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Abstract

This master thesis considers and evaluates a few di�erent risk models for
stock portfolios, including an ordinary sample covariance matrix, factor mod-
els and an approach inspired from random matrix theory. The risk models
are evaluated by simulating minimum variance portfolios and employing a
cross-validation. The Bloomberg+ transaction cost model is investigated
and used to optimize portfolios of stocks, with respect to a trade o� between
the active risk of the portfolio and transaction costs. Further a few di�erent
simulations are performed while using the optimizer to rebalance long-only
portfolios. The optimization problem is solved using an active-set algorithm.
A couple of approaches are shown that may be used to visually try to decide
a value for the risk aversion parameter λ in the objective function of the
optimization problem.

The thesis concludes that there is a practical di�erence between the dif-
ferent risk models that are evaluated. The ordinary sample covariance matrix
is shown to not perform as well as the other models. It also shows that more
frequent rebalancing is preferable to less frequent. Further the thesis goes on
to show a peculiar behavior of the optimization problem, which is that the
optimizer does not rebalance all the way to 0 in simulations, even if enough
time is provided, unless it is explicitly required by the constraints.

Keywords: Cross-validation, Distribution of eigenvalues, Factor models, Port-
folio rebalancing, Risk estimation, Transaction costs
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Chapter 1

Introduction

The purpose of this thesis is to evaluate optimization routines for trading
stock portfolios with a large and �nite number of assets. Modern �nancial
institutes use optimization routines when trading portfolios in order to bal-
ance transaction costs against deviation from target function. Transaction
costs comprise of direct costs such as brokerage fees and taxes and of indirect
costs such as market impact. The target function for a stock portfolio could
be to minimize deviation from a benchmark index or to maximize projected
excess return, the so called alpha.

Global stock indices have hundreds of assets, which creates the need for
dimension reduction at optimization. A common method is to use factor
models that reduce a portfolio's stock exposures to a few factor exposures.
This thesis will use factor models and investigate how di�erent models a�ect
the optimization.

The the that will primarily be investigated are:

• Level of projected risk

• Proportion of systematic risk versus non-systematic risk

• Frequency and time horizon of rebalancing

• Assumptions in the transaction cost model

• Assumptions in the factor model

Deviation from the benchmark will be used as target function and indi-
rect costs will be assumed according to market convention.

The outline of this thesis will be as follows. Chapter 2 starts by introduc-
ing the theoretical concepts that will be used in the thesis. Factor models are
described and divided into 3 di�erent categories; macroeconomic, statistical
and fundamental factor models. Only statistical factor models are described
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closer. A way to use concepts from random matrix theory to remove eigen-
states of the covariance matrix of returns that correspond to random noise
is also described. Further the transaction cost function to be used in the
optimization is described. In chapter 3 the thesis goes on to validate and
test the performance of the di�erent approaches to estimate the covariance
matrix. The two methods used are a simulation of a minimum variance
portfolio and a cross-validation. Chapter 4 describes the simulations and
the results of these simulations. First the central optimization problem is
stated. From this a transaction cost-risk frontier is generated. Further a
simulation that rebalances the portfolio at �xed time intervals is simulated.
Chapter 5 concludes the results of this thesis.
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Chapter 2

Theoretical background

This chapter will cover the theoretical background that will be used to build,
validate and simulate the model.

2.1 Factor models

The general speci�cation of a factor model is of the form,

Rit = αi + βi1f1t + βi2f2t + · · ·+ βiKfKt + εit

i = 1 . . . N, t = 1 . . . T,

where Rit is the return of asset i at time point t, αi are the intercepts, βik
are the factor loadings, fkt are the factor realizations and εit are the speci�c
returns, that is the component of returns not explained by the k factors
chosen. A more in depth discussion on factor models can be found in many
books on portfolio management, among others in [7].

Factor models are typically divided into 3 types. Macroeconomic, fun-
damental and statistical factor models. A macroeconomic factor model uses
observable �nancial time series as factors e.g. oil prices and interest rates. A
fundamental factor model uses company characteristics as factors e.g. earn-
ings and company size. A statistical factor model is based on the statistical
characteristics of the price time series of the asset under consideration.

