will increase with

k while the variance of the estimate decreases (see page 341 in Embrechts et al. (1997)).

2.6.2 Pickands’ Estimator

Pickands (1975) proposed the estimators

ξ̂Pk =
1

ln 2
ln

(
xk − x2k

x2k − x4k

)
,

and

β̂Pk =
x2k − x4k

ln 2∫
0

eξ̂Pksds

,

for some k ∈ {1, ..., bn/4c}. The estimators are obtained by ”matching” theoretical and empirical quan-

tiles. The primary downside with Pickands’ Estimator is that most observations are discarded, and hence

convergence will be slow.

Both ξ̂Hk and ξ̂Pk converge to ξ in probability when k, n → ∞ and k/n → 0 (see Theorems 6.4.1

and 6.4.6 in Embrechts et al. (1997)).

2.6.3 The Maximum Likelihood Estimator

With ξ 6= 0, we have
dGξ,β(x)

dx = gξ,β(x) = 1
β (1 + ξ xβ )−1/ξ−1, which gives the log likelihood function

ln l(ξ, β) = −n ln(β)−
(

1 +
1

ξ

) n∑
i=1

ln(1 + ξ
xi
β

). (4)

By introducing τ = −ξ/β, and substituting β with −ξ/τ we get

ln l(ξ, τ) = −n ln(− ξ
τ

)−
(

1 +
1

ξ

) n∑
i=1

ln(1− τxi),

subject to τ < 1/x1 (which can be derived from the upper bound on the independent variable when

ξ < 0) and ξ ≥ −1 (the likelihood function is unbounded when ξ < −1). The requirement ∂ ln l(ξ,τ)
∂ξ = 0

now gives

ξ =
1

n

n∑
i=1

ln(1− τxi).

By maximizing l(ξ(τ), τ) (which has to be done using numerical methods), we can then obtain τ̂ =

arg max
τ

l(ξ(τ), τ), which further gives us the estimates

ξ̂ML =
1

n

n∑
i=1

ln(1− τ̂xi),
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and

β̂ML = − ξ̂ML

τ̂
.

There is a consensus that the maximum likelihood (ML) estimator is well performing in the presence

of large samples. Unfortunately, the scarcity of data is often severe in practice, in which case other

estimators have proven more effective (see Deidda and Puliga (2009)).

2.6.4 Huisman’s Estimator

In Huisman et al. (2001) it is noted that the bias of the Hill estimator is approximately linear in k when

k is sufficiently small. This motivates the introduction of the regression model

ξ̂Hk = β0 + β1k + εk, k ∈ 1, ..., κ,

where β0 is the sought after estimate of ξ, and εk are the error terms. Due to dependence between

the estimates (the complete set of data points used for ξ̂Hk will also be used for ξ̂Hk+1
etc.) the model

is heteroscedastic, and the standard ordinary least squares estimate is therefore usually replaced by a

weighted least squares estimate which gives the weight
√
k to each equation (the standard deviation of

ξ̂Hk is inversely proportional to
√
k). This can be shown to yield the multilinear estimate

ξ̂Huκ = β̂0(κ) =

κ∑
k=1

wk(κ)ξ̂Hk ,

where wk(κ) are some constants only dependent on k and κ.

2.6.5 The Method-of-Moments Estimator

Hosking and Wallis (1987) were the first to derive the Method-of-Moments (MoMom) estimator. Provided

that ξ < 1
2 and ξ 6= 0 (the case ξ = 0 is non-relevant in practice), the mean, µ, and the variance, σ2, of

the GPD can be written as (see sections 8.3 and 8.4 in the appendix)

µ =
β

1− ξ
,

and

σ2 =
β2

(1− ξ)2(1− 2ξ)
.

The estimates of the shape and the scale parameter can now be defined as the parameters which al-

lows the theoretical mean and variance to equal the sample mean and variance respectively, i.e.

ξ̂MoM =
1

2

(
1− µ̂2

σ̂2

)
,

β̂MoM =
1

2
µ̂

(
1 +

µ̂2

σ̂2

)
,
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where

µ̂ =
1

n

n∑
i=1

xi,

and

σ̂2 =
1

n− 1

n∑
i=1

(xi − µ̂)2.

2.6.6 The Method-of-Probability-Weighted-Moments Estimator

Also introduced in Hosking and Wallis (1987), the Method-of-Probability-Weighted-Moments (MoPW-

Mom) estimator is based on the same principle as the MoMom estimator. The estimator attempts to fit

the theoretical probability weighted moments, defined by

Mp,r,s = E[Xp(F (X))r(1− F (X))s],

for some random variable X with cdf F (x), with the corresponding sample estimates. For the GPD,

assuming ξ < 1, it is especially convenient and simple to use

M1,0,0 = E[X] =
β

1− ξ
,

and (see section 8.5 in the appendix)

M1,0,1 = E[X(1− F (X))] =
β

2(2− ξ)
,

which analogously to the MoMom estimator gives

ξ̂PWM = 2− M̂1,0,0

M̂1,0,0 − 2M̂1,0,1

,

and

β̂PWM =
2M̂1,0,0M̂1,0,1

M̂1,0,0 − 2M̂1,0,1

,

with the unbiased empirical estimator

M̂1,0,s =
(n− s− 1)!

n!

n∑
i=1

(n− i)(n− i− 1)...(n− i− s+ 1)xn+1−i.

Notice that ξ̂PWM < 1 (excluding the unrealistic case that all losses are identical in value), since

ξ̂PWM =
M̂1,0,0 − 4M̂1,0,1

M̂1,0,0 − 2M̂1,0,1

,
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and

M̂1,0,0 − 2M̂1,0,1 =
1

n

n∑
i=1

(
1− 2

n− i
n− 1

)
xn+1−i =

1

n(n− 1)

n∑
i=1

(2i− (n+ 1))xn+1−i

=
1

n(n− 1)
((n− 1)x1 + (n− 3)x2 + ...− (n− 3)xn−1 − (n− 1)xn) > 0,

whenever we don’t have x1 = x2 = ... = xn.

2.6.7 The Method-of-Medians Estimator

The Method of Medians Estimator was first applied to the GPD in Peng and Welsh (2001), and is defined

as the solution to

Median{xi} = Gξ̂,β̂(0.5)−1 =
β̂

ξ̂
(2ξ̂ − 1), (5)

Median

{
ln(1 + ξ̂xi/β̂)

ξ̂2
− (1 + ξ̂)xi

β̂ξ̂ + ξ̂2xi

}
= z(ξ̂),

where z(ξ̂) is defined by∫
Ω

dy = 1/2, Ω = {0 < y < 1,− ln y

ξ̂
− 1 + ξ̂

ξ̂2
(1− yξ̂) > z(ξ̂)}.

The estimator is obtained by equating the theoretical and empirical score function (i.e. the gradient

of the likelihood function with respect to the parameters).

2.6.8 The kMedMad Estimator

The kMedMad estimator is a special kind of Location-Dispersion (LD) estimator. The LD estimators

were introduced in Marazzi and Ruffieux (1998) and simply attempts to fit some chosen theoretical

and observed measures of location and dispersion. The kMedMad specifically uses the median and the

k-Median-of-Absolute-Deviations (kMad), the last of which is defined by,

inf{t > 0 : FX(F−1
X (0.5) + kt)− F (F−1

X (0.5)− t) ≥ 1/2},

for some k > 0. kMedMad is a generalization of MedMad = kMedMad
∣∣
k=1

, both of which was introduced

in Ruckdeschel and Horbenko (2010), the latter with the object of improving the finite sample breakdown

point (see section 2.9.5) of the former. It is straightforward to show that this gives the estimates as the

solution to equation (5) and

(
1 + ξ̂

β̂

ξ̂
(2ξ̂ − 1)− t∗

β̂

)−1/ξ̂

−

(
1 + ξ̂

β̂

ξ̂
(2ξ̂ − 1) + kt∗

β̂

)−1/ξ̂

=
1

2
,
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where

t∗ = inf{t > 0 : F̂ (median{xi}+ kt)− F̂ ((median{xi})− t) ≥ 1/2}.

Typically, we obtain k > 1 when k is optimized with respect some robustness criteria. This choice of

k will counteract the natural tendency of the MedMad estimator to give more weight to smaller observa-

tions due to the asymmetry of the GPD.

2.7 Threshold Estimation

This section will review some common methods to estimate the threshold when using the POT method.

The data xn ≤ ... ≤ x2 ≤ x1 should here be thought of as the complete original set of observations, rather

than exceedances above some threshold as in the last section.

2.7.1 The Mean Excess Plot

The mean excess function is defined as e(u) = E[X −u|X > u]. For the GPD, it evaluates to (see section

8.6 in the appendix)

e(u) =
β

1− ξ
+ u

ξ

1− ξ
, (6)

for ξ < 1 and ξ 6= 0.

By plotting the empirical mean excess function, ê(u), it is possible to graphically choose some thresh-

old u′ where ê(u) is approximately linear for u > u′. The points which are typically plotted are (xi, ê(xi)),

for i = 2, 3, ..., where

ê(u) =

∑n
i=1(xi − u) 1(xi > u)∑n

i=1 1(xi > u)
.

2.7.2 The Median Excess Plot

One might also characterize a probability distribution by its median excess function f(u) =
(
F

(u)
X

)−1/2
(1/2),

where F
(u)
X (x) = P (X − u ≤ x|X > u). For the GPD we have (see section 8.7 in the appendix)

f(u) =
β

ξ
(2ξ − 1) + u(2ξ − 1). (7)

Practitioners use the median excess plot to confirm the validity of a GPD-fit to data by plotting (xi, f̂(xi)),

for i = 2, 3, ..., where

f̂(u) =
xd(k+1)/2e + xb(k+1)/2c

2
− u,

and xk+1 ≤ u < xk.

2.7.3 The Hill Plot

The Hill plot is simply the graph connecting the points (k, ξ̂Hk). Some studies subjectively chooses the

threshold close to where the graph seems to become ”unstable” (remember that the bias in the estimate

will increase with k).
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2.7.4 The Huisman Method

In Tursunalieva and Silvapulle (2011), the threshold is suggested to be chosen as the κ which minimizes

|ξ̂Hκ − β̂0(κ)|. The Huisman method can be seen as giving an empirical estimate of the level where the

total error from the bias in ξ̂Hκ present for large values of k, and the large variance obtained with small

values of k, is minimized. Since the idea of the method is to use the inherent k-dependence in the variance

and bias of the Hill estimator, the Huisman Method is actually a formal implementation of the Hill plot.

2.7.5 The Riess-Thomas Method

Reiss and Thomas (2007), proposes that you select the number of extreme values as the k which minimizes

RTk,γ =
1

k

k∑
i=1

iγ |ξ̂i −median{ξ̂1, ..., ξ̂k}|,

with γ ∈ [0, 0.5], and where ξ̂i denotes an estimate of the shape parameter obtained by using some

chosen estimator and xi+1 ≤ u < xi. This is obviously a formal way of choosing the threshold at a level

where the estimates are stable with respect to the threshold. They further suggest that you also try to

minimize the alternative measure obtained by replacing the median in the sum by ξ̂k.

Some empirically motivated rules of thumb, which only uses the number of observations available have

also been suggested. A number of these can be found in Scarrott and MacDonald (2012).

