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Abstract

Modeling financial time series is of great importance for being successful
within the financial market. Hidden Markov Models is a great way to in-
clude the regime shifting nature of financial data. This thesis will focus
on getting an in depth knowledge of Hidden Markov Models in general and
specifically the parameter estimation of the models. The objective will be
to evaluate if and how financial data can be fitted nicely with the model.
The subject was requested by Nordea Markets with the purpose of gaining
knowledge of HMM’s for an eventual implementation of the theory by their
index development group. The research chiefly consists of evaluating the al-
gorithmic behavior of estimating model parameters. HMM’s proved to be a
good approach of modeling financial data, since much of the time series had
properties that supported a regime shifting approach. The most important
factor for an effective algorithm is the number of states, easily explained as
the distinguishable clusters of values. The suggested algorithm of continu-
ously modeling financial data is by doing an extensive monthly calculation
of starting parameters that are used daily in a less time consuming usage of
the EM-algorithm.

Keywords: Hidden Markov Models, Parameter Estimation, Expectation Max-
imization, Direct Numerical Maximization
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Chapter 1

Introduction

1.1 Introduction
A common feature of financial time series is that the relations and patterns
within the series change from time to time. By this, it is hard to evaluate
or infer patterns and predictions by models only relating data in a single
regime. For example, one might have to take the different aspect of the eco-
nomic cycle in mind when modeling time series related to finance. Volatility
can be very different in different states of the economy, e.g. recession or high
growth. Hence, financial time series analysis by using a regime-switching
model like hidden Markov model is a quite intuitive way to go.

The applications of Hidden Markov Models (HMM’s) are especially known
in signal processing like automatic speech (Rabiner, 1989) and face recogni-
tion (Park & Lee, 1998) and biological sequence analysis (Churchill, 1992).
Although the usage of the HMM theories haven’t been as widespread in fi-
nancial time series analysis and econometrics, the regime shifting approach
has got an increasing amount of interest past years.

As the name suggests the Markov behavior in an HMM is hidden. By hid-
den it’s meant that the Markov chain is not by itself retrievable but instead
masked with additional white noise. In this sense there is no way of surely
knowing the path of the underlying Markov chain, although several algorith-
mic approaches can be used to evaluate the most likely path. The two major
approaches of parameter estimation by maximum likelihood for HMM’s will
be under scope in this thesis, direct numerical maximization and the expec-
tation maximization algorithm.
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The thesis is made on behalf of Nordea Markets’ index development group,
as a first step to evaluate the possibilities of using the theory of HMM’s for
an index. The aim is to get an in-depth understanding of HMMs and its
applications to model financial time series. The main focus will be on in-
vestigating the optimization and performance of the parameter estimation of
HMMs.

1.2 Delimitations
There are several different distribution mixtures to use when using the theory
of HMM’s. In this thesis we have limited the analyzed distributions only to
involve normal HMM’s with a discrete time step. Also, we only alter the
standard deviations in the distributions, disregarding that also the mean
could possibly be changing. By doing this we only make our regime analysis
on different states of volatility and not of changes in trend regimes. The
choice of only using discrete time steps for the HMM stems from the original
problem of evaluating daily data.
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Chapter 2

Theoretical background

To get a solid theoretical background of HMM’s a few concepts will be pre-
sented in this chapter. First of, the most simplistic theory necessary for
understanding HMM’s, independent mixture distributions will be covered.
Also, and obviously, part of the chapter will include some background on
regular markov chains. From these concepts the theory of HMM’s will be
much easier to grasp.

2.1 Independent Mixture Models
Many time series have an unobserved heterogeneity i.e. within the time se-
ries there could be clusters of different kinds of data. Each of these clusters
or groups comes from the same distribution, different from the distributions
generating the other groups. A common way to simulate these overdispersed
observations is to use independent mixture models. As suggested by the
name the generating distribution consist of a mixture of independent dis-
tributions, or more specifically; conditional distributions. Since we only will
deal with discrete mixtures regarding HMM’s we only go over the concepts of
discrete mixtures. The interested reader may find information on continuous
mixtures in e.g. Böhning et al. (1999).

With the mixtures being discrete it’s although important to notice that the
conditional distributions may, and throughout this thesis will, be continuous.
The model consists of some (discrete) distribution to generate what type of
distribution the final draw will be made from. By this, the parameters of the
conditional distributions in the second step will be generated by the sample
space of the first distribution. Say for example that a three state mixture
model of different normal distributions is under scope. The model is then
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characterized by the three random variables X1, X2 and X3.

Random Variable pdf
X1 f1(x)
X2 f2(x)
X3 f3(x)

Further, the mixture distribution will be given by some random function with
a sample space of order two e.g.

Y =


1 with probability π1
2 with probability π2
3 with probability π3
π1 + π2 + π3 = 1

Bulla (2006) exemplifies the procedure of a two-component distribution mix-
ture by letting Y be the tossing of a coin to asses what random variable an
observation is a realization of. Figure 2.1 explains this further by visualiz-
ing the process of a two state mixture model above. It’s important to bear
in mind that the realization of Y is generally not observable, it is only the
observation generated by one of the random variable that can be observed.

Figure 2.1: Visualization of independent mixture model
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By the explanation of Y and X the probability density function of the mix-
ture can easily be calculated.

f(x) = π1f1(x) + π2f2(x) + π3f3(x)

As seen the extension to J components is quite straightforward. As for the
three state case we let πi, i = {1, 2, .., J} be the probability of the discrete
mixture. Each sample i will result in different distributions with f1, f3,.., fJ
as their distribution functions.

f(x) =
J∑
i=1

πifi(x)

More details on independent mixture models could be found in MacDonald
and Zucchini (2009).

2.2 Markov chains
Roughly speaking, a Markov chain is a stochastic process where the most
recent value at time t is the only relevant information for the future value at
t + 1. That is, regardless of the process’ history. There is a lot of literature
available on the subject of Markov chains, why we will try to keep it some-
what brief in this section. A more general account is found in Norris (1998)
or Parzen (1962).

First of, a comment about the usage of chain instead of process must be
made. The name Markov chain is often used when dealing with a discrete-
time Markov process with a discrete state space. Consider a sequence of
discrete random variables {Yt : t ∈ N}. The state space of the sequence
consist of i = {1, 2, .., J} and is said to be a Markov chain if it satisfies

P (Yt+1 = yt+1 | Yt = yt, Yt−1 = yt−1, .., Y0 = y0) = P (Yt+1 = yt+1 | Yt = yt)

for all t ∈ N.

This is called the Markov property and can be regarded as a first relaxation of
the assumption of independence [15]. As seen in Figure 2.2 the name comes
from the fact that the random variables are only dependent of the prior value
of the chain, which makes the model mathematically convenient.
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Yt−1 Yt Yt+1
- - - -

Figure 2.2: Markov chain structure

The probability of moving from one state to another is called the transition
probability. These probabilities are presented in a J×J transition probability
matrix (TPM) with elements pij = P (Yt+1 = j | Yt = i) and

∑J
j=1 pij = 1 for

all i ∈ {1, 2, .., J}. If the TPM is independent of t we speak of the Markov
chain as homogeneous. Thus, the TPM contains the one-step transition
probabilities and short-term behavior of the Markov chain. For homogeneous
Markov chains we have the Chapman-Kolmogorov equations that boils down
to Γ(k) = Γ(1)k. Thus the k-step transition probabilities could be explained
as

Γ(k) =

p1,1(k) · · · p1,J(k)
... . . . ...

pJ,1(k) · · · pJ,J(k)


Apart from the TPM the unconditional probabilities P (Yt = i) is often of
great interest when it comes to Markov chains. These are the probability
that the Markov chain is in a given state i at a given time t and are denoted
by the vector.

u(t) = (P (Yt = 1), .., P (Yt = J)), t ∈ N

The first of these vector, the one connected to t = 1 is often expressed as
the initial distribution π of the Markov chain. Also, it’s worth nothing that
all the unconditional probabilities can be calculated recursively by the initial
distribution and the TPM for a homogeneous Markov chain.

u(1) = π

u(t) = u(t− 1)Γ(1)
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By the TPM we know that if an element pij(k) is non-zero the state j is
accessible from state i in k steps. If the element pij(k) is non zero for any k
we write i → j. Furthermore, if the element pji(k) of the TPM is non zero
for any k we have that j → i. If both i → j and j → i we write i ↔ j and
says that the two states i and j communicates with each other. We call the
Markov chain irreducible if all states i and j communicates with each other,
i.e. i↔ j for all i, j ∈ {1, 2, .., J}.

