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Abstract

In this thesis a model for predicting a person’s monthly average of
self-rated health the following month was developed. It was based on
statistics from a form constructed by HealthWatch. The model used is
a Hidden Markov Algorithm based on Hidden Markov Models where the
hidden part is the future value of self-rated health. The emissions were
based on five of the eleven questions that make the HealthWatch form.
The questions are answered on a scale from zero to one hundred. The
model predicts in which of three intervals of SRH the responder most
likely will answer on average during the following month. The final model
has an accuracy of 80 %.
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1 Introduction

In this thesis Hidden Markov Models, from here on referred to as HMMs or
HMM, are used in order to make an algorithm for prediction of a person’s one
month average of their self-rated health the following month. The model is
based on five of the eleven questions that constitute the HealthWatch form.
More about HealthWatch can be found in [1]. The HealthWatch form can be
accessed by anyone who is willing to create an account at www.healthwatch.se.
The responder will answer on a seemingly continuous scale between qualitative
measures such as very bad and very good or, very high and very low. The
responder cannot see that the scale ranges from zero to one hundred. The num-
bers between zero and one hundred are the data used to quantify the problem of
predicting self-rated health. The questions that are used to create the model are:

How do you feel right now? SRH (self-rated health)
Do you have control over your life right now?  Control

How efficient are you at work right now? Efficiency

How is your job satisfaction right now? Workjoy

How high is your work load right now? Workload

Table 1: The questions used to construct the model.

The other questions that were not used to construct the model are stated in
the table below. The scale is the same as mentioned previously.

How satisfied are you with your social life right now?
How is the job atmosphere right now?

What is your energy level right now?

How stressed do you feel right now?

How is your ability to concentrate right now?

How did you sleep last night?

Table 2: The other questions in the HealthWatch form.

These questions were not used because of impracticalities. The model based
on all questions is too complicated. This leads to long computation time which
is impractical. The complicity also makes the final predition model less accurate
since the data available is not enough the describe such a complicated model.
These problems will be explained later in the report.

This thesis will describe theory about Markov chains in section 2.1, theory
about HMMs in section 2.2 and the perfomance measurements used in section
2.3. After section 2 the approach to the problem including how HMMs are used,
how the data was used, the prediction model and the practical implementation
of the model is described. This can be found in section 3.1, 3.2, 3.4 and 3.5
respectively. Finally the performance of the model, e.g. the accuracy and



precision, and some conclusions drawn from the results can be found in section
4 and 5.

2 Theoretical background
2.1 Markov Chains Briefly

There exist different kinds of Markov processes. In this section a description of
the Markov process used in this report will be described, namely a discrete-time
Markov chain. Other types of Markov processes are neglected. More informa-
tion regarding Markov processes can be found in [2].

A discrete Markov process can move between different states, creating a
chain of events. The possible states that can occur all belong to the finite set of
N distinct states, S1, Ss,...,Sn. The Markov procces will jump from one state
to another, or jump to itself, at regularly spaced discrete time points (¢t = 1, 2,
...) with some probability accociated with the state jumped from and the state
jumped to. The actual state at time t will from here on be denoted as ¢;. An
illustration of a Markov process can be seen below in figure 1.
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Figure 1: A Markov chain with five states (labeled Sy to Ss) with selected state
transitions [3].

In equation (1) below the probabilistic definition of a Markov chain with a
current state and a predeccesor state is defined.

P(q: = Sjlgt—1 = Sisqt—2 = Sk, ...) =



P = Sjlge— = Si)- (1)

The Markov process used in this thesis is independent of time, hence the
transition probabilities can be defined as

aij = P(q = Sjlgi—1 = S;), 1 <1i,j <N, (2)
where
N
Zaij =1,a;; 2 0. (3)
J=1

The transition probabilities are usually displayed in a matrix, the transition
matrix, where a;; can be found on row %, column j. The probability of the
occurence state j = 3 given the state that occured last ¢ = 1 is a;3. This can
be found in the transition matrix, illustrated below.

a11 a2 -+ Q1n

a21 G2 -+ G2n
A pr—

Am1 Am2 Tt Amn

2.2 Hidden Markov Models

A Hidden Markov Model contains a Markov chain whose states themselves can-
not be observed, therefore these states are called hidden. However, each hidden
state emits something that can be observed. HMMs are commonly used in
speech recognition applications. More details on theory and applications with
HMDMs can be found in [3]. Below follows a definition of Hidden Markov Models.
The definition is an interpretation of the definition in [3].

