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Abstract

We use regime switching and regression tree methods to evaluate performance
in the risk premia strategies provided by Deutsche Bank and constructed from
U.S. research data from the Fama French library. The regime switching method
uses the Baum-Welch algorithm at its core and splits return data into a normal
and a turbulent regime. Each regime is independently evaluated for risk and
the estimates are then weighted together according to the expected value of the
proceeding regime. The regression tree methods identify macro-economic states
in which the risk premia perform well or poorly and use these results to allocate
between risk premia strategies.
The regime switching method proves to be mostly unimpressive but has its re-
sults boosted by investing less into risky assets as the probability of an upcoming
turbulent regime becomes larger. This proves to be highly effective for all time
periods and for both data sources. The regression tree method proves the most
effective when making the assumption that we know all macro-economic data
the same month as it is valid for. Since this is an unrealistic assumption the
best method seems to be to evaluate the performance of the risk premia strategy
using macro-economic data from the previous quarter.





Sammanfattning

Vi använder en metod som delar upp avkastningsdata i en l̊agrisk-regim och en
högrisk-regim, samt en metod som skapar ett binärträd vars grenar inneh̊aller
avkastningsdata givet olika makroekonomiska tillst̊and, för att allokera mellan
olika riskpremiestrategier. Vi bestämmer sannolikheten för att växla mellan
regimer genom den s̊a kallade Baum-Welch algoritmen och efter att ha delat
upp avkastningsdata i olika regimer bestämmer vi den empiriska riskuppskat-
tningen för l̊agrisk- och högrisk-regimen. Den slutgiltliga riskuppskattningen
skapas genom att väga ihop de tv̊a riskuppskattningarna med sannolikheten för
vardera regim. Binärträdet som används är ett s̊a kallat regressionsträd och de-
lar upp avkastningarna p̊a ett s̊adant sätt att skillnaden i Sharpekvot maximeras
mellan olika makroekonomiska tillst̊and.
Regimväxlingsmetoden visar sig vara n̊agon ineffektiv men resultaten blir bättre
när mängden kapital investerat i riskpremiestrategierna minskas ju högre sanno-
likheten för att nästa period ska vara en högriskregim ökar. Regressionsträden
fungerar väldigt väl i ett idealt scenario där vi vet relevant makroekonomisk
data i förväg men ger även ganska bra resultat i realistiska scenarion.
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Chapter 1

Introduction

1.1 Purpose and Format of the Report

This study aims to create a method with which to allocate between the risk
premia portfolios managed by Deutsche Bank. This allocation method is to be
constructed in such a way that it generates stable growth, with focus on min-
imizing risk, and is uncomplicated. The connection between input and output
of the method must be clear and easy to follow and explain.
The report is written in five main parts. The first part, Chapter 1, focuses on
giving an overview of the risk premia strategies. Chapter 2 treats important
theoretical concepts as well as goes into detail regarding the methods used to
allocate between strategies and how to test the results. In Chapter 3 we take a
look at the data available to us. Then in Chapter 4 the methods are applied to
the data and results are presented. In the last part, Chapter 5, we discuss pos-
sible weaknesses in the methods and results and come to a conclusion regarding
the allocation methods.

1.2 Risk Premia Strategies

Before reading this section, please note that a description of the macro-economic
terms can be found in Appendix A.
Formally the risk premium is the amount by which the return of an asset ex-
ceeds the return of the risk free asset. The risk premia strategies are long short
portfolios that are constructed in such a way as to be exposed to other risk fac-
tors than equity risk. These risk factors could be macro-economic factors such
as GDP growth or inflation rate, or it could be all factors such as non-rational
reactions to events. The treated risk premia strategies are

Value strategy in the bond market (VB) .
Value strategy in the foreign exchange market (VFX ).
Value strategy in the equity market (VE ).
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Carry strategy in the bond market (CB).
Carry strategy in the foreign exchange market (CFX ).
Carry strategy in the equity market (CE ).
Momentum strategy in the bond market (MB).
Momentum strategy in the foreign exchange market (MFX ).
Momentum strategy in the equity market (ME ).
Size strategy in the equity market (SE ).

Next follows a brief introduction to the methods used by Deutsche Bank to
construct the portfolios as described in [1].

Value

In the case of equity the Value strategy is constructed by computing the

Book-to-Price =
Share price

Book value

Sales-to-Price =
Share price

Revenue per share

12 months trailing earnings yield =
Share price

Trailing 12 months earnings per share

12 months forward earnings yield =
Share price

Predicted 12 months earnings per share

Taking the mean of these measures the final ”value score” is computed. The
Value portfolio is then constructed by going long the stocks with top 10 % value
scores, and shorting the bottom 10 %.
When identifying the Value premium in foreign exchange Deutsche Bank con-
structs the portfolio by going long the 3 cheapest currencies and shorting the 3
most expensive in relation to the PPP of the G10 currencies.
Lastly, constructing the Value portfolio in fixed income Deutsche Bank com-
putes the current account- and budget balance as a percentage of GDP and
takes the mean of the result. Then the nominal bond yield is calculated net of
the expected inflation rate. By taking the mean of both results the Value score
is computed. Bonds included in the calculations are government bonds from the
G10 countries and the Value strategy is going long the top 3 bonds and shorting
the bottom 3 bonds.

Carry

The Carry portfolio in equity is constructed using the dividend yield by going
long the 10 % with the largest dividend yield and shorting the bottom 10 %.
The Carry strategy in foreign exchange is going long the top 3 currencies of
the G10 in terms of interest rate payment, going long the 3 top yielding and
shorting the bottom 3.
The Carry strategy in bonds is to compute the mean of the 5-year duration bias
on USD bonds, EUR bonds and JPY bonds. The USD and EUR duration bias
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is found by investing in a swap with maturity 5 years paying one month LIBOR
floating rate and receiving the swap rate on the USD and EUR currencies. The
JPY duration bias is the same but with six month floating LIBOR rate.

Momentum

The Momentum premium in equity is found by computing the past one year
cumulative returns, not including the recent 1 month, and ranking the stocks
according to these scores. The Momentum premium in fixed income is formed
by computing the cumulative return for the past 1 year skipping the recent 1
month and ranking the bonds according to these scores. Deutsche Bank goes
long the top 3 and shorts the bottom 3 bonds. In currency Deutsche Bank ranks
the G10 currencies according to their past 1 year change including the recent 1
month and goes long the top 3 performing currencies while shorting the bottom
3.

Size

The Size premium in the equity market is found by multiplying a company’s
stock price with the number of outstanding stocks, which is its market equity.
Then the strategy is to go long the top decile and short the bottom. The Size
premium is not one of the premium strategy that we have gotten from Deutsche
Bank and will thus not be included in research with this data. Size premium
strategy data is gotten from the Fama French library and included because the
Fama French library does not have the Carry strategy.

1.2.1 Correlation Among the Risk Premia Strategies

A study into the correlation structure of the risk premia portfolios is done in
[1] with the conclusion being that the correlation between portfolios is small
and remains small during times of financial turbulence. Results of interest is
that during periods of financial turbulence, defined by Deutsche Bank as ”the
1997-1998 Asian Financial Crisis,1998 Russian Debt Default and LTCM fallout,
the 2000-2001 Dot-Com Bubble Burst, 9/11 and the Credit Crisis following it,
the 2008-2009 Global Financial Crisis and the more recent European Sovereign
Debt Crisis”, the average pairwise correlation between the risk premia strategies
were 0.0 %, and 1.9 % for the rest of the time (from 1995 to 2012). The average
pairwise correlation between the equity, bond and commodity markets during
the same periods were 32.1 % in the turbulent period and 19.8 % for the rest.
Leaning on this study correlation will be assumed to be very small and zero
when constructing the methods in Chapter 2.
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Chapter 2

Methods

2.1 Portfolio Optimization

The allocation methods will be built on modern portfolio theory, where we strive
for a transparent and easy to understand allocation method. For this reason
we form the risk parity portfolio, which is formed in the following way. Let
ht = (h1,t . . . , hn,t)

T be a vector of positions in n risky assets at time t with
price St = (S1,t, . . . , Sn,t)

T . The value of the resulting portfolio is the sum of
all positions times the value of the asset,

Vt =

n∑
i=1

hi,tSi,t = hTS

We introduce the return vector at time t,

Rt =

(
S1,t

S1,t−1
, . . . ,

Sn,t
Sn,t−1

)T
and

wt =

(
h1,t

S1,t

S1,t−1
, . . . , hn,t

Sn,t
Sn,t−1

)T
then we can express the value of the portfolio at time t as

Vt = wT
t Rt

We wish to minimize the variance of this portfolio while at the same time max-
imizing the expected return, which leads us to solve the mean variance problem

maximize wTµ− c

2V0
wTΣw

s.t wT1 ≤ V0 (2.1)
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where µ = E[R] , Σ = Cov(R) and c is a trade off parameter that depends on
the willingness of the investor to take on risk . The solution to this problem is
given by solving

∂

∂w

(
c

2V0
wTΣw −wTµ

)
+

∂

∂w
λwT1 = 0

wT1 ≤ V0
λ ≥ 0

λ(wT1− V0) = 0

This system of equations evaluates to

w =
v0
c

Σ−1(µ− λ1) (2.2)

λ =
(1TΣ−1µ− c)

1TΣ−11

with the constraint wT1 = V0. We continue and try to find a solution that fits
the requirement of a transparent and easy to follow model. In order to do this
we will make good on the assumption in Section 1.2 that correlations among risk
premia strategies are very small. In fact, we will assume that correlations are
zero since it gives us a much easier expression of Equation (2.2). The covariance
matrix becomes

Cov(R) =


σ2
1 0 · · ·

0
. . .

... σ2
n


which causes Equation (2.2) to evaluate to

wi =
V0
cσ2
i

(
µi −

∑n
j=1 µjσ

−2
j − c∑n

j=1 σ
−2
j

)
(2.3)

Going even further, we might consider that all asset returns have equal expected
return, which means µ = (µ, . . . , µ). This assumption is made with the purpose
of producing the easiest possible weight function, one that is currently used
by the First Swedish National Pension Fund to weight among the risk premia
strategies. Evaluating Equation (2.3) gives us the Inverse Volatility (IV )

wIVi =
V0
cσ2
i

(
µ
∑n
j=1 σ

−2
j − µ

∑n
j=1 σ

−2
j + c∑n

j=1 σ
−2
j

)
= V0

1/σi∑n
j=1 1/σj

(2.4)

that weights each asset according to contributed risk, so that all returns con-
tributes with equal risk. Expected return is not the same for each strategy but
the desire for the uncomplicated causes us to make the assumption.
Additionally, if one assumes that both the risk and expected return of all assets
are the same, then one is forced to weight among the assets equally with respect
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to capital invested. This assumption will serve as a reference, since it is not
dependent on any previous data, and the allocation methods will be compared
to it. Equal Weighting (Eq):

wEqi = V0
1

n
(2.5)

To illustrate the IV we consider three return series with joint probability distri-
bution rt ∈ N(1,Σ), where N(1,Σ) is the three dimensional normal distribution
with covariance matrix

Cov(R) =

0.022 0 0
0 0.032 0
0 0 0.042


This means we want to take positions

w =
325

3

1/0.02
1/0.03
1/0.04

 ≈
0.46

0.31
0.23

 (2.6)

where 325
3 is the sum of the inverse volatilities.

2.2 Risk Measures

Since we are looking for a way to extract risk premium, it is only natural to use
other types of risk measures than the simple standard deviation. Introducing
the Value-at-Risk and Expected Shortfall.

Value-at-Risk

Literature [7] describes the Value-at-Risk at level p of a portfolio with value
X at time 1 as ”the smallest amount of money that if added to the position
now and invested in the risk-free asset ensures that the probability of a strictly
negative value at time 1 is not greater than p” 1,

V aRp(X) = min{m : P (mR0 +X < 0) ≤ p}

where R0 is the risk free return. If we let L = −X/R0 be the loss at time 1 and
X = V1 − V0/R0 then

V aRp(X) = min{m : P (L ≤ m) ≥ 1− p}

where this means that the V aRp(X) is the smallest value m that covers a
potential loss with probability 1−p. Statistically the V aRp(X) is the (1−p)’th
quantile of L where we let L = −R∗ where R∗ is R sorted in ascending order,
then the empirical Value-at-Risk is

V̂ aRp(X) = L[np]+1 (2.7)

where [·] means the closest integer rounded down.
The V aRp(X) can be expanded into the Expected Shortfall as described next.

1[7] p.165.
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Vt

1.00 0.98 1.01 0.99 1.01 1.00 1.01 1.01 1.01 0.99

Rt

0.00 -0.02 0.03 -0.02 0.02 -0.01 0.01 0.00 0.00 -0.01

Lt

0.02 0.02 0.01 0.01 0.00 0.00 0.00 -0.01 -0.02 -0.03

Table 2.1: Portfolio values Vt and portfolio returns Rt for 10 normally dis-
tributed random variables and corresponding sorted values Lt.

Expected shortfall

The Expected Shortfall is the average V aRp(X) below level p. It is defined as

ESp(X) =
1

p

∫ p

0

V aRu(X)du

for the continuous case. For the empirical, discrete, case we again use the
definition of L as the possible sorted losses, and the empirical estimate becomes

ÊSp(X) =
1

p

∫ p

0

L[np]+1du =
1

p

(
n∑
k=1

Lk
n

+

(
p− [np]

n

)
L[np]+1

)
(2.8)

We continue with the return distributions from the illustration of IV and sim-
ulate 10 values of Rt representing monthly returns and take the position (2.6)
at each month and get the resulting values in table 2.1. The Value-at-Risk we

estimate at level 5% as V̂ aR0.05 = L[0.05∗10]+1 = L1 = 0.02. In this case the
expected shortfall is the same as the Value-at-Risk, since [np] = 0.

2.3 Performance Measures

Now we have the foundational method for allocating between the risk premia
strategies, namely the Inverse Volatility. The allocation methods must have a
way to be commonly judged to see what performs well and what does not. The
desire to produce a stable method with focus on low risk leads us to treat the so
called Information Ratio (IR), Sharpe Ratio (SR) and the Calmar Ratio (CR).
These ratios are ways of evaluating the expected pay-off of an investment in
relation to risk taken. We define them as follows:

Information Ratio (IR)

IR =
CAGR

Annual V olatility
(2.9)

The term CAGR stands for Compounded Annual Growth Rate, and it is defined
as the yearly rate of return that would have produced the same total return as
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the investment strategy.

Compounded Annual Growth Rate (CAGR)

CAGR =

(
Vn
V0

)1/(tn−t0)

− 1 (2.10)

where Vt is the value of the portfolio at time t and tn− t0 is the number of years
from t0 to tn. In order to match the values of this estimate with the ones in [1]
the value at time t is calculated as the product of all returns up to time t,

Vt = V0 · r1 · r2 · · · rt

V0 is the initial capital invested in the strategy. The CAGR is reported through-
out this report in percentages.
The annual volatility is defined as:

Annual Volatility (Vol)

V ol = σ̂
√

12 (2.11)

where σ̂ is the sample standard deviation of R calculated as the square root of
the sample variance of the observations of R up to time t, R1, R2, . . . , Rn, as

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(Ri − µ̂)2

where µ̂ = Ê[R] = 1
n

∑n
i=1Ri is the sample mean. The volatility is reported

throughout this report in percentages.
Next we introduce the Sharpe Ratio.