A Markov chain that is both irreducible and homogeneous is said to be
stationary with a stationary distribution δ, defined by

δ = δΓ

δ1′ = 1

Where the first of these express the stationarity and the second the fact that
sigma is a probability distribution.

2.3 Hidden Markov Models
Sometimes it happens that the clusters or groups discussed in the section
of independent mixture models are correlated to each other. In such cases
the independent approach of modeling time series wouldn’t be the best ap-
proach. By using an independent mixture model we would miss the depen-
dence structure and a lot of the information available in the data. The simple
independent case would lead to overdispersion when fitting the sample mean.
A solution to this problem would be to relax the assumption of independent
subgroups in the time series. An example of such a relaxation, and actually
one of the most simplistic one, would be to use a Hidden Markov Model
(HMM). The statement that this would be a simple way of allowing serial
dependence stems from the fact that the usage of a Markov chain as the
relation between the subgroups, or states, is quite mathematical convenient
[15]. This by the definition of a Markov chain and that it fulfills the Markov
property of only depending on the prior state. Further on in this section
we will look into the basic of the HMM framework, for the interested reader
MacDonald (1997) and Cappé et al. (2005) are suggested to cover a larger
portion of the theory.

Cappé et al. (2005) explaines HMM’s as a Markov chain observed in noise,
which also coincide with the explanation above of using a Markov chain for
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the dependence in a mixture model. The Markov chain is underlying and
unobserved, hence the hidden part, and it states are connected with different
distributions generating the observations. The directed graph in Figure 2.3
gives a good visualization of the basic structure of a HMM and that the
observations are serially dependent.

Yt−1 Yt Yt+1
- - - -

Xt−1 Xt Xt+1

6 6 6

Figure 2.3: Hidden Markov Model structure

By using a HMM to model the dependent structure in time series is a
good way to really simplify complex time series, since the Markov property
is as mentioned before mathematically convenient. The hard part of this
model is, as the name suggests, the hidden part of the model. As in the case
of independent mixture models, the generating space is commonly unknown.
Thus we only have the given observations but can’t say for sure what ran-
dom variable that it is a realization of. We remember the figure from Bulla
(2006) that explained the generating process for independent mixture models
above; Figure 2.4 is an extension that models the dependency structure in
the observation generating process.
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Figure 2.4: Visualization of independent mixture model

Going forward, we will have to introduce some denotations. Looking back to
Figure 2.3 above {Xt} = {Xt, t = 1, 2, 3..} denotes a sequence of observations
and {Yt} = {Yt = 1, 2, 3..} a Markov chain with states i ∈ {1, 2, .., J}. By
the definition of a Markov chain the {Yt} follow the Markov property, i.e.
P (Yt+1 = yt+1 | Yt = yt, Yt−1 = yt−1, .., Y0 = y0) = P (Yt+1 = yt+1 | Yt =
yt). Although the relaxation of the independence structure is made for the
states, explained as subgroups above, the state dependent observations are
independent of previous observations. We have

P (Xt+1 = xt+1 | Xt = xt, .., X0 = x0, Yt = yt, .., Y0 = y0) = P (Xt+1 = xt+1 | Yt = yt)

We call such a pair of processes {Yt, Xt} a J-state HMM. This somewhat
explains the statement that a HMM is observed in noise, since it is a com-
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bination of two processes; a Markov chain {Yt} and some random state de-
pendent noise {Xt} on top of this Markov chain.

Many of the concepts fromMarkov chains translates into the world of HMM’s.
In Figure 2.4 we had a stationary distribution of σ = (0.75, 0.25) and a tran-
sition probability matrix of Γ =

(
0.9 0.1
0.3 0.7

)
. The probability density function

of {Xt} in state i of the Markov chain is given by

fi(x) = P (Xt = x | Yt = i) (2.1)

These J distributions are referred to as the state-dependent distributions of
the HMM [15]. In the case of a normal distributed HMM the state dependent
distributions would be given by

fi(xt) =
1√
2πσ2

i

e
− (xt−µi)

2

2σ2
i

for t ∈ {1, 2, .., T} and i ∈ {1, 2, .., J}.

Where the parameters µi and σi of the distribution function depends on
the state Yt = {1, 2, .., J}.

The probability of observing a certain value x at t for a HMM {Yt, Xt} is,
obviously, largely related to the probability of observing a Markov chain {Yt}
in state i at time t. The additional calculation is to add the probabilities
of Function 2.1 and summarizing over all states. To sum up over all spaces
is necessary since the value x at t could be a realization of all the different
state-dependent random variables Xi.

P (Xt = x) =
J∑
i=1

P (Yt = i)P (Xt = x | Yt = i)

for all t ∈ {1, 2, .., T}

An important part of the theory of HMM’s is the likelihood of the mod-
els parameters. Actually, this is one of the most crucial concepts of fitting a
HMM to some time series and will be needed for the parameter estimation
later in this chapter. Fortunately the likelihood function of a HMM is can
be expressed explicitly and computable in a closed formula.
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First of, the definition of the likelihood of the observations is the joint prob-
ability density function of Xt = xt for t ∈ {1, 2, .., T}.

LT = P (X1 = x1, X2 = x2, .., XT = xT )

We remember that we have to sum over all possible states to cover all possible
random variables that could result in the realization xt. Hence, it holds that

LT =
J∑

y1,y2,..,yT=1

P (X1 = x1, .., XT = xT , Y1 = y1, .., YT = yT )

From equation (2.5) in MacDonald (2009) we know that

P (X1 = x1, X2 = x2, .., XT = xT ) = P (Y1)
T∏
k=2

P (Yk | Yk−1)
T∏
k=1

P (Xk | Yk)

Further, let the P (xt) be the conditional probabilities defined above as

P (xt) =

f1(xt) · · · 0
... . . . ...
0 · · · fJ(xt)


Also, we remember that the rows of the TPM

∑J
j=1 pij are the probabilities

of jumping out of state i for some i ∈ {1, 2..J} on the time step from t−1 to
t. Along with the initial probability vector π = (π1, π2, .., πJ) the likelihood
function can be expressed by matrix notations. Since this is a function of the
parameters of the HMM we will let θ be the set of all model parameters of
the HMM. That is, in the case of a Normal HMM, the set of all elements of
the transition probability matrix pij, the initial state distribution πi and the
parameters of the state-dependent distributions of Xt ∼ N(µi, σ

2
i ). Thus, we

get the expression of the likelihood function of the observations as

LT (θ) = P (X1 = x1, .., XT = xT ) = πP (x1)ΓP (x2)...ΓP (xT )1
t

Although the HMM concept is quite a theoretical one, the states of the hidden
Markov chain can often be interpreted easily. In such an interpretation the
states is often thought of as different regimes. In the case of this thesis we

11



look at financial time series and more specifically on the possibility of data
coming from distributions with different standard deviation. This can be
interpreted as evaluating different volatility regimes in the financial world.
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Chapter 3

Parameter estimation

This chapter is doveted to focus on the Maximum-Likelihood parameter es-
timation of HMM’s. That is, both the expectation maximization algorithm
and direct numerical maximization.