A HMM has the following six characteristics:

1. The number of states in the model, N. The states are denoted as S={Sj,
SQ, . SN}

2. The number of distinct observation symbols per state, M. The symbols
are denoted as V={v1, va, ..., var}.

3. The state transition probability distribution A = {a;;} where a;; is the
same as in equation (2).

4. The observation symbol, i.e. the emission, probability distribution in state
j, B={b;(k)}, where

bj(k) = P(Or = vglge = Sj), 1< j <N, 1<k <M. (4)

5. The initial state distribution 7 = {m;}.



6. O;:s are conditionally independent given ¢y, ..., g7.

With this definition an observed sequence is
0:01702,"'7OT7 (5)

where each Oy is a symbol corresponding to one of the entries in V, see [2].
From here on the model that represents the HMM will be refered to as

A= (4, B,m). (6)

2.2.1 Transition- and emission-matrices

In this thesis A and B, mentioned in section 2.2, the transition- and the emission-
matrices are unknown. In order to find good values for A and B the maximum
likelihood of the matrices given the known emissions and the transitions is cal-
culated.

First the probability
P(O[N), (7)

is to be calculated. That is, the probability of the observed sequence of
symbols given the model A\. The most straight forward way of doing this is to
enumerate the different possible state sequences of length T'. First we consider
one such sequence:

Q= q192--.97- (8)

Here ¢; is the initial state. The probability of an observational sequence
given the state sequence stated above can be calculated as:

T

P(01Q,)) = [ P(Otlgs, ). (9)

t=1

It is assumed statistical independence of observations given the state se-
quence, hence

P(O|Q; A) = b4, (01) - by, (O2) - - - by (Or).- (10)

Using the definitions stated in equation (2) and ¢; as the initial state with
probability 7, the probability of the state sequence @ given the model A can be
written as

P(Q‘)‘) = Mgy " Qq1q2 ~ Qqaqs " " Aqr_1qr- (11)

Now the joint probability of @ and O is to be calculated. This will give
the probability that the symbols are observed and that the states have occured
simultaneously. Simply

P(0,Q[A) = P(O[Q, ) P(Q, A). (12)



In our subsequent, equation (12) is used to construct the model for prediction
of self-rated health. Given the data, equation (12) is maximized to find the
maximum likelihood values for the transition- and emission matrices A and B.
The maximum likelihood was calculated in MATLAB using the function hm-
mestimate. The function hmmestimate demands that both O and @) are known,
which is the case in this report.

The built in function in MATLAB called hmmestimate calculates the maxi-
mum likelihood values for the transition- and the emission matrices. It does so
by simply counting the number of occurences for a specific transition and emis-
sion. A transition from X to Y occurs n times out of a total of N transitions
from state X to some other state, thus the probability of the transition X to
Y is p = «. For the emissions hmmestimate counts how many of an particular
emission that is emitted from a particular state. An emission E from the state
Y occurs m times out of a total of M different emissions from the state Y. Then

the probability that emission E' is emitted from state Y is p = ;.

The function has an option of including pseudo-emissions and pseudo-transitions.
This option is used in the model in order to deal with the problem of probabil-
ities equal to zero. The option makes it possible for the user to assign a least
probability to every instance of the transition- and emission matrices respec-
tively. The implementation and theory behind the pseudo-counts is described
further in section 3.2.2.

2.3 Performance of the model

The parameters used to measure the performance of the model constructed for
this thesis are accuracy and precision.