Sharpe Ratio (SR)

The Sharpe Ratio is defined as the estimated value of the excess return over the
risk free rate. We use a zero risk free rate so the Sharpe Ratio is defined as

E[R]√
V ar(R)

which extended to the yearly version becomes

E[R]12√
V ar(R) · 12

Based on the sample R1, R2, . . . , Rt from R we estimate the Sharpe Ratio as

SR =
µ̂12 − 1

σ̂
√

12
(2.12)
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The SR is used in order to get a sense of the expected return in comparison to
the volatility, similar to the IR but less dependent on actual performance. Say
there was a very big drop at time t, then the CAGR would suffer greatly since
the value of the portfolio would drop. So the value at the end of the period is
lessened because of that drop. That is of course relevant to know but at the
same time as a measure of performance we might be interested in the outcome
of returns.
Lastly, the Calmar ratio is defined as

Calmar Ratio (SR)

CR =
CAGR

Maximum Drawdown
(2.13)

which is a measure that relate the CAGR to the so called maximum drawdown,
explained below.

Maximum Drawdown (MaxDD)

The maximum drawdown measures the largest drawdown, or drop, in portfolio
value between the start and end of simulation. Let V (t) be the value of the
portfolio at time t, then the maximum drawdown between time t = 0 and t = T
is defined as
Definition: Maximum Drawdown (MaxDD)

d(t) = max
τ∈(0,T )

{ max
t∈(0,τ)

V (t)− V (τ)} (2.14)

where
V (t)− V (τ)

is a drawdown. This is obviously positive if V (t) > V (τ) and negative or zero
else. To determine the maximum drawdown we simply traverse the whole time
series and take the largest difference in portfolio value. The maximum drawdown
itself is reported throughout this report in percentages, dividing the trough with
the peak.

As an example, we generate 600 values from the normal distribution, Rt =
µ+ σN(0, 1), t = 1, . . . , 600 with µ = 1.001 and σ = 0.02 to represent monthly
returns. Figure 2.1 shows the simulated portfolio values Vt = Vt−1Rt. The
filled black line corresponds to the time series Vt, the black spaced line shows
the CAGR = 1.95% and the red line shows the maximum drawdown MaxDD =
17.34%. The return series Rt has standard deviation 1.95% (as opposed to a the-
oretical 2%) which means the annual volatility is V ol = 0.0195 ·

√
12 = 0.0677 =

6.77%. The mean return is 1.0018 (as opposed to 1.0010) which means that the

Sharpe Ratio is SR = 1.001812−1
0.0677 = 0.31. The Information Ratio in turn is

IR = 0.0195
0.0677 = 0.29 and the Calmar Ratio is then 0.11.
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(a) Cumulated return series.

CAGR Vol IR SR MaxDD CR
1.95 6.77 0.29 0.31 17.34 0.11

(b) Estimates.

Figure 2.1: Simulated portfolio performance.

2.4 Regime Switching

It is clear that the financial market has its periods of greater instability and
other calmer periods. In this section we try to identify these periods and even
more importantly, try to estimate the probability that we are entering either a
calm or a volatile period. We call these periods ”regimes” and define them as
follows.

Definition: Regime
A regime is defined for a vector of returns, preferably an index, as a time period
in which the volatility is within some predefined interval.

This interval can be chosen arbitrarily, but the authors of [1] suggests that
we should define the normal regime as the period of calm, occurring when the
volatility is less than the 40th quantile value for a volatility index. Setting the
turbulent regime at the 40th quantile might seem a bit conservative but it is
really up to the investor to set this threshold so in order to keep in line with
previous studies in [1] I choose the same as Deutsche Bank.
The turbulent regime then, is the period of financial instability occurring the
rest of the time. It is then important finding an index that models general
market volatility as well as possible. One option is to use one of the large stock
indexes available. We use the S & P 500 volatility index (S& P 500 VIX) to
estimate regimes in this report. Sometimes however, instead of trying to find an
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Figure 2.2: Scatter plot of return pairs from ME on the x-axis and CFX on the
y-axis.

index, you could estimate the market volatility by looking at how the returns of
the assets perform in relation to their typical behaviour [5] and create your own
turbulence index. For example, in the case of one asset you can compute the
volatility at each time point and then compare today’s volatility to this data.
This is the case when using the S & P 500 VIX and the regimes are separated
according to quantiles of the distribution. But in the case of several assets sim-
ply computing individual volatility is not enough. For example, consider the
ME and CFX returns. Figure 2.2 shows the return pairs for these strategies.
Looking at the scatter plot we see that there are some clear outliers which could
be caused by financial instability. But correlation is low in the tails so just
because the Momentum strategy shows an unusual return doesn’t mean that
both strategies are in financial turbulence. In order to determine if they both
perform unusual in relation to their combined behaviour we form the turbulence
measure

dt = (rt − µ)TΣ−1(rt − µ)

where rt is the vector of returns at time t, µ is the vector of mean returns for
r based on historical data and Σ the covariance matrix of returns. With the
assumption of zero correlation this simplifies to

dt =

n∑
i=1

(
ri,t − µi
σi

)2

This means that we measure the sum of deviations from the mean in relation
to expected risk, akin to taking the square of the Sharp Ratio. This measure
is called the Mahalanobis distance named after Prastanta Mahalanobis who
developed it to analyse human skulls [5]. After having computed this we can set
a threshold for the regimes just like before. [5] suggests using the 75th quantile
as this threshold, but keeping in line with [1] we continue to use the 40th for
consistency.
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Now that we have managed to pick a turbulence index we would also like to be
able to know in which regime we are and whether we will stay in the same or
continue to another in the next period. It is suggested in [4] to use a Markov
switching model to forecast the next regime. The thought is that, given that we
are in any given regime, we would see characteristics that depend on the current
regime. For example, if we use the S & P 500 VIX, and the volatility at time t
is ”high”, then we might consider it an outcome of a distribution specific to the
regime at time t. We do not know what the distributions are but we assume
that there are two regimes 1 and 2 where the probability of observing y is g1(y)
and g2(y). Then given an observation of y we evaluate both probabilities and
we get an estimate of where we are. If Xt corresponds to regime 1 or 2 at time
t, then Xt has the states Xt = (1, 2) and X1 corresponds to the regime at time
1. The probability of X1 being regime i is P (X1 = i) = pi. The regime then
possibly changes or stays the same but always shifts between these two, so Xt

is a markov chain with transition probability matrix

Υ =

(
υ11 υ12
υ21 υ22

)
.

It is assumed that the probability of observing yt = y∗ is dependent on the state
of the Markov chain and we can form πi = P (yt = y∗|Xt = i) = gi(y

∗). Let the
vector θ = (g1, g2, p1, p2) be a parameter vector with g1 and g2 some probability
functions that determine the probability of the observed outcome given regime
1 or 2 and p1 and p2 the initial probabilities of regime 1 and 2. Let θ be the
optimal choice of parameters that maximizes the probability of observing the
data Y = (y1, y2, . . . , yt). That is

θ = max
θ̂

P (Y|θ̂)

so that θ is the best choice of all possible combinations of probability functions
and initial probabilities θ̂. Make an initial arbitrary guess for θ̂. Let the number
of regimes be n = 2 and calculate the probability of observing the data at time
t given that we are in the state i = 1, 2, Fi(t) = P (Y, Xt = i|θ̂), called the
forward probability, by the recursion

Fi(1) = P (X1 = i) · P (y1|X1 = i) = pigi(y1)

Fi(t) = P (yt|Xt = i)

n∑
j=1

Fj(t− 1) · P (Xt = i|Xt−1 = j)

= fi(yt)

n∑
j=1

Fj(t− 1)υ̂ji ∀t > 1

Then we calculate the probability of seeing the last t − s, s < t observations
given that we start in state i and end at time t, called the backward probability
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Bi(s) = P (ys+1, ys+2, . . . , yt). It is recursively calculated as

Bi(t) =
1

n

Bi(s) =

n∑
j=1

Bj(s+ 1) · P (Xs = j|Xs−1 = j) · P (ys+1|Xs+1 = j)

=

n∑
j=1

Bj(s+ 1)υ̂ijgj(ys+1) ∀s < t

Now we calculate the probability that we are in regime i given the observations
with the estimated parameters by

γi(t) = P (Xt = i|Y, υ̂) =
Fi(t)Bi(t)∑n
j=1 Fj(t)Bj(t)

We calculate the probability that we are in regime i at time t followed by regime
j at time t+ 1 given the observations by

βij(t) = P (Xt = i,Xt+1 = j|Y, θ̂) =
Fi(t)υ̂ijBj(t+ 1)gj(yt+1)∑n

k=1

∑n
l=1 Fk(t)υ̂klBl(t+ 1)gl(yt+1)

Then the parameters in θ̂ are updated as p̂1 = γ1(1), p̂2 = γ2(1),

υ̂ij =

∑
s=1 t− 1βij(s)∑t−1

s=1 γi(s)
,

and

gi(y) =

∑n
s=1 γi(s)I{y = ys}

γi

where I{·} is the indicator function that is 1 if y = ys.
The procedure is repeated until a maximum is reached. This procedure is called
the Baum-Welch algorithm. The authors of the regime switching method in [4],
suggests using a normal distribution to determine g1 and g2 with an initial guess
for the mean and standard deviation. They let gi be the relative probability
based on the Gaussian probability density function

fi(yk) =
1

σi
√

2π
e
− (yk−µi)

2

2σ2
i

The density is calculated for every observation yi and divided by the sum of the
densities to get the relative probability of yi

gi(yk) =
fi(yk)∑n
j=1 fi(yj)

Then in the last step, when you have calculated the probabilities of observing
Y, you compute a new value for the expected value and standard deviation
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Figure 2.3: Out-of-sample forecast of a turbulent regime.

given that you are in regime i. Since γi(t) are the probabilities corresponding
to the observation, the expected value is

µi =

t∑
s=1

ysγi(s)

and the variance is

σ2
i =

t∑
s=1

γi(s)(ys − µi)2

Setting a risk threshold at the 40th quantile we say that we are in the turbulent
regime, regime 2, if the volatility at time t is higher than the 40th quantile of
the turbulence index and normal, regime 1, otherwise. If we are in regime 1,
then the probability of the same regime at time t+ 1 is υ11 and a regime shift
happens with probability υ12. So we can let p be the probability that next
regime is turbulent by

p = υ12 · I{Normal}+ υ21 · I{Turbulent} (2.15)

Where I{·} is the indicator function that is 1 if the current regime is normal or
turbulent.
An out of sample analysis using the S & P 500 VIX produces the estimated
probabilities of a turbulent regime in Figure 2.3. We see that it captures his-
tory rather well. Most importantly it captures the financial crisis of 2008 very
well. To further check this method we perform a simulation of how accurately
the method identifies regimes. First we generate 900 values from the normal dis-
tribution with expected value 2 and standard deviation 1 and 1100 values with
expected value 20 and standard deviation 10. The first state is the normal, or
state zero, and the other is the turbulent, state 1. Figure 2.4 shows the differ-
ent states and 2.5 shows the actual observations. Running the Baum-Welch
algorithm gives us the probabilities in Figure 2.6. It is pretty clear from the
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Figure 2.4: States of simulated data.

Figure 2.5: Observations of normal distribution with regimes.

Figure 2.6: Probability of state 1.
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Figure 2.7: Estimated states.

figures that the probability of state 1 is captured well by the method, which is
well given the very clear differences in the observations. The estimated value of
state zero is 2.76 as opposed to 2 and for state 1 it is 22.07 as opposed to 20. The
estimated standard deviation of state zero is 5 as opposed to 1 and for state 1 it
is 20.6 as opposed to 10. So the standard deviation is captured rather well but
the standard deviations are over estimated. However, we do not use the method
to actually estimate risk, only to estimate which state we are in. The actual risk
assessment is done on actual return data that we split manually as described
previously. It is clear that the probabilities are captured well, but for the sake
of analysis we first calculate the mean of the probability estimates, and then for
each probability estimate we check if it is higher or lower than the mean. If it
is higher, then we say that the predicted state is 1 and otherwise it is predicted
to be state zero. This is not how we use the method in practice but it allows
us to get an estimate of the accuracy of the method. The mean probability is
0.35, which means that any probability higher than 0.35 corresponds to state 1,
and otherwise it is state zero. This is illustrated in Figure 2.7. Summing up all
predicted states that are correct and dividing by 2000 gives us an estimate of the
accuracy which is in this case 99.8 %. We might have just been lucky however,
so we repeat the simulation with new random values 100 times. This gives us
the estimated accuracy of 98.55 %. Table 2.2 shows the estimated accuracy for
different values of normal distributions. µi, σi stands for expected value and
standard deviation of state i. Clearly the more the distributions differ the more
accurately the algorithm is able to predict the state. When state zero and state
1 is equal the method identifies state 1 correctly 53.74 % of the time, which
is close to 55 % which is the odds of the state being 1 since we generated the
states as such. So it does not seem to find a state that is not there. As for the
precise values of µ and σ predicted by the method, they continue to be a bit off
in these simulations. But we do not estimate the risk by these parameters so it
serves its purpose which is to predict the state.
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µ0, σ0 µ1, σ1 Accuracy
2,1 20,10 98.55
2,1 10,10 96.05
2,1 5,10 96.79
2,1 2,10 95.13
2,1 5,5 95.08
2,1 2.5,5 91.43
2,1 2.5,2.5 80.46
2,1 2,2 67.18
2,1 2,1 53.74

Table 2.2: Mean accuracy of predicted state 1 based on 100 simulations for
different normal distributions.

