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Abstract

It is well known that the inflation linked breakeven inflation, defined as the difference between a
nominal yield and an inflation linked yield, sometimes is used as an approximation of the mar-
ket’s inflation expectation. D’Amico et al. (2009, [5]) show that this is a poor approximation for
the US market. Based on their work, this thesis shows that the approximation also is poor for the
Swedish bond market. This is done by modelling the Swedish bond market using a five-factor
latent variable model, where an inflation linked bond specific premium is introduced. Latent
variables and parameters are estimated using a Kalman filter and a maximum likelihood esti-
mation. The conclusion is drawn that the modelling was successful and that the model implied
outputs gave plausible results.
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mation, Stochastic calculus





Acknowledgements

We would like to thank our supervisor at KTH Mathematical Statistics, Henrik Hult, for great
feedback and guidance. We would also like to thank Mats Hydén, Chief Analyst at Nordea
Markets, for introducing us to this interesting subject and for his many thoughtful insights.

Stockholm, May 29, 2014

Magnus Bergroth and Anders Carlsson

v





Table of Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Practical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Initial Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical Background 7
2.1 Government Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Price and Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Swedish Interest Rate Market . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Drivers of Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 State Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Observation Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Log-likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Log-likelihood Function and The Kalman filter . . . . . . . . . . . . . . . 20

2.5 Stochastic Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Stochastic Differential Equations (SDE) . . . . . . . . . . . . . . . . . . . 22
2.5.2 Stochastic Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 Risk Neutral Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.4 Change of Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.5 Affine Term Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.6 Example: Bond Pricing (Vasicek dynamics) . . . . . . . . . . . . . . . . . 26

3 Model 27
3.1 Nominal Yields and Nominal Bond Prices . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Inflation Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Real Yields and Real Bond Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Breakeven Inflations and Inflation Risk Premiums . . . . . . . . . . . . . . . . . 30
3.5 Inflation Linked Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Data 33
4.1 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Nominal- and Inflation Linked Yields . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Consumer Pricing Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



5 Method 37
5.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Numerical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 State Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Results 41
6.1 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Model Fit Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.3 Decomposition of Variances . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.1 Estimates and Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.2 Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Analysis 59
7.1 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.1 Inflation Linked Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1.2 Breakeven Inflations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1.3 Inflation Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.1 Decomposition Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.2 Inflation Expectation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.3 Drivers of the Liquidity Premium . . . . . . . . . . . . . . . . . . . . . . . 62

7.3 Final Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A Model Derivations 65
A.1 Latent Variable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Inflation and the Real Pricing Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.3 Nominal and Real Bond Prices and Yields . . . . . . . . . . . . . . . . . . . . . . 67
A.4 Inflation Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.5 Linker Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 79

viii







CHAPTER 1

Introduction

This chapter will cover a short background for the main subject of this thesis, with the intention
to give the reader an understanding of the topic at hand.

In Section 1.2 the problem formulation will be given. In Section 1.3 the implementation of
the used model will be explained. In Section 1.4 an initial study will be performed giving an
impression of the later introduced liquidity premium in the inflation linked bond market. Finally
in Section 1.5, the outline for the thesis will be given.

1.1 Background

In the article Tips from TIPS: the informational content of Treasury Inflation-Protected Security
prices (D’Amico, Kim & Wei 2010, [5]) the scientists Stefania D’Amico, Don H. Kim and Min
Wei are trying to model the US inflation linked bond market using a five factor model in the
no arbitrage framework. They introduce an inflation linked bond specific liquidity premium,
defined as the difference between the inflation linked yield and the real yield. State variables
and parameters are estimated using a Kalman filter in combination with a maximum likelihood
estimation. Further, they show that by including the inflation linked bond specific liquidity
premium, their results are considerably improved.

One of many conclusions that can be drawn from their work is that the inflation linked
breakeven inflation, defined as the difference between a nominal yield and an inflation linked
yield, falsely has been used as a measure of the market implied inflation expectation, see [1].
Furthermore, they present many interesting yield decompositions from which the correlation
structure in the bond market can be analysed.

Based on the above mentioned article, see [5], it is therefore interesting to investigate whether
a model including an inflation linked liquidity premium can be used to model the Swedish market
for inflation linked bonds.

1.2 Problem Formulation

The aim of this thesis is to investigate the possibility of fitting a model, including an inflation
linked specific liquidity premium, to the Swedish bond market, as was done for the US bond
market in the article Tips from TIPS: the informational content of Treasury Inflation-Protected
Security prices (D’Amico, Kim & Wei 2010, [5]).

1.3 Practical Implementation

This section provides an overview of how the model, Model L-II given in the above mentioned
article [5], practically was implemented to the Swedish market.
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Chapter 1. Introduction

It was of great importance to break down the very extensive article into its pieces. After this
was done, the main steps could be identified and a roadmap for the thesis could be laid out. The
following points were set up and performed during the thesis.

1. Identify the separate parts of the market that needed to be modelled (the real part, the
nominal part, the inflation linked part etc.), see Chapter 3. Also, the corresponding solu-
tions or systems of ODE:s (later needed to be solved numerically) had to be identified.

2. Identify the needed data, see Chapter 4.

3. Perform an initial study on the Swedish market, see Section 1.4.

4. Derive the solutions or the later numerically solved ODE systems. These derivations are
given in the appendix, see Appendix A. The derivations were performed to further under-
stand the implications of the different model assumptions.

5. Derive the state space model, containing the separate models for each part of the market
that was modelled, see Section 2.2.

6. Derive the needed components in both the predication and the update phase of the Kalman
filter, see section 2.3. The Kalman filter was later used to estimate the state variables.

7. Derive the multivariate log-likelihood function later used to estimate the parameters, see
Section 2.4.

8. Implement the Kalman filter and the maximum likelihood estimation into Matlab, as well
as all introduced parameters and the corresponding solutions and systems of ODE:s. In
this implementation it was of great importance to find numerical methods which correctly
could solve this particular problem, see Section 5.3. Further, since all introduced model
parts could not be solved analytically, an ODE solver was needed to be implemented. The
Matlab implementation was very time consuming since there were so many different parts
that needed to be implemented and fully working together.

9. When the estimation was performed and all parameters and state variables had been given
values, the results could be produced, see Chapter 6, using the assumed model relations,
see Chapter 3.

1.4 Initial Study

Before going deeper into the subject, it seems reasonable to perform some initial studies aimed to
investigate whether there is any evidence for the presence of a liquidity premium in the Swedish
inflation linked bond market.

Regression Analysis

Before the analysis can be done it needs to be stated that the Swedish inflation linked bonds
also are referred to as linkers.

The first analysis is done by running a simple regression. Further, some definitions are needed.
The linkers breakeven inflation and the true breakeven inflation are defined as

yBEI,Lt,τ = yNt,τ − yLt,τ and yBEIt,τ = yNt,τ − yRt,τ , (1.1)

respectively, where yNt,τ is the nominal yield, yLt,τ is the inflation linked yield and yRt,τ is the real
yield.

When analysing the inflation, the market often uses the linkers breakeven inflation as a proxy
for the true breakeven inflation. Based on this, which will be further discussed below, it can be
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1.4. Initial Study

interesting to run a simple regression of the 10-year linkers breakeven inflation onto the 3-month,
2-year and 10-year nominal yields, including a constant, given as

yBEI,Lt,τ = α+ β1y
N
t,0.25 + β2y

N
t,2 + β3y

N
t,10 + et. (1.2)

The nominal yield at time t with maturity at time t+ τ is defined as follows,

yNt,τ = yRt,τ + It,τ + ℘It,τ , (1.3)

where yRt,τ is the real yield, It,τ is the inflation expectation and ℘It,τ is the inflation risk premium.
Therefore, by assuming that the linkers breakeven inflation is an acceptable proxy for the

true breakeven inflation, giving that the two expressions in (1.1) are equal, and using the above
decomposition of the nominal yield, some interesting results can be produced. By this assumption
the left hand side of the regression in (1.2) would simply be a sum of the expected inflation and
the inflation risk premium

yBEI,Lt,τ = yBEIt,τ = yNt,τ − yRt,τ
⇔

It,τ + ℘It,τ = α+ β1y
N
t,0.25 + β2y

N
t,2 + β3y

N
t,10 + et. (1.4)

Then, since both the expected inflation and the inflation risk premium are included in the nominal
yields, one would expect a high R2-value when running the above given regression.

Statistics from running the regression on both daily values and daily changes are given in
Table 1.1. Noticeable is that the R2 equals 0.66 for the regression using daily values and 0.71
for the regression using daily changes. This can be compared to a regression of a nominal yield,
or its daily changes, onto other nominal yields, or their changes, which gives R2:s in the region
0.95 − 0.99. Therefore, these R2 values suggest that there are some other factors, not included
in the nominal yields, that partly determine the level of the linkers breakeven inflation.