Accuracy

Accuracy is a measurement on how often the model predicts the correct value.
For future reference; accuracy measures how often the model predicts the true
hidden state of a responder, more precisely the monthly average of a responders
self-rated health in the following month. It is calculated as in equation (13)
below.

number of true predicted states

accuracy = (13)

total number of tested objects

Precision

The precision of the model is a measurement of how concice the model is. If
the model predicts in the same way in two different cases with similar input
parameters it has high precision. If the model has high precision it predicts the
same outcome for two individuals who are feeling in the same way, based on the
HealthWatch questions. In this thesis precision was measured on each of the
three possible states. The calculation can be found below in equation (14).



number of true predicted state Xs

recision = .
P number of true predicted state Xs + false predicted state Xs

(14)

3 Method and Data

The objective with this thesis is to use Hidden Markov Models (HMMs) to make
an algorithm that forecasts how a responder rates its own health on average the
following month. Or more precisely; how a responder will answer on the ques-
tion "How do you feel right now?" on average during the following month. The
question comes from the HealthWatch form seen in table 1.

The algorithm was trained by a training set that was randomly generated
by drawing with uniform distribution from a larger totally anonymized set. The
remaining part of the larger set was then used as a test set. Here the larger
set is the usable part of the raw data. The usable part of the data is the part
where the condition of a least amount of consecutive measurements is met; this
is described in further detail below. When the algorithm’s parameters, that
resembles the parameters of an HMM, had been estimated it was tested on the
test set, which was independent of the algorithm by construction, to see how
well it performed.

3.1 Model: The definition of the hidden state

To attain the objective, the problem had to be formulated to fit the description
of an HMM. A similar problem was solved in [7] where a stocks value the follow-
ing day was predicted by modeling it as an HMM. To meet the requirements of
an HMM the problem must consist of some hidden state and some observable
emissions coming from the hidden state [3]. The hidden state, the state that
cannot be observed, was defined as the monthly average of the answer to the
question "How do you feel right now?" during the following month. The hidden
state was thus the monthly average of the future outcome of that question. The
observed variables were chosen as the answer today of the five questions seen in
table 1.

To be able to use the mathematics of an HMM in our model the emission
cannot be the answer to all five questions in table 1 separately since they have
different influence on a responders future SRH. E.g., a low value in one question
can have a good effect on SRH while a low value in another question can have
bad effect. One answer, on one question would therefore be favorable for the
model. This would however make the model very limited. The solution to this
problem is explained in section 3.2.
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Figure 2: Illustation of a HMM.

q;  Hidden state at time ¢ which in this report is self-rated health.
O; Observable emissions coming from the hidden state at time ¢

which in this report is the answers to the questions in table 1.
a;; Probability of transitioning from state ¢; = S; to state g:41 = Sj.
by,  Probability that O; = vy, is emitted from state g1 = 5.

Table 3: Description of figure 2.

In figure 2 above the hidden states and their respective emission, including
their respective time index ¢, are explained graphically. It illustates how a hid-
den state emits something that happened earlier, the answers to the questions
in the HealthWatch form. In this way the model can use the mathematics of an
HMM and therefore also the theory of the HMM can be applied to the problem
that initiated this report [7].

An illustration of how figure 2 looks in terms of the five questions in table 1
can be seen below.

States @y Q1 o)
t=1 2 3
emitting emitting
Emissions Q1,5 Q1,..5 Q1,.5
t=1 2 3

Figure 3: Illustation of an HMM with relation to the five questions.

In figure 3 one can see that ()1, which corresponds to SRH, appears in both
the upper and the lower timeline where @1 has the same value in the upper
and lower timeline for equal t:s. This is important later in the report since a
dependence arises between the state and a part of the emission, the (Q; part of
Q1,..5. SRH is modeled as the hidden state in the model described in further



detail below. The idea of the model is to use the five questions at time t, called
Q1,...5 in figure 3, and predict what the person’s SRH, called @Q); in figure 3, will
be at time ¢t + 1. In terms of HMM notation the emission O; is usually emitted
from state ¢;. This is however not suitable in our case since our state is a future
outcome. For this reason the state that emits O; will be called gy from here on.