2.8 Severity Distributions

Aside from the GPD, we will also use two other commonly employed severity distributions: theLogNormal

Distribution (LND) and theWeibull Distribution (WBD). A random variable X is said to be log-normally

distributed if X = eY , where Y ∈ N(µ, σ). The ML estimates of the parameters µ and σ can be derived

as (see section 8.8 in the appendix)

µ̂ =

∑n
i=1 lnxi
n

, (8)

and

σ̂2 =

∑n
i=1(lnxi − µ̂)2

n
. (9)

Similarly, the WBD, defined by F (x) = 1 − e
xk

λ for x ≥ 0, has the ML estimates (λ̂, k̂) given by (see

section 8.9 in the appendix) ∑n
i=1 x

k̂
i lnxi∑n

i=1 x
k̂
i

− 1

k̂
− 1

n

n∑
i=1

lnxi = 0, (10)

and

λ̂ =

∑n
i=1 x

k̂
i

n
. (11)

Since these distributions are heavy-tailed, i.e. have a cdf which approaches one slower than exponentially,

they are popular choices for modeling loss data (which also often displays this characteristic).
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2.9 Measures of Robustness

Robustness can intuitively be thought of as an estimators ability to limit the influence of outliers and

data modifications. An estimator which amplifies negligible changes in in-data to extreme changes in

out-data, can obviously not be called neither reliable nor robust, and its ability of making predictions

should be doubted. This section will review some common measures of robustness suitable for analyzing

previously mentioned estimators. First, we will study local robustness, i.e. how estimators withstand small

deviations in the data. This analysis is traditionally carried out by using influence functions and other

similar measures. We then examine the theory of global robustness, i.e. how estimators behave in the

presence of unbounded outliers.

2.9.1 The Influence Function

Let T (F ) denote the limit in probability of the estimators {Tn} given the cdf F . Most often, the estimators

{Tn} can be thought of as the values given by some estimator applied to the data points {x1, ..., xn},
which are outcomes from some stochastic variable. The Influence Function (IF) of T at x with respect to

F , can then be defined as

IF(x, T ;F ) = lim
ε ↓ 0

T ((1− ε)F + εH(x))− T (F )

ε
,

where H(x) denotes the trivial distribution giving mass 1 to x. The IF should be thought of as the

derivative of the influence on T of small impurities in observational data.

The IF of many of the GPD estimators introduced above can be found in Ruckdeschel and Horbenko

(2010).

2.9.2 The Empirical Influence Function

If you want to study the IF of some estimator with regard to the cdf of some real life phenomena,

you easily run into problems. The associated stochastic variable can probably not be described by any

mathematical distribution function, and even if it could, the distribution is typically unknown to the

observer. One alternative is then to use the Empirical Influence Function (EIF),

EIF(x, T ; F̂n) = IF(x, T ; F̂n),

where F̂n denotes the edf of a set of observations {x1, ..., xn}. The EIF can under most circumstances be

considered to be a reliable approximation of the influence function already for relatively small samples

(see Opdyke and Cavallo (2012)). Theorems regarding requirements for asymptotic convergence of the

empirical influence function to the corresponding influence function are beyond the scope of this thesis

and the reader is referred to Nasser and Alam (2006) for technical details.

2.9.3 The Sensitivity Function

In many cases, due to scarcity of data, the asymptotic properties of estimators are not relevant, and

it is more convenient to study their behaviour in the presence of finite samples when the proportional

contamination of the data cannot be assumed to approach zero. This lead us to study the Sensitivity

Function (SF),
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SF(x,X, {Tn}) = (n+ 1)(Tn+1(x1, ..., xn, x)− Tn(x1, ..., xn)),

where we use the notation X = {x1, ..., xn}, and where Tn(x1, ..., xn) denotes the estimate from the

estimator Tn given the data points x1, ..., xn. When SF(x,X, {Tn}) is seen as a random variable depen-

dent on the distribution F , most estimators satisfies

lim
n→∞

SF(x,X, {Tn}) = IF(x, T ;F ), ∀x ∈ R.

In Croux (1998), it is however showed that equality does not hold for estimators using the median

of the observations.

2.9.4 The Breakdown Point

The Breakdown Point, ε∗(T ;F ), of an estimator T with respect to the cdf F is defined by

ε∗(T ;F ) = sup{ε ≤ 1 : sup
d(F,F ′)<ε

|T (F )− T (F ′)| <∞},

where we have used the Prohorov distance

d(F, F ′) = inf{ε : F (x) ≤ G(xε) + ε, ∀ x, xε ∈ R, s.t. |x− xε| < ε}.

If you think the definition is somewhat unintuitive, you can think of the breakdown point as the ”dis-

tance” from F to the distribution closest to F for which the asymptotic value of the estimator T becomes

unbounded.

Instead of studying how ”close a parameter estimator is to becoming unbounded”, it is in some cases

more interesting to study how close it is to some given value which has a specific effect on the modeling.

For instance, when fitting a GPD, it is interesting to see how much you need to change a given set of

observations to get ξ ≥ 1/2 (the variance becomes infinite) or ξ ≥ 1 (the mean becomes infinite).

2.9.5 The Finite Sample Breakdown Point

The finite sample version of the breakdown point is simply called the Finite Sample Breakdown Point

(FSBP), and is given by

ε∗n(X,Tn) =
1

n
max{m : max

i1,...,im
sup

y1,...,ym
|Tn(zn, ..., zn)| <∞},

where {z1, ..., zn} is obtained by replacing the data points xi1 , ..., xim by y1, ..., ym ∈ R in {x1, ..., xn}.
The FSBP can be said to be the largest fraction of the data {x1, ..., xn} that one can change arbitrarily

without risking unbounded estimates from Tn.

In general, those estimators which take many or all available observations into consideration will have

a very small FSBP. For instance, all GPD estimators presented above which are not based on matching

quantiles have a FSBP of 1/n. Notice, however, that since the ξ estimates given by MoMom and MoP-

WMom are limited from above, their FSBP is 1 with respect to a positive infinite estimate of the shape
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parameter. As for the other estimators, the FSBP of Pickands estimator and the kMedMad estimator

can be found in Ruckdeschel and Horbenko (2010), while there is no known analytical expression for the

FSBP of the MoMed estimator.

2.9.6 The Expected Finite Sample Breakdown Point

Motivated by the fact that ε∗n(X,Tn) depends on X = {x1, ..., xn} for some Tn, which severely restricts

the possibilities of drawing any useful, general conclusion from the measure, Ruckdeschel and Horbenko

(2012) introduced the Expected Finite Sample Breakdown Point (EFSBP), defined by

ε̄∗n(Tn) = E[ε∗n(X,Tn)].

Since x1, ..., xn often are seen as outcomes of some cdf with the unknown parameter that Tn tries to

estimate, the expectation is suggested to be taken as the expectation giving the smallest ε̄∗n under the

assumption that the parameter belongs to some reasonable interval. In practice, one could for instance

take the expectation under the assumption that the parameter estimate given by Tn(x1, ..., xn) is equal

to the true underlying parameter value.

2.10 Q-Q plots

A Q-Q plot displays the curve of a function Q : [0, 1] → R2 defined by Q(f) = (F−1
X1

(f), F−1
X2

(f)), for

some stochastic variables X1 and X2. The cdfs can either be edfs, cdfs of a distribution fitted to data

or just some standard cdfs. Often times, one will fit a distribution to data and let the fitted distribution

and the edf be drawn on the x- and y-axis respectively.

Q-Q plots are especially convenient when you want to examine and compare the tails of distributions.

If the right part of the plot is convex, this means that the distribution on the y-axis has a heavier right

tail than the distribution on the x-axis and vice versa.

2.11 Goodness-of-fit Tests

2.11.1 The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov statistic associated with a cdf F (x) and some edf F̂ (x) is defined as

KS = sup
x
|F (x)− F̂ (x)|. (12)

Similarly, the two-sample Kolmogorov-Smirnov statistic of the edfs F̂1(x) and F̂2(x) is

KS′ = sup
x
|F̂1(x)− F̂2(x)|. (13)

The associated p-values can then easily be calculated under the respective hypotheses that F (x) is the

true distribution of the sample associated with F̂ (x), and that the samples resulting in F̂1(x) and F̂2(x)

come from the same distribution.

2.11.2 The Upper Tail Anderson-Darling Statistic

The general quadratic edf statistic is defined by
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QEDF = n

∞∫
−∞

(F̂ (x)− F (x))2w(F (x))dF (x),

and is a statistical tool to determine how well a distribution F fits the edf F̂ given by a sample

xn ≤ ... ≤ x2 ≤ x1. The weights w(F (x)) = 1 gives the Cramér-von Mises statistic, while w(F (x)) =

[F (x)(1−F (x))]−1 gives the Anderson-Darling statistic, which obviously emphasizes the lower and upper

tail of the distribution. Chernobai et al. (2005) was the first paper to suggest the upper tail Anderson-

Darling statistic (specifically introduced with applications related to operational risk in mind), which

uses w(F (x)) = (1 − F (x))−2. The statistic can easily be expressed in terms of the data points as (see

section 8.10 in the appendix)

UTAD = 2
n∑
i=1

ln(1− F (xn+1−i)) +
1

n

n∑
i=1

(1 + 2(n− i)) 1

1− F (xn+1−i)
. (14)

Since the upper tail of the severity distribution more or less exclusively determines each cell’s contribution

to the total capital allocation, this is a very convenient statistic when analyzing suggested distributions.

2.12 Copula Theory

Copulas are used to model nonlinear dependence between stochastic variables. Let us consider a case were

we are studying m variables, X1, ..., Xm, with joint cdf F (x1, ..., xm) and their respective one dimensional

cdfs F1(x1) = F (x1,∞, ...,∞), ..., Fm(xm) = F (∞, ...,∞, xm). The associated copula C : Rm 7→ [0, 1] is

then defined by

F (x1, ..., xm) = C(F1(x1), ..., Fm(xm)).

Sklar’s Theorem says that the copula C always exists, and is unique whenever F1(x1), ..., Fm(xm) are

continuous. Notice that the joint pdf can be expressed as

f(x1, ..., xm) =
∂mF (x1, ..., xm)

∂x1 · ... · ∂xm
= f1(x1) · ... · fm(xm)

∂mC(F1(x1), ..., Fm((xm))

∂F1 · ... · ∂Fm
,

where f1(x1), ..., fm(xm) of course denotes the respective pdfs of the stochastic variables.

Given a multidimensional sample {xt1, ..., xtm}Tt=1, the Empirical Copula is defined by

Ĉ

(
t1
T
, ...,

tm
T

)
=

1

T

T∑
t=1

1{xt1 ≤ x
(t1)
1 , ..., xtm ≤ x(tm)

m },

for 1 ≤ t1, ..., tm ≤ T , and where x
(1)
j ≤ x

(2)
j ≤ .... ≤ x

(T )
j , ∀ j ∈ {1, ...,m}.

The most well-known Copula is the Gaussian Copula. It is defined by

CG(F1, ..., Fm; ρ) = Φρ(Φ
−1(F1), ...,Φ−1(Fm)),

where Φ is the cdf of the standard one-dimensional normal distribution and Φρ is the joint cdf of a

multivariate normal distribution with the mean vector equal to the zero vector, and the correlation
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matrix ρ. The correlation matrix ρ can be estimated using standard ML methods on the joint distribution

function implied by the Copula (typically under some simplifying assumptions) or by minimizing some

defined ”distance” between the CG and Ĉ.

2.13 Correlation Modeling in the Loss Distribution Approach

There is no consensus on how to model and estimate correlation in the BL-ET matrix in LDA-models.

Correlation models can be applied to the number of events in different cells, the severity distributions, or

simply to the total yearly aggregated loss distributions. Other options include modeling of dependence

”inside the cells” themselves, or common shock models where only the size of specific losses attributed

to different cells are dependent. In the latter model, the idea is to capture the effects of singular events

causing multiple losses of varying types, so called ”split-losses”. A review of available models together

with further references can be found in Aue and Kalkbrenner (2006), chapter 7.

While most banks have to resort to models assuming perfect or near perfect correlation due to reg-

ulatory aspects and data insufficiency, Frachot et al. (2004) claims that this is in most cases leads to

unrealistically conservative estimates. Assuming perfect correlation in between cells will furthermore

punish corporations that use granular LDA models, which counteracts the idea that practitioners should

be encouraged to use realistic models with great sensitivity to diverse risks in the operational business.