Table 1.1: Regression Analysis

Coefficients R2

Constant 3-month 2-year 10-year
Daily Values

0.0106 -0.0002 0.0868 0.2072 0.6553
(0.0002) (0.0120) (0.0178) (0.0117)

Daily Changes
0.0000 -0.0060 -0.0496 0.5952 0.7111
(0.0002) (-0.0060) (-0.0496) (0.0117)

Principal Component Analysis

The second analysis is a principal component analysis of the cross section of the nominal yields
and the inflation linked yields. The data set used in this analysis comprises nominal yields with
maturity 3- and 6-months and 1-, 2-, 4-, 7- and 10-years and inflation linked yields with maturity
5-, 7- and 10-years.

Before considering the results, given in Table 1.2 and Table 1.3, it is worth mentioning the
interpretations of the first three principal components of a nominal yield curve:

• PC1 - The level of the yield curve

• PC2 - The slope of the yield curve

• PC3 - The curvature of the yield curve

3



Chapter 1. Introduction

Further, it is well known that the first three principal components can explain most of the
variations in the nominal yield curve, see [6].

Table 1.2 provides the aggregated variations explained when adding each principal component,
for two different data sets. Firstly, a set containing the nominal yields and secondly a set
containing both the nominal yields and the inflation linked yields. In Table 1.2 it can be seen
that the first three principal components, for the first data set, together explain most of the
variations in the nominal yields. Then, if looking at the result for the second data set, when the
inflation linked yields are added to the nominal yields, it can be seen that a fourth component
is needed to explain the same amount of variations as three components did for the first data
set. It is therefore possible to draw the conclusion that there is something in the inflation linked
yields that is not contained in the nominal yields.

Table 1.2: Variance Portion Explained by Principal Components

Principal Component Nominal Yields Only Nominal & Linkers Yields

1st 0.711 0.690
2nd 0.899 0.855
3rd 0.955 0.914
4th 0.978 0.956

Then since the interpretations of the nominal principal components are well known, it could
also be interesting to get an impression of the interpretations of the principal components for
the second data set. One way of doing this could be to evaluate the correlations between the
principal components for the two data sets. Then, based on the similarity of the sets, if two
components would have a high correlation it would seems reasonable to give these components
the same interpretation, see [5].

Table 1.3 provides the correlations between the principal components of the two data sets.
Based on the argumentation in the previous paragraph, it can be noticed that the first and the
second components, of the different data sets, are highly correlated and therefore can be given
the same interpretations. Further, the third component of the second data set has a fairly high
correlation to the third component of the first data set. Still, it is not of the same magnitude
as the correlations between the first and the second components, for the respective data sets.
Therefore it can not be concluded that the third component of the second data set can be given
the same interpretation as the third component of the first data set. Also it can be seen that the
fourth component of the second data set has a higher correlation to the third component of the
first data set, than the third component of the second data set has. Still, the third component
of the second data set explains a larger portion of the variations in the second data set.

Therefore, it can be concluded that the third component of the second data set seems to
contain some factor that is not present in any of the first three components in the first data set.

Table 1.3: Correlation of Principal Components

Nominal & Linkers Yields
PC1 PC2 PC3 PC4

Nominal PC1 0.993 -0.052 -0.093 0.052
Yields PC2 0.038 0.991 -0.117 0.055
Only PC3 0.020 0.030 0.629 0.776

PC4 -0.002 -0.002 -0.015 0.008
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1.4. Initial Study

A Linker Specific Liquidity Premium

Based on the previous section there is evidence pointing in the direction that there is something
except for the nominal yields that determines the levels of the inflation linked yields.

In the earlier mentioned article, see [5], the authors investigated the presence of a liquidity
premium in the US inflation linked bond market. During their chosen time period they could
identify a large steady growth in both the total outstanding- and transactional volumes in the
US inflation linked bond market. Hence they concluded that the liquidity conditions clearly had
enhanced during their chosen time period. Consequently the extra premium could be viewed
primarily as a liquidity premium, even though some other potential factors also were mentioned.
Based on this insight they chose to use a deterministic trend when modelling the liquidity pre-
mium in one of their introduced models. This model was later shown to be their best model.

Based on their results it is of great interest to look at the total outstanding- and transactional
volumes in the Swedish inflation linked bond market, visualized in Figure 1.1. The conclusion can
be drawn that the liquidity conditions did not improve significantly during the period between
2005-2014. Therefore, it cannot be argued that the other factors mainly can be identified as a
liquidity premium, as was done for the US market.

Still, in the US article they were trying to fit more than one model. Among those models, one
had the same characteristics as the above mentioned model, except for the deterministic trend.
Also when using this model a significant liquidity premium could be identify for the entire time
period.

To simplify the estimation, the sample period in this thesis was chosen to not include any
deterministic trend and therefore the model excluding the deterministic trend in the liquidity
premium was chosen. In the US article this model is referred to as Model L-II.

Thus, even though liquidity might not be the only reason for having an inflation linked bond
specific premium in the Swedish bond market, the earlier introduced notation, the liquidity
premium, will be used throughout this thesis.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
0

20

40

60

(a) Monthly Turnover Linkers (billion Swedish kronor)

 

 
Data 3rd Degree Pol. Fit

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
100

150

200

250
(b) Outstanding Linkers (billion Swedish kronor)

Figure 1.1: Linker Transaction- and Outstanding Volumes
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1.5 Outline

The thesis will further be divided into seven separate parts.
The first part is a theoretical background, see Chapter 2, giving the needed theory to easily

understand the later introduced models and the upcoming estimation methodology.
The second part contains the used model, see Chapter 3. In this chapter all model assump-

tions are stated and the corresponding parameters are introduced. Also, solutions or ordinary
differential equations to all separate models are given.

The third part, see Chapter 4, gives the reader some insight into the used data and how some
of the data samples are produced.

The fourth part renders the used method, see Chapter 5. Here the parameter estimation
procedure is presented as well as how one numerically estimates the corresponding state variables.

The fifth part is where all the results are given, see Chapter 6. Among those, parameter
values are given as well as graphical decompositions of the introduced yields.

In the sixth part the results are analysed and interpretations are given, see Chapter 7. Further,
conclusions are drawn with the main focus to answer the earlier stated problem formulation.

The seventh part is an Appendix, see Appendix A, where all formula derivations are given
separately.

6



CHAPTER 2
Theoretical Background

This chapter is aimed to give the reader sufficient theory to later understand the introduced
model, given in Chapter 3, and the method used for estimating the state variables and the
parameters in Chapter 5. Hence, the theoretical background should be considered as a tool for
understanding these chapters and not as containing an adequate given theory on its own.

First, an introduction to the Swedish government bond market will be given, including a
short review on the relation between the yield and the price of a bond.

Secondly, the state space model equations will be derived, followed by an introduction to the
Kalman filter and the associated log-likelihood function.

Finally, a part with stochastic calculus theory will be given.

2.1 Government Bonds

This section provides a brief background on how to calculate yields of nominal- and inflation
linked government bonds. There is also a summary of the Swedish interest rate market and the
drivers of its yields.

2.1.1 Price and Yield

Below a discussion is given about the relationship between price and yield for nominal- and
inflation linked government bonds.

Nominal Bonds

A bond can be traded either on price or yield. A fixed coupon nominal bond is issued at par
value with fixed yearly coupons. During its term to maturity the bond is traded in the market
and thus the bond price can deviate from its par value. Given a market price of a nominal fixed
coupon bond, PNt , the market implied nominal yield to maturity, yNt , can be calculated using
(2.1). The yield can then be used when comparing two separate bonds. For simplicity (2.1) is
accurate for yield calculations instantly after a coupon payment, otherwise one would have to
compensate for accrued interest rate,

PNt =
Ct+∆t1

(1 + yNt )
∆t1

+
Ct+∆t2

(1 + yNt )
∆t2

+ ...+
Ct+∆tn

(1 + yNt )
∆tn

, (2.1)

where t is the present time and ∆t1,∆t2, ...,∆tn are the times from t to the respective future
fixed cash flows Ct+∆t1 , Ct+∆t2 , ..., Ct+∆tn .

Inflation Linked Bonds

Inflation linked bonds, also called linkers, promise to protect the investors purchasing power,
whereby the coupon payments are linked to the inflation. Thus the size of the coupons are

7



Chapter 2. Theoretical Background

adjusted in line with the increase or decrease of the inflation. Therefore it repays the bondholders’
principal in an amount that maintains the purchasing power of their original investment, see [6].

The main difference between the nominal bond and the inflation linked bond, when calculating
the yield, is that an index factor is multiplied to the right hand side of (2.1), thus

PLt = It ·

(
Ct+∆t1

(1 + yLt )
∆t1

+
Ct+∆t2

(1 + yLt )
∆t2

+ ...+
Ct+∆tn

(1 + yLt )
∆tn

)
, (2.2)

where PLt equals the market price of the inflation linked bond. The index factor It expresses
the change in the Swedish consumer pricing index as the quote between the index level at the
present time t (reference index) and the index level at the issuance time 0 (base index), given as

It =
Ref.index

Base.index
=
CPIt
CPI0

.