Both the hidden states, the self-rated health, and the emissions from the
hidden states, the answers to the questions in table 1, were known when the
model was constructed. Since a hidden state is defined as self-rated health it
can be found in the data. In order to get n consecutive measurements the model
picks n+1 consecutive measurements of SRH, choosing ¢s, ..., ¢,+1 as the hidden
states for a responder who has emissions at t =1, ...n.

State emits Emission

G2 - O
qs = O
Qn+1 — On

Table 4: The HMM nomenclature for this report.

To build the model, monthly averages of the different questions, answered
on a scale from zero to one hundred, were used. When trying to predict a re-
sponder’s average self-rated health during the following month this seems like
the obvious choice.

The data had to be filtered before it could be used in MATLAB. There were
three criteria that had to be met in order for MATLAB to accept the data and
for the HMM to be valid. The criteria were:

1. Consecutive measurements for a responder.
2. Equal length of the responder’s series of measurements.
3. Real values in each measurement.

Thus the data was filtered to include responders with a minimum consecu-
tive series of measurements consisting of real values. With this filtering many
responders were disregarded, but the problem of missing data was evaded.

There exist other ways of dealing with missing data. Randomly draw from
the population with uniform distribution when a measurement is missing, inter-
polating between two data points, or simply adding the last known value as the
unknown value, are commonly used techniques. Since the measurements were
considered to be non-linear and very inconsistent none of the above techniques
were satisfactory, and therefore not used in the model.

When the data had been filtered and categorized it was imported into MAT-
LAB and inserted into the function hmmestimate where the transition- and
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emission matrices A and B were calculated. Another matrix was also calcu-
lated with this function, it is refered to as the additional matrix.

3.2 Data

As mentioned earlier an HMM consists of hidden states and emissions emitted
from those states. The HealthWatch form has eleven questions which can be
answered in a range from zero to one hundred. The answers to the questions will
be emissions from a hidden state, namely future self-rated health. The emission
has to be one variable that is emitted from the hidden state. For instance it
cannot be an array of answers to eleven questions that each influences the state
in a different way.

To resolve this problem the answers to the different questions were put to-
gether to make one unique answer. For instance if a responder answers {X,
Y, Z} the unique answer would be {XY Z}. This will however lead to many
different unique answers.

number of unique answers = n9,

n = number of answers,

q = number of questions.

The number of answers in our case is one hundred if it is assumed that only
integers can be emitted, which is true in our case. The number of questions
is eleven. This means the number of unique answers equals one hundred to
the power of eleven; 10'2. There are techniques with continuous scale on the
emissions from HMMs. To use those techniques a distribution of the emissions
has to be chosen. This was not implemented.

The discretization was constructed as intervals of the answers and the num-
ber of questions was reduced to five. The five questions were chosen on the
grounds that they are important from a health perspective. The number of
intervals was limited to three.

answer € {[0, ], (x, y], (y, 100]} (15)

The intervals’ cut-offs, x and y in equation (15), were varied to find a model
with high accuracy. To clarify, if any interval had too few observations in the
training set the accuracy would be poor for that interval. Two intervals were
tested with poor accuracy as a result. A number of intervals greater than three
would lead to too many unique answers. Too many unique answers is a problem
when the data set is not able to represent all answers. If the data set can not
represent all answers the model will have gaps in which future use of the model
will not give a correct estimate. Therefore the model that is less complicated
could be considered to give better predictions on the cost of less information
about that prediction. In practice a better model which is less complicated will
give a more certain prediction of a bigger interval. A more complicated model
would in the worst case give a prediction with very low accuracy and precision
on a tighter interval, which is undesirable.

11



3.2.1 The impracticality of many unique answers

It is quite easy to understand that a big number of different answers will be
impractical since it is desirable to observe most of the emissions in the training
set. If an emission is unobserved it will most likely be assigned probability zero
of being emitted from a state. This could be inaccurate if the training set does
not represent every possible responder.