2.4.1 Risk Parity Portfolio with Regime Shifting

We continue to expand the risk parity weights IV (2.4) by estimating risk ac-
cording to the Baum-Welch estimated probabilities. Typically risk is estimated
using equally weighted returns. But if we are in a very low risk period, then
treating extreme outliers with as much caution as a return very close to the
mean might overestimate the risk and we lose some return for the portfolio.
The volatility might instead be calculated according to the data corresponding
to each regime to hopefully get a more correct picture of the risk. So we form one
estimate of the volatility that we say is a risk-off estimation, and one estimate
that is risk-on in the following way. Consider that today is time t. Then we take
h years of historical return data and assign each return vector to a turbulent
regime according to if they occurred at the same time as the S & P 500 VIX (or
another index) showed a volatility that exceeded the 40th quantile up to today

or a normal regime if the volatility was less. Let R
(on)
t = (r

(on)
1 , . . . , r

(on)
k ) and

R(off) = (r
(off)
1 , . . . , r

(off)
m ) be the k and m number of returns after they are

divided for the total t returns. After splitting the vector into the normal and
turbulent regime we compute the risk-on estimation of the volatility by com-
puting the sample variances σ̂(on) and σ̂(off).
Lastly we run the Baum-Welch algorithm to estimate the probability of regime
i at time t+ 1 given if we are in regime 1 (volatility less than 40 % of historical
values) or in regime 2 (volatility greater than 40 % of historical values. The
resulting IV portfolio is computed for the risk-on and risk-off volatility.

w
(IV−on)
i = V0

1/σ̂
(on)
i∑n

j=1 1/σ̂
(on)
j

w
(IV−off)
i = V0

1/σ̂
(off)
i∑n

j=1 1/σ̂
(off)
j

Let pt be the probability (2.15) at time t for next regime being turbulent, then
the resulting portfolios are the expected value of the risk-on risk-off weights.
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IV becomes the Inverse Volatility with Regime Shifting (IV R/S ) and formally
looks like

w
(IV R/S)
i = pt · w(IV−on) + (1− pt) · w(IV−off) (2.16)

2.5 Regression Trees

In this section we lay the foundation for exploiting macro-economic factors that
might influence the performance of the risk premia strategies. Let

X =

x11 x12 . . . x1m
...

. . .

xn1 xn2 . . . xnm


be a matrix of m possibly dependent variables with n observations of each,
where xij is the i’th observation of the j’th variable and

R = (r1, r2, . . . , rn)T

be a vector of corresponding observations of risk premia returns. X corresponds
to macro-economic data such as GDP or inflation or the like. We could then
model R as a linear function of X by

R = β01 + βTX + ε

where β0,β are constant coefficients and ε is the corresponding vector of resid-
uals. This is obviously known as linear regression and it is necessary that X
is independent across its columns in order to produce reliable predictions of R.
If X is not a set of independent variables, then we would have to know the
dependence among them and exploit it to make X independent. Once that is
done, we might also need to consider not regressing only on each independent
value, but also among some or all interactions. If X is an n × 3 matrix, then
we would have to consider R in terms of 3 independent variables, plus 4 distinct
interactions. It quickly becomes tedious and that is assuming we even manage
to prepare the data in X correctly. The interaction between the macro variables
is complicated and we can not expect to regress the return series on them using
linear regression. Instead, we use the regression tree.
This tree is best explained by describing the algorithm of forming it. First,
let X be the matrix as before, called the predictor matrix where each col-
umn represents one predictor variable and each row one observation. We let
g(X, k) = (x1k, x2k, . . . , xnk)T be a function that takes the k’th column from
X. For each k, we form

Ck = (g(X, k),R)

Then we split Ck into two disjoint sets Ak and Bk where Ak

⋃
Bk = Ck and

Ak

⋂
Bk = 0. This split is done by letting the i’th observation of g(X, k),

that is xik, be included only in Ak if it is smaller than some value vk with
the corresponding risk premia return ri joining it, thereby keeping them paired,
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otherwise they are included only in Bk. The value vk is chosen such that the
difference ∆k in Sharpe Ratio calculated for each set Ak and Bk is maximized.
We then take the return vector from Ak and Bk by g(Ak, 2) and g(Bk, 2) and
let S be a function S = S(R) = µ̂/σ̂ then

∆k = max
vk
|S(g(Ak, 2))− S(g(Bk, 2))|

The difference in Sharp Ratio is weighted according to how many data points
were used to calculate it according to the weight function n1n2 where n1 and n2
are the amount of data points smaller than vk and greater than vk respectively.
The resulting difference value is ∆k · n1n2. This is repeated for each column
k = 1, . . . ,m in X. This generates m estimations of ∆ and we finally pick the
predictor (column) kmax that produced the maximum value of ∆ and we split
the entire matrix X into X(A) and X(B) where row i of X is included only in
X(A) if xikmax is in Akmax , and in X(B) otherwise. The same is done for R
which is split into R(A) = g(Akmax , 2) and R(B) = g(Bkmax , 2) . Now we form
a binary tree with node 1 containing R. Node 1 points to node 2 and node
3 and we let node 2 contain R(A) and node 3 contain R(B). Then we repeat
the split procedure for node 2 with R(A) being split on the best predictor kmax
generated from X(A) and we do the same for node 3 with R(B). This is repeated
for the new values of A and B for each new node created. This builds a binary
tree which has fewer and fewer entries in each node, until no more split can be
made. A split can not be made if either S(R) can not be calculated or if ∆ = 0
for all k = 1, . . . ,m. This can happen when the sample variance of the data
in the node is zero or there are too few entries in a node. In order to be able
to calculate S(R) there has to be at least some nodes in every tree minimum.
Before determining what this minimum should be we evaluate the method in
an example.
We generate

X = (x1,x2,x3)

where xi = (x1i, . . . , xni)
T for i = 1, 2, 3 and n = 1000. The xij ’s are gener-

ated according to continuous uniform distributions where x1 ∼ U(− 1
100 ,

2
100 ),

x2 ∼ U(− 0.5
100 ,

0.5
100 ) and x3 ∼ U(− 1.5

100 ,
3

100 ). Then 1000 corresponding values are
generated for R from the normal distribution with parameters that depend on
the values of X. These are chosen in the following way.
Let t = (t1, t2, t3) = 1

100 (0.5, 0, 0.75) be a vector of threshold values and let
bool = (b1, b2, b3) be a vector of boolean values where bj can take the values
either 0 or 1. Then let bj = 0 mean that xij < tj and bj = 1 mean that xij ≥ tj .
Then each ri is simulated from the normal distribution N(µ, σ) where µ and σ
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Figure 2.8: Simulated time series of returns R.

Figure 2.9: Distribution of entered states of bool.

are chosen according to

if bool = (0, 0, 0) then µ = −0.04, σ = 0.08

else if bool = (0, 0, 1) then µ = −0.03, σ = 0.07

else if bool = (0, 1, 0) then µ = −0.02, σ = 0.06

else if bool = (1, 0, 0) then µ = −0.01, σ = 0.05

else if bool = (0, 1, 1) then µ = 0.01, σ = 0.04

else if bool = (1, 1, 0) then µ = 0.02, σ = 0.03

else if bool = (1, 0, 1) then µ = 0.03, σ = 0.02

else if bool = (1, 1, 1) then µ = 0.04, σ = 0.01

The resulting time series R is illustrated in Figure 2.8 where Vt = rtVt−1 and
V0 = 1. The distribution of the different states bool are shown in Figure 2.9.
We set the mininum amount of entries per node as 70 (arbitrarily) and generate
the tree in Figure 2.10. We see that the tree splits X1 on 0.49% ≈ 0.5% , X2

on 0.09% and 0%, and X3 on 0.76%, 0.98% and 1.16%. The error is easy to
estimate since we know the theoretical Sharpe Ratio for each node by SR = µ

σ ,
so we predict the value for each possible state of bool and compare it to the
theoretical value. This gives the mean squared error 0.07. Using the same
predictor matrix X we generate 1000 new versions of R, grow a new tree and
evaluate the error on each. The resulting distribution of errors has a mean of
0.03. Noteworthy is that, while we know the real distributions of the data and
thus the optimal split, the algorithm only sees one outcome and thus might not
split it theoretically the best way. The rather small error is however satisfac-
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Figure 2.10: Tree grown on simulated data.

Figure 2.11: Rank correlation as function of minimum entries per node.

tory, at least for our purpose as we are not trying to predict an exact result, but
rather get an ”edge” in our investment methods, so it is enough if it predicts
somewhat correctly.

2.5.1 Cross Validation

A problem with growing the tree like this, is that at some point we split the
data too far and essentially estimate the SR on noise. This would lead to the
tree predicting the data used to generate the tree really well, but it gives too
much weight to factors that really are only noise. One way around this issue is
by using cross validation to determine how much the data should be split. In
this procedure we grow a tree only on a subset of the data and then we predict
the outcome of the rest of the data and see how close we came. If we have grown
a too large a tree (in terms of minimum amount of data per node; a large tree
has a small minimum of data per node), and thus have over fitted it, we are
trying to predict ”too much” of the oscillations, noise. Then we would expect
the predictions to be incorrect and we should grow a smaller tree.
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Specifically we grow a tree on 9/10’s of the data and predict the last 1/10. Then
we grow a tree on a different subset 9/10’s of data and predict the remaining. We
repeat this ten times and get an estimate of the error of the tree. However, this
is what we would do if we could indeed predict the remaining data. Since we are
splitting the tree such that the difference in SR is maximized, we would be trying
to predict the SR. But when trying the tree on one tenths of data, we will not
always have enough data to estimate the SR for every node. In the case of the
data provided by Deutsche Bank, one tenth of data is only 21 monthly returns.
If our tree has k nodes, that leaves each node with an average 21/k returns
per node. This quickly becomes much too little for any significant estimate to
be done. Instead we work around this using rank correlation (Appendix B) to
estimate the best tree. Now, we grow a tree on 9/10’s of the data as before
and predict the result of the remaining data. But instead of checking that the
predictions are accurate by computing the SR on the remaining data, we check
the rank correlation between the predicted SR values and the actual remaining
data. The remaining data is actual returns, so we are not comparing the same
things, but we are evaluating whether highest predicted SR corresponds to the
largest positive return and the second highest SR corresponds to the second
highest positive return and so on. We perform the rank correlation test on
each 9/10 subset and our final rank correlation value is the mean of ten subset
estimations. This will hopefully be a sufficient estimation.
Performing this cross validation technique on our sampled data and plotting
the rank correlation values against minimum amount of data per node gives us
Figure 2.11 with corresponding best tree in Figure 2.12. The tree is essentially
the same as before but has one less node, namely it no longer splits X3 on
1.16%, which is well, since it means this tree is less over fitting. The error of
this tree is slightly higher with 0.08 instead of 0.07, but we still know it splits
the data more correctly than before, since X3 should not be split on 1.16%.
In conclusion, this tree splitting procedure works rather well for our sampled
data and thus it seems viable to use it on the real data.

2.5.2 Bagging

A way around the problem of cross validating the trees is the bagging procedure.
Bagging stands for bootstrap aggregating and does not require cross validation
to avoid over fitting 2. Here we generate mb new samples from the data and
generate a tree on each of the samples. Additionally, instead of generating a
tree on all predictors, we select [

√
N ] of them, where N is the total number

of predictors and [·] means the closest integer rounded down, at random and
generate the tree only on them. We grow each tree as much as we can, which
lets us avoid the problem of finding the right amount of minimum data points
per node. After generating a forest of mb trees the prediction is made as

ŷt =
1

mb

mb∑
k=1

φk(Xt) (2.17)

2[9] p.319
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Figure 2.12: Cross validated tree.

where φk(Xt) is the prediction of the k’th tree based on the predictor values at
time t. This means that the predicted value is the average of mb predictions.

2.6 Statistical Tests

Some way of testing the results of a strategy is needed, some way of differencing
significant results from pure chance. For this reason the following procedures is
introduced: the Monte Carlo Bootstrap. Since we are dealing with very complex
time series, which although assumed uncorrelated in the long run might exhibit
more or less correlation in the short run we cannot simply hope to generate new
time series to test on. This is always a weakness in financial statistics, that the
results we get might be rather ad hoc in that they are created for one specific
time series but might not work for others. One possibility of getting past this
issue would be to simply generate new time series with the correct distributions.
But as suggested, we are unlikely to actually be able to model the time series
correctly. Furthermore, if we were to model the time series from an existing
subset of outcomes (that we have observed so far, 208 returns per risk premia
strategy in this case) we still could not be sure that we have captured the future
distribution correctly. Besides, if the assumptions of this report are correct, that
the returns to the risk premia portfolio are dependent on underlying market
volatility and various macro-economic factors, I do not expect to be able to
generate completely new time series from theoretical distributions and retain
vital characteristics. Instead we might use the bootstrap technique to estimate
certain parameters.
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The bootstrap

Let x1, x2, . . . , xn be a series of identically distributed random outcomes from
X(t) with an unknown distribution F . As is the premise, we do not know F

but we hope to disregard that since we are interested in some estimate θ̂ of a
parameter θ = T (F ). This parameter corresponds to any of the measures in

Section 2.3. If we knew F we could generate new time series and compute θ̂ but
as previously argued this is not possible. However, based on x1, x2, . . . , xn we
can make however many copies of existing data points as we want, in whatever
order we want and including how many or as few of the data points as we
want. This is done by taking with replacement from x1, x2, . . . , xn so that any
observation is picked with probability 1

n and save this in a new observation.
Indeed, we pick n values from our original n x’s to get an entirely new sample

x
(1)
1 , x

(1)
2 , . . . , x

(1)
n where xi = x

(1)
i with probability 1

n . Repeating this B times
we eventually get the matrix of samples

XB =


x
(1)
1 x

(1)
2 . . . x

(1)
n

x
(2)
1 x

(2)
2 . . . x

(2)
n

...
...

...

x
(B)
1 x

(B)
2 . . . x

(B)
n


Each row in this matrix is a copy of the original data, and thus we can calculate
θ̂(j) = T (Fj), where Fj is the empirical cumulative distribution function for row
j, for each of these rows to get

θ̂B =


θ̂(1)

θ̂(2)

...

θ̂(B)


Once we have this sample, we have actually gotten a distribution of the pa-
rameter estimate given the original data. Then we can for example estimate
θ̂ = T (F ) as the sample mean E[θ̂]. Of course, there are more things to think
about when it comes to the bootstrap procedure but it is not really important
right now. In fact, returning to the mindset of the risk premia return, simply
taking one return at a time to create a new sample might misrepresent the time
series. Assuming again that the returns exhibit some dependence on the un-
derlying volatility we want to be able to get an estimate of the return at time
t + 1 when we are at time t by using the Baum-Welch method as previously
described. Splitting up the volatility might then render it impossible to predict
the next outcome since only the original arrangement might render good results
for our method. Again, we could maybe model a new volatility index, but cor-
responding returns are not possible to model accurately, at least for me. So this
leaves the bootstrap method rather impotent. However, relying on the theory
we expand it into the Monte Carlo Bootstrap.
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Monte Carlo Bootstrap

Here we actually keep the time series intact which is following the previous
argumentation a very good thing. Indeed, we run a simulation from start to
finish and at each time point t we save the weight vector wt that determines how
much capital is allocated to what strategy. Let W = (w1,w2, . . . ,wn) be the
vector of saved weights, where each wi is an N×1 matrix where N is the number
of risk premia strategies to take a position in. Then instead of generating a new
matrix of resampled return vectors, which as previously claimed might render
them more or less useless to use for our purpose, we construct the matrix

WP =


w

(1)
1 w

(1)
2 . . . w

(1)
n

w
(2)
1 w

(2)
2 . . . w

(2)
n

...
...