Thus the present yield to maturity for an inflation linked bond is given by solving (2.2) for yLt .
Notice that the yield to maturity in (2.1) and (2.2) need to be solved numerically (unless there
is only one payment left).

The yield curve, as a function of time to maturity, is given if the yield is calculated for each
outstanding bond within an asset class, for example government bonds, and thereafter interpolate
between these yields.

2.1.2 Swedish Interest Rate Market

The main instruments in the Swedish fixed income market are:

• Government Bonds

• Covered Bonds

• Derivatives

Swedish government bonds are issued by the Swedish national debt office that uses the bonds to
finance the government’s debt. Typical holders of these assets might be pension funds, mutual
funds, foreign central banks or hedge funds.

Government bonds are distributed over different debt classes, where nominal bonds and
inflation linked bonds are two of them. As of today there are 10 nominal and 6 inflation linked
issues traded in the market with different maturities up to 30 years. As a percentage of the total
outstanding volumes of Swedish government bonds, the target is to have a diversification of:

• 60 percent in nominal bonds

• 25 percent in inflation linked bonds

• 15 percent in foreign currency bonds

Credit rating is an important aspect that affects the yield level of a bond. A credit-rating is an
evaluation of the credit-worthiness of a debtor. Ratings are provided from credit rating agencies
such as Standard & Poor’s and Moody’s for companies and governments, but not for individual
consumers. The evaluation gives a judgement of a debtor’s ability to pay back the debt and
the likelihood of default. Thus one can say that credit rating is a tool to evaluate the risk of a
counterpart. By investing in Swedish government bonds with the highest possible credit rating
(AAA), one can consider the investment as "risk-free" and the credit risk is therefore considered
to be close to negligible. Instead there are other risk factors that are having larger impact on
the yield levels of Swedish government bonds, some of these factors are discussed below.

8



2.1. Government Bonds

2.1.3 Drivers of Yields
The Swedish central bank, Riksbanken, is the anchor of the Swedish yield curves since it de-
termines the level of the short rates by adjusting the repo rate. Drivers of yields vary among
different maturities but they still correlate to a large extent. The following part in this section
will give a brief background on some of the factors that might drive the yields across the different
maturities and asset classes.

Front-end yields are ranging in maturities up to approximately 3 years. Drivers of front-end
yields might be domestically rate expectations which reflect the anticipated macro development
in the years to come. Further, the international outlooks affect small open economies, such as
Sweden, to a very large extent. For instance, the dependency on foreign policy can materializes
through the exchange rate channel. Thus decisions that for example are delivered by the Euro-
pean central bank will spill over to the Swedish economy. Liquidity- and bank risk factors also
affect the spread between the repo rate and the 3-month Stockholm interbank offered rate. As of
the financial crisis in 2007-2008 and the default of Lehman Brothers, these kind of spreads have
increased considerably and have been a game-changer for the front-end valuation.

Long-end yields are considered to be those with maturities longer than the short-end yields.
One of the drivers of long-end yields is the policy rate cycle. It does not have instant effect as
for the short-end yields, but it sets the direction for the long-end yields. Other factors that are
linked to the long-end might be; supply of bonds, equity performance, general perception of risk
and quantitative easing.

Yield curves are often judged by comparing yields of different maturities, for example the
yield spread between a 2-year and a 10-year government bond. A steep and upward sloping
yield curve generally indicates future economic improvement and vice versa. A driver of the
yield curve might be the policy rate cycle. Yet again, Sweden is a small open economy and the
shape of the yield curve is strongly correlated with foreign yield curves. These curves are in turn
driven by their respective policy cycles, view on risk premiums, quantitative easing and economic
forecasts. Thus there are several factors, both domestically and foreign, that drive the Swedish
yield curves.

Further, a yield spread is the difference between yield levels of different yield curves, for
example government bonds versus covered bonds (mortgage spread), government bonds versus
swap rates (asset swaps) and corporate bonds versus government bonds (credit spreads). A yield
spread can be used as a measure to identify if a curve is rich or cheap in comparison to another
yield curve. Drivers of the yield spreads might be; relative liquidity risk and credit risk between
the curves, supply and demand factors, yield pick-up (rich/cheap) and risk appetite.

Conclusions

The bottom-line from the past section; Swedish government bond yields are affected by several
factors and among these liquidity is one of the drivers. High liquidity implies smaller liquidity
risk that lowers the yields and vice versa. But equally well, there are other factors that also
influence the yields to a very large extent. Thus it would be naive to direct all characteristics
of the resulting liquidity premium, in this thesis, to precisely liquidity without also taking other
factors into concern.

The reader should bear this in mind when approaching the results in this thesis. This is
further discussed in the result- and analysis chapters, see Chapter 6 and Chapter 7.
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Chapter 2. Theoretical Background

2.2 State Space Model

The model construction and its assumptions are motivated in the model chapter, see Chapter 3,
and this section will give a background on how the model is being discretized and transferred to
state space form.

A state of a dynamic system refers to the minimum set of variables (state variables) that
can describe all dynamics of the system and its outputs at a given time. The mathematical
description of a system’s dynamics can be expressed through a number of first order differential
equations, also referred to as the state equations. These state equations, when discretized, can
be written on matrix form and thus yield the matrix state equation, derived in Section 2.2.1.
The outputs of the system are given by the vector observation equation. The vector observation
equation is a linear combination of the state variables, including an additive error term, that is
assumed to equal the observed data, measured with error, derived in Section 2.2.2.

2.2.1 State Equation
The later introduced model consists of three stochastic differential equations that describe the
model dynamics through the latent variables qt, xt = [x1, x2, x3] and x̃t. These differential
equations are later defined by (3.11), (3.1) and (3.36), but are here being restated.

The one-dimensional stochastic differential equation of the logarithmic price level process,
(3.11), takes the form

dqt = d(logQt) = π(xt)dt+ σ′qdB
P
t + σ⊥q dB

⊥,P
t

=

{
(3.12), π(xt) = ρπ0 + ρπ1

′xt

}
= ρπ0dt+ ρπ1

′xtdt+ σ′qdB
P
t + σ⊥q dB

⊥,P
t , (2.3)

where ρπ0 and σ⊥q are constants, ρπ1 and σq are constant vectors, BP
t is a three-dimensional vector

of Brownian motions and B⊥,Pt is a Brownian motion such that dBP
t dB

⊥,P
t = 0.

The three-dimensional stochastic differential equation that drives the real yield, the nominal
yield and the expected inflation, (3.1), is given by

dxt = K(µ− xt)dt+ ΣdBP
t , (2.4)

where µ is a constant vector and both K and Σ are constant matrices.
The one-dimensional stochastic differential equation (3.36) that, together with (2.4), drive

the liquidity spread follows a Vasicek process, given as

dx̃t = κ̃(µ̃− x̃t)dt+ σ̃dB̃Pt , (2.5)

where κ̃, µ̃ and σ̃ are constants and B̃Pt is a Brownian motion such that dBP
t dB̃

P
t = 0.

The model drivers (2.3), (2.4) and (2.5) are stated in continuous time but the observations
are given on discrete time steps, thus these equations are being discretized. The discretization
step, dt = h, coincide with the time between two subsequent observations. The Euler forward
method is used for the discretization; when applied to (2.3), (2.4) and (2.5) it gives that

qt − qt−h
h

= ρπ0 + ρπ1
′xt−h + σ′q

BP
t −BP

t−h
h

+ σ⊥q
B⊥,Pt −B⊥,Pt−h

h

= ρπ0 + ρπ1
′xt−h + σ′q

ηt
h

+ σ⊥q
η⊥t
h

(2.6)

xt − xt−h
h

= K(µ− xt−h) + Σ
BP
t −BP

t−h
h

= K(µ− xt−h) + Σ
ηt
h

(2.7)

x̃t − x̃t−h
h

= κ̃(µ̃− x̃t−h) + σ̃
B̃Pt − B̃Pt−h

h
= κ̃(µ̃− x̃t−h) + σ̃

η̃t
h
, (2.8)
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2.2. State Space Model

where, by the definition of Brownian motion, see Section 2.5.1, ηt ∼ N(0,1 · h), η⊥t ∼ N(0, h)
and η̃t ∼ N(0, h).

Equations (2.6), (2.7) and (2.8) can respectively be solved for qt, xt and x̃t:

qt = ρπ0h+ qt−h + ρπ1
′hxt−h + σ′qηt + σ⊥q η

⊥
t (2.9)

xt = Kµh+ (I−Kh)xt−h + Σηt (2.10)
x̃t = κ̃µ̃h+ (1− κ̃h)x̃t−h + σ̃η̃t (2.11)

The discretized model dynamics are given by equation (2.9), (2.10) and (2.11). These equa-
tions can be written on matrix form, giving the matrix state equation

x?t = Gh + Γhx
?
t−h + ηx

t , (2.12)

where

Gh =

 ρπ0h
Kµh
κ̃µ̃h

 , Γh =

 1 ρπ1
′h 0

0 I−Kh 0
0 0′ 1− κ̃h

 , ηx
t =

 σ′qηt + σ⊥q η
⊥
t

Σηt
σ̃η̃t

 ,
in which ηt, η⊥t and η̃t are independent of each other and where the state vector x?t is defined by

x?t =

 qt
xt
x̃t

 .
For easing the notation, the ? will be dropped from x?t and the state vector will be written as xt
from this point until the end of Section 2.4.