The main usage of HMM’s in finance and the essence of this thesis is to fit a
HMM to a time series of observations. To do this there are several parame-
ters of the HMM that has to be estimated in some way. The most common
parameter estimation is done by maximizing the likelihood function for the
HMM. This is done by either using direct numerical maximization (DNM)
or the expectation maximization algorithm (EM). None of these methods is
superior to the other but it is very common that only one of the algorithms
is used in specific studies. In Bulla (2006) a thorough comparison of the
two approaches are made which will, along with the mathematical depth in
Cappé et al. (2005), build up much of this section. The more mathemati-
cal experienced reader may see these two sources, especially the latter, for a
greater depth on maximum likelihood parameter estimation.

3.1 Direct numerical maximization
Direct numerical maximization comes from the family of gradient-based meth-
ods. These methods constitutes of directly calculating the parameters for
maximum likelihood by zero equating the derivative of the likelihood func-
tion in respect to the parameters in L(θ).

Remember that we in the previous section ended up in the function

LT (θ) = πP (x1)ΓP (x2)...ΓP (xT )1
t (3.1)
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Through this, it is easy to see that the likelihood for L1(θ) can be retrieved
by taking the product of only the initial distribution π and the matrix of
state-dependent probabilities P (x1) for observations at t = 1. Recursively
we can build up a likelihood function for all observations up to T , which will
end up in Function 2.1. We introduce αt as the forward probabilities, the
usage of the name forward probabilities will become evident in later sections.
The recursion equations is as follows

α1 = πP (x1)

αt = αt−1ΓP (xt), t = {2, 3, .., T}

If we define Bt as TP (xt) we have that LT (θ) = πB1...BT1t. By this we
also have that LT (θ) = αT .

Further we introduce a scalar weight wt of the forward probability α at t.
That is, wt = αt1t. Using these weights we rescale the forward probabilities
to φt by

φt = αt1
t

For t = {0, 1, ..., T}.

Using this scaling we can evaluate the likelihood function LT by using the
starting equation

φ0 =
α0

w0

=
π

π1t
= π (3.2)

We easily see that the φt for t = {1, 2, .., T} are given through using αt by

φt =
αt
wt

=
αt−1Bt

wt
=
wt−1
wt

φt−1Bt (3.3)

Hence we have a reccursive evaluation of the likelihood function LT by using
3.3 with starting equation given by 3.2. We can then express the likelihood
function by using the weights wt.

LT =
T∏
t−1

wt
wt−1

Further, by taking the logarithm of the likelihood it can be expressed as a
sum of the weights just defined.

14



lnL(θ) =
T∑
t=1

ln

(
wt
wt−1

)
The ratio used in each sumation is given as wt/wt−1 = φt−1Bt1

t. The
logarithmic likelihood can thus be evaluated by using a reccursive algorithm.
We start of by using the equations lnLT = 0 and φ0 = π0 as starting values
for the reccursive algorithm below.

vt = φt−1Bt

ut = vt1
t

lnLt = lnLt−1 + lnut

φt = vt/ut

This is repeted for t = {1, 2, ..., T}. This recursive algorithm will express
the logarithmic likelihood function. To maximize it, some numerical max-
imization procedure is needed. For the gradient-based approach there are
a few methods available. The easiest is the steepest ascent algorithm that
only takes the first derivative of the log likelihood into account. The model
parameters are updated by adding a multiple of the gradient to the existing
set of parameters. This way is called walking in the search direction, the
update formula is given by

θi+1 = θi + γi∇θ`(θ
i)

In each step the multiplier gamma needs to be updated to satisfy the fact
that the sequence is increasing. Luenberger (1984) provides an account of
how to update gamma for the multiplier to be globally convergent. The
updating formula is done by

γi = argmax
γ≥0

`[θi + γ∇θ`(θ
i)]

There are though several setbacks in using the steepest ascent algorithm,
especially for large models with several parameters. The main disadvantage
is that the algorithm is only linearly convergent for the set of parameters
theta. A better approach is to use some kind of second-order method, like the
Newton algorithm. Here we use the Hessian H that is defined as the second
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derivative H(θi) = ∇2
θ`(θ

i). The updating algorithm of the parameters theta
is defined as

θi+1 = θi +H−1(θi)∇θ`(θ
i)

which comes from second order Taylor approximation

`(θ) ≈ `(θ′) +∇`(θ′)(θ − θ′) + 1

2
(θ − θ′)′H(θ′)(θ − θ′)

Implementation of this maximization can be done by using the optimization
toolbox in MatLab.

3.2 Expectation Maximization
Probably the most used algorithm for parameter estimations of HMM’s is
the Expectation Maximization algorithm (EM). This algorithm constitutes
of two steps that are iterated until the parameters converge to a maximized
likelihood. For HMM’s the algorithm is also known as the Baum-Welch
algorithm. We will start of by introducing the forward-backward algorithm
that is crucial for the EM algorithm. We follow the setup used in MacDonald
and Zucchini (2009).

3.2.1 Forward-Backward algorithm

The forward-backward algorithm is in fact two separate algorithms for cal-
culating forward and backward probabilities. The forward probability αt(i)
are defined as the joint probability of being in state i at time t and that
the observations xn for n ∈ {1, 2, ..T} are retrieved. Actually, we’ve already
defined the forward probability above. Although, we didn’t fully state the
connection to the joint probability of P (Xt = xt, Yt = i). We state the
probabilities again below as a product of matrices.

α = πP (x1)ΓP (x2)...ΓP (xT ) = πP (x1)
T∏
s=2

ΓP (xs)

This is given by the usage of the recursion

αt+1 = αtΓP (xt+1)
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which is, in scalar form,

αt+1(j) =

( J∑
i=1

αt(i)pij

)
pj(xt+1)

Where we remember pij and fj, respectively, as the elements of the transition
probability matrix and the conditional probability of an observation given a
certain state j. That the forward probability is in fact αt(i) = P (X1 =
x1, X2 = x2, .., Xt = xt, Yt = i) can be shown by realizing that the

α1 = πΓ

And in scalar form

α1(i) = πifi(x1) = P (Y1 = i)P (X1 = x1 | Y1 = i)

Thus, α1 is in fact P (X1 = x1, Y1 = i). Recursively we can now see that if
αt = P (X1 = x1, X2 = x2, .., Xt = xt, Yt = i) holds for some t it also holds
for t+ 1 by

αt+1(j) =
J∑
i=1

αt(i)pijfj(xt+1) =
∑
i

P (X1 = x1, .., Xt = xt, Yt = i)

×P (Yt+1 = j | Yt = i)P (Xt+1 = xt+1 | Yt+1 = j)

=
∑
i

P (X1 = x1, .., Xt+1 = xt+1, Yt = i, Yt+1 = j)

= P (X1 = x1, .., Xt+1 = xt+1, Yt+1 = i)

The backward probabilities is the conditional probabilities that we observe
the observations {xk} for k = (t+1, t+2, ..) given that the underlying Markov
chain is in state i at time t, that is

βt(i) = P (Xt+1 = xt+1, Xt+2 = xt+2, .., XT = xT | Yt = i)

In matrix notation it is given as βt = ΓP (xt+1)βt+1. The proof can be found
in chapter 4 of MacDonald and Zucchini (2009). These probabilities can be
used to calculate the likelihood function given as Lt = P (X1 = x1, X2 =
x2, .., Xt = xt, Yt = i). Since we have the definitions of the forward and
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backward probability the product of these to results in the following equation
in scalar form, where we have for ease of notations defined P (X(t)

(1) = x
(t)
(1)) =

P (X1 = x1, .., Xt = xt)