In order to use a factor model one must estimate the intercepts αi and
factor loading βik. Further the variances and covariances of the factor re-
alizations fkt and variances of the speci�c factors εit need to be estimated.
The factor model assumes that the speci�c returns εit are uncorrelated across
assets and time and uncorrelated with the factor realizations fkt. Further
it assumes that the speci�c returns have expected value 0. This process of
model calibration will be examined more closely further down in the sections
Macroeconomic factor model and Statistical factor model.
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Let Rt be an N -dimensional column vector representing the N asset
returns in each time step t = 1, ..., T . The sample covariance matrix of the
returns is then given by

Ω =
1

T − 1

T∑
t=1

(Rt −R)(Rt −R)′. (2.1)

Where

R =
1

T

T∑
t=1

Rt

is the sample mean. The factor model may be used to estimate the sample
covariance matrix by the covariance matrix of the asset returns modeled by
the factor model. Let Ft be a K-dimensional column vector representing the
K factor returns in each time step t = 1, ..., T . The factor return covariance
matrix is then given by,

Ωf =
1

T − 1

T∑
t=1

(Ft − F)(Ft − F)′, (2.2)

where,

F =
1

T

T∑
t=1

Ft.

Further, the covariance matrix of the speci�c risks is given by

E =


σ2spec,1 0 · · · 0

0 σ2spec,2
...

...
. . . 0

0 · · · 0 σ2spec,K

 ,

where σ2spec,k = Var(εkt). Let the matrix of factor loadings be de�ned by

B =


β11 β12 · · · β1K
β21 β22 · · · β2K
...

...
. . .

...
βN1 βN2 · · · βNK

 .

The covariance matrix of the asset returns in the factor model, that is
the factor model covariance matrix, is now given by

ΩFM = BΩfB
′ + E.

This representation of the covariance matrix allows one to decompose the risk
into two parts. The systematic risk, which is accounted for by the factors,
and the non-systematic risk, also known as the idiosyncratic risk, which is
not explained by the factors.
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2.2 Macroeconomic factor model

A macroeconomic factor model uses observable economic and �nancial time
series as factors. These factors may be oil prices, indices, interest rates,
in�ation rates. In this thesis a market model, with the SIX60 index as
only factor will be evaluated. The factor loadings of the model will be
estimated using time series regression. Another macroeconomic factor model
one could consider is the Fama-French three-factor model with the 3 factors;
the market, a factor based on market capitalization and a factor based on
book-to-market ratio. The Fama-French model will not be considered in this
thesis.

2.3 Statistical factor model

In a statistical factor model one may use the most important principal com-
ponents of the return time series as dependent variables in a regression in
order to determine the factor loadings in the model. The principal compo-
nent weights are the eigenvectors of norm 1 of the sample covariance ma-
trix Ω. They were obtained using MATLAB's built-in function pca. Let
the N principal component weight vectors of dimension N be denoted by
pi, i = 1, ..., N . The vectors pi are pairwise orthogonal. The N principal
components in each time step are now given by

fit = p′i ·Rt i = 1, ..., N.

Of these N principal component only a smaller subset will be chosen to
accomplish a dimension reduction. A method for choosing how many of the
most important principal components to include will be shown further down
in the section Random Matrix Theory. AssumeK principal components have
been chosen. For each asset i a linear regression model is then given by

Ri1 = αi + βi1f11 + βi2f21 + · · ·+ βiKfK1 + εi1
Ri2 = αi + βi1f12 + βi2f22 + · · ·+ βiKfK2 + εi2

...
RiT = αi + βi1f1T + βi2f2T + · · ·+ βiKfkT + εiT .

For each of the N assets a di�erent set of K + 1 regression coe�cients are
obtained. That is the αi:s and βik:s.

The factor model now reads,

Rt = α +B · Ft + εt t = 1, ..., T

where

α = (αi, α2, . . . , αN )′

εt = (ε1t, ε2t, . . . , εNt)
′.
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An estimation of the sample covariance matrix can now be obtained using
the sample covariance matrix of the factor realizations according to (2.2), the
regression coe�cients and the squares of the standard errors of regression.
This estimation is the covariance matrix of the returns in the statistical
factor model and given by,

ΩSFM = BΩfB
′ + E,

where E is given by the squares of the standard errors of regressions,

E =


ŝ21 0 · · · 0

0 ŝ22
...

...
. . . 0

0 · · · 0 ŝ2N

 .