2.2.2 Observation Equation

The set of observations are being specified as;

YN
t =

[
yNt,3m yNt,6m yNt,1y yNt,2y yNt,4y yNt,7y yNt,10y

]′
,

which are the nominal yields,

YL
t =

[
yLt,5y yLt,7y yLt,10y

]′
,

which are the inflation linked yields as well as qt, the logarithmic consumer pricing index price
level.

The observation data are collected in a observation vector yt defined as

yt =
[
qt YN

t YL
t

]′
. (2.13)

Further, it is assumed that all nominal and inflation linked yields are being observed with error.
The observation equation therefore takes the form

yt = At + Btxt + et, (2.14)

where

At =

 0
AN

ã + AL

 , Bt =

 1 0′ 0

0 BN ′ 0

0 BL′ b̃

 , et =

 0
eNt
eLt

 ,

11
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in which

AN =
[
aN3m aN6m aN1y aN2y aN4y aN7y aN10y

]′
BN =

[
bN3m bN6m bN1y bN2y bN4y bN7y bN10y

]′
,

are the nominal yield loadings on xt given by equation (3.10),

AL =
[
aL5y aL7y aL10y

]′ and BL =
[

bL5y bL7y bL10y

]′
,

are the inflation linked yield loadings on xt, given by equation (3.41), and where

ã =
[
ãN5y ãN7y ãN10y

]′ and b̃ =
[
b̃N5y b̃N7y b̃N10y

]′
,

collect the inflation linked yield loadings on the independent liquidity factor x̃t, also given by
equation (3.41). Further, it is assumed a structure of identical and independently distributed
measurement errors such that

eNt,τN ∼ N(0, δ2
N,τN ) for τN = 3m, 6m, 1y , 2y, 4y, 7y, 10y

eLt,τL ∼ N(0, δ2
L,τL) for τL = 5y, 7y, 10y.

The state space model is now fully defined by equations (2.12) and (2.14). Based on the state
space model it is straightforward to implement the Kalman filter for estimating the state vari-
ables, see Section 2.3, and estimate the model parameters using maximum likelihood estimation,
see Section 2.4. What can be noticed is that the matrices in the observation equation, At, Bt and
et are time dependent, this is of technical concerns when implementing the Kalman filter. Since
the consumer pricing index data is available once a month, meanwhile the nominal and inflation
linked yields are provided on a weekly basis, one must let the dimensions of observation equation
matrices vary with time. This implies that the Kalman filter will update the state vector on
weekly frequency, in accordance with the state equation, but that the consumer pricing index
data only will add in to the estimation every fourth iteration.

2.3 Kalman Filter

The Kalman filter is a recursive algorithm that estimates the states of a dynamical system from a
set of incomplete noisy observations. The basic recursive Kalman filter used in this thesis is based
on the least squares method, fitting a linear model. The Kalman filter algorithm can naturally
be divided into two parts; the prediction phase and the update phase. These two phases will be
described in Section 2.3.1 and Section 2.3.2, respectively.

2.3.1 Prediction
The prediction phase of the Kalman filter is making a prediction, x̂t,t−h, of the state vector based
on the previous state estimate, x̂t−h,t−h. Where x̂t,t−h is commonly known as the a prior state
estimate and x̂t−h,t−h is commonly known as the a posteriori state estimate, see Section 2.3.2.
Even though the a prior state estimate is an estimate of the current state vector, it is not based
on the current observation data.

The evolution from a previous state to the current state is described by the state equation
(2.12). Given an initial guess of the state factor, x̂0, the a priori state estimate at time t = h,
is given by

x̂h,0 : = E
[
xh|=0

]
=
{

(2.12), xh = Gh + Γhx0 + ηx0

}
= E

[
Gh + Γhx0 + ηx0 |=0

]
= Gh + Γhx̂0.

12
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More generally the a priori state estimate, x̂t,t−h, at time step t is given by

x̂t,t−h : = E
[
xt|=t−h

]
=
{

(2.12), xt = Gh + Γhxt−h + ηx
t

}
= E

[
Gh + Γhxt−h + ηx

t |=t−h
]

= Gh + Γhx̂t−h,t−h, (2.15)

where =t−h denotes all given information prior to this time step. The corresponding variance-
covariance matrix, Qt,t−h, of the a priori state estimate is given by

Qt,t−h : = V ar(xt|=t−h)

= E
[
(xt − x̂t,t−h)(xt − x̂t,t−h)′|=t−h]

=

{
(2.12), xt = Gh + Γhxt−h + ηx

t ; (2.15), x̂t,t−h = Gh + Γhx̂t−h,t−h

}
= E

[
(Gh + Γhxt−h + ηx

t −Gh − Γhx̂t−h,t−h)

· (Gh + Γhxt−h + ηx
t −Gh − Γhx̂t−h,t−h)′|=t−h

]
= E

[(
Γh(xt−h − x̂t−h,t−h) + ηx

t

)(
Γh(xt−h − x̂t−h,t−h) + ηx

t

)′|=t−h]
= ΓhE

[
(xt−h − x̂t−h,t−h)(xt−h − x̂t−h,t−h)′|=t−h

]
Γ′h + E[ηx

t η
x
t
′]

= ΓhQt−h,t−hΓh
′ + Ωx

t−h, (2.16)

where

Ωx
t−h = E

[
ηx
t η

x
t
′]

and

Qt−h,t−h = E
[
(xt−h − x̂t−h,t−h)(xt−h − x̂t−h,t−h)′|=t−h

]
is identified as the variance-covariance matrix of the a posteriori state estimate, see Section 2.3.2.

2.3.2 Update
In the update phase the current a priori state estimate, x̂t,t−h, is combined with the current
observation data to improve the state estimate. This refined state estimate, x̂t,t, is referred
to as the a posteriori estimate of the state vector with variance-covariance matrix Qt,t. This
variance-covariance matrix is part of the expression for the next a priori variance-covariance
matrix (2.16).

Then the problem boils down to finding the optimal a posteriori estimate of the state. Having
the particular set-up with both xt and yt being linear and Gaussian, it will be shown that the
best a posteriori estimate of the state vector is given by a regression function of xt on yt. In this
case the regression function is given as the conditional expectation of xt given yt = yobst and all
the information available up until time t− h

x̂t,t = E
[
xt|yt = yobst ,=t−h

]
,

with variance-covariance matrix

Qt,t = V ar
[
xt|yt = yobst ,=t−h

]
.

This result requires motivation from probability theory. The following theorems, definitions and
assumptions are based on the theory from the book An Intermediate Course in Probability (Gut
2009, [7]).
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Optimality for Jointly Gaussian Variables

Let x and y be jointly distributed random variables and let

h(y◦) = E
[
x|y = y◦

]
,

where the function h is defined as the regression function x on y.
A predictor for x based on y is a function d(y). Predictors are used to predict and the

prediction error is given by the random variable

x− d(y).

Furthermore, the expected quadratic prediction error is defined as

E
[
x− d(y)

]2
,

in which; if d1 and d2 are predictors, d1 is better than d2 if E
[
x− d1(y)

]2
< E

[
x− d2(y)

]2.
Theorem 2.1 Suppose that E

[
x2
]
< ∞. Then h(y◦) = E

[
x|y = y◦

]
is the best predictor of x

based on y.

Sometimes it is hard to determine regression functions explicitly and in such cases one might
be satisfied with the best linear predictor. This means that one wishes to minimize E

[
x−(a+by)

]2
as a function of a and b, which leads to the well-known method of least squares. The solution of
this problem is given by the following theorem:

Theorem 2.2 Suppose that E
[
x2
]
< ∞ and E

[
y2
]
< ∞. Set µx = E

[
x
]
, µy = E

[
y
]
, σ2

x =

V ar
[
x
]
, σ2

y = V ar
[
y
]
, σxy = Cov

[
x, y
]
and ρ = σxy/σxσy. The best linear predictor of x based

on y is

L(y) = α+ βy,

where

α = µx −
σyx
σ2
y

µy = µx − ρ
σx
σy
µy and β =

σyx
σ2
y

= ρ
σx
σy
.

Thus the best linear predictor, given by Theorem 2.2, becomes

L(y) = µx + ρ
σx
σy

(y − µy). (2.17)

Definition: Regression Line

The line x◦ = µx + ρσxσy (y◦ − µy) is called the regression line x on y. The slope, ρσxσy , of the line
is called the regression coefficient.