αt(i)βt(i) = P (Yt = i)P (X
(t)
(1) = x

(t)
(1) | Yt = i)P (X

(T )
(t+1) = x

(T )
(t+1) | Yt = i)

= P (X1 = x1, X2 = x2, .., Xt = xt, Yt = i)

Further, we have that the conditional probability of being in state i given all
available observations as

P (Yt = i |X(T )
(1) = x

(T )
(1) ) = αt(i)βt(i)/LT

Finally we need the joint conditional probability of Yt−1 = i and Yt = j given
all available observations. Using the forward and backward probabilities, the
transition probabilities pij and the state-dependent probabilities gi we have

αt−1(i)pijfj(xt)βt(j)/LT = αt−1(i)pij

(
P (Xt = xt | Yt = j)P (X

(T )
(t+1) = x

(T )
(t+1) | Yt = j)

)
/LT

= P (X
(t−1)
(1) = x

(t−1)
(1) , Yt−1 = i)P (Yt = j | Yt−1 = i)P (X

(T )
(t) = x

(T )
(t) , Yt = j)/LT

P (Yt−1 = i, Yt = j |X(T )
(1) = x

(T )
(1) )

3.2.2 Expectation-Maximization Algorithm

We now posses the right tools to define the EM algorithm. The EM algo-
rithm is an iterative way of estimating and maximizing the likelihood for a
process where some data is missing. Since the Markov chain is hidden for
HMM’s it is quite reasonable to use the EM algorithm and treat all states
as missing data. The EM uses the fact that it is possible to calculate the
full data log likelihood even though the likelihood of only the observed data
isn’t retrievable. As mentioned before the algorithm constitutes of two steps.
First of, the expectation (E) step calculates the expectation of the missing
data conditional of the observations and the estimate of the parameter vec-
tor, θ. After this, the maximization (M) step maximizes the log likelihood
for the complete model with respect to θ. Repetitions of these two steps
are done until the convergence criterion is reached, resulting in a maximum
likelihood vector θ.
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We can express the log likelihood of the HMM as

ln
(
P (X

(T )
(1) = x

(T )
(1) , Y

(T )
(1) = y

(T )
(1) )
)
= ln

(
πy1

T∏
t=2

pyt−1,yt +
T∏
t=1

fyt(xt)

)

lnσy1 +
T∑
t=2

ln pyt−1,yt +
T∑
t=1

ln fyt(xt)

We can simplify this expression by using variables ui and vij, defined as

uj(t) = 1 iff. yt = j (t = 2, 3, .., T )

vij(t) = 1 iff. yt−1 = i and yt = j (t = 2, 3, .., T )

We then get the log likelihood expression as

ln
(
P (X

(T )
(1) = x

(T )
(1) ,Y

(T )
(1) = y

(T )
(1) )
)

=
J∑
i=1

ui(1) lnπi +
J∑
i=1

J∑
j=1

( T∑
t=2

vij(t)

)
ln pij

+
J∑
i=1

T∑
t=1

ui(t) ln fi(xt)

= term 1 + term 2 + term 3

(3.4)

The expression in Function 3.4 is then used for the E step by replacing
ui(t) and vij(t) by their conditional probabilities if the observations x(T )

(1) are
retrieved, ûi and v̂ij defined as

ûi(t) = P (Yt = i |X(T )
(1) = x

(T )
(1) ) = αt(i)βt(i)/LT

v̂ij(t) = P (Yt−1 = i, Yt = j |X(T )
(1) = x

(T )
(1) ) = αt−1(i)pijfj(xt)βt(j)/LT

The full expression of the log likelihood can then be maximized and conve-
niently this is only a matter of maximizing the three independent terms in
Function 3.4. That is the following equations need to be maximized.
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1.
∑J

i=1 ui(1) log πi with respect to π

2.
∑J

i=1

∑J
j=1

(∑T
t=2 vij(t)

)
log pij with respect to Γ

3.
∑J

i=1

∑T
t=1 ui(t) log fi(xt) with respect to the parameters of f

Solving these three equations will yield the new parameters as

1. πi = ûi(1)/
∑J

i=1 ûi(1) = ûi(1)

2. pij =
∑T

t=2 v̂ij(t)/
∑J

j=1

(∑T
t=2 v̂ij(t)

)
The solution to the last term depends on the nature of the state dependent
distribution g. For a normal HMM the parameters of the state dependent
distribution are given by solving the third term above with the distributions
gi as N(µi, σ2

i ). This gives the new parameters as

µ̂i =
T∑
t=1

ûi(t)xt

/ T∑
t=1

ûi(t)

σ̂2
j =

T∑
t=1

ûi(t)(xt−µ̂i)2
/ T∑

t=1

ûi(t)

3.3 Comparison
Bulla (2006) states a few differences regarding the two algorithmic approaches
for parameter estimations of HMM’s. The main setback of the EM algorithm
is that it, like the steepest ascent algorithm, it only has linear convergence
when evaluating the parameters. Also for an EM algorithm both forward and
backward probabilities are needed, although it is enough with only forward
probabilities to evaluate and maximize the likelihood by DNM. Cappé et al.
(2005) states a few other pros and cons of the different approaches.

Compared to the gradient-based methods the EM algorithm is easy to im-
plement, since it doesn’t needs to evaluate the hessian or gradient of the
likelihood. With this said one can often use prebuilt generic optimization al-
gorithms for the gradient-based algorithm implementation, which simplifies
the procedure significantly. Another setback of the DNM is that it doesn’t
deal with parameter constraints in the same way that the EM algorithm does.

20



In the DNM these constraints have to be dealt with explicitly by reparame-
terization. Further, the most major setback is the fact that the EM algorithm
is a lot more stable according to Bulla (2006). That is, the solution does lead
to global maximum more frequently for the EM than for DNM algorithms.

3.4 Model validation
The speed of the algorithms and the number of calculations depends strongly
on the number of states in the Markov chain of the HMM. Thus, choosing a
good amount of states are crucial for a effective algorithm. Two important
model valuation methods are Akaike (AIC) and Bayesian information crite-
rion (BIC). These two evaluate the goodness of fit for the selected model.
More specifically the two models punish the likelihood function by the num-
ber of states, locating the trade of between the increasing likelihood of adding
more states and the increasing punish term. The two criterions are given be-
low.

AIC = 2k − ln(L)

BIC = k ln(T )− 2 ln(L)

Where L is the likelihood, T the number of observations and k is the num-
ber of states. We know that θ = (Γ,π,µ,σ). The transition probability
matrix has k2 − k parameters since the last row is retrieved by the rest of
the elements. Further we have one standard deviation, one mean value and
a starting probability in each state. Hence, for a normal HMM we have that
the number of parameters is k = J2 + 2J .

Its important to notice that this only evaluates the model with respect to
a change in the number of states and doesn’t take into account of the full
model in fact has a poor fit to the time series.
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Chapter 4

Method

This chapter will cover the method and approach used when working on this
thesis. Also, a section regarding the limitations of the study will be included.

4.1 Literature studies
The nature of the problem in this thesis demanded a solid base of knowledge
regarding HMM’s and Markov processes in general. Fully understanding the
setup is crucial to be able to create any algorithm of value for the purpose of
modeling any financial time series at all. The choice of literature regarding
HMM’s was somewhat straightforward after a few searches, at least when
it comes to HMM’s in general. Although the theories of HMM’s are quite
young there are quite a few outstanding authors. The books MacDonald and
Zucchini (1997) and (2009) and Cappe et al. (2005) has been the three major
sources of research. These have naturally led in to a few important and more
specific research papers regarding HMM’s.