One may note that the portfolio risk is split into systematic and non-
systematic risk. The term given by BΩfB

′ is the systematic risk and the
term E represents the non-systematic risk. The non-systematic risk can in
principle be diversi�ed away completely.

2.4 Random Matrix Theory

Yet another approach to estimating the covariance matrix is to use results
from random matrix theory to establish which eigenstates of the sample
covariance matrix correspond to random noise.

This approach has some similarities to the earlier statistical factor model.
The main di�erence being that a regression is not performed. A more thor-
ough description of the approach can be found in [5]. One compares the
distribution of eigenvalues of the sample covariance matrix with the distri-
bution of eigenvalues of a sample covariance matrix from purely random
noise. The sample covariance matrix of purely random noise is given by

Ωnoise =
1

T
·A ·A′,

where each element of the N×T -matrix A is given by an i.i.d N(0, 1)-random
variable. The matrix Ωnoise is of Wishart type, of which many results are
known. One known result is the distribution of eigenvalues in the limit when
N → ∞, T → ∞ and the ratio Q = T

N is held �xed. The distribution can
be found in [5]. A plot of the limiting distribution with Q = 580

1000 and a
histogram of an outcome in the case with N = 1000 and T = 580 can be
seen in Figure 2.1.

What one may notice is that there is a cut-o� level for the size of the
eigenvalues after which no more eigenvalues occur in the case of purely ran-
dom noise. This is the fact that will be exploited to remove random noise
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Figure 2.1: A plot and histogram of the limiting distribution and an outcome
with �nite N and T. Note that the y-axis only applies to the histogram and
that the plot has been scaled to �t the histogram in the y-direction.
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(a) Histogram of the eigenvalue distribution of the sample
covariance matrix. One eigenvalue is considerably larger
than the others.

(b) Histogram of the eigenvalue distribution of the sample
covariance matrix with the largest eigenvalue removed. A
scaled limiting distribution has been superimposed on the
histogram.

Figure 2.2: Histograms of the sample covariance matrix

from a sample covariance matrix. In Figure 2.1 the cut-o� occurs around
λ = 3.

For a sample covariance matrix with N = 100 and T = 58 with real
data the eigenvalue density in Figure 2.2 is obtained. The data used is
described in the section Data set of chapter 3. One may notice that one
eigenvalue is considerably larger than the others. This is the eigenvalue that
corresponds to the market as a whole. One may also notice that only the 4
largest eigenvalues seem to be inconsistent with random noise. This would
suggest that the choice of retaining these 4 largest eigenvalues to construct
the �ltered matrix should be a good idea. This method of determining
how many eigenvectors or values to retain can be employed in the case of a
statistical factor model also.

After the number of eigenstates to retain has been determined one needs
to construct the estimated covariance matrix. Since the sample covariance
matrix Ω is a symmetric matrix it allows us to express the covariance matrix
in the following form

Ω = PDP ′ =

p1 · · · pN


λ1 · · · 0

...
. . .

...
0 · · · λN


 p′1

...
p′N

 , (2.3)

where the pi:s are the eigenvectors of Ω represented as column vectors and
the λi:s are the corresponding eigenvalues. We may remove the unwanted

8



eigenstates by setting the corresponding eigenvalues to 0 in the above equa-
tion. However one does not wish to change the variance of the assets but
only remove the unwanted correlation between assets. This means that we
want the estimated covariance matrix and the sample covariance matrix to
have the same diagonal. This will lead to the following representation of the
estimated covariance matrix

ΩRMT = PKDKP
′
K + E,

where the N × K matrix PK has the K chosen eigenvectors as its column
vectors and theK×K diagonal matrixDK has the corresponding eigenvalues
on its diagonal. This is exactly equivalent to setting the eigenvalues of the
unwanted eigenstates to 0 in the equation (2.3). The diagonal matrix E
contains stock-speci�c risk and is given by the diagonal of the matrix Ω−
PKDKP

′
K .

One may notice that we have been able to divide the risk into a com-
ponent representing the systematic risk and another representing the non-
systematic risk, in a similar manner as in the statistical factor model. How-
ever we have not performed a regression in this case.