The expected quadratic prediction error of the best linear predictor of x based on y is given
by the following theorem:

Theorem 2.3 E
[
x− L(y)

]2
= σ2

x(1− ρ2).
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Next consider the case of x and y being jointly normal such that (x, y)′ ∈ N(µ,Λ), where
E
[
x
]

= µx, E
[
y
]

= µy, V ar
[
x
]

= σ2
x, V ar

[
y
]

= σ2
y, Corr

[
x, y
]

= ρ, where |ρ| < 1. Then the
conditional density function for x given y is

fx|y=y◦(x
◦) =

fx,y(x◦, y◦)

fy(y◦)

=

1

2πσyσx
√

1−ρ2
exp

{
− 1

2(1−ρ2)

((y◦−µy
σy

)2 − 2ρ
(y◦−µy)(x◦−µx)

σyσx
+
(
x◦−µx
σx

)2)}
1√

2πσy
exp

{
− 1

2

(y◦−µy
σy

)2}
=

1
√

2πσx
√

1− ρ2
exp

{
− 1

2(1− ρ2)

((y◦ − µy
σy

)2
ρ2 − 2ρ

(y◦ − µy)(x◦ − µx)

σyσx
+
(x◦ − µx

σx

)2)}
=

1
√

2πσx
√

1− ρ2
exp

{
− 1

2σ2
x(1− ρ2)

(
x◦ − µx − ρ

σx
σy

(y◦ − µy)
)2
}
. (2.18)

This density can be recognized as the density of a normal distribution with mean µx+ρσxσy (y◦−µy)

and variance σ2
x(1− ρ2), thus it follows that

E
[
x|y = y◦

]
= µx + ρ

σx
σy

(y◦ − µy), (2.19)

V ar
[
x|y = y◦

]
= σ2

x(1− ρ2). (2.20)

Now the explicitly given regression function, i.e the best predictor of x based on y as given by
Theorem 2.1, in (2.19) is linear and coincides with the regression line as given by the definition on
the last page. Further, the conditional variance in (2.20) coincides with the quadratic prediction
error of the best linear predictor, Theorem 2.3.

Thus, in particular, if (x, y) have a joint Gaussian distribution, it turns out that the best
linear predictor is, in fact, also the best predictor.

The Kalman filter uses the least squares method for the a posteriori estimate of the state. The
least squares solution is provided as the best linear predictor of x based on y, given by Theorem
2.2. Further, if the innovations of the observation equation (2.14) and the state equation (2.12)
are Gaussian white noise, the a posteriori estimate coincides with the regression function of x
based on y and therefore it is the best estimate possible, as is motivated above.

The derivation of optimality was given for the bi-variate case, but the results hold for multi-
variate normal random variables of higher dimensions as well. In the case of having two multi-
variate normal distributed variables x and y, their joint distribution is given by[

x
y

]
∼ N

([
µx
µy

]
,

[
Σxx Σxy

Σyx Σyy

])
, (2.21)

where µx = E
[
x
]
, Σxx = V ar

[
x
]
, µy = E

[
y
]
, Σyy = V ar

[
y
]
, Σxy = Cov

[
x,y

]
and Σyx =

Cov
[
y,x

]
.

The distribution of x conditioned on y = y◦ is also multivariate normal

(x|y = y◦) ∼ N(µ,Σ),

where

µ = E
[
x|y = y◦

]
= µx + ΣxyΣyy

−1(y◦ − µy) (2.22)

and

Σ = V ar
[
x|y = y◦

]
= Σxx −ΣxyΣyy

−1Σyx. (2.23)
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Thus to perform the update step of the Kalman filter one need to calculate the joint distri-
bution of xt and yt, conditional on all information available up until time t− h.

Given any a priori estimate of xt one can compute a forecast for the observable variables
based on all information available up until time t− h

ŷt,t−h = E
[
yt|=t−h

]
=
{

(2.14), yt = At + Btxt + et

}
= E

[
At + Btxt + et|=t−h

]
= At + Btx̂t,t−h. (2.24)

The variance-covariance matrix of the observable variables based on all information available
up until time t− h, is given by

Vt,t−h = V ar
[
yt|=t−h

]
= E

[
(yt − ŷt,t−h)(yt − ŷt,t−h)′|=t−h

]
=
{

(2.14), yt = At + Btxt + et; (2.24), ŷt,t−h = At + Btx̂t,t−h

}
= E

[
(At + Btxt + et −At −Btx̂t,t−h)(At + Btxt + et −At −Btx̂t,t−h)′|=t−h

]
= E

[
(Btxt + et −Btx̂t,t−h)(Btxt + et −Btx̂t,t−h)′|=t−h

]
= BtE

[
(xt − x̂t,t−h)(xt − x̂t,t−h)′|=t−h

]
B′t + E

[
ete
′
t

]
= BQt,t−hB

′ + Ωe
t (2.25)

where

Ωe
t = E

[
ete
′
t

]
and

Qt,t−h = E
[
(xt − x̂t,t−h)(xt − x̂t,t−h)′|=t−h

]
is identified from (2.16).

Next, the variance-covariance matrix between the state variables, xt, and the observable
variables, yt, based on all information available up until time t− h, takes the form

Vxy
t,t−h = Cov

[
xt,yt|=t−h

]
= E

[
(xt − x̂t,t−h)(yt − ŷt,t−h)′|=t−h

]
=
{

(2.14), yt = At + Btxt + et; (2.24), ŷt,t−h = At + Btx̂t,t−h

}
= E

[
(xt − x̂t,t−h)(At + Btxt + et −At −Btx̂t,t−h)′|=t−h

]
= E

[
(xt − x̂t,t−h)(xt − x̂t,t−h)′|=t−h

]
B′t

= Qt,t−hB
′. (2.26)

Conversely the variance-covariance matrix between the observable variables, yt, and the state
variables, xt, based on all information available up until time t− h, takes the form

Vyx
t,t−h = Cov

[
yt,xt|=t−h

]
= E

[
(yt − ŷt,t−h)(xt − x̂t,t−h)′|=t−h

]
= BE

[
(xt − x̂t,t−h)(xt − x̂t,t−h)′|=t−h

]
= BQt,t−h. (2.27)
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The joint distribution for xt and yt at time t conditional on all information available up until
time t− h therefore is given by[

xt
yt

]
|=t−h ∼ N

([
x̂t,t−h
ŷt,t−h

]
,

[
Qt,t−h Vxy

t,t−h
Vyx
t,t−h Vt,t−h

])
. (2.28)

Then, the distribution of xt conditioned on yt = yobst and on all information available up
until time t− h is also normally distributed(

xt|yt = yobst ,=t−h
)
∼ N

(
x̂t,t,Qt,t

)
,

where according to (2.22) and (2.23)

x̂t,t = E
[
xt|yt = yobst ,=t−h

]
= x̂t,t−h + Vxy

t,t−hV
−1
t,t−h(yobst − ŷt,t−h) (2.29)

and

Qt,t = V ar
[
xt|yt = yobst ,=t−h

]
= Qt,t−h −Vxy

t,t−hV
−1
t,t−hV

yx
t,t−h. (2.30)

The variance-covariance matrix of the updated a posteriori state vector, Qt,t, will be smaller
than the variance-covariance matrix of the a priori estimate of the state vector, Qt,t−h, due to
the new information added through the observation yobst .

To sum up, in this section one iteration of the Kalman filter was derived, whereby the a priori
estimate of the state vector is given by (2.15) and the a posteriori estimate of the state vector is
given by (2.29).

Noticeable is that, when performing an iteration of the Kalman filter as well as estimating
the state variables at time t, only the last a posteriori estimate, x̂t−h,t−h, of the state variables
and its variance-covariance matrix, Qt−h,t−h, are needed. As mentioned in Section 2.2.2, the
dimension of the matrices in the observation equation (2.14) can vary. Thus the Kalman filter can
run, estimating the state variables, only based on the a posteriori estimate of the state variables
and its variance-covariance matrix. Although, for that case, without any new information, yobst ,
added to the system, the uncertainty of the state estimates will grow.

2.4 Log-likelihood Function

This section successively builds up the log-likelihood function used for the parameter estima-
tion. Beginning from the basic one-dimensional definition of the likelihood function, naturally
followed by a description of the maximum likelihood method. Thereafter this is expanded to the
multivariate case and the Kalman filter specific logarithmic likelihood function is presented.