The main disadvantage of these sources has been that many are quite general
and aren’t applied to finance specifically. Most examples and explanations
regards the more evolved field of using HMM’s in different type of pattern
recognitions. Although, there are a few exceptions like Bulla (2006) and
Zhang (2001). In addition, a few sources on the specific algorithms have
been used e.g. Dempster et al. (1977) and McLachlan and Krishnan (1997)
for the EM algorithm and Turner (2001) and Collings and Rydén (1998) for
DNM.
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4.2 Data retrieval and analysis
A lot of the work done has been through programming the algorithms of esti-
mating the parameters for the HMM to fit the desired data. All programming
has been done through MatLab since this was thought as convenient by being
simple. This was not a suggestion by Nordea that probably would have pre-
ferred another tool to easy implement and use the study if possible. Though
it’s important to remember that the point of the study was to evaluate the
ML parametric estimations and not to build a final algorithm and for this
end MatLab proved to be a good choice.

The financial time series used are extracted from Bloomberg and Nordea’s
internal database. The series are of a few different currency pairs, OMXS30
index and generic first futures of OMXS30, Gold, S&P 500 index, Eurex
Euro bond and 10Y US t-note. For the generic futures indices a 2 day early
roll was used to circumvent the inclusion of iliquid contracts. The choice of
data was done to get a good variety of assets. All data have been modified
by looking at the daily return, this to make the normal-HMM a reasonable
model. The drift was set to be independent of states whilst the volatility was
state dependent.

For the programming part a few different algorithms has been created some
of which can be found in Appendix A. The most part of evaluating the al-
gorithms have been through alternating some of the parts of the algorithm,
e.g. starting parameters and time series lengths, to see how the algorithms
behave. Also, the information criterions AIC and BIC have been used to
evaluate the optimal amount of states.

4.3 Limitations
Regarding some of the time series an approach of comparing different kinds
of HMM’s could’ve been made and not only normal HMM’s. Also, the way
of only varying the standard deviation could be seen as somewhat nav̈e since
different trends in financial time series can often be subject to change in
regime. By doing this delimitation we only take volatility regimes into ac-
count and disrregard of the trend regimes.

Further, the most focus was directed to the EM algorithm due to its su-
perior stability properties and the fact that only daily data was in mind.
Thus, the speed of convergence wasn’t a major issue and the DNM didn’t
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get as much attention as it would’ve got if the speed of the calculations were
of greater importance.

It is also important to remember that the focus in the thesis have been
to evaluate the probability of the current state and the transition probability
of the HMM. A further approach would’ve been to look at prediction and
forecasting of the HMM.
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Chapter 5

Findings

In this chapter the results and findings of the thesis are presented. It con-
stitutes of chielfy visualizations of the perametric behaviour retrieved by the
programs found in Appendix A. Only brief information of each result will be
included in this chapter, a more extensive analysis follows in the next.
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5.1 Results

(a) EURSEK (b) EURUSD

(c) USDSEK (d) OMXs30 index

(e) OMXs30 gen. 1 futures index (f) EUREX gen. 1 euro bond index

Figure 5.1: Daily returns for retrieved data.
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(a) S&P500 gen. 1 futures index (b) Generic 1 US10Y treasury note index

(c) Generic 1 gold 100 oz index

Figure 5.2: Daily returns for retrieved data.
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(a) EURSEK (b) EURUSD

(c) USDSEK (d) OMXs30 index

(e) OMXs30 gen. 1 futures index (f) EUREX gen. 1 euro bond index

Figure 5.3: Normal Quantile-Quantile plot of the data.
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(a) S&P500 gen. 1 futures index (b) Generic 1 US10Y treasury note index

(c) Generic 1 gold 100 oz index

Figure 5.4: Normal Quantile-Quantile plot of the data.

29



(a) EURSEK (b) EURUSD

(c) USDSEK (d) OMXs30 index

(e) OMXs30 gen. 1 futures index (f) EUREX gen. 1 euro bond index

Figure 5.5: Histograms of data against a Normal distribution.
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(a) S&P500 gen. 1 futures index (b) Generic 1 US10Y treasury note index

(c) Generic 1 gold 100 oz index

Figure 5.6: Histograms of data against a Normal distribution.
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Figure 5.7: Comparison of the convergence of the logarithmic likelihood for
DNM and EM with 4 states on Gen. 1 gold index.

Figure 5.8: Comparison of the convergence of the state dependent standard
deviations for DNM and EM with 4 states on gen. 1 gold index.
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Figure 5.9: Comparison of the convergence of the logarithmic likelihood for
DNM and EM with 4 states on OMX gen. 1 futures index.

Figure 5.10: Comparison of the convergence of the state dependent standard
deviations for DNM and EM with 4 states on OMX gen. 1 futures index.
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Figure 5.11: Convergence of the logarithmic likelihood for several runs of the
EM algorithm with very small deviations in starting parameters.

Figure 5.12: Convergence of the state dependent standard deviations for
several runs of the EM algorithm with large deviations in starting parameters.
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(a) Full paths

(b) Zoomed in paths

Figure 5.13: Paths of standard deviations recalculated with the θ at t as start-
ing parameters. Most probable path uses the θ with the highest likelihood
whilst the blue lines uses the θ with lower likelihood at t. The recalculated
path uses the more extensive calculation of starting parameters. OMXs30
generic 1 futures index with 4 states.
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(a) Full paths

(b) Zoomed in paths

Figure 5.14: Paths of standard deviations recalculated with the θ at t as start-
ing parameters. Most probable path uses the θ with the highest likelihood
whilst the blue lines uses the θ with lower likelihood at t. The recalculated
path uses the more extensive calculation of starting parameters. EURSEK
with 4 states.
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(a) Full paths

(b) Zoomed in paths

Figure 5.15: Paths of standard deviations recalculated with the θ at t as start-
ing parameters. Most probable path uses the θ with the highest likelihood
whilst the blue lines uses the θ with lower likelihood at t. The recalculated
path uses the more extensive calculation of starting parameters. EURUSD
with 4 states.
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(a) Full paths (b) Zoomed in paths

Figure 5.16: Path of standard deviations at t compared to a recalculated
path 50 data points forward. OMXs30 index with 3 states.

(a) Full paths (b) Zoomed in paths

Figure 5.17: Path of standard deviations at t compared to a recalculated
path 50 data points forward. OMXs30 index with 8 states.
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Figure 5.18: Estimated path of standard deviations for different numbers of
data points of generic 1 gold index in the parameter estimation. The model
used includes 8 states. The graph shows the last 150 points of all paths to
be comparable.
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Figure 5.19: Estimated path of standard deviations for different numbers of
data points of OMXs30 index in the parameter estimation. The model used
includes 8 states. The graph shows the last 150 points of all paths to be
comparable.

(a) Log Likelihood (b) Time

Figure 5.20: The logarithmic likelihood and time of execution as functions
of analysed data points of OMXs30 index, modeled with an 8 state model.
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Figure 5.21: Comparison of AIC function for different lengths of the OMXs30
index.

Figure 5.22: Comparison of BIC function for different lengths of the OMXs30
index.
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States AIC BIC
n=500 20 7
n=1000 11 6
n=1500 12 5

Figure 5.23: Table of AIC and BIC values for different lengths of OMXs30
index.

Figure 5.24: Comparison of AIC function for all data series with 1500 data
points.
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Figure 5.25: Comparison of BIC function for all data series with 1500 data
points.