...

w
(n!)
1 w

(n!)
2 . . . w

(n!)
n


where w

(k)
i 6= w

(k)
j ,where k is the k’th row of WP and no row is equal to any

other row. This means that WP is the matrix of all n! possible permutations of
W. Then, almost following the idea of the bootstrap method we sample a new
matrix with random draws from WP but without replacement to get

WB =


w

(1∗)
1 w

(1∗)
2 . . . w

(1∗)
n

w
(2∗)
1 w

(2∗)
2 . . . w

(2∗)
n

...
...

...

w
(B∗)
1 w

(B∗)
2 . . . w

(B∗)
n


where j∗ means that it’s the j’th row in WB , where j∗ = j with probability 1

n! .
We then compute the parameter estimate

θ(j
∗) = f(w(j∗),R)

for every row in WB where f(·) might correspond the the Sharpe or Information
Ratio or maximum drawdown for example and R is the return vector. Further-
more, neither of the θ̂(j

∗)’s have a higher likelihood of occurring than any other,
so in fact each have a 1

B of occurring. Taking the mean of the sample of θ(j
∗)’s

is rather uninteresting as the distribution of θ(j
∗) does not represent the per-

formance of our strategy in of itself. However, let G(θ̂) = 1
B

∑B
k=1 I{θ̂(k) > θ̂}

where I{·} is the indicator function. G(θ̂) can take the values 1
B ,

2
B , . . . , 1. Since

either permutation have the same probability of occurring then G(θ̂) follows the

discrete uniform distribution. Letting B →∞ lets G(θ̂) converge to the contin-

uous uniform distribution. This means that P (G(θ̂) ≤ p) = p. So with a large
enough value of B we can estimate the probability that the result gotten from
our strategy was purely by chance, as other random permutations would have
performed equally well or better. Of course, doing this test only lets us know
if our strategy actually used the historical data in a meaningful way and not
actually the value that is expected from the strategy given other time series.
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2.7 Summary

In Chapter 2 we formed the Inverse Volatility IV allocation method that allo-
cates with equal risk contribution. The Baum-Welch algorithm was introduced
to estimate a probability of an upcoming turbulent regime and this probability
was used to expand IV into the Inverse Volatility with regime shifting method,
IV R/S. This method allocates with equal risk contribution, but one alloca-
tion for a normal, calm, regime and one for a turbulent one and then weighted
together according to the estimated probability reported by the Baum-Welch
algorithm. We tested the Baum-Welch method on historical data and got very
satisfying results.
Then we introduces the regression trees as a way of splitting up the return series
based on an input of macro-economic data to see under what circumstances we
get what Sharp Ratio. We tested the method on simulated data and saw that it
captured the characteristics rather well. Then the idea of cross validation using
rank correlation and the idea of bagging was introduced in order to improve the
tree.
Lastly we introduced a way of checking the results with the Monte Carlo boot-
strap to get a sense of the statistical significance.
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Chapter 3

Data

3.1 Introduction

The main goal is to evaluate the performance on the return data from Deutsche
Bank, but as support we have data from Fama French which stretches back much
further. This data is collected at Dartmouth College in the United States and US
Research Data can be found at http://mba.tuck.dartmouth.edu/pages/faculty
/ken.french/data library.html. We use data from September 1960 to Decem-
ber 2012. In order to get a feel for the data we compute the empirical mean,
standard deviation, skewness and kurtosis of the data. These are computed as
follows, where R = (r1, r2, . . . , rn)T is the return vector with n monthly returns.

Mean (µ̂)

µ̂ = Ê[R] =
1

n

n∑
k=1

rk (3.1)

Standard Deviation σ̂

σ̂ =

√√√√ 1

n− 1

n∑
k=1

(rk − µ)2 (3.2)

Let mj stand for the empirical j’th moment around the mean defined for the
return vector R as

mj =
1

n

n∑
k=1

(rk − µ)j (3.3)

then we can define the skewness and kurtosis in terms of mj .

Skewness (S)
The skewness is a measure of how much the distribution of R leans to one side
of the mean. A positive value means that it leans to the right of the mean,
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µ̂ % σ̂ % S K

VB 1.33 3.01 0.55 4.34
VFX 4.16 8.69 0.1 3.16
VE 8.86 15.17 0.92 7.9
CB 3.29 2.81 0.03 3.56
CFX 5.03 9.35 -1.02 6.77
CE 12.42 12.82 0.34 4.13
MB 1.33 4.23 0.65 6.69
MFX 1.94 9.28 0.34 6.60
ME 9.38 21.20 -0.52 5.43

Table 3.1: Distribution of return data for risk premia strategies.

and the opposite for a negative value. We use the sample skewness which is
computed as

S =
m3

m
2/3
2

(3.4)

Kurtosis (K)
The kurtosis measures how heavy tailed a distribution is. Its sample estimate
is

K =
m4

m2
(3.5)

For reference, the standard normal distribution has S = 0 and K = 3.

3.2 Deutsche Bank Data

3.2.1 Introduction

Deutsche Bank has kept track of their monthly returns since 1990, and so we
have access to 17 years of monthly returns. In total there are 208 monthly
returns per strategy. Figure 3.1 and Table 3.1 shows the empirical distributions
of the return data. The mean and standard deviation are transformed to yearly
values by computing µ̂12 − 1 and σ̂

√
12.

Bonds are the most stable investment in terms of risk while the largest risks
are in equity investments. All distributions but for the CFX and ME were
skewed to the positive side of their respective means and all had a kurtosis
greater than 3, meaning they were heavier tailed than the normal distribution.
The equity investments had the highest return on average while bonds had the
lowest. Applying the measures defined in Section 2.3 to the historical data
provided by Deutsche Bank gives us the values in Table 3.2. The Momentum
strategy gives an average IR value of 0.26 and SR of 0.33, the Carry strategy has
the average IR value of 0.83 and SR of 0.89 while the value strategy has the IR
value 0.46 and SR value 0.51. The differences between the values indicates that
they were subjected to a large outlying negative return. The largest difference
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(a) VB. (b) VFX.

(c) VE. (d) CB.

(e) CFX. (f) CE.

(g) MB. (h) MFX.

(i) ME.

Figure 3.1: Distribution of returns for individual strategies.
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CAGR Vol IR SR CR

VB 1.31 3.01 0.44 0.45 0.18
VFX 3.80 8.70 0.44 0.48 0.24
VE 7.66 15.17 0.50 0.59 0.17
CB 3.23 2.82 1.15 1.16 0.63
CFX 4.56 9.37 0.46 0.54 0.13
CE 11.47 12.82 0.89 0.97 0.32
MB 1.28 4.22 0.30 0.33 0.17
MFX 1.52 9.29 0.16 0.21 0.06
ME 6.91 21.20 0.33 0.44 0.14

Table 3.2: Performance of the risk premia strategies for the years 1995-2012.

is found in ME and CFX and looking at the empirical distribution in Section
3 we see that both the distributions have heavier left tails than the others and
they are the only ones with negative skew, so the results were not unexpected.

3.2.2 Historical Regimes

We are interested in seeing see how the risk premia strategies perform depending
on the assumed regimes. Figure 3.2 shows the returns as function of increasing
volatility of the S & P 500 VIX. These figures are formed by sorting the volatility
index in ascending order and plotting the corresponding returns.

The normal regime corresponds to the data in Figure 3.2 with the x-axis
values 1 to 83, and the turbulent regime to the x-axis values 84 to 208. We
see clearly that the volatility of the equity strategies shows dependency on the
volatility of the S & P 500. The other asset classes do not exhibit this. One
is lead to think that regime shifting will be effective in equity, but may not be
as effective for the other asset classes. Closer inspection into the particulars of
the different regimes, into the expected return, volatility, skew and kurtosis are
found in Table 3.3a and 3.3b. In order to determine whether the expected value
is any different across regimes we perform the t-test for different means with
unequal variance and different sample size, the Welch’s t-test,

t =
µ1 − µ2√
s21
n1

+
s22
n2

df =
(s21/n1 + s22/n2)2

(s21/n1)2/(n1 − 1) + (s22/n2)2/(n2 − 1)
(3.6)

Where df is the degrees of freedom for the standard student’s t-distribution. The
p-value of the null hypothesis that the difference in the means and residual come
from a normal distribution and that the difference is zero, P (H0), is included
in the parenthesis in Table 3.3b. Only the CFX shows a statistically significant
change in expected value in the turbulent regime at level 96 %. CB also shows
some significant change, at level 92 %. All other strategies have pretty much
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(a) VB. (b) VFX.

(c) VE. (d) CB.

(e) CFX. (f) CE.

(g) MB. (h) MFX.

(i) ME.

Figure 3.2: Returns time series as function of underlying volatility.
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µ̂ % σ̂% S K
VB 1.33 2.91 0.97 6.54
VFX 3.66 8.18 -0.08 3.69
VE 12.01 11.19 4.41 33.25
CB 1.81 2.84 0.29 3.83
CFX 11.22 7.55 -0.58 3.85
CE 11.48 9.49 0.1253 3.22
MB 1.69 4.12 19.23 5.40
MFX 4.28 7.79 0.037 3.62
ME 8.99 11.33 -1.66 11.24

(a) Normal regime.

µ̂ % P (H0) σ̂% S K
VB 1.33 (p = 0.36) 3.08 0.32 3.20
VFX 4.53 (p = 0.65) 9.04 0.18 2.88
VE 6.80 (p = 0.43) 17.32 0.3 3.82
CB 4.28 (p = 0.08) 2.77 -0.15 3.59
CFX 0.00 (p = 0.04) 10.29 -0.99 6.66
CE 12.95 (p = 0.59) 14.65 0.34 3.66
MB 0.00 (p = 0.93) 4.30 0.92 7.43
MFX 0.00 (p = 0.33) 10.18 0.47 6.92
ME 9.64 (p = 0.78) 25.77 -0.39 3.87

(b) Turbulent regime.

Table 3.3: Data specifications per regime.

the same expected value across regimes and differ only in volatility, which is not
much different either for bonds in particular. However, the strategies invested
in equity clearly exhibits volatility with a linear looking dependence on the un-
derlying volatility index. This suggests that regime switching will be successful.
As for the others they still perform somewhat worse in the turbulent regime, so
at least some improvement in performance should be seen in every strategy.

3.3 Fama French Research Data

3.3.1 Introduction

In the Fama French library there is no Carry strategy, so instead we use the
Size premium. Table 3.3 shows the mean, standard deviation, skewness and
kurtosis of the data from Fama French. The highest but riskiest returns is
gotten for the Momentum strategy, while the lowest but safest is gotten for the
Size strategy. As is seen in Figure 3.3a the returns in ME has rather fat tails,
which is reflected in the kurtosis that is considerably larger for ME than for the
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(a) ME (b) VE

(c) SE

Figure 3.3: Distribution of returns to risk premia portfolios from Fama French.

µ̂% σ̂% S K
ME 16.77 23.80 -1.50 11.36
VE 4.16 10.36 0.17 5.14
SE 2.92 8.76 0.02 4.97

Table 3.4: Data specification for risk premia returns from Fama French.

others. Its skewness is similar to that of ME in the Deutsche Bank data, where
it is one of the few to be skewed to the negative side.

3.3.2 Historical Regimes

The Fama French return series is plotted against underlying volatility of the S &
P 500 VIX in Figure 3.4. The data in Table 3.5 shows again that the volatility
of the equity strategies get larger when the underlying market volatility grows
larger. No strategy shows any definitive difference in its mean, as the reported
p-values from the t-test are all somewhat large. The VE is the closest to have a
significant difference with the probability of the means being the same is about
13% while the same probability for ME is 81% and SE is 56%.
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(a) ME. (b) VE.

(c) SE.

Figure 3.4: Returns time series as function of underlying volatility.

µ̂% σ̂% S K
ME 15.66 13.86 -0.40 3.68
VE 6.93 8.00 0.33 3.32
SE 3.78 6.89 0.03 3.17

(a) Normal regime.

µ̂% P (H0) σ̂% S K
ME 17.46 (p = 0.81) 33.46 -1.43 9.02
VE 2.30 (p = 0.13) 11.64 0.19 4.88
SE 2.30 (p = 0.56) 9.80 0.05 4.76

(b) Turbulent regime.

Table 3.5: Data specifications per regime.
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Chapter 4

Results

4.1 Introduction and Structure

The reader should make sure to read Sections 2.1, 2.3, 2.4 and 2.5 in order to
be able to understand the terms used.
In this section we apply the methods introduced in Chapter 2. In order to test
the results we employ the Monte Carlo Bootstrap to get an estimate of the sta-
tistical significance of the results.
We evaluate the performance in terms of the measures in Section 2.3; Informa-
tion Ratio IR (2.9), Compounded Annual Growth Rate CAGR (2.10), Annual
Volatility Vol (2.11), Sharpe Ratio SR (2.12), Calmar Ratio CR (2.13), Maxi-
mum Drawdown MaxDD (2.14) and the Expected Shortfall ES at level 5%.
All graphs show the cumulated sum of log-returns plotted against the date
of return and the risk free rate is assumed to be zero percent in excess of 1
(R0 = 1.00).
The historical data used for estimating covariance and expected value is 5 years
(60 monthly returns) for both the Deutsche Bank data and Fama French data.
For reference, the graphs are also transformed in order to have the same overall
annual volatility of 10 % and presented alongside the simulations in order to get
a visual sense of performance when the strategies have the same risk. This is
done by first calculating the weight at each time point and then calculating the
volatility σ̂ of the resulting returns after multiplying each weight with its corre-
sponding risk premia return, after which each weight is scaled by 0.1/σ̂ and the
resulting return of using those weights are plotted alongside the original results.
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4.2 Simulations

4.2.1 Regime Switching

Deutsche Bank

For the Deutsche Bank data we only use the S & P 500 VIX in order to estimate
the turbulence probabilities because of the limited amount of data available. If
we want 5 years of historical data for the covariance matrix and expected return,
and create our own turbulence index also using 5 years, only 7 years is left to
use for simulation. That is very few data points so we stick only to the S & P
500 VIX.