2.4.1 Likelihood function

The likelihood function for a set of parameters θ1, θ2, ..., θn, given the outcome yobs of a stochastic
variable y for a continuous distribution, is equal to the probability density function of y evaluated
in yobs, given the parameter set θ1, θ2, ..., θn,

L
(
θ1, θ2, ..., θn|yobs

)
= fy

(
yobs|θ1, θ2, ..., θn

)
. (2.31)

Further for a sample of size T/h with outcomes yobsh , yobs2h , ..., y
obs
T of independent and identically

distributed stochastic variables yh, y2h, ..., yT ; the likelihood function in θ1, θ2, ..., θn given the
outcomes yobsh , yobs2h , ..., y

obs
T equals the joint probability density function evaluated in yobsh , yobs2h , ..., y

obs
T

given the parameters θ1, θ2, ..., θn

L
(
θ1, θ2, ..., θn|yobsh , yobs2h , ..., y

obs
T

)
= fyh,y2h,...,yT

(
yobsh , yobs2h , ..., y

obs
T |θ1, θ2, ..., θn

)
. (2.32)
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If the sample comes from independent and identically distributed stochastic variables, the joint
probability density function can be written as products of the individual probability density
functions

fyh,y2h,...,yT
(
yobsh , yobs2h , ..., y

obs
T |θ1, θ2, ..., θn

)
=

= fyh
(
yobsh |θ1, θ2, ..., θn

)
· fy2h

(
yobs2h |θ1, θ2, ..., θn

)
· ... · fyT

(
yobsT |θ1, θ2, ..., θn

)
=

T∏
t=h

fyt
(
yobst |θ1, θ2, ..., θn

)
. (2.33)

Thus, inserting (2.33) into (2.32) gives that

L
(
θ1, θ2, ..., θn|yobsh , yobs2h , ..., y

obs
T

)
=

T∏
t=h

fyt
(
yobst |θ1, θ2, ..., θn

)
. (2.34)

2.4.2 Maximum Likelihood Estimation

Maximum-likelihood estimation is an approach to estimate parameters in a probability distri-
bution given a sample of the distribution in fact. If the sample yobsh , yobs2h , ..., y

obs
T is assumed to

be independent and identically distributed, the maximum likelihood estimation is performed by
maximizing the likelihood function (2.34) with respect to the unknown parameters θ1, θ2, ..., θn

maxθ1,θ2,...,θnL
(
θ1, θ2, ..., θn|yobsh , yobs2h , ..., y

obs
T

)
=

T∏
t=h

fyt
(
yobst |θ∗1 , θ∗2 , ..., θ∗n

)
,

where θ∗1 , θ∗2 , ..., θ∗n is the optimal parameter-set. For practical reasons it is often more convenient
to take the logarithm of the likelihood function, (2.34), before maximizing. The log-likelihood
function is given as

log
(
L
(
θ1, θ2, ..., θn|yobsh , yobs2h , ..., y

obs
T

))
=

= log
(
fyh
(
yobsh |θ1, θ2, ..., θn

))
+ log

(
fy2h

(
yobs2h |θ1, θ2, ..., θn

))
+ ...+ log

(
fyT
(
yobsT |θ1, θ2, ..., θn

))
=

T∑
t=h

log
(
fyt
(
yobst |θ1, θ2, ..., θn

))
. (2.35)

Since the logarithmic function is a monotonically increasing function, defined on the open interval
(0, ∞) and the probability density functions fyt(yobst |θ1, θ2, ..., θn) only take positive values, the
following conclusion can be drawn; the optimal parameter-set that maximizes the likelihood func-
tion (2.32) will coincide with the parameter-set maximizing the logarithmic likelihood function
(2.35).

The expression of the logarithmic log likelihood function in (2.35) is a sum of T/h terms
containing the logarithm of the individual probability density functions. For the analytic ap-
proach, having an expression of sums eases the work when calculating derivatives. Further, the
density function often consists of an exponential expression that gets simplified when taking the
logarithm.
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The Multivariate Normal Case

Assume that the observations yobsh , yobs2h , ..., y
obs
T are outcomes from theN(µ, σ)-distributed stochas-

tic variables yh, y2h, ..., yT . Then the unknown parameters µ (expected value) and σ (standard
deviation) are estimated by inserting yobsh , yobs2h , ..., y

obs
T into (2.35) and maximize with respect to

µ and σ

maxµ,σlog
(
L
(
µ, σ|yobsh , yobs2h , ..., y

obs
T

))
=

= log
(
fyh
(
yobsh |µ∗, σ∗

))
+ log

(
fy2h

(
yobs2h |µ∗, σ∗

))
+ ...+ log

(
fyT
(
yobsT |µ∗, σ∗

))
=

T∑
t=h

log
(
fyt
(
yobst |µ∗, σ∗

))
, (2.36)

where µ∗ and σ∗ are the optimal parameters and the individual normal probability density
functions are given by the one-dimensional Gaussian probability density function

fyt
(
yobst |µ, σ

)
=

1

σ
√

2π
e−

(yobst −µ)2

2σ2 for t = h, 2h, ..., T. (2.37)

Inserting (2.37) into (2.36) gives

maxµ,σlog
(
L
(
µ, σ|yobsh , yobs2h , ..., y

obs
T

))
=

= log

(
1

σ∗
√

2π
e−

(yobsh −µ∗)2

2σ∗2

)
+ log

(
1

σ∗
√

2π
e−

(yobs2h −µ
∗)2

2σ∗2

)
+ ...+ log

(
1

σ∗
√

2π
e−

(yobsT −µ∗)2

2σ∗2

)
=
T

h
log

(
1

σ∗
√

2π

)
−

T∑
t=h

(yobst − µ∗)2

2σ∗2

= − T

2h
log(2π)− T

2h
log(σ∗2)− 1

2σ∗2

T∑
t=h

(yobst − µ∗)2
.

In the case of having a multivariate sample of independent and identically distributed outcome-
vectors the described method can easily be expanded, where the multivariate log-likelihood func-
tion is given as

log
(
L
(
θ1, θ2, ..., θn|yobsh ,yobs2h , ...,y

obs
T

))
=

= log
(
fyh

(
yobsh |θ1, θ2, ..., θn

))
+ log

(
fy2h

(
yobs2h |θ1, θ2, ..., θn

))
+ ...+ log

(
fyT

(
yobsT |θ1, θ2, ..., θn

))
=

T∑
t=h

log
(
fyt

(
yobst |θ1, θ2, ..., θn

))
, (2.38)

where yobst = [yobst,1 , y
obs
t,2 , ..., y

obs
t,k ]′ is an outcome-vector of the k-dimensional stochastic vector

yt = [yt,1, yt,2, ..., yt,k]′. In the multivariate normal case, the probability density functions are
given as

fyt

(
yobst |θ1, θ2, ..., θn

)
=

1√
(2π)

k|Σ|
e−

1
2 (yobst −µ)

′
Σ−1(yobst −µ) for t = h, 2h, ..., T, (2.39)

where µ is the k-dimensional mean vector of yt and Σ is the k × k variance-covariance matrix
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of yt. Inserting (2.39) into (2.38) gives

log
(
L
(
θ1, θ2, ..., θn|yobsh ,yobs2h , ...,y

obs
T

))
=

= log

 1√
(2π)

k|Σ|
e−

1
2 (yobsh −µ)

′
Σ−1(yobsh −µ)


+ log

 1√
(2π)

k|Σ|
e−

1
2 (yobs2h −µ)

′
Σ−1(yobs2h −µ)

+ ...+ log

 1√
(2π)

k|Σ|
e−

1
2 (yobsT −µ)

′
Σ−1(yobsT −µ)


=
T

h
log

 1√
(2π)

k|Σ|

+

T∑
t=h

log
(
e−

1
2 (yobst −µ)

′
Σ−1(yobst −µ)

)

= −Tk
2h
log
(
2π
)
− T

2h
log
(
|Σ|
)
− 1

2

T∑
t=h

(yobst − µ)
′
Σ−1(yobst − µ). (2.40)

2.4.3 Log-likelihood Function and The Kalman filter
The implementation of the maximum likelihood estimation, when having estimates from a
Kalman filter, deviates from the above described procedure in the sense that the observation
vectors are neither independently nor identically distributed. The one-dimensional likelihood
function, (2.32), expanded to the multivariate case, as a function of the parameters θ1, θ2, ..., θn
given the multivariate observation vectors yobsh ,yobs2h , ...,y

obs
T , is given as

L
(
θ1, θ2, ..., θn|yobsh ,yobs2h , ...,y

obs
T

)
= fyh,y2h,...,yT

(
yobsh ,yobs2h , ...,y

obs
T |θ1, θ2, ..., θn

)
. (2.41)

Taking the logarithm of (2.41) yields

log
(
L
(
θ1, θ2, ..., θn|yobsh ,yobs2h , ...,y

obs
T

))
= log

(
fyh,y2h,...,yT

(
yobsh ,yobs2h , ...,y

obs
T |θ1, θ2, ..., θn

))
.