States AIC BIC
OMXs30 8 15

OMXs30 gen. 1 fut 5 25
EURSEK 7 27
EURUSD 10 14
USDSEK 10 29

Eurex gen. 1 fut 3 3
US10Y gen. 1 fut 14 14

S&P 500 gen. 1 fut 18 30
Gold gen. 1 fut 8 8

Figure 5.26: Table of AIC and BIC values for different data series with all
length 1500.
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Figure 5.27: Best estimates of logarithmic likelihood with a 5-state model of
1500 data points.
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(a) EURSEK (b) EUREX

(c) USDSEK (d) OMXs30 index

(e) OMXs30 gen. 1 futures index

Figure 5.28: Converged iterations of state dependent standard deviations for
a 5-state model on 1500 data points.
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(a) EURSEK (b) EURUSD

(c) USDSEK (d) OMXs30 index

(e) OMXs30 gen. 1 futures index (f) EUREX gen. 1 euro bond index

Figure 5.29: Quantile-Quantile plot of data series against the estimated
HMM for that series.
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(a) S&P500 gen. 1 futures index (b) Generic 1 US10Y treasury note index

(c) Generic 1 gold 100 oz index

Figure 5.30: Quantile-Quantile plot of data series against the estimated
HMM for that series.
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(a) EURSEK (b) EURUSD

(c) USDSEK (d) OMXs30 index

(e) OMXs30 gen. 1 futures index (f) EUREX gen. 1euro bond index

Figure 5.31: Estimated paths of standard deviations. Most probable path
are weighted mean of standard deviations at a certain time. The red line is
the Standard deviation in the state with highest probability.
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(a) S&P500 gen. 1 futures index (b) Generic 1 US10Y treasury note index

(c) Generic 1 gold 100 oz index

Figure 5.32: Estimated paths of standard deviations. Most probable path
are weighted mean of standard deviations at a certain time. The red line is
the Standard deviation in the state with highest probability.
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Chapter 6

Analysis

This chapter includes first a section in which the findings in the previous
chapter is discussed in respect to the theories. The last section aims to
sumarize all findings done in this report.

6.1 Discussion
The first few graphs in the result section are visualizations of the plain data
that has been used in this thesis. Both Figures 5.1 and 5.2 are simply the
return of the different assets. As noticed, the graphs don’t match the number
of data points for between series. This is explained by the fact that the time
series wasn’t equally available at our source. For most of the study only the
latter 1500 data points will be used. In fact, if any other length is used this
will be noted.

As seen by Figures 5.1 and 5.2 some similarities within the time series can
be seen. This is of obviously nothing surprisingly since there often are sig-
nificant patterns within financial data. For example, we see that the 2009
financial crisis stands out quite significantly in almost all of the time series by
an increased volatility about 1000 data points from the end. Also interesting
is that we can see some volatility spikes in some of the series at 2012, about
400 data points from the end, pointing out the euro zone crisis.

Looking at the next section of figures we have gone more into the cause
of why a hidden Markov model is a good approach of modeling these time
series. Figures 5.3 and 5.4 shows a quantile-quantile plot of the time series
fitted as a normal distribution. As seen, the tails of all the time series seems
to be significantly heavier than what the model of a single normal distribu-
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tion can handle. This is also inferred by the figures 5.5 and 5.6 that shows
histograms for all data against a normal distribution. We see that the tails
are heavier than the normal model and also more concentrated around the
mean. Hence, the usage of an independent mixture model could be a good
substitute of the normal model since we would be able to concentrate much
of our density around the mean but still capture the heavy tails. Though,
the patterns in Figures 5.1 and 5.2 suggests that maybe an independent ap-
proach isn’t the best approach. Remember the fact that a dependent model
needs to be used for time series that seems to cluster. Naturally this leads
us into the family of dependent mixture models, of which HMM’s are a part
of.

By the theory, and also mentioned in the method section, we know that the
two different approaches of parametric estimation differs somewhat. None of
which is superior to the other in all aspects, e.g. the Expectation-Maximization
algorithm seems to be more stable whereas the approach of direct numerical
maximization is faster to converge. This can be seen in figures 5.7, 5.8, 5.9
and 5.10 that visualize the convergence process of the algorithms on the time
series of OMXs30 generic first futures index and generic first gold index. In
all graphs a 4-state model are used. In Figures 5.8 and 5.10 the starting
parameters for the standard deviations have been bumped to visualize how
the algorithms behave and how the σi’s converge. As seen in especially figure
5.7 the theory that estimation by DNM should be faster is supported. DNM
seemed to reach the stopping criterion quite a lot faster than the EM algo-
rithm did. The figure shows only the best run with the starting parameters
resulting in the highest logarithmic likelihood for the model. In Figure 5.8
only 6 blue lines can be distinguished even though the bump is done 10 times.
Hence, some instability in the EM is spotted in this graph. This goes also for
the DNM since we can distinguish 5 clusters of red lines in the graph. This
is also true for figure 5.10 where 6 different clusters of red lines can be seen
and since it is a 4-state model this must also be an effect of some instability.
Regarding the blue lines on the other hand all the starting values seems to
converge to the same set of parameters, suggesting stability.

In figure 5.9 the difference in convergence of logarithmic likelihood is com-
pared for one of the starting values where the estimation by DNM seems to
converge to a different value. As seen by the figure the logarithmic likelihood
converges but to a different, and lower, value. This is actually an interesting
result since it shows that if the starting parameters are not chosen wisely
the model can come to converge to a local maximum, and not the wanted
global maxima. As was mentioned in the method part we choose in respect
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to these results to look deeper into the EM algorithm since we don’t need to
take such a big account of the time issue for our, relatively, short time series
and the fact that we’re only looking at daily data. With this said though,
the instability of the two algorithms isn’t that significant for small deviations
in some of the starting parameters.

Even though the result isn’t that dependent on small differences in the start-
ing parameters, see figure 5.11 that is a graph of 40 different starting parame-
ters of the standard deviations, major changes in all starting parameters can
yield vastly different results. Some quite big alterations was done in figure
5.12 which really shows the instability if starting parameters aren’t chosen
wisely. Because of this the model that has been used in the latter part of the
results runs several tries of the EM algorithm with different starting param-
eters. The algorithm for this is a little bit naïve since it doesn’t evaluate the
different starting parameters by the resulting likelihood but only loops over
a few different pre-set parameters and some randomized ones.

The figures in 5.13, 5.14 and 5.15 are all the same but on different time
series. The approach here have been to first find a high likelihood from a big
amount of starting parameters, after which a second iteration has been done
with smaller changes in the parameters. We’ve then rolled the estimation for-
ward to model a larger time series and used the final parameters θ as starting
parameters. The extensive procedure of alternating starting parameters has
been done at t + 50 to model benchmark against. The lower pictures in all
figures are zooms of the figures above. As seen by the graphs the red line
models the recalculation better than the blue. Hence it still seems to have a
higher likelihood than the estimates done earlier. Still, it’s not a perfect fit
with the black line which means that some other starting parameters yield
a higher likelihood. Looking at the end of each red line we see that those
lines model the black line quite good, especially for the currency graphs. In
Figure 5.13 we see that before the cluster of high volatility in the end some
difference with respect to the black line is evident. Suggestible would there-
fore be to recalculate this model earlier than in 50 time steps. For all figures
the deviations seems to grow when further away from the calibration data,
hence recalibrating for all series at t+ 30 would be suggestible.

Similar to figures in 5.13, 5.14 and 5.15 are the figures 5.16, 5.17 and 5.17.
The difference is that here we don’t run the full EM algorithm at each new
calculation, instead only the transition matrix and the path are used to calcu-
late the path of the Markov chain. It can be seen as more of a semi-prediction
of the future Markov chain since we use the available data at t+ k but only
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the parameters retrieved at t without any new itearations. The patterns are
similar to the ones in the previous figures since the improvement by iteration
the algorithm from the parameters θ at t isn’t that big when the number
of values hasn’t increased significantly. For 5.16 we have used a model of 3
states whilst a 8-state model was used in 5.17. For both models it’s quite
clear that if a new iteration of the EM algorithm isn’t done the fit decreases
much faster than if we run the algorithm. Also, the time of running the
algorithm from good starting parameters is quite low.