2.5 Rationale for reduction of dimension

The rationale for the reduction of dimension is that the sample covariance
matrix can be �ltered by removing the eigenstates that correspond to pure
noise [5]. These are the eigenstates that have the lowest eigenvalues and
thus the lowest risk. If these eigenstates were not �ltered out a portfolio
optimization process would be deceived into placing large weights into these
perceived low-risk eigenstates, when in reality they are merely a product of
an outcome from random noise. The dimension reduction can in fact be
seen as a type of safeguard against over�tting. Other empirical studies show
empirically that this idea of removing eigenstates corresponding to noise
from the sample covariance matrix works well and is a good idea [2].

2.6 Transaction cost function

The modeling of transaction costs is a subject that has historically been
frequently disregarded, in academia at least. It is not very di�cult to see
why this is. It is a highly complex problem that requires large amounts
of very time-accurate trading data. The end results are often unreliable
and in constant need for calibration. The data required for modeling and
calibration are often not readily available. Recently however this subject has
started receiving more attention from researchers. Perhaps due to a demand
for such models within the trading community. According to researchers at
Deutsche Bank [6], US large cap funds underperformed the S&P 500 by 40
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bps each year on average over 5 years ending June 2008, while the average
cost for US large cap trades during almost the same 5 year period was 23
bps. It is perfectly reasonable to think that an accurate understanding of
transaction costs has a major e�ect on the performance of trading strategies.

In this thesis 3 types of transaction costs will be considered, commission,
bid-ask spread and market impact.

transaction costs = commission + spread + market impact.

Commission is the simplest to model. It is simply a �xed percentage of the
value of the trade. In reality there is also a small �xed amount paid to the
custodian when assets are sold or bought. This fee is for most institutional
investors small enough to be neglected in the transaction cost model.

The bid-ask spread can in principle be tricky to model. Since one will
typically be forced to concede the entire spread if one is the initiator of a
trade and none if one is not the initiator. A reasonable assumption would
be to model the spread cost as half the percentage spread. It is assumed one
does not know beforehand whether one will be forced to initiate the trade or
if one can act as the passive party. One could therefore simply assume that
on average half of the trades are initiated trades and the other half passive.
Though another coe�cient than 0.5 will be used in this thesis, which will be
explained further down.

The market impact of trading itself is the really tricky part of the trans-
action cost function. In principle di�erent de�nitions of market impact could
be considered. In this thesis we use the de�nition of implementation shortfall
as market impact given in [8], where it is de�ned as pre-trade price minus
execution price.

Because the type of data needed to model and calibrate the market im-
pact is not available to the author of this thesis, a review of available market
impact functions was made to choose a suitable one. Many models are avail-
able, however many of them have constants that have not been calibrated,
which is what is needed in this case. There is also a trade-o� between com-
plexity of the model and the ease with which it can be used in an optimization
problem. The model that was chosen when taking into account these consid-
erations was the Bloomberg+ model [6]. The Bloomberg+ model is a ready
calibrated square-root model for market impact. The square-root model is
well-known to people involved in estimating transaction costs. It states that
the price impact in percent �gures is proportional to the square root of the
volume traded. More precisely

market impact = α · σ ·

√
V

Vdaily
,

where α is a numerical constant to be calibrated from market data, σ is the
daily volatility of the asset, V is the traded volume and Vdaily is the average
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daily volume of the asset. This model is justi�ed using the inventory risk of
a liquidity supplier in [7]. The Bloomberg+ model is given by

0.433 · S
P

+ 0.353 · σ ·

√
V

Vdaily
,

where S
P is the percentage spread. That is S is the spread and P the price of

the asset, both in units of currency. One may note that the coe�cient in front
of the percentage spread is 0.433 and not 0.5. Presumably the researchers
at Bloomberg have estimated this to give a better �t to trading data. This
can also be seen in the performance comparisons of di�erent models in [6].
The numerical constant α in the square-root model is seen to be 0.353 in
the Bloomberg+ model. Now the �nal transaction cost function that will be
used in the simulations may be written in its entirety.

transaction costs = C + 0.433 · S
P

+ 0.353 · σ ·

√
V

Vdaily
,

where C is the commission given as percentage �gure.
The transaction cost function used later in the optimization will be

ϕ(w −wcurr) =
N∑
i=1

(C + 0.433 · (S
P

)i)|wi − wi,curr|+

0.353 · σi ·

√
V alport · |wi − wi,curr|

Pi · Vi,daily
· |wi − wi,curr|,

where w is vector of portfolio weights to be held after the transaction is
complete, wcurr is the vector of portfolio weights currently held, V alport is
the value of the entire portfolio, Pi is the price of asset i, wi is the i:th
component of w and wi,curr is the i:th component of wcurr. This function is
of the form