For example:

Interval ~ 0-30 31-70 71-100
Category 1 2 3

Emission 1: 11111. Translated from {10, 15,11, 21, 30}.
Emission 2: 11112. Translated from {10, 15,11, 21,31}.

Emission 1 and 2 are here unique answers and can be seen as one number;
11111 (eleven thousand one hundred and eleven) and 11112 (eleven thousand
one hundred and twelve) respectively. When looking at the raw data of the
emissions that were translated into the unique answers (far right), one can see
that emission 1 and 2 are almost exactly the same. But the model separates
them because of the interval assignments. Furthermore, emission 1 was observed
in the training set and thus has a probability greater than zero; say p = 0.20.
Emission 2 was not observed in the training set and thus has probability zero.
It is more likely that emission 2’s real probability is p = 0.20 than p = 0 since
emission 1 and emission 2 are almost the same. Hence it is desirable to choose
the number of questions and intervals as small as possible to reduce the number
of unique answers. But reducing the number of unique answers will also render
a training set with less information compared to a training set with a greater
number of unique answers.

3.2.2 Pseudo-emissions and pseudo-transitions

To deal with the problem of an incomplete training set MATLAB has an option
when estimating the transition and emission matrices, namely pseudo-emissions
and pseudo-transitions. The idea is to add some probability to every number in
the transition and emission matrices so that no probability is set to zero.

The pseudo-emissions:

Nk + ofi
n; +a

P(O=wlg=8;) = ; (16)

where ny, ; is the number of emitted O = v, from state ¢ = .S; and n; is the
total number of emissions from state ¢ = .S;. The pseudo-counts afj, are added
to make sure that no probability is equal to zero. Some of the fis could be set

12



to zero if some events never occur in reality. « is a constant. The probability
should be normalized so that

> P(O =g = 8;) =1, for Vj.

When pseudo-emissions and pseudo-transitions are used the emission and
transition matrices will not have any entries equal to zero, given that f; > 0
for Vk and o > 0. More about pseudo-emissions and pseudo-transitions can be
found in [5].

To find all fis a plot of all emissions in the training set was made. This plot
shows how likely the emissions are and possibly which emissions that are likely
to occur but did not appear in the training set. What is likely to occur without
having observed it will be a good guess.
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Figure 4: Observed emissions from the training set.
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Figure 5: Created distribution of the pseudo-emissions.

In figure 5 the estimated distribution of the emissions can be seen. It was
created ad-hoc by using three separate normal distributions with mean and
variance chosen to fit figure 4. The idea was to adapt a continuous distribution
to the observed emission’s distribution. This distribution can now be used to
set the frs. A one on the x-axis will read a f; on the y-axis etc. These fis will
then be used in equation (16).

The pseudo-transitions:
The pseudo-transitions are calculated by the same concept as the pseudo-emissions.

m; j —+ aw;

P(q = Silg=5;) = : (17)

m; +«
where m; ; is the number of transitions to state ¢ = S; from state ¢ = 5
and m,; is the total number of transitions from state ¢ = S;. The probability
should be normalized so that

ZP(q = S;l¢g=15;) =1, for Vj

The w;s for the pseudo-transitions were chosen uniformally, i.e. all w;s got
the same value. The w;s were chosen in this way to make state one and two
more likely, these states were considered to be underrepresented in the data.

In practice the fis and the w;s will be inserted into the built in MATLAB

function hmmestimate used to estimate the transition- and emission matrices
A and B. By inserting the fis and the w;s the MATLAB function is able to

14



deal with the cases of very few or zero obsevations and as a result the matrices
A and B will no longer have any probabilities equal to zero.