As seen in the figure the 8-state model is more volatile since it got more
states to jump between. This is a setback when increasing the amount of
states, the likelihood is increased but the simplicity of the model is simulta-
neously decreased. If we for example have the number of states in the same
order as data points we will have a perfect fit, but a very uninteresting model.
This lies under the subject of validation the model which has been done, not
only through AIC and BIC but also through changing the number of data
points used in the model. Figures 5.18 and 5.19 shows such a comparison
of the estimated Markov chain. Here, data points from t− x to t have been
used to create the estimates. We see that by using a quite short learning
window the model becomes more volatile, which is reasonable considering it
was the same by increasing the number of states. Figure 5.20 shows that
when we uses more data the likelihood increases, but so does the execution
time of the model. Here the information criterions come into place to model
the trade of for an as effective model as possible.

Firstly the AIC and BIC in Figures 5.21 and 5.22 compares the behavior
of the information criterion in respect to the number of data points. It is
evident that at least 1000 data points should be used since the difference
isn’t linear compared to the difference between the 1000 and 1500 data point
models. Table 5.26 shows the optimal amount of states for each model. The
BIC and AIC differs quite significantly since the BIC also take the number
of elements into account. Thus, BIC is punishing the likelihood harder than
AIC for higher amounts of data points. Because of this our suggestion is to
use a 5-6 state model for a higher amount of values. Supporting this we also
have the fact that the execution time in the graph (b) of figure 5.20 isn’t
that large for these series. Figures 5.24 and 5.25 shows the different AIC
and BIC values for all time series. We also have table 5.26 that shows that
the optimal number of states is highly dependent on the type of time series.
Thus, a general HMM is quite hard to reach. Reasonably one could choose
the number of states equal to the model with the highest BIC-value. But
then, again, we’re looking at an inefficient model and even uninteresting in
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some cases. The suggestion would therefore be to have a dynamic amount of
states. The best model possible would be to first use any of the two infor-
mation criterions, preferably the BIC, and then use the calibration algorithm.

In contrast to the reasoning in the previous paragraph the last part of the
results uses the same model for all time series to get some kind of comparison
feature. A model of 1500 data points was used on a 5-state model. Figure
5.27 shows the different logarithmic likelihoods for this model on all the time
series. Looking at the size of logarithmic likelihood it is evident that some
of the series isn’t modeled optimally by only 5 states. Not too surprisingly
the Eurex bond index have the best fit, since that was the model with the
least value of BIC. This comparison is a little bit confusing though, since the
logarithmic likelihood can differ significantly with respect to the time series.
The figure 5.27 could in fact only tell us that Eurex and US10Y are series
easier to model by a HMM. Figure 5.28 shows the convergence of the models
standard deviations. Not to surprisingly the two OMX connected time series
have similar states of standard deviations. Most interesting is the EURSEK
since it seems to converge to a 4-state model. This is also the case for the
Eurex and USDSEK graphs, but not as significant as for the EURSEK. For
the Eurex series it could be caused by the fact that the optimal model for
this time series is only 3, hence a reduction of states is supported by the
BIC-value. For the other two series the 5-state model is far from the optimal
model of 27 and 29 the EURSEK and the USDSEK respectively. Thus, a
5-state model really misses some information such that a reduction of states
might not be negative for the likelihood.

The most interesting result in the thesis is the figures 5.29 and 5.30 that
plot the quantile-quantile of the data against the suggested models. These
figures show that if the estimation is done extensively quite good models can
be generated. For almost all of the data the fit seems to be perfect. The
last figures of the result section show the realization of the estimated Markov
chains. The state with highest probability, denoted by red, seems to be a
bit more volatile than that of the weighted mean of states, blue. This is in
fact not too surprising since the weighted realization models equally probable
states better. It is also evident that for some of the time series an increase
in the amount of states is needed. In some parts large clusters seems to be
disregarded.
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6.2 Conclusions
The approach of modeling financial time series with Hidden Markov Models
proved to yield a more accurate model than of only using a fitted normal
distribution. As the choice of algorithm for parameter estimation the EM
algorithm proved to be the best one for to this end. Mostly due to the fact
that the main advantage of DNM lies in the speed of convergence whilst we
where more interested in the most stable solution. We’ve also seen that the
most important factor of making an accurate HMM model is to choose the
optimal number of states. Using too few models will result in a bad fit whilst
too many will yield uninteresting models.

Regarding an implementation of a model, the best way would be to use
an extensive algorithm of estimating starting parameters monthly and use
these final parameters as the starting parameters for the days between recal-
ibration dates. If possible though, the calibration could be done more often
to provide an even better fit.

6.2.1 Future research

The most interesting expansion of this thesis would be to further look into
the prediction possibility of using HMM’s. Another natural expansion would
be to include a wider variety of distributions over the states. For example,
trend regimes could be introduced or other types of distributions and not
only normal HMM’s.

A Monte Carlo simulation approach could also be used to further evalu-
ate the prediction possibility by HMM’s. This could also be a way a more
extensive comparison of the impact different time series lengths has on the
model.

But the most interesting take to move forward would be to look into the
possibility of using implied volatility to help the model calibrate and esti-
mate.
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Appendix A

Source Code

A.1 EM-algorithm

f unc t i on [ vSP , mTP, mEP, dMV, vStd , dLL , vLLplot , vMVplot , mStdplot , mSP0plot]=EM(vData , dEpsLL , dEpsPar , i I t e r ,mTP0, vSP0 ,dMV0, vStd0 )
%de f i n i n g v a r i a b l e s & a l l o c a t i o n g space
iLen=numel ( vData ) ;
iK=numel (vSP0 ) ;
i =2;
cStTime=c lock ;
dMV=dMV0;
vStd=vStd0 ;
mTP=mTP0;
vSP=vSP0 ;
vLLplot=ze ro s ( i I t e r +1 ,1) ;
vMVplot=ze ro s ( i I t e r +1 ,1) ;
mStdplot=ze ro s ( i I t e r +1,iK ) ;
mSP0plot=ze ro s ( i I t e r +1,iK ) ;
vMVplot(1)=dMV;
mStdplot (1 , : )= vStd ;
mSP0plot (1 , : )=vSP ;
mG=fNcdf ( vData , iLen , vStd , dMV) ;
[~ ,dLL]=fFwd( mG, mTP, vSP , iLen , iK ) ;
vLLplot (1)=dLL ;
dDeltaLL=100;
dDeltaPar=100;
whi l e and ( i<=i I t e r +1, or (dEpsLL<dDeltaLL , dEpsPar<dDeltaPar ) )

mTPold=mTP;
mG=fNcdf ( vData , iLen , vStd , dMV) ;
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[mFwd, dLL]=fFwd( mG, mTP, vSP , iLen , iK ) ;
mBwd=fBwd(mG, mTP, iLen , iK ) ;
%Emission matrix updated
mEP=mFwd.∗mBwd;
mEPsum=sum(mEP, 2 ) ;
mEP=mEP./ repmat (mEPsum, 1 , iK ) ;
%Fix matr ixes Fwd, Bwd and G f o r c a l c u l a t i o n o f TPM
mFwd=mFwd( 1 : iLen , : ) ’ ;
mFwd=repmat (mFwd( : ) , 1 , iK ) ;
mBwd=mBwd( 2 : iLen +1 , : ) ;
mBwd=repmat (mBwd( : ) , 1 , iK ) ’ ;
mBwd=reshape (mBwd, iLen∗iK , iK ) ;
mG=repmat (mG( : ) , 1 , iK ) ’ ;
mG=reshape (mG, iLen∗iK , iK ) ;
%Trans i t i on matr i ce s de f ined
mTPM=repmat (mTP, iLen , 1 ) ;
mT=mFwd.∗mTPM.∗mBwd.∗mG;
mTSum=sum( reshape (sum(mT, 2 ) , iK , iLen ) ) ’ ;
mTSum=repmat (mTSum,1 , iK ) ’ ;
mTSum=repmat (mTSum( : ) , 1 , iK ) ;
mT=mT./mTSum;
mT=mT’ ;
mT=reshape (sum( reshape (mT( : ) , iK∗iK , iLen ) , 2 ) , iK , iK ) ’ ;
mOutT=repmat (sum(mT, 2 ) , 1 , iK ) ;
%New parameters de f ined
vSP=mEP( 1 , : ) ;
mTP=mT./mOutT;
%Looping iLoop−t imes to c a l c u l a t e new parameters f o r mean & std
mEP=mEP( 2 : iLen +1 , : ) ;
dMS=1000;
j =1;
dEpsMS=10^−10;
iLoop=100;
whi l e and ( iLoop>j , dEpsMS<dMS)