4.2.2 Equity

Simulating on historical equity data we get the results seen in Figure 4.1 on
page 41.
All strategies perform roughly equal in the equity market which is a bit disap-
pointing. Considering the whole period that the simulation is run (on 12 years)
the standard deviation of the equity strategies are quite similar. The volatility
of the strategies are rather similar so on average the IV allocates 37.10 % of
the capital to the Value strategy, 43.35 % to the Carry strategy and 19.55 % to
Momentum, reflecting the Carry strategy’s lowest volatility. The regime switch
method allocates on average 38.58 % to Value, 40.59 % to Carry and 20.83 %
to Momentum. The IV strategy delivers an IR value of 1.14 and SR 1.19 while
both Eq and IV R/S has the IR value 1.16 and SR 1.21. All the strategies
miss the financial crisis of 2008 as we see in the figure, and since the IV and
IV R/S methods had generated a higher prior return they fell the strongest to
produce a CR of 0.44 as opposed to 0.71 produced by Eq due to a maximum
drawdown of IV and IV R/S of about 22 % as opposed to 13 % for Eq. The
Monte Carlo p-values are generally lower for the IV R/S which means that the
results for IV R/S have less to do with chance than it has for the IV. The CR
in particular has a very high p-value of over 0.8 for both IV and IV R/S. This
goes hand in hand with neither strategy being able to tackle the financial crisis
in any productive way.
A smart way of overcoming this is to exploit the results from Section 3.2.2 where
we saw that the equity strategies exhibited no significant change in expected
value across the different regimes, but showed a volatility that got higher the
higher the volatility of the underlying volatility index. Since we have a way
of predicting the value of the volatility index at time t when we are at time
t − 1 it seems like a good idea to invest less in an equity strategy the higher
the probability is of a turbulent regime. The reported probability is higher the
more the current volatility differs from past volatility which means we can use
the reported probability directly to determine how much we should invest in
the risky assets and how much we should save in the risk free asset. A simple
straight forward method would be to invest an amount of cash according to this
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
Eq 1.16 1.21 0.71
IV 1.14 1.19 0.44
IV R/S 1.16 1.21 0.44
IV R/S w/d 1.36 1.39 1.42
Monte Carlo p-values

IR SR CR
IV 0.59 0.62 0.85
IV R/S 0.47 0.49 0.87
IV R/S w/d 0.00 0.00 0.01
Performance Measures

CAGR Vol ES0.05(X) MaxDD
Eq 9.20 7.96 3.14 13.01
IV 9.60 8.43 3.52 21.77
IV R/S 9.65 8.30 3.55 21.72
IV R/S w/d 5.84 4.30 1.40 1.42
Data

Skew Kurtosis
Eq 1.40 7.66
IV 1.14 6.57
IV R/S 1.12 6.60
IV R/S 2.16 11.63

(c) Data.

Figure 4.1: Performance in the equity market.
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linear function
wi = (1− p) · wIV R/Si

where p is the probability of turbulence, defined in Section 2, Equation (2.15).
This means that we are more invested in the strategy when we expect a calm
period and less invested otherwise. We call this strategy the Inverse Volatil-
ity with regime switching and with deleverage (IV R/S w/d), with the word
deleverage reflecting the choice to not invest all available money in risky assets.
Simulating this strategy we get the results for the IV R/S that can be seen
in Figure 4.1 along with the other results. The effect of the financial crisis is
almost non existent, since the probability of turbulence was so high. In fact
this strategy gives us an IR of 1.36, a twenty point improvement from before.
The SR is 1.39, which means that the two differ less (0.03) than before (0.05)
which reflects the lessening of the impact of the financial crisis. In fact, the
maximum drawdown that was 22 % before, now is only 1.42 % which is an in-
credible improvement. This causes the CR to go from 0.44 to 1.42. The return
distribution shows a larger skew and kurtosis that before. With the ES having
dropped from 3.55 to 1.42 this implies the kurtosis reflects a fatter right tail,
which is fine. The p-values from the Monte Carlo bootstrap simulation are now
very small indicating greater statistical significance. The IV R/S now allocates
on average 19.09 % to Value, 18.38 % to Carry and 9.78 % to Momentum, while
saving 52.76 % of capital to do other things with. These numbers of course differ
a lot during the period, being proportional to the probability of turbulence. A
major drawdown to this then is the cost of rebalancing, as it is done frequently
and might be large sums.

Foreign Exchange

Simulating on historical FX data we get the results seen in Figure 4.2, on page
43.
In the foreign exchange market we can not expect to do the same thing as we
did in the equity market as neither strategy exhibits the same dependency in
its volatility on the S & P 500 VIX. The IV method allocates on average 31 %
of capital to Value, 43.89 % to Carry and 25.11 % to Momentum. The IV R/S

allocates essentially the same way on average. Forming ∆ = w
IV R/S
i − wIVi

we evaluate the standard deviation of the difference in allocation to 6.74 % in
Value, 9.16 % in Carry and 3.26 % in Momentum which means that IV R/S
uses the Carry strategy in particular to exploit possible regime changes. Indeed,
the IR is essentially the same for Eq and IV with 0.60 and 0.62, while IV R/S
produces an IR value of 0.71. The SR is the same for Eq and IV with 0.64
where SR for IV R/S is 0.74. This reflects a drop at the financial crisis that
was larger for the IV than for the IV R/S which captured it better. But all
strategies dropped during the crisis, and where again both IV and IV R/S had
reached higher peak values before the crisis suffered a larger drawdown with
8.88 % for IV and 8.26 % for IV R/S, while Eq which dropped from a lower
peak having a maximum drawdown of 7.29 %. The differences here are however
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
Eq 0.62 0.64 0.40
IV 0.60 0.64 0.34
IV R/S 0.71 0.74 0.44
Monte Carlo p-values

IR SR CR
IV 0.39 0.39 0.28
IV R/S 0.07 0.07 0.09
Performance Measures

CAGR Vol ES0.05(X) MaxDD
Eq 2.95 4.80 2.89 7.29
IV 3.03 5.02 3.19 8.88
IV R/S 3.62 5.08 3.16 8.26
Data

Skew Kurtosis
Eq -0.26 2.70
IV -0.35 3.17
IV R/S -0.32 3.23

(c) Data.

Figure 4.2: Performance in the FX market.
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(a) Probability of turbulence for time t com-
puted at time t− 1.

(b) Residual returns between IV R/S and
IV.

Figure 4.3

less that they were in the equity market. Its hard to say that either strategy
rode out the financial crisis better than any one else by these numbers alone
but according to the simulation the IV R/S was able to quickly identify when
the risk was temporarily lower and exploit it. In fact, the Monte Carlo p-value
is 0.39 for the IV and 0.07 for IV R/S which means that IV R/S did indeed
exploit the possibility of different risk estimates in a meaningful way. In fact the
IV R/S generally performed better than the others during switches from clearly
turbulent regimes to clearly normal regimes and vice versa, that is where the
probability of turbulence from period t − 1 to t differs considerably. This can
be seen comparing the graph of probabilities to the graph of residuals between
the returns o IV R/S and IV, with a positive value reflecting a greater return
for IV R/S. This comparison can be seen in Figure 4.5. With some exceptions,
positive peaks in the residual is seen when regime probability quickly changes
while the negative peaks are generally lower.

Bonds

Simulating on historical bond data we get the results seen in Figure 4.4, on page
45.
As in the foreign exchange market neither strategy exhibits the dependency on
underlying volatility that they did in the equity market. The IV allocates on
average 36.22 % to Value, 34.85 % to Carry and 28.93 % to Momentum, while
IV R/S again allocates roughly the same. The standard deviation between
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
Eq 0.97 0.98 0.88
IV 1.13 1.15 1.00
IV R/S 1.16 1.17 1.02
Monte Carlo p-values

IR SR CR
IV 0.01 0.01 0.17
IV R/S 0.01 0.01 0.14
Performance Measures

CAGR Vol ES0.05(X) MaxDD
Eq 1.65 1.70 0.96 1.87
IV 1.85 1.63 0.89 1.84
IV R/S 1.90 1.64 0.89 1.86
Data

Skew Kurtosis
Eq 0.02 4.00
IV 0.02 3.98
IV R/S 0.01 3.91

(c) Data.

Figure 4.4: Performance in the bond market.
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(a) Probability of turbulence for time t com-
puted at time t− 1.

(b) Residual returns between IV R/S and
IV.

Figure 4.5

allocations are only 3.50 % in Value, 3.16 % in Carry and 3.65 % in Momentum
which implies that the regime switch did not find many opportunities to exploit
the lesser or higher risk. Nevertheless, both strategies successfully allocated
capital in a slightly different way than Eq for IR values of 1.13 for IV and 1.16
for IV R/S, as compared to 0.97 for Eq. The same SR were 1.15, 1.17 and
0.98 in the same order. All specifications for IV and IV R/S are essentially
the same, not surprising since they allocate the capital in much the same way.
Looking at Figure 4.5 we do not see the same behaviour in the residual peaks as
in foreign exchange implying that the regime switch method was not able to be
used in a meaningful way. Instead, IV was a very good method to use since the
reported p-values for IV and IV R/S were essentially the same at 0.01 implying
equal risk weighting worked well in this case.

4.2.3 Fama French Data - Regime Switching

To confirm or dispute the results from the Deutsche Bank data we run the same
simulations on the data from Fama French. First we use the same time period
in order to get comparable results and then we run them on the full time period.
There are only equity strategies in the Fama French library so we expect that
investing less in turbulent periods will be a good idea.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
Eq 0.34 0.41 0.13
IV 0.63 0.68 0.35
IV R/S 0.67 0.72 0.40
IV R/S w/d 0.98 1.01 1.22
Monte Carlo p-values

IR SR CR
IV 0.05 0.08 0.03
IV R/S 0.04 0.05 0.03
IV R/S w/d 0.00 0.00 0.00
Performance Measures

CAGR Vol ES0.05(X) MaxDD
Eq 4.17 11.34 8.87 30.92
IV 6.05 9.64 5.75 17.13
IV R/S 6.43 9.62 5.46 16.22
IV R/S w/d 4.12 4.19 2.03 3.37
Data

Skew Kurtosis
Eq -0.56 5.63
IV 0.21 5.32
IV R/S 0.27 5.08
IV R/S w/d 1.00 5.88

(c) Data.

Figure 4.6: Performance in the equity market in Fama French universe.
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Same Time Period 1995-2012

Simulating on historical Fama French equity data we get the results seen in
Figure 4.6, on page 47.
The figure shows the performance of the Eq and IV method, and as can be seen
IV outperforms Eq with quite some marginal. This is due to the much higher
volatility in the Momentum strategy in comparison to Value and Size. The
IV allocates on average only 8.06 % to the Momentum strategy while putting
58.63 % in Value and 38.31 % in Size. The standard deviation in allocation in
Momentum is 3.40 % which means that IV keeps it low throughout the period.
Meanwhile the standard deviation in both Value and Size is about 15 %. As for
the IV R/S it allocates on average 10.11 % to Momentum, 53.71 % to Value and
36.17 % to Size. This somewhat higher allocation to Momentum seems to be
strategically made since all measures are improved from IV. The Eq delivers an
IR of only 0.34, SR of 0.41 and CR of 0.13. Being a ”dumb” allocation method
it performs during the financial crisis just like its underlying time series, poorly,
for a maximum drawdown of almost 31 %. Meanwhile the IV does this time
perform rather well during the crisis for a drawdown of 17 %. This causes IV
to deliver an IR of almost twice that of Eq with 0.63. The CR is almost thrice
improved with 0.35 thanks to the smaller maximum drawdown. The IV R/S
delivers comparable results, clearing the financial crisis only marginally better
for a maximum drawdown of 16 % with most results identical to IV. This is just
like with the Deutsche Bank data that the two strategies perform pretty much
identical. They both have roughly the same p-values from the Monte Carlo
Bootstrap of 0.05 which is very good.
When investing less in risky assets proportionally to the probability of turbu-
lence we do in fact get similar improvements as we did with the Deutsche Bank
data. The IV R/S w/d allocates on average 53.09 % to pure cash, only 5.05 %
to Momentum, 27.96 % to Value and 13.90 % to Size. However, the allocation
to cash differs with a standard deviation of 35.45 %, to Momentum with 5.74
%, to Value with 25.19 % and 11.11 % to Size. This means that there is a lot of
strategic allocation going on and it does deliver. We get an IR of 0.98 which is
almost thrice that of Eq and an almost 50 % improvement from IV and IV R/S.
At the same time, while hampering growth it does still deliver some return with
a CAGR of 4.12 % down from the CAGR of IV R/S of 6.43 %. As the financial
crisis showed a very large probability of turbulence the IV R/S w/d allocates
away much to cash and rides it out very well. In fact, in January 2008 83.82
% was allocated to cash while a few years later in July 2011 only 6.61 % was
allocated to cash. The risk of the strategy is thus also reduced, where IV R/S
had an expected shortfall of 5.46 % the IV R/S w/d showed only 2.03 %. All
in all, the results are comparable to those showed in Deutsche Bank data with
the exception of Eq performing much worse due to the Momentum strategy’s
higher relative volatility.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
IV R/S 0.64 0.69 0.37
IV R/S w/d 0.77 0.80 0.38
Monte Carlo p-values

IR SR CR
IV R/S 0.05 0.06 0.03
IV R/S w/d 0.02 0.01 0.12
Performance Measures

CAGR Vol ES0.05(X) MaxDD
IV R/S 5.99 9.42 5.56 16.25
IV R/S w/d 4.17 5.42 3.35 11.06
Data

Skew Kurtosis
IV R/S 0.26 5.58
IV R/S w/d -0.28 5.78

(c) Data.

Figure 4.7: Performance in the equity market in Fama French universe using
the Mahalanobis distance as volatility index.
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Using Mahalanobis Distance

Simulating on historical Fama French equity data with the Mahalanobis distance
we get the results seen in Figure 4.7, on page 49.
Due to having more data we check if results can be improved by generating
our own volatility index on historical data. We use 5 years additional data to
create our volatility index. It is very interesting to see that, although not as
prominent, we still get a clear improvement from switching to cash. The IR
and SR is improved for 0.64 and 0.69 to 0.77 and 0.80 respectively with an
improvement in statistical significance. The fact that results are comparable to
those using the S &P 500 VIX suggests that we might find the same improvement
in bonds and FX by generating our own index for them. Unfortunately we do
not have enough data to try this since the Fama French library only contains
equity data.

4.2.4 Fama French Data - Regime Switching, 1960-2012

Simulating on historical Fama French equity data using all data available we
get the results seen in Figure 4.1, on page 41.
We check if we get similar results when expanding the simulations to include
data prior to 1995, going back to 1960. Regime switching still performs roughly
the same as IV but responds well, again, to investing less in risky assets during
turbulent times. The IR value for the period is reported as about 0.6 for both
IV and IV R/S but investing less as function of turbulence probability raises
this to 0.80 while reporting improved statistical significance. This time however
neither method handles the financial crisis of 2008 perfectly as some drawdown
is seen for both. Overall results are indeed comparable to the more recent time
period suggesting further that regime switching is a good idea.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
Eq 0.71 0.76 0.20
IV 0.63 0.67 0.14
IV R/S 0.65 0.69 0.15
IV R/S w/d 0.80 0.82 0.17
Monte Carlo p-values

IR SR CR
IV 0.10 0.10 0.34
IV R/S 0.05 0.05 0.02
IV R/S w/d 0.00 0.00 0.00
Performance Measures

CAGR Vol ES0.05(X) MaxDD
Eq 6.09 8.53 5.84 30.92
IV 4.89 7.82 4.64 35.30
IV R/S 5.13 7.88 4.71 33.83
IV R/S w/d 2.72 3.39 1.82 15.81
Data

Skew Kurtosis
Eq -0.68 7.92
IV 0.09 6.26
IV R/S 0.02 6.47
IV R/S w/d 0.54 9.36

(c) Data.