(2.42)

In the Kalman filter the observation vectors yobst are dependent on their predecessors. Therefore it
is not straight forward to rewrite expression (2.42) as a sum of the individual logarithmic density
functions, as in the independent case, (2.38). Instead one can factorize the joint conditional
probability density function by repeated use of the multiplication rule for conditional probabilities

fyh,y2h,...,yT

(
yobsh ,yobs2h , ...,y

obs
T |θ1, θ2, ..., θn

)
=

= fyT

(
yobsT |yobsT−h,yobsT−2h, ...,y

obs
h , θ1, θ2, ..., θn

)
· fyT−h

(
yobsT−h|yobsT−2h,y

obs
T−3h, ...,y

obs
h , θ1, θ2, ..., θn

)
· ... · fyh

(
yobsh |θ1, θ2, ..., θn

)
=

T∏
t=2h

fyt

(
yobst |yobst−h,yobst−2h, ...,y

obs
h , θ1, θ2, ..., θn

)
· fyh

(
yobsh |θ1, θ2, ..., θn

)
. (2.43)

When inserting notation, in line with Section 2.3, where =t represents all information available
from time h up until time t, (2.43) becomes

fyh,y2h,...,yT

(
yobsh ,yobs2h , ...,y

obs
T |θ1, θ2, ..., θn

)
=

= fyT

(
yobsT |=T−h, θ1, θ2, ..., θn

)
· fyT−h

(
yobsT−h|=T−2h, θ1, θ2, ..., θn

)
· ... · fyh

(
yobsh |=0, θ1, θ2, ..., θn

)
=

T∏
t=h

fyt

(
yobst |=t−h, θ1, θ2, ..., θn

)
. (2.44)
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Now inserting (2.44) into (2.42) gives the multivariate log-likelihood function for conditionally
dependent observations

log
(
L
(
θ1, θ2, ..., θn|yobsh ,yobs2h , ...,y

obs
T

))
=

= log
(
fyT

(
yobsT |=T−h, θ1, θ2, ..., θn

))
+ log

(
fyT−h

(
yobsT−h|=T−2h, θ1, θ2, ..., θn

))
+ ...+ log

(
fyh

(
yobsh |θ1, θ2, ..., θn

))
=

T∑
t=h

log
(
fyt

(
yobst |=t−h, θ1, θ2, ..., θn

))
. (2.45)

Let yobst be multivariate observations of the conditionally dependent stochastic Gaussian sequence
yt. Then each of the conditional probability density functions in (2.45) are Gaussian with
conditional mean vectors

µt,t−h = E
[
yt|=t−h

]
and conditional variance-covariance matrices

Σt,t−h = Cov
[
yt|=t−h

]
.

Then (2.45) becomes

log
(
L
(
θ1, θ2, ..., θn|yobsh ,yobs2h , ...,y

obs
T

))
=

=

T∑
t=h

log

 1√
(2π)

k|Σt,t−h|
e−

1
2 (yobst −µt,t−h)

′
Σ−1
t,t−h(yobst −µt,t−h)

 . (2.46)

For the Kalman filter, when conditioning on all previous information, the means of the ob-
servable variables, yt,t−h, are given by (2.24) and the corresponding variance-covariance matrices
are given by (2.25). Therefore substituting Σt,t−h with Vt,t−h and µt,t−h with ŷt in (2.46) gives
the multivariate log-likelihood function for the Kalman filter

log
(
L
(
θ1, θ2, ..., θn|yh,y2h, ...,yT

))
=

=

T∑
t=h

log

 1√
(2π)

k|Vt,t−h|
e−

1
2 (yobst −ŷt)

′
V−1
t,t−h(yobst −ŷt)


= −Tk

2h
log
(
2π
)
− 1

2

T∑
t=h

log
(
|Vt,t−h|

)
− 1

2

T∑
t=h

(yobst − ŷt)
′V−1

t,t−h(yobst − ŷt). (2.47)

2.5 Stochastic Calculus

Since the later introduced models in this thesis are based on stochastic differential equations it is
of great importance to give some basic theory within the area. This section therefore covers the
most important stochastic calculus theory, giving an even more inexperienced stochastic calculus
reader a possibility to understand the later introduced models in Chapter 3 and their proofs given
in the Appendix. The theory in this section are based on the theory from the book Arbitrage
Theory in Continuous Time (Björk 2009, [2]) and the compendium Stochastic Calculus - An
Introduction with Applications (Djehiche 2000, [4]).
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2.5.1 Stochastic Differential Equations (SDE)

A stochastic differential equation is a differential equation where one or more of the terms is a
stochastic process such as

dxt = µ(t, xt)dt+ σ(t, xt)dBt, (2.48)

where xt is a stochastic process, µ(t, xt) and σ(t, xt) are deterministic functions and Bt is a
Brownian motion. A Brownian motion is defined by the following properties:

Definition: Brownian motion

A stochastic process B is called a Brownian motion if the following conditions hold:

1. B(0) = 0.

2. The process B(t) has independent increments, i.e. if r < s ≤ t < u then B(u)− B(t) and
B(s)−B(r) are independent stochastic variables.

3. For s < t the stochastic variable B(t)−B(s) has the Gaussian distribution N [0, t− s].

4. B(t) has continuous trajectories.

Expression (2.48) implies that the infinitesimal change dxt = xt+dt−xt is caused by a change
dt of time at a rate µ(t, xt) and a change dBt = Bt+dt − Bt at rate σ(t, xt), where µ(t, xt) is
called the drift and σ(t, xt) is called the diffusion.

Vasicek Process

One of the most commonly used stochastic differential equations for modelling short interest
rates of lending and borrowing is the Vasicek Interest Rate Model. In this model the interest
rate, rt, is the solution to the following linear stochastic differential equation

drt = c(µ− rt)dt+ σdBt, r0 = constant, (2.49)

where c, µ and σ are constants, Bt is a Brownian motion and r0 is the time 0 short rate.
As can be seen in the above given equation the Vasicek drift is given by c(µ − rt), where

µ can be interpreted as the long run equilibrium rate and c reflects the speed of adjustments
between each time interval. The c parameter is positively defined which easily can be seen if
looking at very high/low yields when the rate is needed to go down/up to get back to the long
run equilibrium rate level, µ. This is called mean reversion; the model will over time ensure
that the rate level gets back to its long run equilibrium. The Vasicek diffusion is given by σ and
determines the volatility of the interest rate.

The solution to (2.49) is given by

rt = r0e
−ct + µ(1− e−ct)− σe−ct

∫ t

0

ecsdBs. (2.50)

Therefore it can be seen that the process rt, in this set up, is a Gaussian process with mean
function

r0e
−ct + µ(1− e−ct) (2.51)

and variance
σ2

2c
(1− e−2ct). (2.52)
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Multivariate Gaussian Process

The above given Vasicek process is a one factor model which is used when only one variable
is under consideration. In a more sophisticated model, when modelling more variables at the
same time such as the nominal rate, the real rate and the inflation expectation, there will be
correlations between the variables which need to be included in the model. In this situation the
use of multivariate models are essential.

A model containing three latent variables, xt = [x1t, x2t, x3t]
T , can be stated as

dxt = K(µ− xt)dt+ ΣdB t, (2.53)

where B t is a vector of Brownian motions, µ is a 3 × 1 constant vector and both K and Σ are
3× 3 constant matrices.

The drift term in this model is given by K(µ − xt), where µ can be interpreted as a vector
containing the long run equilibrium levels and K reflects the speed of adjustments between each
time interval. The big difference between this model compared to the Vasicek model is that the
factors are allowed to be correlated to each other. This is realized by the structure of Σ, which
can be interpreted as the variance-covariance matrix of xt.

Still, this model has the same mean reversion property as the Vasicek model, meaning that
it will over time ensure that the rate levels get back to the long run equilibriums.

2.5.2 Stochastic Differentials
The main property of the stochastic differential equations that diversifies them from most other
differential equations, is that they are not differentiable. This is due to the fact that a path of
a Brownian motion is nowhere differentiable. In light of this, the famous Itô’s formula can be
used to calculate stochastic differentials.

Theorem 2.4 Itô’s Formula
Let the n-dimensional vector process x = (x1, x2, ..., xn)′ have the dynamics

dx(t) = µ(t)dt+ σ(t)dB(t),

where µ is an n-dimensional drift vector, B is a d-dimensional vector containing d number of
independent Brownian motions and σ an n× d-dimensional diffusion matrix given by

µ =


µ1

µ2

...
µn

 , B =


B1

B2

...
Bd

 and σ =


σ11 σ12 . . . σ1d

σ21 σ22 . . . σ2d

...
...

. . .
...

σn1 σn2 . . . σnd

 . (2.54)

Then, let the process Z be defined by

Z(t) = f(t,x(t)), (2.55)

where f : R+ × Rn → R is a C1,2 mapping. Then, the process f(t,x(t)) has a stochastic
differential given by

df(t,x(t)) =
∂f

∂t
dt+

n∑
i=1

∂f

∂xi
dxi +

1

2

n∑
i,j=1

∂2f

∂xi∂xj
dxidxj , (2.56)

with the formal multiplication table
(dt)2 = 0,
dt · dBi = 0,
(dBi)

2 = dt, i = 1, ..., d,
dBi · dBj = 0, i = j.
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2.5.3 Risk Neutral Valuation

The upcoming models will exclusively be defined using the no arbitrage framework and therefore
it is of great importance to give some theory about the risk neutral valuation set up. As mentioned
in the beginning of this chapter, the reader is recommended to find more extensive theory in
relevant literature, see [2] and [4].