Let us consider two cells whose associated variables will be denoted with the indices 1 and 2 respec-

tively. Further, assume that the number of events in the two cells are correlated and Poisson distributed

with intensities λ1 and λ2 respectively, while the individual severities are independent on all levels. The

correlation between the aggregated losses is dependent on the ”event-correlation” through (see section

8.11 in the appendix)

Corr(S1, S2) = η(X1) η(X2) Corr(N1, N2), (15)

where η(Xi) = E[Xi]/
√

E
[
X2
i

]
for i = 1, 2. By assuming a lognormal distribution for the severities

and using data from Credit Lyonnais to estimate the distribution parameters, Frachot et al. (2004) uses

(15) to argue that Corr(S1, S2) < 0.04 in all practical cases. Similarly, we will in section 5.9 use parameter

estimates to argue that the actual correlation between the yearly loss distributions of those cells that

contribute the most to the total capital requirement in our model, assuming independence of individual

severities, is far less than 1.
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3 Data Material

The study have used data from three sources: the internal database, consisting of loss events from 2007

and onwards, the ORX database, i.e. data collected starting from 2002, gathered from banks with a

membership in the international Operational Risk eXchange Association, and also, data collected by SAS

Institute from publicly reported losses. All data have been categorized as belonging to one of ten BLs and

one of seven ETs. The BLs are Corporate Finance, Trading & Sales, Retail Banking, Commercial Banking,

Clearing, Agency Services, Asset Management, Retail Brokerage, Private Banking and Corporate Items,

while the event types are Internal Fraud, External Fraud, Employment Practices, Clients & Products,

Disasters & Public Safety, Technology & Infrastructure, and Execution & Delivery. There does exist a

subdivision of BLs and ETs, however, it is seldom used in practice and will not be accounted for in

this study. The BLs Private Banking and Corporate Items are mapped to Retail Banking and Retail

Brokerage, respectively, in the Standardized Approach defined by Basel, and have merely been invented

by ORX. A detailed account of the division into categories and other reporting issues can be found in

Operational Risk Reporting Standards (2011).

3.1 Data Filtering

The ORX data was filtered to only include losses from Europe, since losses from other parts of the

world are regarded as being subject to cultural and local effects, not relevant to our estimates. Examples

include hierarchical organizational structures at banks affecting the amount of losses being ”hidden”

by employees, and differing legal frameworks across regions (for further examples see Graham (2008)).

This is also supported by paragraph 250 in Operational Risk - Supervisory Guidelines for the Advanced

Measurement Approaches (2011).

The SAS data was first filtered to only include losses from Europe categorized as belonging to Financial

Services in the North American Industry Classification System. The losses were then converted from

American dollars to euro (which is the currency of the ORX losses) using historical exchange rates from

the year when the loss was recorded. Next, all SAS losses were matched against the ORX losses, after

which duplicates were removed from the SAS data. A pair of duplicates were defined as losses found in

the same cell in both sets, recorded in the same year, and where the loss difference was less than AC100.

Since the SAS losses only includes losses exceeding $100,000, this means that the relative loss difference

in the two sets for the most part will have to be smaller than 1/1000 if the loss is to be removed. This

is far from an infallible method due to the uncertainty of the correct exchange rate (the timestamp of

the SAS losses only specifies the year), however, a more extensive removal of suspected duplicates would

most certainly lead to incorrect removals.

All ORX data was attached with three dates: date of occurrence, date of discovery and date of

recognition, where date of discovery is defined as ”the date on which the firm became aware of the event”

and date of recognition as ”the date when a loss or reserve/provision was first recognized in the ’profit and

loss’”. In accordance with paragraph 29 in Operational Risk - Supervisory Guidelines for the Advanced

Measurement Approaches (2011), the losses were classified according to discovery date. All losses were

then adjusted with respect to the historical inflation of the euro area.

You should note that we have been forced to neglect several other biases related to time. Both the

internal event data and the ORX losses will be affected by incomplete reporting practices during the initial

years of reporting. This should generally result in fewer events and higher losses (with the assumption

that lower losses are more easily neglected) during this period. Furthermore, changes in risk exposure

over time can be handled by the use of Business Environment and Internal Control Factors (BEICFs,
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see paragraphs 255 and 256 in Operational Risk - Supervisory Guidelines for the Advanced Measurement

Approaches). They will, however, not be considered in this thesis. The delay in reporting might also have

a lowering effect on the number of events reported for the last year. Nonetheless, the internal data does

not indicate any severe bias due to this.

Every loss event from ORX specifies gross loss, net loss after direct recovery (which includes, for

instance, amounts received in a legal settlement offsetting the initial loss) and net after all recovery (which

also includes recoveries due to insurance payouts). Our model used the net loss after direct recovery, which,

according to paragraph 95 in Operational Risk - Supervisory Guidelines for the Advanced Measurement

Approaches (2011), is the most common approach when implementing AMA.

All losses except those from the BLs 0101, 0201, 0202, 0203, 0204, 0301, 0302, 0401, 0501, 0601,

0703, 0801 and 0901 have been discarded (using the standard notation in Operational Risk Reporting

Standards (2011)). This is done since only these BLs are relevant for the internal business operations.

3.2 Data Weighting

Besides the truncations at AC20,000 and $100,000 for the ORX and SAS data respectively, there are

several other sources of bias in the external data. These include: Scale Bias, Representation Bias and

Data Capture Bias.

Scale bias refers to the case of losses being proportional to the size of the associated organization or

business area. While several propositions have been made about how to account for this bias, they were

all disregarded in this thesis. First of all, regressions of the SAS losses on quantities relating to firm size

did not reveal any significant relation between the variables (a result which agrees with the findings in

Aue and Kalkbrenner (2006)), and further, no measures relating to firm size can be found in the ORX

data, so the larger part of the losses would in either case have to remain unscaled.

The fact that neither members of ORX, nor the institutions labeled under ”Financial Services” in

the SAS data, are exposed to the exact same risks as those that we want to assess, is what gives rise to

representation bias. Since the ORX members are only a limited number of major banks, while the filtered

SAS losses are derived from a very diverse set of companies including pension funds, legal services and

insurance carriers, the bias is most probably more severe for the SAS losses. Unfortunately, we cannot

explicitly address this bias since we do not have access to any detailed information about the nature of

the organization at which each specific loss occurred.

Data capture bias means that the probability of a loss being registered correctly will depend on the

type and size of the loss. For instance, losses arising from a specific BL might have a larger tendency to

be devaluated or swept under the carpet due to corporate policies or organizational culture. This is a

problem which is hard to detect since it most probably exists in more or less all data, and hence do not

bring about any natural benchmark.

The most critical bias that we face is believed to be the data capture bias arising from the registration

procedure of the SAS data. The losses are drawn from a vast collection of publications, and while it is

difficult to overview this process, it seems reasonably to suspect that the chance of a loss being publicly

recognized increases with the size of the loss. This is further supported by the Q-Q plot of the ORX data

versus the SAS data (see Figure 1 (left)). We handled this by undertaking the method outlined in Aue

and Kalkbrenner (2006). The method rests on the assumption that the ORX data correctly reflects the

internal losses and risks, something which was qualitatively motivated above, and also is quantitatively

supported by the Q-Q plot in Figure 1 (right). Furthermore, we will model the severities of the ORX and

the SAS losses with the stochastics variables XORX and XSAS , related by XSAS = XORX |XORX ≥ H,

where H is another stochastic variable representing the implicit threshold originating from the data

22



Figure 1 : Q-Q plots based on the SAS and ORX samples (left), and the ORX and internal data samples (right).
Only ORX and SAS losses exceeding AC120,000 have been used in the left plot, and only internal losses exceeding
AC20,000 have been used in the right plot. The corresponding tick marks for the two axes represent the same values.

capture bias. H will be presumed to follow the cdf FH; θ(h) where θ is some set of parameters. The

objective is then to minimize

Err(θ) =

k∑
i=1

(P(H ≤ XORX ≤ Si|H ≤ XORX)− P(XSAS ≤ Si))2,

with respect to θ, where {S1, ..., Sk} is some set of suitably chosen severities. Denoting the samples

by {X1
ORX , ..., X

nORX
ORX } and {X1

SAS , ..., X
nSAS
SAS }, we used the estimate

P(H ≤ XORX ≤ Si|H ≤ XORX) =
P(H ≤ XORX ≤ Si ∩H ≤ XORX)

P(H ≤ XORX)

=
P(XORX ≤ Si ∩H ≤ XORX)

P(H ≤ XORX)
≈

∑
Xj
ORX≤Si

FH; θ(X
j
ORX)∑nORX

j=1 FH; θ(X
j
ORX)

,

while P(XSAS ≤ Si) was estimated using the edf. The samples consisted of all ORX and SAS losses

exceeding AC120,000. This threshold is introduced to diminish the time dependent effect of the actual

SAS-threshold being larger than $100,000 due to inflation and varying historical exchange rates. The

severities were chosen as

Si = AC120,000

(
Xmax
ORX

AC120,000

)(i−1)/(k−1)

,

where Xmax
ORX denotes the largest ORX loss and k = 100.

When θ has been estimated, a weighting of the probabilities of the SAS losses can be motivated by

the following heuristic calculations:

23



P(x < XSAS < x+ ∆x) = P(x < XORX < x+ ∆x|H < XORX) =
P(x < XORX < x+ ∆x ∩H < XORX)

P(H < XORX)

=
P(x < XORX < x+ ∆x ∩H < x)

P(H < XORX)
=

P(x < XORX < x+ ∆x)P(H < x)

P(H < XORX)
.

Since the denominator is independent of x, we can simply divide the probability of a SAS loss, Xi
SAS , in

the edf by FH; θ(X
i
SAS) to adjust the probability for the impact of dismissing all losses falling below H

(the probabilities will of course also have to be normalized). This will give a weighted edf,

F̂SAS(x) =

1
n

∑
Xi
SAS<x

1/P(H < Xi
SAS)

1
n

∑nSAS
i=1 1/P(H < Xi

SAS)
.

Notice that the weighting will not account for the original truncation at $100,000.

As proposed in Aue and Kalkbrenner (2006), we modeled H using a log logistic distribution, i.e.

FH; θ(h) =
1

1 + (eµH/h)1/σH
,

Figure 2 : The characteristic dependence of the
error function on the parameters µH and σH .

Figure 3 : Q-Q plot based on the ORX and weighted
SAS losses exceeding AC120,000.

which gave an excellent fit. Our observation is that this does not give any global minimum of Err(µH , σH)

when using our data sets. Instead, calculations indicate that the minimia exists at the end of a ribbon in

the µH -σH -plane where µH →∞. While the function value is very sensitive to changes in σH , it stabilizes

quickly for large enough µH (see Figure 2). Changes in µH can however still be crucial for the scaling of

the important high quantiles, even though the change in Err(µH , σH) is negligible. This is due to the fact

that

FH; θ(h) ≈ (h/eµH )1/σH ,

for µH large enough. Notice that this means that the relative scaling factor is independent of µH , and so,

the weighted edf will not depend on µH at all. However, since the convergence to the approximation above

will be slower for high losses, when increasing µH , the scaling at the highest quantiles will be affected long
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Figure 4 : The cdfs for the ORX and the weighted and unweighted SAS losses (left) exceeding AC120,000, and a
zoom of the first two cdfs (right).

after the bulk of the weighted distribution has stabilized. For this reason, we do not recommend that the

estimation of the parameters µH and σH is based solely on Err(µH , σH). Instead, after identifying a range

of parameter values where Err(µH , σH) can be said to have converged, you can use either graphical tools

or apply the Kolmogorov-Smirnov test above some chosen high quantile value. In our implementation, we

started out by finding the σH which minimized the error function over some range of µH -values. µH was

then increased until graphical evaluations implied a good fit. The Q-Q plot of the scaled SAS data versus

the ORX data and the resulting cdfs of the complete samples can be seen in Figures 3 and 4 respectively.