ϕ(w −wcurr) =

N∑
i=1

(
c1,i · |wi − wi,curr|+ c2,i · |wi − wi,curr|

3
2

)
,

where c1,i and c2,i are some non-negative constants. The optimization will
be over the wi:s and the domain formed by the wi:s will be a convex set.
Since the transaction cost function is a sum of functions of the form |wi−c|p
where p ≥ 1 and c is some constant, it follows that the transaction cost
function is a convex function. The fact that the transaction cost function is
convex will be useful, since it will give a convex optimization problem which
is easier to handle than a general optimization problem.
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Chapter 3

Validation

This chapter will cover the validation of the the estimated covariance ma-
trix. The validation of the transaction cost function may very well be an
equally interesting and important endeavour as the validation of the esti-
mated covariance matrix. This is however outside of the scope of this thesis.
As mentioned earlier, the transaction cost function will be taken from the
existing literature on the matter. First the data set used in the validation
and simulation is described.

3.1 Data set

The data set used for the computations in this thesis were from the SIX60
index, which contains the 60 stocks with the highest turnover on the Stock-
holm Stock Exchange[1]. 756 data points consisting of daily price quotes
between the dates 2010− 01− 01 and 2013− 01− 01 were chosen. The price
quotes were transformed into 755 daily return. 2 of the stocks were left out
from the data set due to incomplete time series. In total this gave 755 data
points of daily returns on 58 assets from the SIX60 index.

3.2 Simulation of minimum variance portfolios

As a �rst approach to compare the performance of di�erent estimations
of the covariance matrices one may simulate minimum variance portfolios
constructed using the di�erent estimation approaches. The 3 di�erent ap-
proaches to be compared are the ordinary sample covariance matrix given
by (2.1), a covariance matrix obtained from a factor model using principal
components as factors described in the section Statistical factor model and
a �ltered covariance matrix described in the section Random Matrix The-

ory. 3 simulations of 3 minimum variance portfolios are performed. The
full sample used for the simulation consists of 755 time series of 58 di�erent
assets, as described in the section Data set. The full sample is common to
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all simulations. The simulations start at the time step t = 100 and esti-
mates the covariance matrix by the 3 approaches, respectively. The 2 largest
eigenstates are used for the factor model approach and the �ltered covari-
ance matrix. Then 3 separate fully invested minimum variance portfolios are
formed and purchased, with an initial investment of 1 units of currency. The
initial investment will not matter since the results will be given in relative
�gures. After 7 days 3 new fully invested minimum variance portfolios are
formed with the money available after 7 day in each respective simulation.
However new covariance matrices are estimated from the latest 100 time
points. That is time points from t = 8 to t = 107. This process is repeated
93 times, successively moving forward.

Figure 3.1: Simulation of 3 minimum variance portfolios. Weeks refer to a
period of 7 trading days.

A graph of the evolution of the portfolio standard deviations can be seen
in Figure 3.1. The 7-day standard deviations obtained from the simulation
are rescaled to 1-day standard deviations.The standard deviations are the
standard deviations that have accumulated so far in the simulation, that is
using all the previous returns to calculate the accumulated standard devia-
tion. One may notice that the �ltered covariance matrix and the PCA factor
model outperform an ordinary sample covariance matrix. As already stated
earlier in the section Rationale for reduction of dimension this is because
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the the ordinary sample covariance matrix allows for portfolios that are er-
roneously perceived as very low risk. The result suggests that one should not
use an ordinary sample covariance matrix to estimate the correlations and
volatility of assets when better approaches are available. There is no clear
di�erence between the PCA factor model and the �ltered covariance matrix.