Figure 4.8: Performance in the equity market in Fama French universe using all
data.
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4.2.5 Regression Trees

Using the tree methods in Section 2.5 we predict the Sharpe Ratio for month t
in three ways; assuming we know the macro-economic state for time t at time t,
assuming we only know the macro-economic states up to time t−1 and assuming
we only know the macro-economic states up to time time t−3. This is due to the
fact that sometimes macro-economic data is reported with delay. For example
GDP might be reported for March in April or June, so we run the simulations
assuming the GDP for March is reported in March, April and June. This means
that with ”no delay”, the macro-economic state of time t corresponds to the risk
premia return at time t, with ”one month delay” the macro-economic state at
time t−1 is taken as surrogate for the time t value, and thus corresponds to the
risk premia return at time t. For ”three months delay” data from one quarter
ago is used instead of data from time t and corresponds to the risk premia return
at time t. We then weigh across assets proportionally to the predicted Sharp
Ratio with nothing invested in an asset if a negative Sharp Ratio is predicted.
So we allocate as follows,

wi = γi/

n∑
j=1

γj

where γi is the predicted Sharp value for one asset, with n total assets.
We use data constructed in the same way as in [2]. The construction of this data
is described in Appendix A. We use the S & P 500 VIX, the US money sup-
ply (m1), ISM manufacturing and non-manufacturing index, US GDP growth,
government-, household- and private debt. All of this data is transformed into
monthly returns and the Z-score of the S & P 500 VIX and M1 money supply
is also used. Again, specific construction can be seen in either [2] or, briefer, in
Appendix A.
In the simulations to come, the cross validation method is written as cvTree and
the bagging method is written as Forest.

Deutsche Bank Data

Equity

Simulating on historical equity data we get the results seen in Figures 4.9, 4.10
and 4.11 on pages 54, 55 and 56.
In Figure 4.9 simulation is done with no delay, meaning that we split the returns
on macro-economic data of the same month as the returns. The results do not
beat the IV strategy for either the cross validation trees or the bagging method.
The only noteworthy thing is that the statistical significance in the results is
somewhat higher, so the methods used underlying factors in a slightly more
meaningful way. However, results are still worse than the IV strategy. Results
are actually somewhat improved for the bagging method with three months
delay, while the cross validation method produces only disappointing results.
The results are over all poor in comparison to the IV strategy which is most
likely due to the small number of data points used in the simulation. Simulations
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are done on a minimum of 60 and maximum of 148 data points, which produce
rather rough estimates of the Sharpe Ratio.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 0.85 0.91 0.36
Forest 0.91 0.96 0.44
IV 1.14 1.19 0.44
Monte Carlo p-values

IR SR CR
cvTree 0.35 0.33 0.48
Forest 0.27 0.30 0.47
IV 0.59 0.62 0.85
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 9.22 10.88 6.04 25.47
Forest 7.98 8.74 3.15 17.97
IV 9.60 8.43 3.52 21.77
Data

Skew Kurtosis
cvTree 0.46 5.40
Forest 2.29 11.82
IV 1.14 6.57

(c) Data.

Figure 4.9: Performance in the equity market using regression trees with no
delay.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 0.59 0.67 0.15
Forest 0.72 0.78 0.49
IV 1.14 1.19 0.44
Monte Carlo p-values

IR SR CR
cvTree 0.67 0.65 0.86
Forest 0.81 0.82 0.53
IV 0.59 0.62 0.85
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 8.28 14.12 10.51 53.70
Forest 6.73 9.30 4.72 13.83
IV 9.60 8.43 3.52 21.77
Data

Skew Kurtosis
cvTree -1.96 16.10
Forest 1.48 9.20
IV 1.14 6.57

(c) Data.

Figure 4.10: Performance in the equity market using regression trees with one
month delay.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 0.13 0.21 0.03
Forest 1.00 1.06 0.52
IV 1.14 1.19 0.44
Monte Carlo p-values

IR SR CR
cvTree 0.98 0.98 0.98
Forest 0.21 0.23 0.38
IV 0.59 0.62 0.85
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 1.90 14.40 11.28 54.81
Forest 8.40 8.36 4.58 16.22
IV 9.60 8.43 3.52 21.77
Data

Skew Kurtosis
cvTree -1.63 14.19
Forest 0.43 9.76
IV 1.14 6.57

(c) Data.

Figure 4.11: Performance in the equity market using regression trees with three
months delay.
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Foreign Exchange

Simulating on historical equity data we get the results seen in Figures 4.12, 4.13
and 4.14 on pages 58, 59 and 60.
The simulations have the same problems as with the equity data as there are
very few data points. Almost all measures are poor in comparison to the IV
strategy, while the bagging method outperforms the cross validation method.
Just like in equity the cross validation method steadily performs worse with
higher delay, as can be seen in all measures. The bagging method perform the
best with one month delay this time around, but judging from the Monte Carlo
bootstrap values this is most likely just a coincidence. Again, more data points
would probably produce more stable results.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 0.35 0.38 0.18
Forest 0.40 0.43 0.25
IV 0.60 0.64 0.34
Monte Carlo p-values

IR SR CR
cvTree 0.57 0.56 0.47
Forest 0.58 0.58 0.38
IV 0.39 0.39 0.28
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 2.08 5.97 3.46 11.44
Forest 2.17 5.40 3.18 8.58
IV 3.03 5.02 3.19 8.88
Data

Skew Kurtosis
cvTree 0.15 3.92
Forest 0.22 4.93
IV -0.35 3.23

(c) Data.

Figure 4.12: Performance in the FX market using regression trees with no delay.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 0.12 0.16 0.04
Forest 0.57 0.58 0.29
IV 0.60 0.64 0.34
Monte Carlo p-values

IR SR CR
cvTree 0.90 0.86 0.86
Forest 0.37 0.40 0.46
IV 0.39 0.39 0.28
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 0.77 6.19 4.19 18.21
Forest 2.95 5.21 3.17 10.06
IV 3.03 5.02 3.19 8.88
Data

Skew Kurtosis
cvTree -0.39 3.86
Forest 0.07 5.04
IV -0.35 3.23

(c) Data.

Figure 4.13: Performance in the FX market using regression trees with one
month delay.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 0.07 0.10 0.03
Forest 0.41 0.44 0.17
IV 0.60 0.64 0.34
Monte Carlo p-values

IR SR CR
cvTree 0.92 0.93 0.93
Forest 0.53 0.53 0.64
IV 0.39 0.39 0.28
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 0.46 6.31 4.19 16.01
Forest 2.04 4.99 2.99 12.15
IV 3.03 5.02 3.19 8.88
Data

Skew Kurtosis
cvTree -0.71 4.03
Forest 0.01 4.89
IV -0.35 3.23

(c) Data.

Figure 4.14: Performance in the FX market using regression trees with three
months delay.
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Bonds

Simulating on historical equity data we get the results seen in Figures 4.15, 4.16
and 4.17 on pages 62, 63 and 64.
For the first time results show a high statistical significance in the results, with
the bagging method producing Monte Carlo bootstrap values of below 0.1 and
in particular outperforms the IV method for the Calmar ratio due to having a
smaller maximum drawdown. These results are only seen in Figure 4.15 however,
with no delay which is an ideal situation. Extending to one and three months
delay we again see very statistically insignificant results. All in all, results
from the tree simulations using the Deutsche Bank data has failed to show an
improvement over the IV either in risk premium or in statistical significance.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 1.03 1.05 0.51
Forest 1.03 1.05 1.34
IV 1.13 1.15 1.00
Monte Carlo p-values

IR SR CR
cvTree 0.15 0.13 0.49
Forest 0.07 0.07 0.02
IV 0.01 0.01 0.17
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 2.79 2.72 1.41 5.50
Forest 1.77 1.71 0.77 1.33
IV 1.85 1.63 0.89 1.84
Data

Skew Kurtosis
cvTree -0.02 4.03
Forest 0.05 4.01
IV 0.02 3.98

(c) Data.

Figure 4.15: Performance in the bond market using regression trees with no
delay.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 0.69 0.70 0.27
Forest 0.63 0.65 0.33
IV 1.13 1.15 1.00
Monte Carlo p-values

IR SR CR
cvTree 0.68 0.69 0.87
Forest 0.88 0.86 0.91
IV 0.01 0.01 0.17
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 1.53 2.22 1.13 5.63
Forest 1.24 1.95 1.21 3.70
IV 1.85 1.63 0.89 1.84
Data

Skew Kurtosis
cvTree -1.12 5.23
Forest -0.57 5.87
IV 0.02 3.98

(c) Data.

Figure 4.16: Performance in the bond market using regression trees with one
month delay.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 0.63 0.65 0.40
Forest 0.52 0.53 0.29
IV 1.13 1.15 1.00
Monte Carlo p-values

IR SR CR
cvTree 0.83 0.85 0.70
Forest 0.64 0.66 0.61
IV 0.01 0.01 0.17
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 1.35 2.13 1.25 3.34
Forest 0.93 1.81 1.19 3.30
IV 1.85 1.63 0.89 1.84
Data

Skew Kurtosis
cvTree -0.08 4.69
Forest -0.61 5.67
IV 0.02 3.98

(c) Data.

Figure 4.17: Performance in the bond market using regression trees with three
months delay.

64



Fama French Data

We now have much more data and see more satisfying results when predicting
Sharpe values. Results of simulations with Fama French data are seen in Figures
4.18, 4.19 and 4.20 on pages 66, 67 and 68.
The cross validation method steadily performs worse when predictions are made
with greater delay. Assuming we know the current macro-economic state, the
cross validation method gives us an IR of 0.95, as compared to 0.80 given by
the IV R/S w/d method for Fama French data. However, the bagging method
gives us an incredible 2.34 IR value which is of course a huge improvement from
any other method previously. The CAGR is up to about 28 % with a volatility
of 12 %. Of course, the data would not have been known at the current date
so the results are an ideal unrealistic case. Realistically we must look to the
delayed simulations. When assuming data is only known up to time t − 1 we
simulate performance to get the results in Figure 4.19. We see results more in
line with previous simulations with the bagging method giving us an IR value of
0.72. This is slightly worse than the regime switching counterpart with all other
measures also being slightly worse. Finally, simulating with with the assumption
that we only know the macro-economic values from one quarter back we see that
the cross validation method gives an even worse result that previously reported
but that the bagging method gives an improves result again. Since the Deutsche
Bank data also exhibited an improvement when going from one month delay to
three month delay this might not only be pure coincidence.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 0.95 1.05 0.34
Forest 2.34 2.42 1.77
IV 0.63 0.67 0.14
Monte Carlo p-values

IR SR CR
cvTree 0.00 0.00 0.01
Forest 0.05 0.00 0.00
IV 0.10 0.10 0.34
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 14.50 15.21 9.70 42.31
Forest 28.54 12.21 7.70 16.14
IV 4.89 7.82 4.64 35.30
Data

Skew Kurtosis
cvTree -1.72 22.15
Forest 0.12 7.24
IV 0.09 6.26

(c) Data.

Figure 4.18: Performance in the equity market in Fama French universe using
regression trees with no delay.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 0.58 0.64 0.25
Forest 0.72 0.77 0.20
IV 0.63 0.67 0.14
Monte Carlo p-values

IR SR CR
cvTree 0.11 0.12 0.05
Forest 0.24 0.23 0.31
IV 0.10 0.10 0.34
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 7.08 12.28 7.76 28.45
Forest 6.16 8.54 5.62 30.10
IV 4.89 7.82 4.64 35.30
Data

Skew Kurtosis
cvTree -0.12 6.97
Forest -0.22 6.65
IV 0.09 6.26

(c) Data.

Figure 4.19: Performance in the equity market in Fama French universe using
regression trees with one month delay.
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(a) Cumulated return series.

(b) Cumulated return series scaled so all strategies have 10 % annual volatility.

Risk Premium

IR SR CR
cvTree 0.37 0.45 0.12
Forest 0.86 0.91 0.25
IV 0.63 0.67 0.14
Monte Carlo p-values

IR SR CR
cvTree 0.56 0.53 0.42
Forest 0.01 0.00 0.11
IV 0.10 0.10 0.34
Performance Measures

CAGR Vol ES0.05(X) MaxDD
cvTree 4.99 13.34 8.63 42.31
Forest 7.45 8.66 5.38 30.33
IV 4.89 7.82 4.64 35.30
Data

Skew Kurtosis
cvTree -2.27 30.87
Forest -0.32 9.19
IV 0.09 6.26

(c) Data.

Figure 4.20: Performance in the equity market in Fama French universe using
regression trees with three months delay.
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Equity FX Bond
IV 15.43 24.38 24.80
IV R/S 69.28 82.83 81.71
IV R/S w/d 197.64 - -
cvTree (no delay) 52.02 53.18 64.17
cvTree (1m delay) 51.71 50.28 46.92
cvTree (3m delay) 52.41 64.40 51.55
Forest (no delay) 68.24 62.11 69.77
Forest (1m delay) 45.02 37.76 38.43
Forest (3m delay) 61.38 59.28 55.89

Table 4.1: Yearly rebalancing volume for Deutsche Bank data.

4.2.6 A Simple Cost Analysis

In order to get a sense of rebalancing cost we perform the following analysis.
At each time point t the weight wt is saved which contain the allocation for the
different risk premia strategies. The rebalancing cost for period t is proportional
to the changes in allocation. For example, if 40 % is allocated to the Value
premium and 60 % to the Momentum strategy at time t− 1, and then changed
to 35 % in Value and 65 % to Momentum at time t, then total rebalancing is
proportional to |40−35|+ |60−65| = 5+5 = 10 %. However, the cost of money
in the bank is zero, so a position change from 60 % in cash to 65 % to cash
only cost proportional to the assets that are sold off, the change in cash position
does not cost anything. Using this method, the total rebalancing volume per
year is presented in percentages in Table 4.1 for the Deutsche Bank simulations
and in Table 4.2 for the Fama French simulations. As expected the IV R/S w/d
rebalances more since it moves capital away from the risky assets in unstable
times while IV and IV R/S allocates depending on the risk assessment of the
current month which probably does not differ that much from the month before.
With some smart rebalancing methods the cost might not have to be so great
however, but that particular method will not be treated in this report.
The rebalancing cost of the tree methods are comparable to the other methods,
with the winner of the tree methods, the bagging with no delay having slightly
smaller rebalancing volume than the IV R/S w/d.