3.2.3 Training set

The training set is the data used to create the model. When constructing a
statistical model such as the algorithm in this report, it is important to have
enough data. If the data set used to train the algorithm is too small the problem
of interest might not be described by the model since it does not contain all
information needed. By choosing different minimum length of the time series,
there are ways to make the training set in different sizes. With the data provided
it was possible to make a fairly large training set by reducing the amount of
consecutive measurements. This means a training set with a greater number of
responders but with fewer measurements per responder. A drawbacks rendering
from this approach is seasonal changes, i.e., the model could be biased on if
the time series is too short (less than one year). This problem was solved
by seasonally adjusting the data described in further detail below. The other
alternative was to have longer time series but fewer responders. If the time
series is conditioned to contain at least twelve consecutive measurements there
is no need for seasonally adjusting the data since all months are included.

3.2.4 Seasonal adjustment of data

The seasonal adjustment was made onto the raw data. First the monthly mean
of all responders on all questions respectively was calculated.

n
1
Hmonth,question — E § Di,month,questionv
i=1

where n=number of observations from one specific month and one specific
question.
Next the yearly mean of the answer to the specific questions was calculated.

n 12

1
Hquestion = N E E Dz’,month,questionv

i=1 month=1
where N=total number of observations from one specific question.
If there are not any seasonal trends the yearly mean of each question would
be the same as the monthly mean of each question regardless of the month
upon which the monthly mean was calculated. If this is not the case seasonal

trends are present and can be adjusted by subtracting the difference between
the monthly mean and the mean on every answer:

Dadjusted -D
i,month,question — 7i,month,question (Mmonth,question - Nquestion)~

More about seasonal adjustment on data can be found in [6].

15



3.3 Test Set

The test set is supposed to be independent of the model constructed. Thus
the model’s performance can be tested on the test set. It exist standards on
choosing how big the test set should be in relation to the training set. It is
however mostly dependent on how big the data set is to start with since a larger
test set will render a smaller training set and vice versa. In this thesis a test set
of about 150-300 responders was considered enough. The test set was chosen
at random by drawing uniformly from the bigger, anonymized usable data set
mentioned in section 3.

3.4 Prediction

When the model has been created, i.e. the transition and emission matrices
have been estimated by the MATLAB function hmmestimate, it is possible to
calculate the most likely hidden state. Remember that the hidden state is the
average self-rated health the following month.

P(gii1,q,0;) PO P P
P(qiy1|Data) = P(qi+1]qt, Or) = (gz_qlt tht) t) = ( t|qt+1p)(qt(qt0t3%) (9:) =

P(Ot|Qt+1)P(Qt+1|Qt)
P(Ot\Qt)

P(gi11|Data) = (18)

It was discovered that this approach resembles Partially Hidden Markov
Models (PHHMSs) [8]. It is however not essential what the model is called, but
rather how it performs and that the model is right in a mathematical sense.
Therefore the resemblance was not further investigated.

Here g¢41 = S; in equation (18) is the hidden state, i.e. the answer to
the question "How do you feel right now?" at ¢t + 1. ¢ = S; is the hidden
state at t, i.e. ¢ = 5; is the answer today on the question "How do you feel
right now?". It is assumed that ¢z = S;, how a person is feeling today, will
give some information on how they will feel in the future. Since this question
is answered in the HealthWatch form ¢; = S; is known today and is thus a
part of Oy = {vavpvev4(gr = S;)}. Technically we say that ¢; = S; is emitted
from ;41 = S; as an observation, it is one of the answers emitted from the
hidden state. Oy is the emission at ¢ + 1 and contains the answer to all the
questions mentioned in the introduction, including SRH at that time which in
fact is ¢; = S;. The conditional probabilities in equation (18) are all estimated
by inserting data into the MATLAB function hmmestimaste. The matrices
estimated are called, as mentioned before; the transition matrix and the emission
matrix. There is one more matrix estimated by hmmestimate that we call the
additional matrix. The additional matrix describes the dependence between the
combined answers on all five questions at time ¢, including SRH at time ¢, and
SRH at time ¢.

16



Conditional probability Matrix

P(O; = vg|qt+1 = S;), Vk,i FEmission matrix
P(q+1 = Silgt = S;), Vi,j  Transition matrix
POy = vglqe = Sj), Yk, j Additional matrix

Table 5: Conditional probabilities and their corresponding matrix.