3.3 Cross-validation

An other aspect of the validation of the estimated covariance matrix concerns
how stable the estimation is. Or in other words how well does an estimation
of the covariance matrix perform on a data set independent of the data set
used for the estimation. To shed some light on this matter an 8-fold cross-
validation has been performed. Almost the entire data set with 752 time
points was divided into 8 sections of equal size, according to the scheme in
Figure 3.2. The original data set consisted of 755 time points, however the
3 last time points were omitted in order to facilitate the division of the data
set into 8 equally large sections. 7 of the sections were used as the so called
training set and 1 section as validation set. This procedure was repeated 8
times, each time with a di�erent section as validation set. A more thorough
description of cross-validation can be found in many books on data analysis
[3]. A random long-only, fully invested portfolio with the constraint that no
one asset weight is more than 10 percent was chosen. That is the portfolio
weights, w = (w1, ..., wn)′, had to ful�ll

w′ · 1 = 1

w ≥ 0

wi ≤ 0.1 i = 1, ..., n,

where vector inequalities are to be interpreted as elementwise inequalities
and 0 and 1 are the vectors with zeros and ones for all elements. In each
fold the training set was used to estimate a �ltered covariance matrix with 4
eigenstates according to the scheme detailed in the section Random Matrix

Theory. Then the predicted variance of the random portfolio was calculated
according to

σ2pred = w′Ωtrainw ∈ R.

The validation set was then used to compare what the actual variation of
the returns of the same random portfolio was in the time period consist-
ing of the validation set. 50 random portfolios were chosen and the 8 fold
cross-validation was performed on each random portfolio. This resulted in
400 predictions of volatility and 400 accompanying realized volatilities. The
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Figure 3.2: k-fold cross-validation.

results can be seen in Figure 3.3. The standard deviations are daily standard
deviations.

At the same time as the predicted variation of the random portfolio
was calculated using the �ltered covariance matrix, the variation was also
predicted using the ordinary sample covariance matrix.

First one may observe that there is no big di�erent between the predicted
variances using the �ltered covariance matrix and the ordinary sample co-
variance matrix. At �rst sight this may contradict the results in the section
Simulation of minimum variance portfolios, where the �ltered covariance ma-
trix was shown to be superior to the ordinary sample covariance. However
what the �ltration does is to remove the possibility to invest in suspiciously
low-risk portfolios arising from over-�tting. This does not contradict the fact
that if we choose a portfolio at random both the �ltered and the ordinary
sample covariance matrix will typically yield about the same prediction and
thus prediction error for the portfolio in question, which is what the results
show.

The groupings or islands of data points in the scatter plots represent the
8 di�erent folds. We note that the risk is underestimated considerably in one
of the folds and overestimated in a few of them. A cross-validation was also
performed for a single market factor model. The results were not noticeably
di�erent from the �ltered matrix case. The fact that we obtain under- and
overestimations occasionally is due to the heteroscedasticity of the returns
time series, that is �uctuating volatility and correlation of the assets on the
market.
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(a) Scatter plot for the �ltered covariance matrix. (b) Scatter plot for the ordinary sample covariance matrix.

Figure 3.3: Results of 50 random portfolios used for the cross-validation.
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Chapter 4

Simulations and results

This chapter contains the simulations and results of this study. The theory
of chapter Theoretical background will be used. The central optimization
problem that is solved in this section is

minimize
w∈Rn

(w −wbench)′Ω(w −wbench) + λ · ϕ(w −wcurr)

subject to w′ · 1 ≤ 1

w ≥ 0,

where ϕ(w) is the transaction cost function described in the section Transac-

tion cost function, w is the weights to be minimized, wbench is the benchmark
weights, wcurr is the current portfolio weights, Ω is the estimated covariance
matrix and λ is an inverse risk aversion coe�cient. The reason for having
w − wcurr as the argument of ϕ(·) is that this vector contains the weights
that represent the assets that need to be either bought or sold. The vec-
tor w − wbench contains the active weights. The constraints represent the
fact that buying for more cash than is available is not allowed and that
short-selling is not allowed.

4.1 Optimization algorithm

The optimizer that was used to �nd the optimum of the considered problem
was Matlab's optimizer fmincon, which allows for constrained nonlinear mul-
tivariable functions which is the case under consideration. The optimization
algorithm that was chosen was the active-set algorithm, which uses a sequen-
tial quadratic programming method. The main advantage of this algorithm
is ease of use. For example no gradient of the objective function needs to be
supplied by the user.

One may note that the constraints are a�ne functions and the objective
function is a convex function thus the problem is a convex optimization
problem. The short proof of the following theorem can be found in [4].
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Theorem 4.1 Let xopt be a local minimizer of a convex optimization prob-

lem. Then xopt is also a global minimizer.

This theorem allows one to conclude that the minimum that is found is truly
a global minimum.