69



1995-2012 1960-2012
IV 32.36 27.39
IV R/S 81.71 114.26
IV R/S w/d 191.48 259.87
cvTree (no delay) - 244.33
cvTree (1m delay) - 344.85
cvTree (3m delay) - 325.04
Forest (no delay) - 243.57
Forest (1m delay) - 89.85
Forest (3m delay) - 110.88

Table 4.2: Yearly rebalancing volume for Fama French data.
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Chapter 5

Conclusions

5.1 Regime Switching

As we saw in Chapter 4 the IV and IV R/S performed roughly the same in
all asset classes. This was a very disappointing result that suggests that the
underlying risk factors were not found. However we did see in equity a way to
leverage returns in calm financial periods and keeping risk low in turbulent ones.
We did this by predicting the turbulence of next month and adding capital into
the investment if we saw a low probability of turbulence and taking it away if
not. This proved successful not only for the data provided by Deutsche Bank,
but also for the Fama French data for the same time period and the full period
since 1960. This method exclusively provided the best results in the Monte
Carlo bootstrap simulation which suggests that the performances of the equity
strategies really are closely connected to underlying volatility regimes. The
strategies simply were already quite stable so the difference between turbulent
regime and normal regime is not enough to really set the IV and IV R/S apart.
The IV R/S w/d boosted the difference and thus got the regime switching
method to really work. But not only did we see this result for the S & P
500 volatility index but when we created our own turbulence index we saw
similar results. Investing as a function of the turbulence index also boosted the
difference between IV and IV R/S in order to get better results. This result is
equally as important as the first since it carries one important suggestion.
Since the FX and bond classes did not exhibit the same dependency on the S
& P 500 volatility index, we can not repeat the same strategy and expect good
results. This means that we had to rely on the IV R/S method which again
proved to give similar results as the IV. But the performance in equity using the
Mahalanobis turbulence index was independent from the S & P 500 volatility
index and yet produced similar results. This could be taken as suggesting that
similar result can be seen in FX and bonds. Unfortunately the Fama French
library contains only data in equity and the Mahalanobis index could not be
formed for FX and bonds. Accessing larger amounts of data for these strategies
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could hopefully help showing that the IV R/S w/d performs equally well in
these as it did in equity.
Lastly one should not forget that I have set the risk free return to be zero which
is not the case when depositing money at a bank. So actual returns will be
slightly higher.
Weaknesses of this method is greater rebalancing cost, as probabilities differ
from time to time. But this may be solved by modifying the investing function so
that instead of investing all money at zero turbulence probability and no money
at probability one, you create another more effective method. The result from
this report shows that the probabilities can be exploited and further explorations
into the subject may find an optimal way of doing it.

5.2 Regression Trees

The regression trees calculated from the Deutsche Bank data showed results
that were highly unstable, both by common sense and by the Monte Carlo sim-
ulations. But the Sharp Ratio should be calculated on enough data, and 60
data points for generating the entire tree is simply not enough to get any kinds
of stable results. The method was redeemed when using the Fama French data,
which provided more data points and suddenly results were much more stable.
The way the trees are formed is rather unorthodox and given the amount of
data available it is hard to estimate the level of statistical significance in their
predictions. This lead to the problem of determining how many data points
should be in each end node of the trees. The variant of cross validation used in
this report seems not to produce the best results, so one might conclude that it
is not to be used. However, bagging the trees does not require a minimum to
be set and thus does not have the same problem.
Essentially the trees find what macro-economic state gave the best Sharp Ratio
for one specific time period and we simply assume that the same will hold for the
next period so the predictions need not be exact as long as proportions are kept
intact. In other words, it is enough to know that one strategy provides roughly
twice the sharp value that another given a certain input of macro-economic
data and it is not interesting what the values actually are. This seemed to work
rather well in the Fama French library where the highest IR value of all was
reached. That results however assumed that we had access to data the same
time period as for when it was valid. In reality this is not the case. Instead it
would be more realistic to use last months value that was received this month,
or even the value of three months ago. Much data is reported quarterly, so not
every month has an updated value. This might be the reason why the bagging
method, which should be seen as the only working method, produced results
that was worst for the one month delay.
In the end the results suggest that bagging the trees could very well work where
bagging the trees with one quarter delay produces results similar to but some-
what lower than the IV R/S w/d.
Weaknesses of this method is that bagging does not produce intuitive results.
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You do not get one tree that illustrates dependencies on underlying macro-
economic data, but a multitude of different trees that each was produced differ-
ently. So in terms of easiness of understanding it may not be the best method,
especially since the regime switching method worked very well.
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Appendix A

Macro-Economic Terms and
Data

Share price
The price of one share of some financial asset, for example a company stock 1.

Book value
The total value of a company’s assets not including intangible assets such as
patents 2.

Dividend Yield
The total annual dividend that is paid per share 3.

12 months earnings
A company’s net profit for the last 12 months 4.

12 months predicted earnings
What a company is expected to earn in the next 12 months 5.

Current account
A macro-economic term signifying the difference between a nation’s savings and
investment. Savings is a term referring to aggregated income that is not con-
sumed and investment refers to the aggregated amount of income that is not
consumed, but spent on durable goods and services such as factories or educa-
tion 6.

1http://en.wikipedia.org/wiki/Share price
2http://www.investopedia.com/terms/b/bookvalue.asp
3http://www.investopedia.com/terms/d/dividendyield.asp
4http://www.investopedia.com/terms/t/trailingpe.asp
5http://www.investopedia.com/terms/t/trailingpe.asp
6http://www.investopedia.com/terms/c/currentaccount.asp
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Budget balance
The difference between a nation’s spending and income 7.

Nominal yield on a bond
The interest rate that the issuer of a bond has promised to pay 8.

Duration Bias
The duration measures the sensitivity of the price of an instrument to a change
in interest rates. The bias is calculated as the performance when going long a
high duration instrument and shorting a low duration instrument 9.

Purchasing power parity (PPP)
If P1 is the price of some good in country 1, and P2 is the cost of the same good
in country 2, then the PPP is calculated as P1/P2

10.

G10 Currencies
USD, GBP, CAD, EUR (France), EUR (Germany), EUR (Italy), EUR (Nether-
lands), EUR (Belgium), JPY, SEK, CHF.

G10 Countries
USA, Canada, Japan,Australia, New Zealand, Germany, France, Italy, UK,
Switzerland, Norway, Denmark and Sweden

LIBOR: London Interbank Offered Rate.

GDP
The yearly Gross Domestic Product (GDP) is the aggregated monetary value
of all goods and services produced by a nation during one year.

M1 Money Supply
The aggregated amount of all assets that can quickly be converted to currency,
such as cash and checking accounts 11.

ISM Manufacturing - ISM Non Manufacturing The ISM Manufacturing Index
measures employment, production inventories, new orders and supplier deliver-
ies based on surveys from more than 300 manufacturing firms 12. The ISM Non
Manufacturing does the same but for more than 400 non manufacturing firms.
Household/Corporate Debt
The aggregated amount that is owed to financial institutes by a countries citi-
zens (household debt) or by the private sector (corporate debt).

7http://www.investopedia.com/terms/b/balanced-budget.asp
8http://www.investopedia.com/terms/n/nominalyield.asp
9https://index.db.com/htmlPages/DB Duration Bias Guide 20050812.pdf

10http://www.investopedia.com/terms/p/ppp.asp
11http://www.investopedia.com/terms/m/m1.asp
12http://www.investopedia.com/terms/i/ism-mfg.asp
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Federal Debt
The federal debt is in one part the amount that is owed domestic lenders and
in one part debt that is owed foreign lenders. Lenders could be buyers of gov-
ernment bonds.

A.1 Macro-Economic Data

Thanks to Deutsche Bank, we have gotten access to the data that they use in
[2] and use the tree method to find periods where the strategies work the best.
The variables that are included in the regressions are constructed as follows.

Standard % Poor 500 volatility (VIX)
(Figure A.1a) This is the same volatility index as i used in Section 2.4 and is
calculated as the monthly standard deviation of the S & P 500 index.

Z transformation of the S & P volatility (VolZ)
(Figure A.1b)The Z transformation measures rapid changes in volatility by com-
puting how much the current value differs from its n month moving average, in
relation to the 3 month standard deviation. Specifically, let V (t) be the monthly
volatility of S & P 500 at time t,

MA[V (t)] =
1

n

n∑
i=1

V (t− i+ 1)

be the n month moving average and

std(V (t)) =

√√√√ 1

n− 1

n∑
i=1

(V (t− i+ 1)−MA[V (t)]

be the n month standard deviation. As us used in [2] n = 3.

M1 growth rate (M1G)

(Figure A.1c) This is is year on year growth rate of the M1 money supply.
If m1(t) is the M1 money supply at month t, then the year on year growth rate
is calculated as

d

dt
m1(t) =

m1(t)

m1(t− 12 + 1)
− 1

in the standard way.

Z transformation of M1 growth rate (M1Z)
(Figure A.1d) The Z transformation is done in the same way as above.
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ISM index (ISM)
(Figure A.1e) We take the average of the ISM Manufacturing and ISM Non
Manufacturing index to compute the ISM index.

GDP quarterly growth rate (GDP)
(Figure A.1f) Just like it sounds this is simply the quarterly growth in GDP.

Government debt and household/corporate credit(LGG)
(Figure A.1g) The ratio between government debt and household plus corporate
credit demand. F (t) represents federal debt, H(t) household credit demand and
C(t) corporate credit demand. Then

LGG(t) =
F (t)

H(t) + C(T ).

The year on year growth rate ∆LGG(t) is calculated by taking

∆LGG(t) =
LGG(t)

LGG(t− 12 + 1)
− 1

.

Household and Corporate debt(LBB)
(Figure A.1h) The ratio between household and corporate debt.

LBB(t) =
H(t)

C(t)

and year on year growth rate

∆LGG(t) =
LBB(t)

LBB(t− 12 + 1)
− 1.

Corporate and household debt(LHH)

(Figure A.1i) The inverse of LBB.

Growth Rate of Household and Private Sector Credit Demand (CG)

(Figure A.1j) Let D(t) signify the household and private sector credit demand
at month t as D(t) = HHD(t) + PSD(t), where HHD stands for household
debt and PSD stands for private sector debt, then the yearly growth rate is

d

dt
D(t) =

D(t)

D(t− 12 + 1)
− 1
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(a) VIX (b) VolZ

(c) M1G (d) M1Z

(e) ISM (f) GDP

(g) LGG (h) LBB

(i) LHH (j) CG

Figure A.1: Distribution of macro-economic variables.
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Appendix B

Mathematics

Rank Correlation

We use Spearman’s ρ to estimate rank correlation. Let x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) be two vectors of some observations sorted in ascending
order. Then we let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be the
corresponding ranks. The smallest rank is rank 1 and is given to the smallest
values in x and y. If there are more than one smallest value, say m duplicate
values, then the rank is 1

m

∑m
i=1 i. The next rank is then 1 + m and so on.

Spearman’s rank correlation is then defined as

ρ =

∑n
i=1(Xi − µ̂X)(Yi − µ̂Y )√∑n
i=1(Xi − µ̂X)2(Yi − µ̂Y )2

(B.1)

where µ̂X = 1
n

∑n
i=1Xi is the sample mean of the vector X.
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Appendix C

Matlab Code

Regime Switching

I use the code written by the authors in [4] for the Baum-Welch algorithm.

function [A,mu,sigma,p,smoothed] = fit_hmm(y)

T=length(y);

% Simple initial guesses for parameters - can be changed

mu=[mean(y),mean(y)]+randn(1,2)*std(y);

% mu=[4,4];

sigma=[std(y),std(y)];

A=[.8,.2;.2,.8];

p=.5;

iteration=2;

likelihood(1)=-999;

change_likelihood(1)=Inf;

tolerance=0.000001;

stop=false;

% while and(change_likelihood(iteration-1) > tolerance,stop==false)

for i=1:1

for t=1:T % 0. probability of observing data, based on gaussian PDF

B(t,1)=exp(-.5*((y(t)-mu(1))/sigma(1)).^2)/(sqrt(2*pi)*sigma(1));

B(t,2)=exp(-.5*((y(t)-mu(2))/sigma(2)).^2)/(sqrt(2*pi)*sigma(2));

end

forward(1,:)=p.*B(1,:);

scale(1,:)=sum(forward(1,:));

forward(1,:)=forward(1,:)/sum(forward(1,:));

for t=2:T % 1. probability of regimes given past data

forward(t,:)=(forward(t-1,:)*A).*B(t,:);

scale(t,:)=sum(forward(t,:));
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forward(t,:)=forward(t,:)/sum(forward(t,:));

end

backward(T,:)=B(T,:);

backward(T,:)=backward(T,:)/sum(backward(T,:));

for t=T-1:-1:1 % 2. probability of regime given future data

backward(t,:)=(A*backward(t+1,:)’)’.*B(t+1,:);

backward(t,:)=backward(t,:)/sum(backward(t,:));

end

for t=1:T % 3-4. probability of regimes given all data

smoothed(t,:)=forward(t,:).*backward(t,:);

smoothed(t,:)=smoothed(t,:)/sum(smoothed(t,:));

end

for t=1:T-1 % 5. probability of each transition having occurred

xi(:,:,t)=(A.*(forward(t,:)’*(backward(t+1,:).*B(t+1,:))));

xi(:,:,t)=xi(:,:,t)/sum(sum(xi(:,:,t)));

end

p=smoothed(1,:);

exp_num_transitions=sum(xi,3);

A(1,:)=exp_num_transitions(1,:)/sum(sum(xi(1,:,:),2),3);

A(2,:)=exp_num_transitions(2,:)/sum(sum(xi(2,:,:),2),3);

mu(1)=(smoothed(:,1)’*y)’/sum(smoothed(:,1));

mu(2)=(smoothed(:,2)’*y)’/sum(smoothed(:,2));

sigma(1)=sqrt(sum(smoothed(:,1).*(y-mu(1)).^2)/sum(smoothed(:,1)));

sigma(2)=sqrt(sum(smoothed(:,2).*(y-mu(2)).^2)/sum(smoothed(:,2)));

likelihood(iteration+1)=sum(sum(log(scale)));

change_likelihood(iteration)=abs(likelihood(iteration+1)-...

likelihood(iteration));

iteration=iteration+1;

end

end

The Baum-Welch algorithm is used to estimate turbulence probabilities and
splitting the data in the following method.

function [sigmaTurb,sigmaNorm,p]=mswitch(volIndex,returnMatrix)

% Inputs: Volatility Index (volindex), and a matrix of return data

% (returnMatrix).

% Outputs: Correlation matrix corresponding to the turbulence regime

% (sigmaTurb), correlation matrix corresponding to the normal regime

% (sigmaNorm) and probability of turbulence, p.

v=volIndex;

y=returnMatrix;

%Find 40th quantile.
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x=quantile(v,.4);

% Perform the Baum-Welch algorithm on the volatility index.

[A,mu,~,~,~]=fit_hmm(v);

% Determine the indices of the transition matrix A. The highest expected

% turbulence corresponds to turbulent regime.

index=[find(mu==max(mu)), find(mu==min(mu))];

% Determine if we are now in turbulent or normal regime.

curTurbState=v(end);

yNorm=y(v<x,:);

yTurb=y(v>=x,:);

if curTurbState>=x

pTurb=A(index(1),index(1));

pNorm=A(index(1),index(2));

else

pTurb=A(index(2),index(1));

pNorm=A(index(2),index(2));

end

% Outputs

sigmaTurb=cov(yTurb);

sigmaNorm=cov(yNorm);

p=[pTurb pNorm];

The tree class uses a modified version of a matlab method called classregtree,
which I have named fitMyTree. My tree class is called myTree.

classdef myTree

%Inputs: X is a predictor matrix, y is corresponding returns, rnd

% is a boolean value that is 1 for random tree and 0 else.