3.5 Construction of the model in practice

To calculate the transition matrix, the emission matrices and the performance
of the model MATLAB was used. First the data was configured in Excel to
fit the description of an HMM as described in section 3.2. After that the data
was imported into MATLAB where the transition and emission matrices were
created with the built in function hmmestimate. These are the matrices that
consists of the probabilities P(O¢|gi+1), P(qi+1]q:) and P(O¢|q:). In equation
(18) the multiplication in the numerator is equal to a vector with the possible
predicted states equal to the index and the probabilities of their occurrences
respectively as entries. In fact there are nine different possible combinations.
Everyone of those combinations cannot be used since all but three combinations
render unrealistic answers such as e.g. an emission from state one and a tran-
sition to state two. It is not possible to get an emission from a state that did
not occur. In practice a matrix multiplication of P(O;|g+1) and P(gs+1|g:) was
made. The diagonal elements were then used to form the vector. The maxi-
mum of this vector will give the most likely predicted state as the index of this
probability. To find the probability, P(g:+1|Data), of this occurrence the before
mentioned probability was divided by P(O;|q;) where O; = vy, is known.

4 Results

4.1 Data filtering

The data allowed for twelve consecutive measurements. With fewer consec-
utive measurements the number of responders increase but the total number
of measurements, consecutive measurements times number of responders, does
not increase in such a way that it would be beneficial for the algorithm. More
consecutive measurements leads to too few responders.

4.2 Performance

Testing the model resulted in an acceptable accuracy of over 83 %, see table
6. The precision was, as expected, high in state three and lower in states one
and two, see table 7. The reason for this is most likely the shortage of data
in the training set, especially in the case of state one. State three has many
observations in the training set and thus high precision.

The model was tested on two different versions of the anonymized data.

One version divided the data randomly into a training set consisting of 1080
responders and a test set consisting of 269 responders. The other version divided
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the data randomly into a training set consisting of 1180 responders and a test
set consisting of 168 responders. The accuracy and precision of the two versions
were tested, the results are displayed below in table 6 and 7.

Training/Test set  Accuracy
1080 / 269 83,3 %
1180 / 168 84,5 %

Table 6: The model’s accuracy for the different data sets.

Training/Test set  State: 1 2 3
1080 / 269 Precision: 70% 50 % 89 %
1180 / 168 Precision: 75 % 59 % 89 %

Table 7: The model’s precision for the different states.

Notable in table 7 is that there only were seven observations of state one in
the top model and 3 observations of state one in the bottom model.

4.3 Emission intervals

As mentioned in section 3.2 the data had to be modified to fit the description
of an HMM. It was also desirable to take several questions into account. This
rendered a lot of unique answers that led to a simplification of the problem. The
answers to the questions in the HealthWatch form were divided into categories,
or intervals, to reduce the number of combinations, remember n?, categories to
the power of number of questions, in section 3.2. The intervals were chosen such
that each interval contained a considerable amount of responder since it is desir-
able to observe every emission. The resulting intervals and their corresponding
state are displayed below in table 8.

Category: 1 2 3
SRH: 0-39 40-79 80-100
Control: 0-39 40-79 80-100
Efficiency: 0-39 40-79 80-100
Workjoy: 0-39 40-79 80-100
Workload: 0-39 40-79 80-100

Table 8: The intervals that were chosen to reduce the number of possible emis-
sions.

4.4 State intervals

SRH, the self-rated health, in the future is what this thesis is trying to predict.
Future SRH also had to be divided into categories, intervals, in order to make
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the problem solvable with the available data. The problem is the same as
mentioned above; too many categories will not produce a usable model. The
intervals for future SRH were chosen by HealthWatch and the author of this
article together. HealthWatch chose the cut-offs such that the intervals would
have some meaning in a psycological way while the author made sure that the
intervals were not chosen in such a way that the model would be useless. That
is, if any interval is chosen to be very small or placed badly, too few observation
in that interval would be a fact and the model’s prediction capabilities in that
interval would be poor. In table 1 below the final intervals for future SRH can
be found.