There are a number of reasons for not performing any cell specific weighting of losses, or any weighting

of ORX losses, even though the assumption regarding the similarity of the ORX and internal data might

not have as much support on cell level. First of all, many cells do not have enough losses to give

any reliable or robust estimates of scaling factors. Secondly, using small data sets increases the risk of

overfitting the data, in which case we would lose the actual information that the ORX and the SAS losses

are intended to give in the first place. It should also be clear that the overall error margin will increase if

you decide to perform a weighting also of the ORX losses, or of different parts of the data sets in separate

procedures.

3.3 Data Mixing

The ORX database requires its members to report all losses exceeding AC20,000, while it is optional to

report losses below this threshold. As a result, the internal and the ORX losses were first filtered so as to

dismiss all losses below AC20,000. This is in agreement with paragraph 673, article 2 in Basel Committee

on Banking Supervision (2006). If one would like to lower the threshold, to say AC10,000, this can be done

by first analyzing only the internal loss data to estimate the probability of a loss exceeding the initial

threshold at AC20,000. The lower part of the distribution can then be estimated using only internal losses

while the upper part is estimated by standard means. It is, however, reasonable to doubt whether the

available dataset of internal losses is large enough to allow for any reliable estimate of the probability of

a loss exceeding the initial threshold or of the severity distribution below this threshold.

Because of the lower registration limit of the SAS data, it cannot be mixed with the ORX data

directly. Instead, one possibility would be to use the method explained in Aue and Kalkbrener (2006). In
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this case, the estimated cdf of the severity distribution will be

F̂ (x) =

{
F̂ORX(x) , x < u′

1− (1− F̂ORX(100,000))(w1(1− F̂ (100,000)
ORX (x)) + w2(1− F̂SAS(x))) , x ≥ u′,

where F
(u)
X (x) = FX(x)−FX(u)

F̄X(u)
for x ≥ u, w1 + w2 = 1, and u′ is the current value of $100,000 in

euro. This is straightforward to implement in the POT method, and if the threshold is estimated to be

below $100,000, theory would still allow us to fit a GPD to the SAS-data with a threshold of $100,000.

However, to be able to benefit from the simple approximations of the VaR for aggregated distributions

covered in section 2.5, we will instead simply add the SAS data exceeding the threshold to the ORX data

when estimating the GPD distribution. The upper limit on the number of extreme values will be chosen

so that the threshold does not fall below AC120,000 (see the motivation in the previous section) for most

cells. This will not restrict the threshold estimates in any substantial way since a threshold of AC120,000

would imply far more extreme values than given by standard threshold estimates only considering the

number of available losses. Still, one disadvantage of this method is that we will be forced to discard all

SAS losses below the chosen threshold.
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4 Procedure

Many figures in this chapter and the next will use losses from two cells named cell 1 and cell 2. These cells

consist of 108 and 2283 ORX losses respectively. All qualitative conclusions holds for all cells if nothing

else is stated. All VaR estimates are with respect to the 99.9th percentile of the yearly loss distribution (as

given by paragraph 667 in International Convergence of Capital Measurement and Capital Standards).

4.1 Estimation of Frequency Distributions

The intensities of the Poisson processes were estimated using the standard ML estimate, i.e. by dividing

the number of internal events in each cell with the time period since the registration started. The estimates

will due to disclosure agreements not be displayed together with their respective cells.

4.2 Threshold Estimation

Figure 5 : RTk,γ as a function of k (left) and the mean excess plot (right). Both figures uses the sample of cell 1.

Since the SAS-losses only consists of losses exceeding $100,000, only the ORX-losses were considered

when estimating the threshold. The Huisman and the Riess-Thomas methods were implemented in a

straightforward manner as described in section 2.7. The parameter γ in the Riess-Thomas method was

fixed at 0.5, that is, the estimator was allowed to put a large emphasis on the smallest extreme values. This

seemed to accentuate the minima of RTk,γ the most (see Figure 5 (left)). Riess-Thomas was implemented

using the Hill estimator, since the estimator has been shown to posses those properties that Riess-Thomas

tries to utilize (see section 2.6.1).

Since the mean and median excess functions are normally used graphically, or merely as a validation

of an already estimated threshold, we will have to find some method to measure the linearity of the

excess functions. Although a subjective graphical approach might be more flexible, the motivation of a

particular choice is often unclear (notice, for instance, how difficult it is to decide on a threshold from

the mean excess plot in Figure 5 (right)), and furthermore, the method does not allow any meaningful

study of robustness. Therefore, we performed an unweighted linear regression on the excess function

for each possible threshold, which was followed by an evaluation of the standard information criterions

BIC and AIC. The number of extreme losses were then chosen as the k which minimized the respective
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criterias. We also evaluated a threshold estimator which, given the ML estimator, minimizes the upper

tail Anderson-Darling statistic applied to the severity distribution over all thresholds.

The estimated thresholds were never allowed to indicate less than 5 + Nlosses/50 or more than 10 +

Nlosses/7 extreme observations, where both Nlosses, i.e. the total number of observations in the (possibly

aggregated) cell, and the extreme observations refers to losses from ORX. The threshold value was

always chosen as the mean value of the minimal loss included among the extreme losses, and the maximal

excluded loss.

4.3 Calibration of Parameter Estimators

The number of losses used for the Hill estimator, Pickands estimator and Huisman’s estimator were

chosen as 12+n/25 (or all extreme losses if less were available). This means that the estimators primarily

will consider losses roughly corresponding to those severity quantiles that determine the VaR-estimate in

section 2.5. The parameter k in the kMedMad estimator was chosen as 8 after a preliminary evaluation

using graphical tools and test statistics.

We will in addition to the estimators described in section 2.6 consider an estimator (denoted MoMom-

Q) which combines the MoMom-estimate of ξ with a β-estimate based on a fit of some high empirical

quantile. Motivated by equation (1), the chosen quantile will be close to 1−α/E[N]. To make the estimator

more robust with regard to losses exceeding all previously observed losses, the index of the loss which is

”matched” against the theoretical quantile will never be allowed to be smaller than 5, using the notation

of section 2.6. To more precise, β̂ will be estimated using

n+ 1− ñ
n

= 1−
(

1 + ξ̂PWM
xñ

β̂

)−1/ξ̂

,

where ñ = max{dnα/E[N ]e, 5}.
All the SAS losses are weighted in the parameter estimates, using the weights wi = 1/P(H < Xi

SAS)

according to section 3.2. In the ML estimates, the weights come in as exponents in the factors making

up l(ξ, β), which means that the terms in the sum in equation (4) will be weighted by multiplication of

wi. The rationale for this can be understood by acknowledging that a weighting of a fictitious sample

{X1, X2} by w1 = 2/3, w2 = 4/3, implies that it will be handled as the unweighted sample {X1, X2, X2}.

4.4 Approximations of Risk Measures and Convergence of Monte Carlo Estimates

Two types of analyses were performed to test the risk measure approximations in section 2.5. First, the

approximations from section 2.5 as well as MC estimates of the VaR and ES were calculated for all cells

with more than 50 ORX losses and at least one internal loss (33 cells in total). This was done using both

ML and MoMom-Q estimates.

Secondly, the risk measure estimates were compared by using the edf in the body of cell 1 while

varying ξ̂ and holding β̂ constant in the tail distribution. The losses exceeding the threshold were thus

ignored in these cases. Since ξ̂ was allowed to vary between −1 and 5, β̂ was chosen as 3/2∗ (Lossmax−u)

with obvious notation. Notice that if β̂ is chosen as too low a value, the empirically estimated part of the

distribution might have an unreasonably large impact on the simulations when ξ̂ is negative, in which

case the largest possible simulated loss is u − β̂/ξ̂. All MC estimates were calculated using 50 million

simulations of the aggregated loss distribution.

Besides comparing the approximations with the MC estimates, the standard deviations (SD) of the
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MC estimates were also estimated. This was done by dividing the unordered 50 million simulations into

50 buckets and computing the sample SD of estimates from the different buckets. The relative error was

then defined as the estimated SD divided by the estimated value of the risk measure using all 50 million

losses. The threshold was chosen as the empirical 0.9-quantile in all these studies.

No significant effect was noted on the precision of the approximate expressions or on the rate of

convergence of the MC estimates with respect to the β-parameter (excluding non-relevant degenerate

cases) and the threshold. Note that the threshold in all practical cases will be chosen so that the important

severity quantile (see equation (1)) belongs to the GPD-tail.

4.5 Simulation of Data Loss

There is a natural data shortage in all cells since ORX only has a limited number of members, all

contributing data from a short period of time. To study the effects of this, we will simulate data loss by

drawing losses without repetition from a relatively large data set to form a smaller data set. This is done

a multiple number of times, and then the estimated relative error (sample standard deviation divided by

the value of the risk measure when using the complete data set) of the VaR can be calculated by using

the estimates from the smaller data sets. The VaR will be calculated using the approximation in equation

(3).

The larger data sets were chosen as the ORX cells with more than 2,000 losses and a nonzero number

of internal losses. 10,000 smaller data sets (each consisting of 200 losses) were constructed from each of

these sets. The threshold was set at the empirical 0.9-quantile in all cases.
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5 Results

This section presents the results and analysis of the tests that were performed in this study, some of

which were described more closely in the previous section. First, we analyze the choice of severity dis-

tribution and decide to continue with POT method. We then move on to study the different parameter

estimators for the GPD, and decide to reject the estimators of Hill, Huisman and Pickands. Next, the

risk measure approximations described in section 2.5 are studied together with the corresponding MC

estimates, and the stability of the parameter estimators are examined with regard to both data loss and

the chosen threshold. A cell aggregation is then motivated by using both qualitative and quantitative

arguments. Finally, this aggregation is combined with the MoMom-Q estimator to numerically estimate

the correlation bounds given in section 2.13.

5.1 Analysis of Severity Distributions

After fixing the threshold at the 0.85-quantile and estimating the GPD, as well as the Weibull and the

lognormal distribution by using ML estimates, the severity cdfs were plotted as seen in Figure 6.

The plots indicates that the GPD is the most suitable among the fitted distributions (which is the

same conclusion that was drawn in Aue and Kalkbrenner (2006)). This is also confirmed by Figures 7, 8

and 9 showing the Q-Q plots of the same distributions. You should note that the Q-Q plots for the GPD

only considered the extreme losses, and that the corresponding tick marks in each plot represent the same

values for both axes. Further arguments for the use of POT methods in operational risk modeling can be

found in Embrechts et al. (2006).

As can be seen from the plots, the lognormal and the Weibull distributions are not able to capture

the characteristics of the most extreme observations, which becomes especially evident when the number

of considered losses increases. Estimators which fits the tail of some data set to a lognormal or Weibull

distribution have been proposed, but will not be considered in this thesis. This can be motivated by the

reasonable fit of the GPD in the plots above, and also by the second theorem in EVT. Furthermore, as

is illustrated in section 5.3, the body of the distribution has in most standard cases a limited impact on

the regulatory capital, which justifies our use of the edf in the body of the severity distribution.

Figure 6 : Estimated and empirical cdfs for cell 1 (left) and cell 2 (right).
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Figure 7 : Q-Q plots based on an estimated GPD (left) and lognormal (right) distribution for cell 1.

Figure 8 : Q-Q plots based on an estimated Weibull (left) distribution for cell 1 and an estimated GPD (right) for
cell 2.

Figure 9 : Q-Q plots based on an estimated lognormal (left) and Weibull (right) for cell 2.
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In Figure 10 you can see the distribution of the exceedances among the quantiles of the estimated GPD

for the two cells. The quantiles clearly seems to stem from a uniform distribution without any apparent

bias, which gives further weight to a GPD-assumption.

Incorporating the SAS losses has the effect of smoothing out the edfs and providing much needed

observations from the tail of the distributions. This is illustrated in Figure 11 where the empirical cdfs

as well as the estimated GPDs are shown when using the ORX losses, the SAS losses, and all losses

from both sources. The plots exemplifies the contribution of the SAS losses when the extreme SAS losses

outnumbers the extreme ORX losses (left), and when the number of extreme losses coming from the two

data sets are fairly equal in quantity (right).