% Minleaf is the number of data points per node minimum.

properties

endnodes

names

Tree

Ret

Predictors

isTree

ypred

end

methods

function Obj=myTree(X,y,minleaf,rnd,varargin)
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tree=fitMyTree(X,y,rnd,’minleaf’,minleaf);

Obj.Tree=tree;

Obj.Ret=y;

Obj.names=varargin;

Obj.Predictors=X;

r=y;

t=tree;

indx=find(tree.var==0);

for i=1:length(indx)

path={};

j=indx(i);

firstInst=1;

sh=mean(r(t.assignednode{j}))/std(r(t.assignednode{j}));

counter=1;

prevnode=j;

while ~t.parent(j)==0

if firstInst

path{counter,1}=sprintf(’%.2f’,sh);

firstInst=0;

counter=counter+1;

j=t.parent(j);

else

hl=find(t.children(j,:)==prevnode);

prevnode=j;

if hl==1

dir=’<’;

elseif hl==2

dir=’>=’;

end

path{counter,1}=sprintf(’x%i: %s %.3f’,t.var(j),...

dir,t.cut{j});

counter=counter+1;

j=tree.parent(j);

end

end

hl=find(tree.children(1,:)==prevnode);

if hl==1

dir=’<’;

elseif hl==2

dir=’>=’;

end

path{counter,1}=sprintf(’x%i: %s %.2f’,t.var(1),dir,t.cut{1});

path=flipud(path);

path{end+1}=indx(i);

Obj.endnodes{i}=path;
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end

ypred=zeros(numel(Obj.endnodes),2);

for i=1:numel(Obj.endnodes)

node=Obj.endnodes{i}{end};

sharpe=Obj.endnodes{i}{end-1};

ypred(i,1)=node;

ypred(i,2)=str2num(sharpe);

end

Obj.ypred=ypred;

end

end

methods

function viewMyTree(Obj,mode)

t=Obj.Tree;

r=Obj.Ret;

if nargin==1

mode=’plot’;

end

if strcmp(mode,’text’)

for i=1:length(t.parent)

if ~t.var(i)==0

p1=sprintf(’If x%i < %.2f’,round(t.var(i)),t.cut{i});

p2=sprintf(’ Then node %i or ’,round(t.children(i,1)));

p3=sprintf(’ If x%i >= %.2f’,round(t.var(i)),t.cut{i});

p4=sprintf(’ Then node %i’,round(t.children(i,2)));

disp(strcat(p1,p2,p3,p4))

else

sharpe=mean(r(t.assignednode{i}))/...

std(r(t.assignednode{i}));

p5=sprintf(’Node %i has sharpe value %.2f’,...

round(i),sharpe);

p6=sprintf(’ Based on %i value points’,...

t.nodesize(i));

disp(strcat(p5,p6))

end

end

elseif strcmp(mode,’plot’)

for i=1:length(t.var)

nodes(i)=t.parent(i);

end

figure(’position’,[200 200 1200 800])

treeplot(nodes)

count = size(nodes,2);

[x,y] = treelayout(nodes);

x = x’;
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y = y’;

for i=1:count

if ~t.var(i)==0

varname=Obj.names{1}(t.var(i));

name1{i}=sprintf(’%.2f > %s >= %.2f’,t.cut{i},...

varname{1},t.cut{i});

else

name1{i}=sprintf(’%.2f’,...

mean(r(t.assignednode{i}))/std(r(t.assignednode{i})));

end

end

text(x(:,1), y(:,1), name1,...

’VerticalAlignment’,’bottom’,’HorizontalAlignment’,’right’)

axis off

end

end

end

methods

function val=predictMyTree(Obj,X)

i=1;

y=Obj.Ret;

t=Obj.Tree;

while ~t.var(i)==0

if X(t.var(i))<t.cut{i}

i=t.children(i,1);

else

i=t.children(i,2);

end

end

indx=t.assignednode{i};

val=mean(y(indx))/std(y(indx));

end

end

end

The following method is a modified version of classregtree.

classdef fitMyTree

properties

node = zeros(0,1);

parent = zeros(0,1);

class = zeros(0,1);

var = zeros(0,1);

cut = cell(0,1);

children = zeros(0,2);

nodeprob = zeros(0,1);

nodeerr = zeros(0,1);

86



nodesize = zeros(0,1);

assignednode={};

npred = 0;

end

methods

function a = fitMyTree(x,y,rnd,varargin)

a = fitTheTree(a,x,y,rnd,varargin{:});

end

end

end

function Tree=fitTheTree(Tree,X,Y,rnd,varargin)

C = Y(:);

W=ones(size(X,1),1);

nvars=size(X,2);

N = size(X,1);

Wtot=size(X,1);

splitMin=varargin{2};

M = 2*ceil(N/splitMin)-1; % number of tree nodes for space reservation

nodenumber = zeros(M,1);

parent = zeros(M,1);

yfitnode = zeros(M,1);

cutvar = zeros(M,1);

cutpoint = cell(M,1);

children = zeros(M,2);

nodeprob = zeros(M,1);

resuberr = zeros(M,1);

nodesize = zeros(M,1);

nvarsplit = zeros(1,nvars);

nodenumber(1) = 1;

assignednode = cell(M,1);% list of instances assigned to this node

assignednode{1} = 1:N;

nextunusednode = 2;

% Keep processing nodes until done

tnode = 1;

while(tnode < nextunusednode)

% Record information about this node

noderows = assignednode{tnode};

critsave=[];

Nt = length(noderows);

Cnode = C(noderows,:);

Wnode = W(noderows);

Wt = sum(Wnode);

nodeprob(tnode) = Wt/Wtot;

nodesize(tnode) = Nt;

cutvar(tnode) = 0;
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cutpoint{tnode} = 0;

children(tnode,:) = 0;

% Split this node

if Nt>=2*splitMin

nusevars=size(X,2);

Xnode = X(noderows,:);

bestvar = 0;

bestcut = 0;

% Reduce the number of predictor vars as specified by nvarstosample

varmap = 1:nvars;

%% Random Forest

rf=ones(nusevars,1);

if rnd==1

m=ceil(sqrt(nusevars));

rn=randperm(nusevars);

rn=rn(1:nusevars-m);

rf(rn)=0;

end

% Find the best of all possible splits

for ivar=1:nusevars

% Index of variable to split on

if ~rf(ivar)==0

jvar = varmap(ivar);

% Get rid of missing values and sort this variable

idxnan = isnan(Xnode(:,jvar));

idxnotnan = find(~idxnan);

if isempty(idxnotnan)

continue;

end

[x,idxsort] = sort(Xnode(idxnotnan,jvar));

idx = idxnotnan(idxsort);

c = Cnode(idx,:);

[critval,cutval,splitIt]=bestSplit(x,c,splitMin);

% Change best split if this one is best so far

if splitIt==1

critsave(ivar)=critval;

else

critsave(ivar)=0;

end
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if and(critval>=max(critsave),splitIt)

bestvar = jvar;

bestcut = cutval;

end

end

end

% Split this node using the best rule found

if bestvar~=0

nvarsplit(bestvar) = nvarsplit(bestvar)+1;

x = Xnode(:,bestvar);

% Send observations left or right

cutvar(tnode) = bestvar;

leftside = x<bestcut;

rightside = x>=bestcut;

% Store split position, children, parent, and node number

cutpoint{tnode} = bestcut;

children(tnode,:) = nextunusednode + (0:1);

nodenumber(nextunusednode+(0:1)) = nextunusednode+(0:1)’;

parent(nextunusednode+(0:1)) = tnode;

% Assign observations for the next node

assignednode{nextunusednode} = noderows(leftside);

assignednode{nextunusednode+1} = noderows(rightside);

% Update next node index

nextunusednode = nextunusednode+2;

end

else

end

tnode = tnode + 1;

end

topnode = nextunusednode - 1;

Tree.node = nodenumber(1:topnode);

Tree.parent = parent(1:topnode);

Tree.class = yfitnode(1:topnode);

Tree.var = cutvar(1:topnode);

Tree.cut = cutpoint(1:topnode);

Tree.children = children(1:topnode,:);

Tree.nodeprob = nodeprob(1:topnode);

Tree.nodeerr = resuberr(1:topnode);

Tree.nodesize = nodesize(1:topnode);

Tree.npred = nvars;
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Tree.assignednode=assignednode;

end

The following method finds the optimal Sharp value to split on.

function [critval,cutval,splitIt]=bestSplit(X,y,splitMin)

%% bestSplit

% Outputs: critval = maximum absolute weighted difference in sharp ratio.

% cutval = corresponding predictor value that generated critval.

% splitIT = Boolean that determines if split can be made.

% Typically if a split can’t be made such that the resulting split

% has both sides longer than the minimum splitMin.

% Inputs: X = sorted vector of predictors.

% y = corresponding return vector.

% splitmin = minimum required size of the splitted vectors.

ER=[];

un=unique(X);

% for i=minN:N-minN

if numel(un)<2 %All predictors are the same, no split is possible.

critval=NaN;

cutval=NaN;

splitIt=0;

elseif numel(un)==2

% There are only two distinct predictor values, a

% split has to be made on the larger one. If the result

% vector lengths are not both greater than splitMin,

% then splitIt=0;

indexLeft=find(X==un(1));

indexRight=find(X==un(2));

w1=length(indexLeft);

w2=length(indexRight);

if and(length(unique(y(indexLeft)))>1,length(unique(y(indexRight)))>1)

ER(1,1)=mean(y(indexLeft))/std(y(indexLeft));

ER(1,2)=mean(y(indexRight))/std(y(indexRight));

% Outputs

critval=(w1*w2)*(2/length(X))^2*(ER(1)-ER(2));

cutval=un(2);

else

% If there are no more than one unique return value, then std(y)=0;

cutval=-Inf;
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end

if ~cutval==-Inf % If a split may be possible

if or(length(find(X<cutval))<splitMin,length(find(X>=cutval))<splitMin)

% If the resulting split vectors are smaller than splitMin

% Outputs

splitIt=0;

critval=NaN;

cutval=NaN;

else

splitIt=1;

end

else

% Outputs

critval=NaN;

cutval=NaN;

splitIt=0;

end

else % There are more than two unique predictor values.

for i=1:length(un)

indexLeft=find(X<un(i));

indexRight=find(X>=un(i));

if and(length(indexLeft)>3,length(indexRight)>3)

% If there is only one value for the split value, then std(y)=0.

sharpLeft=mean(y(indexLeft))/std(y(indexLeft));

sharpRight=mean(y(indexRight))/std(y(indexRight));

if or(sharpLeft==Inf,sharpRight==Inf)

% If for any split value the resulting return vector

% contains only one unique value then std(y)=0. This can’t be used.

sharpLeft=0;

sharpRight=0;

end

ERDiff(i,1)=abs(sharpLeft-sharpRight);

W(i,1)=(length(indexLeft)*length(indexRight))*(2/length(X))^2;

if ERDiff(i,1)==Inf

ERDiff(i,1)=0;

end

else

ERDiff(i,1)=0;

W(i,1)=0;

end

end
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if sum(ERDiff)==0 % If all calculations failed, then no split can be made.

% outputs

critval=NaN;

cutval=NaN;

splitIt=0;

%------

else

ERDiff=ERDiff.*W; % Weighted absolute difference in sharpe ratio.

opticut=find(ERDiff==max(ERDiff));

% outputs

critval=ERDiff(opticut);

cutval=un(opticut);

if or(length(X(find(X<cutval)))<splitMin,length(X(find(X>=cutval)))<splitMin)

% if the resulting split is smaller in size than splitMin.

splitIt=0;

else

splitIt=1;

end

%-------

end

end

The following method crossvalidates the trees.

function [corval, minleaf,bestleaves,besttree]=...

crossvalMyTree(tree,kfold,minMinleaf,maxMinleaf)

% Inputs: tree is a myTree class object, kfold is how many division should

% be made to test the data on, minMinleaf is the least amount of data per

% node that is desired and maxMinLeaf is the maximum amount of data per

% node that is tested.

% Outputs: corval is a vector off rank correlations corresponding to each

% test, minleaf is the amount of data per node that is tested, bestleaves

% is the amount of data per node that was found to have the maximum

% rank correlation and besttree is the myTree object with the maximum

% rank correlation.

X=tree.Predictors;

y=tree.Ret;

names=tree.names{:};

N=length(y);

v=1:N;

minleaf=linspace(minMinleaf,maxMinleaf,10);

for leaves=1:numel(minleaf)

curLeaf=minleaf(leaves);

v=v(randperm(N));
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indxCell = {};

vectLength = numel(v);

splitsize = 1/kfold*vectLength;

for i = 1:kfold

idxs = [floor(round((i-1)*splitsize)):floor(round((i)*splitsize))-1]+1;

indxCell{end + 1} = v(idxs)’;

end

indxCell=indxCell’;

corcf=[];

for i=1:numel(indxCell)

real=[];

sub=[];

nonindx=indxCell;

nonindx(i)=[];

indx=cat(1,nonindx{:});

newTree=myTree(X(indx,:),y(indx),curLeaf,0);

nonindx=indxCell{i};

for j=1:numel(nonindx)

ysub=predictMyTree(newTree,X(nonindx(j),:));

sub(j,1)=ysub;

real(j,1)=y(nonindx(j));

end

corcf(i)=corr(real,sub,’type’,’spearman’);

end

corval(leaves)=mean(corcf);

end

bestleaves=minleaf(find(corval==max(corval)));

besttree=myTree(X,y,bestleaves,0,names);

The following method is the bagging method.

function forest=growRandomForest(X,y,leaves,trees,names)

% Inputs: X is the matrix of predictors, y is the vector of corresponding

% returns, leaves is the amount of data per node that the trees are grown

% to and names is the names of the predictors.

% Outputs: forest is a collection of myTree objects.

nboot=trees;

N=length(y);

randomForest=1;

b=randomForest;

x=1:N;

bootindx=zeros(N,1);

for j=1:N

bootindx(j)=x(unidrnd(N));

end

bootX=X(bootindx,:);

booty=y(bootindx,1);
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randomTree=myTree(bootX,booty,leaves,b,names);

forest=myForest(randomTree);

for i=1:nboot-1

for j=1:N

bootindx(j)=x(unidrnd(N));

end

bootX=X(bootindx,:);

booty=y(bootindx,1);

randomTree=myTree(bootX,booty,leaves,b,names);

plantMyTree(forest,randomTree)

end

classdef myForest

properties

plantedTrees={};

end

methods

function Obj=myForest(myTree)

Obj.plantedTrees{1}=myTree;

end

function plantMyTree(Obj,myTree)

forestSize=numel(Obj.plantedTrees);

Obj.plantedTrees{forestSize+1}=myTree;

end

function p=predictMyForest(Obj,X)

forestSize=numel(Obj.plantedTrees);

val=zeros(forestSize,1);

for i=1:forestSize

val(i)=predictMyTree(Obj.plantedTrees{i},X);

end

p=mean(val);

end

end

end
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