State: 1 2 3
SRH-prediction: 0-39 40-60 61-100

Table 9: The intervals that were chosen to reduce the number of possible states.

4.5 State interval performance

To see how the model performed in the different intervals for future SRH the
correctly and incorrectly predicted values were counted. If the model performs
bad in a specific interval it will be observable in these numbers. In the table
below a correctly predicted state means that the model predicted state S; and
the true hidden state actually was S;, while the incorrectly predicted states
means that the model predicted S; but the state actually was something else.
To get these numbers the correct hidden states has to be available, which they
are in our case since alla data is available.

Training/Test set ~ State: 1 2 3
1080 / 269 Correctly predicted: 7 16 201
Incorrectly predicted: 3 16 26
1180 / 168 Correctly predicted: 3 13 126
Incorrectly predicted: 1 9 16

Table 10: The model performance on the different states.

These are the data on which both accuracy and precision are based on.

In table 12 below the incorrectly predicted states and their true future states
are listed. When dealing with people’s health it is in general more serious to do
a prognosis that states that a person is well when he or she is not than to state
that a person is sick while he or she is not. Therefore the most interesting num-
bers in table 12 are the ones with a one, or possible a two, as the incorrectly
predicted state. The most serious fault would then be to predict state three
while the person in reality got to state one the following month. In table 11 the
real future state’s predictions are stated in percentage. The numbers mean that
a real future values of SRH is predicted as state x, y percent of the time.
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1080/269 True state: 1 2 3
1125.0% | 23% 0%

Predicted state 21625% |61.4% | 9.3%
31125% | 364 % | 90.8 %
1180/168 1 2 3

1160.0% | 3.5% 0%
200 % | 448 % | 6.0 %
3120.0% | 51.7% | 94.0 %

[\

Predicted state

Table 11: Real future states with the percentage distribution on the states that
were predicted.

In table 11 above it is important to remember that the lower part consisting
of 1180 learning responders and 168 testing responders has fewer test responders
than the upper part; 269 responders. With smaller data sets the numbers are
less thrust worthy.

It is clear in the table above that not one single person that was in the
highest interval of SRH the following month was predicted to be in the lowest
interval of SRH. This is however, as stated earlier, not as important as the other
way around, namely to predict a high interval of SRH when the responder’s real
future SRH is in the lowest interval.

The column to the far left shows in what interval a person with real future
SRH of one was predicted to have. The upper constellation shows a high per-
centage at state two and moderatly low at state three. The lower constellation
has even higher percentage at state three, there are few responders based on
these particular figures though.

The middle column shows that a person with real SRH of two has a fairly
high percentage at three in both constellations, which is bad, and both have
very low at state one.

The column to the right shows that the model performs very good in state
three predictions. This is expected since most responders used to train the
model have had SRH corresponding to state three. Simply because most people
feel well.
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Table 12: The incorrectly predicted states and their true future states.
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5 Conclusions

It is possible to predict SRH with an algorithm based on the mathematics of an
HMM. The model can however not tell much about a persons future SRH, but
it can predict an indication of what the responders SRH will be. The intervals
for the predicted SRH are fairly wide and therefore the model points in the di-
rection of which the responder is going in terms of SRH rather then tell that the
responder will have a certain SRH one month from now. Due to the accuracy
of the model a prediction that shows a low interval of SRH the following month
should be taken seriously by the user.

There is a problem with the model’s poor precision and accuracy in state
one and two. These are the intervals that are most interesting. If a responder is
in one of these lower intervals there is a reason to be worried about their health.
Therefore the model’s poor accuracy and precision are inconvenient.

Further studies should be done to improve the model’s perfomance in interval
one and two. To sort the data to contain a higher share of people with lower
SRH could be one way of doing this. Then the model would be trained to
predict low SRH rather than SRH in general. These, low SRH, subjets could
even have the same health patterns. If they have, the model could possibly
detect if someone are falling into the same pattern as these low SRH responders
that the model is based on.
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