Figure 10 : Histograms showing quantile partition of losses from cell 1 (left) and cell 2 (right) with respect to the
estimated GPDs.

Figure 11 : Empirical distributions and estimated GPDs when using ORX, SAS and combined data.
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5.2 Analysis of Parameter Estimators

Fixing the threshold at the empirical 0.9-quantile and applying all estimators covered in section 2.6 (as

well as MoMom-Q) to the losses in cell 1 and cell 2 gave the cdfs displayed in Figures 12 and 13. Especially

notice how the MoMom-Q estimator sacrifices a close fit of the larger part of the edf to obtain an excellent

fit of the highest empirical quantiles (see Figure 13 (right)), which all other estimators underestimates.

It should be noted that the fits obtained when applying the Hill and Huisman estimators to cell 1 were

exceptionally poor in comparison to other cells, even though both estimators proved to be very sensitive

and unreliable with regard to the chosen threshold.

Figure 14, 15 and 16 shows the UTAD and the KS p-value respectively as functions of the number

of available losses, when applying all the parameter estimators to all cells with at least one internal loss

and more than 50 ORX losses.

Figure 12 : Estimated and empirical cdfs for cell 1.

Figure 13 : Estimated and empirical cdfs for cell 2.
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Figure 14 : UTAD associated with the estimated GPD as a function of the number of available ORX losses.

Figure 15 : KS p-value associated with the estimated GPD as a function of the number of available ORX losses.

Figure 16 : KS p-value associated with the estimated GPD as a function of the number of available ORX losses.

35



MoMom and MoMom-Q performs decently when applied to smaller data sets according to the KS p-value,

but for larger sets have p-values practically equal to zero. The reason for this behaviour is most likely

that the data is generally more heavy-tailed for larger data sets, since smaller data sets often lack the

most extreme losses. Since MoMom cannot give ξ̂ > 1/2, a poor overall fit is natural for data with very

heavy tails. What is more important to notice though, is that the two estimators according to UTAD are

comparable to the best performing estimators as the number of observations grows. This supports the

notion that a ξ-estimate which is biased towards lower values (or limited as when using the MoPWMom

or MoMom estimates) often gives more precise estimates of the upper tail. This has previously been

discussed in McNeil and Saladin (1997) which concludes that the ML estimate often overestimates the

highest quantiles, something that is also supported by Galfond (1982), which suggests that the estimate

of the shape parameter is truncated at 1/2 or 1.

Even though the Huisman estimator seems to perform very well in the upper tail when applied to

smaller data sets, this is in most cases due to a negative ξ-estimate (problems with this is discussed in

section 5.5) which is brought about by an insufficient number of available extreme values. We should

also mention that the Huisman and the Pickands estimator at times proposed parameter estimates which

gave Fsev(x) = 1 for x smaller than the highest observed loss, which is obviously unacceptable. These

two estimators will for this reason be discarded from further analysis, while the Hill estimator is rejected

based on its weak performance (see Figure 14 (left)).

Figure 17 : Histogram of Estimated VaR/Monte
Carlo VaR using ML estimates.

Figure 18 : Relative Error of the Monte Carlo VaR
as a function of the estimated shape parameter when
using ML estimates.

5.3 Approximations of Risk Measures

This section present the results of the analysis described in the first two paragraphs of section 4.4.

As you can see from the histogram in Figure 17, the approximation in equation (3) seems to be

fairly good when using the ML estimator on real loss data. Furthermore, Figure 18 indicates that the

relative errors of the MC VaRs are dependent on the value of the shape parameter, something which is

investigated more carefully in the next section. The results from the ES-approximation were left out in

this case since ξ is estimated to be larger than one for many cells.

36



Figure 19 : Estimated VaR/Monte Carlo VaR (left) and Estimated ES/Monte Carlo ES (right) using MoMom-Q
estimates.

Figure 20 : Estimated VaR/Monte Carlo VaR
as a function of the Poisson intensity when using
MoMom-Q estimates.

Figure 21 : Relative Error of Monte Carlo ES as
a function of the estimated shape parameter when
using MoMom-Q estimates.

Figure 22 VaR (left) and ES (right) approximations divided by the respective Monte Carlo estimates as a function
of the shape parameter.

37



The exact same simulations were made using MoMom-Q estimates, and the results can be seen in Figure

19. The performance of the VaR approximation when using this estimator is further illuminated in Figure

20, were it is seen that the underestimates are correlated with large intensities of the associated Poisson

distribution. This can be intuitively motivated by the fact that the convergence to the ”sub-exponential

property” (which is the limit in which the approximation holds) of the severity variable, X , i.e. that

lim
s→∞

P(X1 + ...+Xn > s)

P(X > s)
= n, (16)

where X1, ..., Xn are independent copies of X, will be slower in s for larger n and smaller ξ. This is

also supported by the fact that the ES approximations are somewhat better since they are approxima-

tions of larger quantiles where the convergence is faster. Here, the aggregated loss should be thought of as

Sn = X1 + ...+Xn, where n in practice is Poisson distributed, and obviously in general will take on larger

values as the intensity increases. The analysis is further complicated by the fact that s will vary with both

the intensity and the shape parameter. As expected, Figure 21 suggests that the relative error of the MC

ES also increases together with the shape parameter. As a side note, we will mention that simulations

where the intensity was ”controlled” and allowed to vary when using MoMom-Q estimates confirmed that

the VaR approximation gives more pronounced underestimates as the intensity is increased.

By varying the shape parameter of the tail distribution (as described in the second paragraph of

section 4.4), we can further investigate the behaviour of the risk measure approximations as functions

of ξ. Notice that Figure 22 indicates that the approximation is very useful also for larger values of ξ,

although it is computationally expensive to validate its precision in the presence of heavy tails.

Figure 23 : Relative errors of the Monte Carlo estimated VaR (left) and ES (right) as a function of the shape
parameter. The estimation procedure and the data is described in section 4.4.

5.4 Convergence of the Monte Carlo Estimates

Figure 23 reveals the slow convergence of the MC estimates for larger values of ξ. Remember, however,

that all relative errors have been estimated from risk measure estimates using one million simulations each,

while the risk measure estimates in the previous section were calculated using fifty million simulations.

Further, notice that the relative error of the estimated VaR seems to be linear in ξ. Denoting the number
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of simulations by Nsim, this can be theoretically motivated by the fact that

ˆVaRα(S) = F̂−1
agg(1− α) ∼ N

(
F−1
agg(1− α),

1

Nsim

α(1− α)

(fagg(F
−1
agg(1− α)))2

)
, as Nsim →∞, (17)

(see Hult and Svensson (2009)) under suitable conditions, when the edf is used to estimate the VaR.

By using the not so far-fetched assumption that S is heavy-tailed, i.e. that Fagg(x) ≈ 1 − ax−1/ξ′ as

x→∞, this gives

Rel Err( ˆVaRα(S)) =
SD( ˆVaRα(S))

VaRα(S)
≈ ξ′√

Nsim

√
1− α
α

, as Nsim →∞. (18)

The approximation ξ ≈ ξ′ can then be motivated by F̄agg(s) ≈ F̄sev(s)λ for sufficiently large s (see

equation (16)), which gives

lim
t→∞

F̄agg(ts)

F̄agg(t)
= lim

t→∞

F̄sev(ts)

F̄sev(t)
= s−1/ξ,

and therefore explains the roughly linear relationship in Figure 23 (left).

5.5 Quantile Estimation

This section demonstrates the effect that different threshold and parameter estimators have on the quan-

tiles of the estimated severity distributions. According to the results in section 5.3, the highest quantile

estimates are to a large extent what ultimately determines the VaR-estimate of the cell in question, as

well as the total capital requirement when assuming perfect correlation between cells. We will moreover

also highlight the importance of data sufficiency, and how ignoring this aspect can result in very inconsis-

tent estimates. We do not claim to be able to evaluate the actual values of the estimates by solely using

loss data. While it might be justified to study relative characteristics of different estimators, a fair risk

assessment must always include some type of scenario analysis or validity judgement independent of the

external data. The axis values have been normalized in all quantile and threshold plots.

Figure 24 : The estimated threshold (left) and the number of suggested extreme values (right) as a function of one
added loss when applying the median excess estimator to cell 1.
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Figure 25 : The estimated quantiles of the severity distribution (as a function of one added loss) using ML
estimates with the median excess threshold applied to cell 1 (left) and a fixed threshold at the 0.9-quantile (right)
applied to a cell with 94 ORX losses.

Figure 26 : The estimated quantiles of the severity distribution (as a function of one added loss) using ML
estimates with a fixed threshold at the 0.9-quantile and the losses from cell 1 (left) respectively cell 2 (right).

While conventional threshold estimators differ in both stability properties and average estimated threshold

quantile, they are all unstable enough (when handling relatively small data sets) to rule out any robust

quantile estimates. The highest threshold estimates are generally given by the estimator minimizing the

UTAD statistic, and all estimators are more prone to suggest a lower percentage of extreme values for

samples with a larger number of observations. The most unstable estimates are given by the Huisman

and the median excess estimator. In Figure 24, you can see the estimated thresholds and the number of

estimated extreme values, respectively, when applying the median excess estimator to the sample from

cell 1 with one added observation. The plots are drawn as a function of the severity of this added loss

(this can be seen as a translation of the SF), which is allowed to vary over 101 equally spaced values

ranging between the lowest and the highest observation from the initial sample.

When studying larger data sets, the estimates are more stable. On the other hand, in these cases, the

benefit of using any one of the estimators based on loss data is negligible when taking their expensive

algorithms into consideration.

As illustrated in Figure 25 (left), the threshold estimators further render equally unstable estimates
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of the severity quantiles. With the threshold at a constant empirical quantile, the quantile estimates are

smoothed out, which is exemplified in Figure 25 (right). However, the figure also displays the irrational

behaviour of the estimates which arises since the cell does not contain sufficiently many extreme values,

and the added loss therefore have too great an influence on the estimates. The problem diminishes as the

number of available losses increases (see Figure 26 (right), in which only a small negligible jump is seen

in the quantile estimate as the value of the added loss first exceeds the threshold).

When the number of extreme values are few, another problem often arises. If ξ is estimated to be less

than zero, the quantiles behave as shown in Figure 26 (left) or Figure 27. Remember, at this point, no

consideration has been taken to the estimated intensity of the associated event variable, why the relevant

quantile (the quantile which according to section 5.3 will determine the VaR with very good precision)

might lie anywhere within the range of quantiles shown. In other words, the VaR of this cell will increase

or decrease when adding a new observation depending on how many internal losses we have available.

Furthermore, it is doubtful whether it is reasonable that the estimated capital requirement sometimes is

lowered when a hypothetical added observation is increased.

The cause of the phenomenon is illuminated by studying the pdf of the estimated GPD (see Figure

28). When a large loss (about equal in size to the previously highest loss) is added, the estimate of ξ is

lowered even further in which case the shape of the pdf is characterized by a very abrupt negative jump

just before the free variable reach u− β̂/ξ̂. When a small loss is added to the data set, the pdf maintains

its previous shape. The problem is brought on by an insufficient number of extreme losses and can in

many cases be avoided by the inclusion of some database containing publicly reported losses (e.g. SAS

OpRisk Global Data). There are nonetheless of course cases when extreme losses are unavailable and no

suitable cell aggregation can be performed to solve the problem (see section 5.8 for a further discussion).

Therefore, the issue should primarily be addressed at the level where the parameter estimates are made.

Obviously, adding the SAS losses generally has a stabilizing effect. Nevertheless, since the probability

scaling in section 3.2 was done on the complete set of losses, the final effect of including the SAS data

will be very dependent on the chosen cell aggregation.