4.2 Transaction cost-risk frontier

By considering the inverse risk aversion parameterλ as a parameter that
can vary one may construct a transaction cost-risk frontier analogous to
Markowitz's e�cient frontier in the mean-variance framework. wcurr was
set to the zero vector and the benchmark and assets that were used are
the ones described in the section Data set. This describes the situation
where the portfolio consists of no assets and a re-balancing is needed to
approach the benchmark. The cash amount available for investment is set
to 10 billion SEK. At a �rst glance it may seem unnecessary to set a cash
amount available for investment since we are dealing with relative returns,
that is percentage changes, however one should note that the transaction
cost function is very much dependent on the number of stock purchased,
this is because of the market impact part of the transaction costs. The
transaction cost-risk frontier was generated with values of λ ranging from 0
to 0.2, see Figure 4.1. A �ltered covariance matrix with 4 eigenstates was
used to estimate the covariance matrix. Note that it is the active risk that
is being considered in this transaction cost-risk frontier.

Each time one wishes to re-balance one's portfolio it may be a good idea
to generate such a transaction cost-risk frontier in order to visually inspect
what the added cost for a lesser risk would be. 3 trajectories similar to
the transaction cost-risk frontier were generated using a PCA factor model
with 4 eigen-vectors. The 3 trajectories corresponding to the systematic risk,
non-systematic risk and the total active risk can be seen in Figure 4.2.

An important fact to note is that the risks are given as standard devi-
ations. This implies that one may not simply add the systematic and non-
systematic risks and expect to obtain the total active risk. Rather, under the
assumption that the systematic and non-systematic risks are independent,
we have the formula

σ2total = σ2systematic + σ2non−systematic

where the σ:s are standard deviations. This leads to the conclusion that the
contribution of the non-systematic risk to the total active risk is miniscule
compared to the systematic risk. Which one may also notice from comparing
the frontiers for total active risk and systematic risk and observing that
they almost coincide. Intuitively this makes sense since the optimization
is trying to achieve the benchmark, a reasonably well diversi�ed portfolio.
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Figure 4.1: Transaction cost-risk frontier. 0 ≤ λ ≤ 0.2. Portfolios below the
frontier are not possible to achieve.
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Figure 4.2: Transaction cost-risk frontier corresponding to systematic risk,
non-systematic risk and the total active risk. 0 ≤ λ ≤ 0.2.
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Therefore one might expect to obtain a reasonably well diversi�ed portfolio
from the optimization. It is a well-known fact that non-systematic risk can
be diversi�ed away.

4.3 Rebalancing simulation

A simulation for di�erent values of λ and di�erent frequencies of rebalancing
was performed using the data set described in the section Data set. The
covariance matrix used in the optimization problem was the one described
in the section Random Matrix theory, with 4 retained eigenstates. As already
mentioned previously, the data set consisted of 755 daily returns over a two
year period. The simulation was started at day 30 in order to have some
data to estimate a covariance matrix when the simulation was started. Thus
725 days were simulated for di�erent λ and frequencies of rebalancing. The
rebalancing frequencies were, every 250,100,50 and 20 days.

The objective of the simulation was to see how the active risk and trans-
action costs are a�ected by the choice of rebalancing frequency and lambda.
The simulation was started with a fully invested portfolio that perfectly
matched the benchmark. The initial invested capital was chosen to 10 bil-
lion SEK. In reality a deviation from the benchmark weights, that is active
risk, occurs when the portfolio obtains more cash from dividends or invest-
ments, or when the composition of the benchmark changes. In order to
simulate dividends and further investments in the portfolio a cash amount
was given to the simulated portfolio every day. The amount chosen was 10
percent of 10 billion SEK divided by 252, which is the approximate number
of trading days. This is approximately equivalent to a cash addition of 4 bps
of the initial investment a day.

A benchmark portfolio was also simulated alongside the portfolio tracking
the benchmark, in order to measure the realized active risk. The benchmark
portfolio was given an equally large initial investment of 10 billion SEK and
the same cash daily cash amount was invested in the benchmark each day
as for the tracking portfolio. However the benchmark was not made to incur
any losses due to transaction costs.

The realized active risk was measured as a daily standard deviation. That
is it was given by the sample standard deviation of the di�erence between the
daily return of the tracking portfolio and the daily return of the benchmark
portfolio. The results can be seen in Figure 4.3.