vIStd=1./vStd .^2 ;
dMVlast=dMV;
vStd l a s t=vStd ;
dMV=sum(sum( repmat ( vData , 1 , iK ) . ∗mEP.∗ repmat ( vIStd , iLen , 1 ) ) ) / sum(sum(mEP.∗ repmat ( vIStd , iLen , 1 ) ) ) ;
vStd=sq r t (sum( repmat ( ( vData−dMV) .^2 , 1 , iK ) . ∗mEP) . / sum(mEP) ) ;
dMS=sum( ( vStd−vStd l a s t ) .^2)+(dMV−dMVlast )^2 ;
j=j +1;
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end
vMVplot ( i )=dMV;
mStdplot ( i , : )= vStd ;
mSP0plot ( i , : )=vSP ;
vLLplot ( i )=dLL ;
dDeltaLL=(vLLplot ( i )−vLLplot ( i −1))^2;
dDeltaPar=sum( ( mStdplot ( i , : )−mStdplot ( i −1 , : ) ) .^2 ,2)+( vMVplot ( i )−vMVplot ( i −1))^2+sum(sum( (mTP−mTPold ) . ^ 2 , 2 ) , 1 ) ;
q=i ;
i=1+i ;
Elapsedtime=etime ( c lock , cStTime ) ;

end
vLLplot=vLLplot ( 1 : q , 1 ) ;
vMVplot=vMVplot ( 1 : q , 1 ) ;
mStdplot=mStdplot ( 1 : q , : ) ;
mSP0plot=mSP0plot ( 1 : q , : ) ;

% L ike l i hood=dLL
% Elapsedtime=etime ( c lock , cStTime )
% Loops=q
% dDeltaLL
% dDeltaPar
end

A.2 Forward-Backward algorithm

A.2.1 Forward-algorithm

f unc t i on [mFwd, dLL]=fFwd( vG, mTP, vSP , iLen , iK )
%Def ine re turn v a r i a b l e s
mFwd=ze ro s ( iLen+1,iK ) ;
vA=vSP ;
dLL=0;
mFwd(1 , : )=vA;
%Recurs ive forward c a l c u l a t i o n s
f o r j =2: iLen+1

%Calcu la te next Alpha
vA=vA ∗ mTP ∗ diag (vG( j −1 , : ) ) ;
%Normalize
vAsum=sum(vA) ;
vA=vA/vAsum ;
%Update re turn va lues
dLL=dLL+vAsum ;
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mFwd( j , : )=vA;
end

end

A.2.2 Backward-algorithm

f unc t i on mBwd=fBwd( vG, mTP, iLen , iK )
%Def ine re turn v a r i a b l e s
mBwd=ze ro s ( iLen+1,iK ) ;
vB=ones ( iK , 1 ) / iK ;
mBwd( iLen+1 ,:)=vB ’ ;
%Recurs ive backward c a l c u l a t i o n s
f o r j =1: iLen

%Calcu la te next Beta
vB=mTP∗diag (vG( iLen−j +1 , : ) )∗vB ;
%Normalize
vBsum=sum(vB ) ;
vB=vB/vBsum ;
%Update re turn va lues
mBwd( iLen−j +1 ,:)=vB ;

end
end

A.2.3 State-dependent distributions

f unc t i on mNcdf=fNcdf ( vData , iLen , vStd , dMV)
mNcdf=(ones ( iLen , 1 ) ∗ ( 1 . / ( vStd∗ s q r t (2∗ pi ) ) ) ) . ∗ ( exp (−((vData−dMV) .^2 )∗ ( 1 . / ( 2∗ vStd . ^ 2 ) ) ) ) ;
r e turn

end

A.3 DNM

f unc t i on [ dLL , vT]=DNM( iK , iLen , i S e r i e s , i I t e r )
[ vData ,mTP0, vSP0 ,dMV0, vStd0 ]= fBase ( iK , iLen , i S e r i e s ) ;
iK=numel (vSP0 ) ;
iLen=numel ( vData ) ;
mTP=mTP0;
vSP=vSP0 ;
dMV=dMV0;
vStd=vStd0 ;
vT=fT (mTP, vSP ,dMV, vStd ) ;
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whi le k < i I t e r+1
mG=(ones ( iLen , 1 ) ∗ ( 1 . / ( vStd∗ s q r t (2∗ pi ) ) ) ) . ∗ ( exp (−((vData−dMV) .^2 )∗ ( 1 . / ( 2∗ vStd . ^ 2 ) ) ) ) ;
vAs=ze ro s ( iLen , iK ) ;
vASum=sum(vSP , 2 ) ;
vAs (1 , : )=vSP ./ repmat (vASum, 1 , iK ) ;
dLL=vASum;
f o r i =2: iLen

vAp=mG( i −1 , : ) .∗ ( vAs ( i −1 , :)∗mTP) ;
vASum=sum(vAp , 2 ) ;
vAs ( i , : )=vAp. / repmat (vASum, 1 , iK ) ;
dLL=dLL∗vASum;

end
vAt=fAt (mTP, vSP ,dMV, vStd ) ;
vG=1/vASum∗sum(vAt , 2 ) ;
mB=mBt(mTP, vSP ,dMV, vStd ) ;
mH=1/vASum∗sum(mBT,2)+1/vASum^2∗sum(mBT,2 )∗ sum(mBT’ , 2 ) ;
vT=vT−inv (mH)∗vG;
[mTP, vSP ,dMV, vStd ]= finvT (vT ) ;
k=k+1;

end
end

A.4 AIC and BIC

%iK=3;
iLoop=50;
%i I t e r =10;
dEpsLL=10^−5;
dEpsPar=10^−5;
iKtop=30;
i I t e r =100;
vBic=ones ( iKtop , 9 ) ;
vAic=ones ( iKtop , 9 ) ;
f o r t=1:9

vData=fData ( t , 1 5 0 0 , 5 0 ) ;
iLen=numel ( vData ) ;
vLLplotRC=ze ro s ( i I t e r +1 ,1 , iKtop ) ;
vMVplotRC=ze ro s ( i I t e r +1 ,1 , iKtop ) ;
mStdplotRC=ze ro s ( i I t e r +1, iKtop , iKtop ) ;
mSP0plotRC=ze ro s ( i I t e r +1, iKtop , iKtop ) ;
f o r iK=1: iKtop
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mTP0=rand ( iK ) ;
mTP0=mTP0./ repmat (sum(mTP0, 2 ) , 1 , iK ) ;
vSP0=ones (1 , iK )/ iK ;
dMV0=mean( vData ) ;
vStd0=(1: iK )/ iK∗2∗ std ( vData ) ;

[ ~ , ~ , ~ , ~ , ~ ,dLL , vLLplot , vMVplot , mStdplot , mSP0plot]=EM(vData , dEpsLL , dEpsPar , i I t e r ,mTP0, vSP0 ,dMV0, vStd0 ) ;
vBic ( iK , t)= log ( iLen )∗(1+2∗ iK+iK^2)−2∗dLL ;
vAic ( iK , t )=2∗(1+2∗ iK+iK^2)−2∗dLL ;
iK

end
s e r i e s=t

end
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