The quantile estimates of cell 1 respectively cell 2 when using the MoMom-Q estimator are shown in

Figure 29. This estimator is not able to solve the problems related to data sufficiency, but displays some

useful characteristics when the number of available losses increases. By comparing Figure 29 (right) with

Figure 26 (right) you can see that the ML and the MoMom-Q estimators imply stability with respect to

different losses, since the use of the latter causes the sensitivy to be concentrated to the empirical quantile

giving the approximation in equation (1). The difference is even more pronounced when the added loss is

allowed to exceed the current largest loss, in which case the ML estimator allows the quantile estimates to

approach infinity much faster than the MoMom-Q estimator. The MoMom and MoPWMom estimators

behaves in much the same way as the ML estimator with regard to quantile estimates, and no general

conclusion can be drawn regarding the actual quantile values given by different estimators.

The general problem of the conventional threshold estimators is that the different functions that are

subject to minimization typically have multiple local minimas, and imply fits of comparable quality for

often substantially different thresholds. Added losses can then easily have a very large impact on the

number of suggested extreme values without changing the shape of the function being minimized in any

significant way.

As a final word of caution, it should be noted that while criticism of conventional threshold estimators

is easily motivated in a model assuming perfect correlation between cells and using VaR to determine the

final capital requirement, the analysis grows more complicated as the model is refined.
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Figure 27 : The estimated quantiles of the severity
distribution (as a function of one added loss) us-
ing ML estimates with a fixed threshold at the 0.9-
quantile and losses from a cell with 84 ORX losses.

Figure 28 : The pdf of a GPD estimated from cell
1 after adding one loss with the same value as the
smallest and the largest previous extreme value re-
spectively.

Figure 29 : The estimated quantiles of the severity distribution (as a function of one added loss) using MoMom-Q
estimates with a fixed threshold at the 0.9-quantile and the losses from cell 1 (left) respectively cell 2 (right).

5.6 Simulation of Data Loss

This section presents the results of the analysis described in section 4.5. Table 3 in section 8.12 in the

appendix displays the relative errors of the VaR estimates with different parameter estimators divided

by the corresponding relative errors when using the MoMom-Q estimator. While the BL-ET specification

cannot be publicized due to disclosure agreements, the ML-estimate of the shape parameter is given as

an indicator of the ”heavy-tailedness” of the cell in question. The table shows that both the ML and

the kMedMad estimates are very dependent on which losses that are drawn from the larger sets, while

the MoMom-Q estimator gives the most stable estimates. The MoMed estimator was excluded from the

study due to its slow convergence, but is expected to perform on the same level as kMedMad since the

large relative errors in most cases is associated with occasional overestimates of the shape parameter,

which is unbounded from above for all estimators but those based on probability moments.
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We will look at an example where the procedure described in section 4.5 is applied to a single cell. All

VaR estimates in the histograms have been divided by the corresponding estimate when all losses are

included. We then speak of an ”overestimation” as if the VaR estimate obtained when including all losses

in the estimation was the actual sought value.

Figure 30 shows that the ML estimator is very sensitive with regard to data loss, and often greatly

overestimates the VaR (with a factor of about 104 in the most extreme case). The peaks, which are

most pronounced in Figure 31 (left), come about because the most extreme losses from the cell affect the

parameter estimates very strongly in those cases that they are included in the smaller sets. For instance,

the rightmost peak in the mentioned figure corresponds to those cases in which the single largest loss

from the cell was included. Here, the largest loss was about three times as high as the second largest loss.

The effect is not as prominent when the largest losses are more similar in size.

Figure 30 : Histograms showing the distribution of the normalized approximate VaR of a cell when simulating
data loss and using the ML estimator (left) and the kMedMad estimator (right) respectively. The largest percent of
the VaR estimates has been excluded.

Figure 31 : Histograms showing the distribution of the normalized approximate VaR of a cell when simulating
data loss and using the MoPWMom estimator (left) and the MoMom estimator (right) respectively.
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Figure 32 : Histograms showing the distribution
of the normalized approximate VaR of a cell when
simulating data loss and using the MoMom-Q esti-
mator.

Figure 33 : Empirical and estimated cdfs for cell 2
when using the MoMom-Q estimator with different
fitted quantiles (marked with a star).

While the MoMom-Q is able to smooth out the peaks (notice that the three peaks are still existent in

Figure 32), the VaR seems to be a underestimated in general. This effect is seen for all cells, and is related

to the ”robustness margin” that was explained in section 4.3 (i.e. that the fitted quantile never is higher

than the fifth greatest empirical loss). When the number of available losses decreases, this means that

also the fitted quantile will decrease (obviously 1− 4/Nlosses decreases together with Nlosses, and the cdf

is nondecreasing). Remember that the cells with more than 1,000 ORX losses generally also have quite a

few registered internal losses, and therefore also a high estimated Poisson intensity. This means that the

1− α/E[N ]-quantile (see equation (1)) will be close to 1 and the fitted quantile will be x5.

As the shape parameter is generally underestimated by the MoMom-Q estimator, since ξ̂MoM < 1/2

and ξ̂ML > 1/2 for all cells (see Table 3), the estimated GPD will tend to overestimate the quantiles

below the fitted quantile and underestimate the quantiles above the fitted quantile. This behaviour is

illustrated in Figure 33, where the edf for cell 2 is shown along with the fitted GPD when using the

MoMom-Q estimator with a minimum fitted ”empirical index” of 3, 4 and 5 respectively.

Figure 34 : VaR-approximations of the aggregated loss with respect to the chosen threshold quantile using five
different estimators.
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5.7 Threshold Stability

When calculating the relative errors from the VaR-approximations with respect to different plausible

thresholds (say between the 0.85- and the 0.98-empirical quantiles), one finds the same robustness hierar-

chy as in the previous section. That is, the ML estimator and the kMedMad estimators are very unstable

in this regard, MoMom-Q is very stable (as expected), and the MoPWMom and MoMom estimators can

be placed somewhere in between. This is illustrated in Figure 34 where the VaR-approximation is plotted

as a function of the threshold quantile for a given cell.

The stability of the MoMom-Q estimator with respect to simulated data loss is also very independent

of the chosen threshold. Figure 35 shows the sum of the relative errors of the VaR-estimate from all cells

with more than 2,000 ORX losses, when performing the same calculations as in the previous section for

thresholds ranging from the 0.84 to the 0.96 empirical quantiles. While the instability of the ML estimator

increases with the threshold, the MoMom-Q can be seen to be comparatively stable in this regard. Note,

however, that these studies have used the approximate VaR from section 2.5, which is exactly the quan-

tity that MoMom-Q tries to fit to the corresponding empirical estimate. As was previously discussed in

section 5.3, the validity of this approximation is somewhat diminished when using MoMom-Q estimates

for cells with larger Poisson intensities.

Figure 35 : The sum of the relative errors from different cells when simulating data loss with respect to different
chosen thresholds.

5.8 Cell Aggregation

To support the incorporation of BEICFs in the model (see paragraph 676 in International Convergence of

Capital Measurement and Capital Standards), the aggregation of BLs will be performed so as to match

the internal organization structure. This means that only four BLs will be used: Corporate Finance (CF),

Wholesale Banking (WB), Retail Banking (RB) and Wealth Management (WM). The mapping can be

seen in Table 1.

The number of relevant ORX observations available for each of the now 28 cells left, is a critical factor

when evaluating further aggregation. As Figure 36 illustrates, the issue of data sufficiency will mostly be

focused on the BL CF.

There are two primary ways in which the aggregation will affect the total capital allocation. First,

remember that the LDA assumes independence between the number of events and the severities in
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Model BL ORX BL, Level 1 ORX BL, Level 2 Code

Corporate Finance Corporate Finance Corporate Finance BL0101

Wholesale Banking Trading & Sales Equites BL0201

Global Markets BL0202

Corporate Investment BL0203

Treasury BL0204

Commercial Banking Commercial Banking BL0301

Clearing Cash Clearing BL0501

Agency Services Custody Services BL0601

Retail Banking Retail Banking Retail Banking BL0301

Wealth Management Asset Management Fund Management BL0703

Retail Brokerage Retail Brokerage BL0801

Private Banking Private Banking BL0901

Table 1 : Mapping table for BLs.

each individual cell. On the other hand, the dependence modeling in between cells is generally quite

conservative and typically goes as far as assuming perfect correlation. As a consequence, a more granular

model will often go hand in hand with greater dependence, and therefore also higher capital estimates.

By contrast, let us study the effect of aggregating two cells which roughly can be characterized as

low frequency/high severity and high frequency/low severity respectively. This means that the highest

quantiles of the severity distribution of the aggregated cell will be estimated using observations with

high severities from the first cell, while the intensity of the event variable will be driven by losses from

the second cell. The risk is then that the probability of a high loss severity is overestimated, since the

magnitude of the greatest loss observations from the first cell might be unlikely to ever see in practice

from the second cell. Note that the number of available losses most often is less than E[N ]/0.001 (see

equation (1)) and that the severity distribution have to be ”extrapolated” in the most important quantiles.

Therefore, not only the values of the highest losses, but also their heavy-tailedness, will be important

when estimating the upper tail of the severity distribution. Of course, the final effect of aggregations of

this type will be dependent on both the specific observations available and the chosen model in each cell.

Since the effect of the first aggregation aspect is mainly related to inadequate modeling as a result of

data insufficiency and regulation standards, while the second aspect examplifies an often avoidable failure

of the model to characterize real world risk features, it is appropriate to focus on eliminating the effects

of the second aspect. In other words, one should hope that the first issue can be overcome by using a

more refined dependence modeling than we will study in this thesis, while the second is due to a more

direct failure of the actual cell aggregation. We therefore applied the two-sample Kolmogorov-Smirnov
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Figure 36 : The number of ORX observations when using the BL-mapping from Table 1 and the original level 1
ETs.

ET1 & ET2

BL p-value

CF Inconclusive

WB 2.6828e−38

RB 2.4550e−213

WM 2.6248e−24

ET5 & ET6

BL p-value

CF Inconclusive

WB 8.9859e−4

RB 1.8622e−8

WM 0.0545

Table 2 : P-values given by performing the two-sample Kolmogorov-Smirnov on the loss data from two cells with
different ETs and the same BL.

Figure 37 : The approximate capital requirements from the individual cells in the final model as a function of the
number of available ORX losses.
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test on the ORX losses from ETs which are aggregated in Aue and Kalkbrenner (2006), that is, internal

and external fraud, as well as Disasters & Public Safety and Technology & Infrastructure. The results

can be seen in Table 2.

Obviously, aggregation is not supported for any of the suggested pairs of cells, and the quantitative

result is inconclusive for the BL CF since too few loss observations are available. Despite this, our final

model will aggregate all ETs for CF, since the internal losses are not sufficiently many to allow for a

more risk sensitive model. Furthermore, we will use a conservative intensity estimate for two other cells

which have no relevant internal losses by simply performing the calculations as if we had one internal

observation for each of these cells. Since these issues concerns cells with very few internal losses anyway,

our judgement is that these modeling decisions will have a limited effect on the total regulatory capital.

As is shown in Figure 37, the largest capital estimates generally come from cells with a large number of

available losses.

5.9 Results on Correlation Modeling

We will in this section model the severity distribution as a piecewise function with a GPD-tail, empirical

body, and a threshold at the empirical 0.9-quantile. The parameter estimates will be given by the MoMom-

Q estimator, which makes the threshold choice relatively insignificant, as previously discussed in section

5.7. The choice to use the MoMom-Q estimator is further motivated by refering to its UTAD-performance

(see section 5.2), its implied rate of convergence for MC estimates (see section 5.4) and its robustness

properties and insensitivity towards outliers of high severity (see sections 5.5 and 5.6). The mean of the

severity distribution can then be written

E[X] ≤ 1

10
E[XGPD] + u =

1

10

β

1− ξ
+ u ≤ β

5
+ u.