One may notice that for high λ, that is large active risk, the trajectories
for di�erent rebalancing frequencies follow each other very closely. Of course
this is to be expected, since one is rebalancing one's portfolio with a very
small amount. For lower values of λ one may notice that more frequent
rebalancing will lower the transaction costs. This is also what one would
expect, since the transaction cost function is sensitive to the trading volume.
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Figure 4.3: Active risk and the total transaction cost as a function of rebal-
ancing frequecy and λ. λ is the parameter generating the parameter curves.
0 ≤ λ ≤ 0.05.
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More frequent rebalancing reduces the need to trade large volumes.

4.4 Rebalancing a larger investment

Another question of interest is, in which way and how fast does the optimiza-
tion problem rebalance a portfolio after it receives a larger cash amount. This
case was also simulated to shed some light on the matter. The simulation was
performed on the same data set as previously. Time points with a distance of
50 days between successive time points was chosen. For each time point the
portfolio was given a cash amount of 1 and 5 percent (α = 0.01 and 0.05) of
the value of the portfolio which was 10 billion SEK. That is the portfolio was
given cash amounts of 100 million and 500 million SEK. This was done for 3
di�erent values of the inverse risk aversion coe�cient λ. The portfolio always
consisted of the benchmark portfolio before it was given the cash amount.
The results can be seen in Figure 4.4. Surprisingly one may notice that the
optimizer does not create a fully invested portfolio. The reason for this is
that there is always a cost for trading even very small amounts. The market
impact part of the transaction cost function my converge towards 0 as the
number of stocks traded decreases, however the commission and spread part
of the transaction cost function remain the same (in relative �gures). This
means that the optimizer will stop trading after it has managed to decrease
the active risk of the portfolio to a low enough level. Another thing that was
observed is that the optimizer tends to invest in high beta stocks in order
to achieve high correlation with the benchmark without having to buy too
much. An approach to remove this behavior could be to require that be fully
invested, which was not required in these simulations.
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(a) The rebalancing trajectories
for α = 0.01 and λ = 0.0005.

(b) The rebalancing trajectories
for α = 0.01 and λ = 0.001.

(c) The rebalancing trajectories
for α = 0.01 and λ = 0.002.

(d) The rebalancing trajectories
for α = 0.05 and λ = 0.0005.

(e) The rebalancing trajectories
for α = 0.05 and λ = 0.001.

(f) The rebalancing trajectories
for α = 0.05 and λ = 0.002.

Figure 4.4: The rebalancing trajectories for di�erent cash amounts α and
inverse risk aversion coe�cients λ.
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Chapter 5

Conclusions

The results of this thesis suggests that it does matter how one chooses to
estimate the risk in ones model if one is going to use the risk estimate for
optimization purposes. The ordinary sample covariance matrix was shown
not to perform as well as the other models investigated. There does not seem
to be a big di�erence between the two approaches called Random Matrix
Theory and PCA Factor Model. However if one is using the risk estimate for
risk projection purposes the results suggest that it does not matter which of
the risk estimates investigated in this thesis one chooses. It is shown that
many of the eigenstates of the ordinary sample covariance matrix correspond
to the eigenstates of a covariance matrix obtained from pure noise. A few
of the eigenstates corresponding to the largest eigenvalues can be considered
meaningful and can in some cases be interpreted as explicit factors driving
the market, e.g. the market factor or a grouping of the market by sector.

It was also shown that the optimization problem of balancing risk against
transaction costs with the Bloomberg+ model as model for transaction costs
leads to a convex optimization problem. This optimization problem is readily
solvable using standard optimization tool kits in Matlab.

It was shown in the rebalancing simulation that for the rebalancing fre-
quancies that were simulated a more frequent rebalancing will lead to lower
transaction costs for the same level of active risk. This is because one is
loosing trading volume for every trading day that the portfolio has an active
risk and is not being rebalanced. That is the portfolio manager wishes to
keep his or her participation rate as low as possible in order to obtain lower
transaction costs.

The transaction cost model behaved a little bit di�erently from what one
might suspect before a closer examination. The results suggest that it will
make the optimizer invest a lot on the �rst day after receiving a larger cash
amount, and much less on the following days. It will also not invest all of the
received cash into stocks but rather try to reduce the active risk by investing
in high beta stocks. This may not always be the behavior one is trying to
achieve.
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