Correspondingly, we get

10E[X2] ≥ E[(XGPD + u)2] = E[X2
GPD] + 2uE[XGPD] + u2

=
2β2

(1− ξ)(1− 2ξ)
+ 2u

β

1− ξ
+ u2, (19)

and hence we have

η ≤
√

10

(
β

5
+ u

)/√
2β2

(1− ξ)(1− 2ξ)
+ 2u

β

1− ξ
+ u2. (20)

Using the cell aggregation from the previous section, we have u < β < 8u for all but one cell, and

we will thereby make use of the very crude approximation β ≈ u to arrive at

η .
6

5

√
10(1− ξ)(1− 2ξ)

5− 7ξ + 2ξ2
= J(ξ). (21)

To increase robustness, we will model all the six severity distributions from cells with less than 500

ORX losses with the WBD. These cells give about 5% of the total regulatory capital when assuming

perfect correlation. Note that this modeling choice means that the parameter estimates of a GPD-tail

always are based on at least 50 observations.
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By studying Figure 38 and noting that

η(Xi) =
1√

1 + Var(Xi)/E[Xi]2
≤ 1,

we see that the inequality in (21) is only useful for ξ very close to 1/2. However, those cells that contribute

the most to the total capital requirement are typically very heavy-tailed, and in our final model the two

cells associated with about a third of the total allocation when assuming perfect correlation both had

ξ > 0.485, which corresponds to J(ξ) ≤ J(0.485) ≈ 0.3274. By using their exact values of β and u in

(20) we get η ≤ 0.0199 and η ≤ 0.0374 respectively, i.e. even stricter upper limits on η. Note that these

numbers are in line with the previously mentioned values from Frachot et al. (2004). We further imple-

mented a model where a Gaussian Copula was specified for the event variables associated with different

cells, and where all non-diagonal elements in the correlation matrix of the Copula were given the same

value. The resulting capital estimates supported the notion that the correlation between aggregated loss

variables will be very small in this case, since no significant difference was registered in the total capital

requirement as the correlation parameter was allowed to vary between 0 and 1.

Figure 38 : The function J(ξ) (see equation (21)) limiting the factor η when assuming β = u.

Of course, these heuristics does not say anything about any real-world correlation, but merely displays

that in order for the model to recognize a non-negligible correlation of the aggregated losses in between

cells, it will probably have to include some kind of severity dependence.
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6 Conclusions

The main appeal of the data weighting method discussed in section 3.2 is that it can manage to unify

the empirical cdfs of two very different sets of loss data, without scaling or discarding any individual

severities. However, as has been shown, the error function proposed in Aue and Kalkbrenner (2006) is

far from optimal since it disregards the importance of the high severity quantiles. Even though it would

be easy to modify the error function so that it gives a larger weight to the highest severity quantiles,

the procedure is complicated by the fact that the severities of the highest losses will vary considerable

depending on from which cell the loss is drawn. Moreover, it is often impractical to perform separate

weightings of losses from different cells due to the scarcity of data.

While section 5.1 supports previously published papers that advocates the POT method, there are

other characteristics than data fit that should be taken into consideration when deciding on how to model

the severity distributions. These include both computational speed and stability of the regulatory capital

estimates.

As was illustrated in section 5.5, conventional threshold estimators are not suited for the particular

needs of operational risk modeling. They have been designed with the intention of motivating the place-

ment of the boundary separating the vaguely defined extreme value domain from the standard values

of, in our case, the severity distribution. The aim has not been stability of high quantile estimates with

respect to a continuously updated data set, and so their irregular behaviour in these applications should

not come as a surprise.

The risk measure approximations presented in section 2.5 are extremely useful when one wants to

receive a fast estimation of the effect that a certain modeling choice has on the capital requirements.

The precision of the approximation when estimating the total capital requirement is very dependent on

whether or not those cells with the highest capital requirements fall into the ”poor-performing” cate-

gory described in section 5.3, which ultimately depends on several modeling choices including the chosen

severity distribution, parameter estimator and cell aggregation. Also remember that a straightforward

application of the approximation is limited to the case when we assume perfect correlation in between

cells.

The analysis in section 5.4 shows that the relative errors of the MC VaRs will be approximately

linear with regard to the shape parameter of the severity distribution. Keep in mind, however, that the

actual values of the standard deviations will depend on both the intensity of the Poisson distribution,

and the severity distribution (including the threshold and the scale parameter when using the GPD).

Furthermore, we cannot assume that the convergence in equation (17) to the normal distribution is fast

enough for our purposes, and hence the estimated relative error might not give us the complete picture

of the convergence characteristics.

Section 5.6 obviously speaks in favour of the estimators based on moments, since they more or less

eliminates the extreme overestimates of the regulatory capital that are possible when using the ML esti-

mator. The fact that the capital estimates will be somewhat biased when using the MoMom-Q estimator

with too small a number of observations (see Figure 32), shows that the fitted empirical quantile should

be dependent on Nlosses. If the fitted quantile is chosen at approximately the same level, no matter how

many observations are available, the index of the fitted observation (when ordering the observations as

xn ≤ ... ≤ x2 ≤ x1) will increase proportionally to Nlosses (so that the FSBP of the fitted empirical

quantile is independent of Nlosses). This is natural from a robustness perspective, since over any given

time period, a larger number of new observations is expected to be added to those cells that already

contain a large number of losses.
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Besides its robustness properties, the use of the MoMom-Q estimator can also be motivated by its

UTAD-performance (see section 5.2) and its implied rate of convergence for MC estimates (see section

5.4). However, the biggest argument in favour of the estimator is that it attempts to fit, to empirical

data, exactly that severity quantile which to a fairly good approximation will determine the regulatory

capital.

The decision on a suitable cell aggregation is still a very open subject, and it is not made clearer by

the different specifications of ETs and BLs given by ORX and the Standardized Approach. Furthermore,

these divisions will seldom perfectly reflect the business divisions of each specific bank, and some com-

promising aggregation will often have to be specified, perhaps supported by estimates of upper limits on

capital estimates from specific cells. Unfortunately, the analysis performed in section 5.8 confirms that

many aggregations often are as hard to motivate on quantitative grounds as on qualitative (notice that the

aggregations which are tested and rejected in Table 2 are implemented in Aue and Kalkbrenner (2006)).

For instance, internal frauds are often very different in nature from external frauds simply because the

former usually is based on abuse of some authority or resource which cannot be accessed from the outside.

The problem of cell aggregation is closely knit to the problem of modeling correlation, since the better

you can model the real world correlations, the less the cell aggregation will effect the capital estimates.

Section 5.9 shows that simply adding dependence between the event variables will have a very small

effect on the total capital estimates. Further, as was concluded in Aue and Kalkbrenner (2006), there

are no indications that it would be wise to relax the standard assumptions of independence between the

variables in each specific cell. Therefore, the use of a common shock model, first applied to loss models in

Lindskog and McNeil (2003), seems to be a reasonable alternative in a model aiming for a non-negligible

correlation effect.
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7 Suggestions for Further Studies

From a regulatory point of view, it is not optimal to limit the shape parameter of the GPD-tail to only

take on values ≤ 1/2. Using, for instance, the ML estimator, will on the other hand often increase the

computational time required to obtain stable MC estimates severely. This is because the cells which

contributes the most to the total capital requirement typically have both large intensities and very heavy

tails, which means that each simulated yearly loss will require a larger number operations, and that the

number of such simulations needed for a specified accuracy will be relatively large. One possibility would

be to study how importance sampling could be used in the LDA model to speed up the MC estimates.

Applications of importance sampling to a model identical to the single cell LDA with a heavy-tailed

severity distribution has previously been studied in Dupuis et al. (2007).

It is probable that improvements of the analytical VaR approximation in the case of large intensities

and small shape parameters can be made by making adjustments of the approximation based on other

asymptotics than the subexponential. The problem can be formulated as a search for an analytical

inversion of the expression

P(S > s) = E[P(X1 + ...+XN > s)] =

∞∑
n=1

P(X1 + ...+Xn > s)fev(n),

where the approximations in section 2.5 uses P(X1 + ... + Xn > s) ≈ nP(X > s). As already men-

tioned, this approximation fails for sufficiently large n and sufficiently small ξ, in which case it would be

advisable to examine the usefulness of e.g. central limit theorem approximations.

Further ideas for numerical approximations of the aggregated loss distribution can be found in Frachot

et al. (2001) which reviews both Panjer’s method and the method of characteristic functions. The former

results in a suggestive implicit equation for the aggregated loss distribution which can be formulated as

fagg(s) = fev(1)fsev(s) +

s∫
0

(
c1 + c2

x

s

)
fsev(x)fagg(s− x)dx,

given that

fev(n) =
(
c1 +

c2

n

)
fev(n− 1),

which is satisfied for all standard event distributions.

One suggestion would be to further study how estimators similar to MoMom-Q can be constructed

by using estimates of the shape parameter limited from above, combined with an estimate of the scale

parameter based on matching one or several statistics from the upper quantiles of the edf and the fitted

distribution. Ideally, the chosen statistics should vary together with the number of available observations

as well as their characteristics to provide the desired balance between robustness and data consideration

in the capital estimates.

At last, the consequences of using the edf or alternative distributions for modeling the body of the

severity distributions should be studied. This is especially important when the risk measure estimates

from section 2.5 fails, in which case the body of the severity distribution can be suspected to have a

greater impact on the capital estimates.
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8 Appendix

8.1 Abbreviations and Notation

F (x) and f(x) denotes a generic cdf and pdf respectively, and F̄ (x) = 1− F (x).

Abbreviations

BL Business Line

(EFS)BP (Expected Finite Sample) Breakdown Point

BEICFs Business Environment and Internal Control Factors

cdf Cumulative Distribution Function

CF Corporate Finance

edf Empirical Distribution Function

ET Event Type

EVT Extreme Value Theory

GEV Generalized Extreme Value

GPD Generalized Pareto Distribution

(E)IF (Empirical) Influence Function

KS Kolmogorov-Smirnov

LDA Loss Distribution Approach

LND LogNormal Distribution

MC Monte Carlo

ML Maximum Likelihood

MoMom(-Q) Method of Moments(-Quantile)

MoPWMom/PWM Method of Probability Weighted Moments/Probability Weighted Moments

pdf Probability Distribution Function

POT Peaks Over Threshold

RB Retail Banking

SD Standard Deviation

SF Sensitivity Function

UTAD Upper Tail Anderson-Darling

WB Wholesale Banking

WBD Weibull Distribution

WM Wealth Management

55



8.2 Approximations of Risk Measures

First note that the GPD is subexponential and that equation (2), given the Poisson distribution with

intensity λ, evaluates to

∞∑
n=0

(1 + ε)n
λne−λ

n!
=
∞∑
n=0

((1 + ε)λ)ne−λ

n!
= eλε

∞∑
n=0

((1 + ε)λ)ne−λ(1+ε)

n!
= eλε,

which is finite for all ε > 0. Theorem 1.3.9 in Embrechts et al. (1997) then directly gives

Fagg(s)→ 1− E[N ](1− Fsev(s)), as s→∞,

and further

VaRα(S) = F−1
agg(1− α) ≈ F−1

sev

(
1− α

E[N ]

)
.

Modeling Fsev(x) as the edf with a GPD tail now gives

F−1
sev(x) = u+G−1

ξ,β

(
1− (1− x)

Nlosses

Nlosses>u

)
,

whenever x > 1−Nlosses>u/Nlosses, and so,

VaRα(S) ≈ u+G−1
ξ,β

(
1− Nlosses

Nlosses>u

α

E[N ]

)
= u+

β

ξ

((
Nlosses>u

Nlosses

E[N ]

α

)ξ
− 1

)
.

The estimate of ESα(S) can now simply be obtained by using this VaR-estimate in the definition of

ESα(S).

8.3 The Mean of the Generalized Pareto Distribution

Provided that 0 < ξ < 1, we have

µ =

∞∫
0

xgξ,β(x)dx =
1

β

∞∫
0

x
(

1 + ξ
x

β

)− 1
ξ
−1
dx

= −
[
x
(

1 + ξ
x

β

)− 1
ξ

]∞
0

+

∞∫
0

(
1 + ξ

x

β

)− 1
ξ
dx

=

[
β

ξ − 1

(
1 + ξ

x

β

)1− 1
ξ

]∞
0

=
β

1− ξ
.

The calculations are almost identical in the case of ξ < 0, except that the upper limit of the integrals is

−β/ξ.

8.4 The Variance of the Generalized Pareto Distribution

Assuming 0 < ξ < 1/2, we have
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σ2 + µ2 =

∞∫
0

x2gξ,β(x)dx =
1

β

∞∫
0

x2
(

1 + ξ
x

β

)− 1
ξ
−1
dx = −

[
x2
(

1 + ξ
x

β

)− 1
ξ

]∞
0

+

∞∫
0

2x
(

1 + ξ
x

β

)− 1
ξ
dx

= −
[
2x

β

1− ξ

(
1 + ξ

x

β

)1− 1
ξ

]∞
0

+

∞∫
0

2β

1− ξ

(
1 + ξ

x

β

)1− 1
ξ
dx = −

[
2β2

(1− ξ)(1− 2ξ)

(
1 + ξ

x

β

)2− 1
ξ

]∞
0

=
2β2

(1− ξ)(1− 2ξ)
.

This immediately gives the sought after expression for σ2. The calculations are almost identical in the

case of ξ < 0, except that the upper limit of the integrals are −β/ξ.

8.5 The (1, 0, 1) Probability Weighted Moment of the Generalized Pareto Distribu-

tion

Assuming 0 < ξ < 2 gives

M1,0,1 =

∞∫
0

xgξ,β(x)(1−Gξ,β(x))dx =
1

β

∞∫
0

x
(

1 + ξ
x

β

)− 2
ξ
−1
dx

= −
[

1

2
x
(

1 + ξ
x

β

)− 2
ξ

]∞
0

+
1

2

∞∫
0

(
1 + ξ

x

β

)− 2
ξ
dx

=

β
2

(1 + ξ xβ )
1− 2

ξ

(ξ − 2)

∞
0

=
β

2(2− ξ)
.

The calculations are almost identical in the case of ξ < 0, except that the upper limit of the integrals are

−β/ξ.

8.6 The Mean Excess Function

Assuming the GPD with 0 < ξ < 1 we obtain

e(u)Ḡξ,β(u) =

∞∫
u

(x− u)gξ,β(x)dx =
1

β

∞∫
u

x
(

1 + ξ
x

β

)− 1
ξ
−1
dx− uḠξ,β(u),

where

1

β

∞∫
u

x
(

1 + ξ
x

β

)− 1
ξ
−1
dx = −

[
x
(

1 + ξ
x

β

)− 1
ξ

]∞
u

+

∞∫
u

(
1 + ξ

x

β

)− 1
ξ
dx

= u
(

1 + ξ
u

β

)− 1
ξ

+

[
β

ξ − 1

(
1 + ξ

x

β

)1− 1
ξ

]∞
u
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= uḠξ,β(u) +
β

1− ξ

(
1 + ξ

u

β

)1− 1
ξ

= Ḡξ,β(u)

(
u+

β

1− ξ

(
1 + ξ

u

β

))
,

which immediately gives

e(u) =
β

1− ξ
+ u

ξ

1− ξ
.

The calculations are almost identical in the case of ξ < 0, except that the upper limit of the integrals are

−β/ξ.

8.7 The Median Excess Function

Assuming the GPD, the median excess function can be written

F (u)(x) = P(X − u ≤ x|X > u) = P(X ≤ x+ u|X > u)

=
P (u < X ≤ x+ u)

P (u < X)
=
Gξ,β(x+ u)−Gξ,β(u)

1−Gξ,β(u)

=
(1 + ξ uβ )

− 1
ξ − (1 + ξ x+u

β )
− 1
ξ

(1 + ξ uβ )
− 1
ξ

= 1−

(
1 + ξ x+u

β

1 + ξ uβ

)− 1
ξ

Inverting F (u)(x) = 1/2 now gives equation (7).

8.8 Maximum Likelihood Estimates for the Lognormal Distribution

With fY (y) = 1√
2πσ2

e−
1
2( y−µσ )

2

and Y = lnX, fY (y)|dy| = fX(x)|dx| gives us

fX(x) =
|dy|
|dx|

fY (lnx) =
1

x
√

2πσ2
e−

1
2( ln x−µ

σ )
2

.

This now gives the log likelihood function

ln l(µ, σ) = −
n∑
i=1

lnxi −
n

2
ln 2πσ2 − 1

2σ2

n∑
i=1

(lnxi − µ)2,

from which the estimates in equations (8) and (9) follows trivially by evaluating ∂ ln l(µ,σ)
∂µ = 0 and

∂ ln l(µ,σ)
∂σ2 = 0.

8.9 Maximum Likelihood Estimates for the Weibull Distribution

With f(x) = k
λx

k−1e−
xk

λ , we get the log likelihood function

ln l(k, λ) = n ln
k

λ
+ (k − 1)

n∑
i=1

lnxi −
1

λ

n∑
i=1

xki ,

which further gives

∂ ln l(k, λ)

∂k
=
n

k
+

n∑
i=1

lnxi −
1

λ

n∑
i=1

xki lnxi
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and
∂ ln l(k, λ)

∂λ
= −n

λ
+

1

λ2

n∑
i=1

xki .

This directly gives (11), while (10) follows by eliminating λ from ∂ ln l(k,λ)
∂k = ∂ ln l(k,λ)

∂λ = 0.

8.10 The Upper Tail Anderson-Darling Statistic

Integrating directly over F (x) = z gives us

AD

n
=

∞∫
−∞

(F̂ (x)− F (x))2

(1− F (x))2
dF (x) =

1∫
0

(F̂ (x)− z)2

(1− z)2
dz

=

F (xn)∫
0

z2

(1− z)2
dz +

n−1∑
i=1

F (xn−i)∫
F (xn+1−i)

(i/n− z)2

(1− z)2
dz +

1∫
F (x1)

dz

=
[
z +

1

1− z
+ 2 ln(1− z)

]F (xn)

0

+

n−1∑
i=1

[
z +

(i/n− 1)2

1− z
+ 2(1− i/n) ln(1− z)

]F (xn−i)

F (xn+1−i)
+ 1− F (x1).

The first part of the integral evaluates to[
z +

1

1− z
+ 2 ln(1− z)

]F (xn)

0
= F (xn) +

1

1− F (xn)
+ 2 ln(1− F (xn))− 1,

while the second is equal to

n−1∑
i=1

[
z +

(i/n− 1)2

1− z
+ 2(1− i/n) ln(1− z)

]F (xn−i)

F (xn+1−i)

= F (x1)−F (xn)+
1

n2

n∑
i=1

(1+2(n−i)) 1

1− F (xn+1−i)
− 1

1− F (xn)
+

2

n

n∑
i=1

ln(1−F (xn+1−i))−2 ln(1−F (xn)).

Adding all the terms finally gives equation (14).

8.11 Correlation between Aggregated Loss Distributions

First, remember that

Corr(S1, S2) =
Cov(S1, S2)√

Var(S1)
√

Var(S2)
,

while E[N1] = λ1 and E[N2
1 ] = λ1(λ1 + 1). We then have

E[S1] = E

[
N1∑
n=1

X
(n)
1

]
= E

[
X

(1)
1 + ...+X

(N1)
1

]
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=
∞∑
n=1

P(N1 = n)E
[
X

(1)
1 + ...+X

(n)
1

]
= E[X1]

∞∑
n=1

P(N1 = n)n

= E[X1]E[N1], (22)

and

E[S1S2] = E

[
N1∑
n=1

X
(n)
1

N2∑
m=1

X
(m)
2

]
= E

[(
X

(1)
1 + ...+X

(N1)
1

)(
X

(1)
2 + ...+X

(N2)
2

)]
=
∞∑
n=1

∞∑
m=1

P(N1 = n,N2 = m)E
[(
X

(1)
1 + ...+X

(n)
1

)(
X

(1)
2 + ...+X

(m)
2

)]
=

∞∑
n=1

∞∑
m=1

P(N1 = n,N2 = m)E
[
X

(1)
1 + ...+X

(n)
1

]
E
[
X

(1)
2 + ...+X

(m)
2

]
= E[X1]E[X2]

∞∑
n=1

∞∑
m=1

P(N1 = n,N2 = m)nm

= E[X1]E[X2]E[N1N2], (23)

which gives

Cov(S1S2) = E[S1S2]− E[S1]E[S2]

= E[X1]E[X2](E[N1N2]− E[N1]E[N2])

= E[X1]E[X2]Cov(N1, N2). (24)

Furthermore, we have

E
[
S2

1

]
= E

[
N1∑
n=1

X
(n)
1

N1∑
n=1

X
(n)
1

]
= E

[(
X

(1)
1 + ...+X

(N1)
1

)2
]

=
∞∑
n=1

P(N1 = n)E

[(
X

(1)
1 + ...+X

(n)
1

)2
]

=

∞∑
n=1

P(N1 = n)

( n∑
i=1

E

[(
X

(i)
1

)2
]

+
∑
i 6=j

E
[
X

(i)
1 X

(j)
1

])

=

∞∑
n=1

P(N1 = n)
(
nE
[
X2

1

]
+ n(n− 1)(E[X1])2

)
=
(
E
[
X2

1

]
− (E[X1])2

) ∞∑
n=1

P(N1 = n)n+ (E[X1])2
∞∑
n=1

P(N1 = n)n2

=
(
E
[
X2

1

]
− E[X1]2

)
E[N1] + E[X1]2E

[
N2

1

]
=
(
E
[
X2

1

]
− E[X1]2

)
λ1 + E[X1]2λ1(λ1 + 1)

=
(
E
[
X2

1

]
+ E[X1]2λ1

)
λ1, (25)
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and so, by using (22) and (25)

Var(S1) = E
[
S2

1

]
− E[S1]2 =

(
E
[
X2

1

]
+ E[X1]2λ1

)
λ1 − (E[X1]λ1)2 = E

[
X2

1

]
λ1. (26)

Finally, putting (24) and (26) together, we have

Corr(S1, S2) =
E[X1]√
E
[
X2

1

] E[X2]√
E
[
X2

2

] Corr(N1, N2).

8.12 Results from Simulation of Data Loss

ξ̂ML Rel ErrML Rel ErrMoM Rel ErrPWM Rel ErrkMedMad

0.84293 5.25949e5 8.26331 6.32106 7.67058e16

0.77781 1.593184e3 6.65541 4.98080 4.65852e10

1.04840 1.296031e3 2.30788 2.21448 2.22057e6

0.70716 1.82141e6 49.2303 21.2630 5.81353e12

1.33611 2.11541 2.89838 2.23935 1.47729e5

0.83735 5.06833e5 21.7405 10.2410 2.50962e11

1.09097 13.9247 3.22315 3.25391 5.47751e7

0.71076 4.81457e3 2.66878 3.81886 3.27132e9

0.80748 1.88124e3 4.33656 4.31866 2.82589e9

0.75457 2.98543e3 5.50400 6.23763 1.71985e10

0.97894 0.65111 1.89567 1.62856 1.37752e3

1.31250 5.26489 2.46344 2.25372 2.09841e7

0.75235 20.4394 4.10507 2.65844 6.340529e6

Table 3 : Relative errors given by data loss simulation. All relative errors have been divided by Rel ErrMoM−Q.

61



62



References

[1] International Convergence of Capital Measurement and Capital Standards, Basel Committee on Bank-

ing Supervision, www.bis.org (2006).

[2] Operational Risk - Supervisory Guidelines for the Advanced Measurement Approaches, Basel Com-

mittee on Banking Supervision, www.bis.org (2011).

[3] Operational Risk Reporting Standards, prepared by Mark Laycock, www.orx.org (2011).

[4] Aue, F., Kalkbrenner, M.: LDA at Work: Deutsche Bank’s Approach to Quantifying Operational

Risk, Journal of Operational Risk 1(4), 49-93 (2006).

[5] Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of Extremes, Wiley (2004).
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