Theorem 2.5 The First Fundamental Theorem of Asset Pricing
A discrete market, on a discrete probability space (Ω, F,P), is arbitrage-free if, and only if, there
exists at least one risk neutral probability measure that is equivalent to the original probability
measure, P .

In light of Theorem 2.5, a commonly used notation for the risk neutral measure is the Q-
measure. Without any further introduction to measure theory, this convention will be used for
the rest of this thesis when referring to the risk neutral measure.

Proposition: Risk Neutral Bond Price

The bond price at time t with maturity T = t+ τ is given by the formula p(t, T ) = F (t, r(t);T )
where

F (t, r(t);T ) = EQt,r

[
e−

∫ T
t
r(s)ds

]
, (2.57)

where Q denotes the risk neutral measure. This together with the subscript t, r denote that the
expectation shall be taken given the following dynamics for the short rate

dr(s) = (µ− λσ)ds+ σdBQ(s)

r(t) = r,

Notable in this proposition is that the dynamics are given under the risk neutral measure,
which always gives an arbitrage free price.

2.5.4 Change of Measure

When modelling economic features, such as interest rates, one often uses stochastic differential
equations evaluated under the P -measure. Still, to assure that the pricing does not imply any
arbitrage, the pricing of the corresponding securities are needed to be done under the risk neutral
measure Q, see Theorem 2.5. The Girsanov theorem then is of great use, giving a framework for
how to change measures and hence be able to price the securities correctly.

Theorem 2.6 The Girsanov Theorem
Let BP

t be a d-dimensional standard P -Brownian motion on (Ω,F ,P,F) and let ϕt be any d-
dimensional adapted column vector process. Choose a fixed T and define the process L on [0, T ]
by

dLt = ϕ′tLtdB
P
t (2.58)

L0 = 1, (2.59)

i.e.

Lt = exp

{∫ T

0

ϕ′sdB
P
s −

1

2

∫ T

0

‖ϕs‖2ds
}

(2.60)

Assume that
EP [LT ] = 1, (2.61)
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and define the new probability measure Q on FT by

LT =
dQ

dP
, on FT . (2.62)

Then
dBP

t = ϕtdt+ dBQ
t , (2.63)

where BQ is a Q-Brownian motion.

Definition: Market Price of Risk

In Theorem 2.6 the variable ϕt denotes the Girsanov kernel for which the following relation holds

ϕt = −λt = −
(
λ0 + λ′1rt

)
, (2.64)

where λt denotes the market price of risk for rt. The market price of risk can be interpreted as
a risk premium per unit risk that the market implies for holding a specific position.

2.5.5 Affine Term Structure

Definition: Affine Term Structure

If the term structure {p(t, T ); 0 ≤ t ≤ T, T > 0} has the form

p(t, T ) = F (t, r(t);T ), (2.65)

where F has the form
F (t, r(t);T ) = eA(t,T )+B(t,T )r(t) (2.66)

and where A and B are deterministic functions, then the model is said to possess an affine term
structure.

Proposition: Affine Term Structure

If the stochastic process r(t) is assumed to have the dynamics

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dBQ(t). (2.67)

Furthermore, it can be assumed that the model possess an affine term structure as in the above
given definition, i.e. that

p(t, T ) = F (t, r(t);T ) = eA(t,T )+B(t,T )r(t). (2.68)

Then, assume that µ(t, r(t)) and σ(t, r(t)) are of the form{
µ(t, r(t)) = α(t)r(t) + β(t)

σ(t, r) =
√
γ(t)r(t) + δ(t).

(2.69)

Then A and B satisfy the following system of ordinary differential equationsBt(t, T )− α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1

B(T, T ) = 0
(2.70)

At(t, T ) = β(t)B(t, T ) +
1

2
δ(t)B2(t, T )

A(T, T ) = 0.
(2.71)
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2.5.6 Example: Bond Pricing (Vasicek dynamics)
Let the stochastic process r(t) follow the Vasicek dynamics

dr(t) = c(µ− r(t))dt+ σdBP (t), r(0) = constant, (2.72)

where dBP (t) implies that r(t) is defined under the P -measure. Then, maybe it is of interest to
price a bond using the risk neutral bond price formula given by (2.57). Firstly it needs to be
assumed that the bond price possesses an affine term structure as given by (2.68)

p(t, T ) = eA(t,T )+B(t,T )r(t). (2.73)

Then, since the short rate dynamics in (2.72) are given under the P -measure, a measure transfor-
mation is needed. By the Girsanov Theorem, Theorem 2.6, and by the definition of the market
price of risk, it follows that

dBPt = ϕtdt+ dBQt = −
(
λ0 + λ1r(t)

)
dt+ dBQt , (2.74)

where λ = λ0 +λ1r(t) is the market price of risk, for r(t). Then, if this transformation is inserted
into (2.72) the risk free Vasicek dynamics are given as

dr(t) = c
(
µ− r(t)

)
dt+ σ

(
−
(
λ0 + λ1r(t)

)
dt+ dBQt

)
(2.75)

= c

((
µ− σλ0

c

)
−
(

1 +
σλ1

c

)
r(t)

)
dt+ σdBQt . (2.76)

Then, by identification in (2.69) it can be seen that,

αv(t) = −c
(

1 +
σλ1

c

)
βv(t) = c

(
µ− σλ0

c

)
γv(t) = 0

δv(t) = σ2.

(2.77)

Then, by (2.70) and (2.71) it follows that A(t, T ) and B(t, T ) in (2.73) solve{
Bt(t, T )− αv(t)B(t, T ) = −1

B(T, T ) = 0
(2.78)

At(t, T ) = βv(t)B(t, T ) +
1

2
δv(t)B2(t, T )

A(T, T ) = 0.
(2.79)

Equation (2.78) is, when having a fixed T , a simple linear ordinary differential equation in t.
Then, following standard procedure, the solution to Bt is given as

B(t, T ) =
1

αv

{
1− e−α

v(T−t)
}
. (2.80)

The corresponding solution to A(t, T ) is given by integrating (2.79) and inserting the solution to
B(t, T )

A(t, T ) =

{
B(t, T )− T + t

}(
− αvβv − 1

2δ
v
)

(αv)2
− δvB2(t, T )

4(αv)
. (2.81)

These solutions can now be inserted into (2.73) giving arbitrage free bond prices for all points in
time t given a fixed future maturity T .
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This chapter will cover the different stochastic models used for modelling the nominal-, real- and
inflation linked yields. Full proofs of the models are given in the Appendix. Once again it needs
to be stated that the model are completely based on Model L-II given in the article Tips from
TIPS: the informational content of Treasury Inflation-Protected Security prices, see [5].

3.1 Nominal Yields and Nominal Bond Prices

The assumption is made that the real yield, the nominal yield and the expected inflation are
driven by a vector of three latent variables, xt = [x1t, x2t, x3t]

T , which is assumed to follow a
multivariate Gaussian process, for more theory see Section 2.5.1,

dxt = K(µ− xt)dt+ ΣdBP
t , (3.1)

where B t is a 3× 1 vector of P Brownian motions, µ is a 3× 1 constant vector and both K and
Σ are 3× 3 constant matrices.

Then, the nominal short rate and the nominal price of risk are assumed to be affine functions
of the three latent variables

rN (xt) = ρN0 + ρN1
′
xt (3.2)

λN (xt) = λN0 + ΛNxt, (3.3)

where ρN0 is a constant, ρN1 and λN0 are 3×1 constant vectors and ΛN is a 3×3 constant matrix.
Furthermore, the nominal stochastic discount factor, sometimes referred to as the nominal

pricing kernel, can be written as

dMN
t

MN
t

= −rN (xt)dt− λN (xt)
′dBP

t . (3.4)

Now, by applying the no arbitrage framework, the nominal bond prices can be calculated.
This can be done by considering the risk neutral bond price formula, see the risk neutral

bond price proposition in Section 2.5.3, for the bond price at time 0 of a bond with maturity at
time T

pN (0, T ) = EQ
[
exp

{
−
∫ T

0

r(s)ds

}]
, (3.5)

where Q denotes the risk neutral measure, see Section 2.5.3. If then τ is given as the time to
maturity from the current time t, an equivalent expression for the bond price at time t with
maturity at time t+ τ is given by

pN (t, τ) = EQ
[
exp

{
−
∫ t+τ

t

r(s)ds

}]
. (3.6)
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Then, if it is assumed that the nominal bond price possesses an affine term structure, the
bond price can be written as

p(t, τ) = F (t, τ,xt) = eA
N
τ +BN

τ
′
xt , (3.7)

where ANτ and BN
τ are deterministic functions of τ , taking the maturity time T as a parameter.

Then, by the calculations given in the Appendix, Section A.3, the following system of ordinary
differential equations is obtained

dANτ
dτ

= −ρN0 + BN
τ

′
(Kµ−ΣλN0 ) +

1

2
BN
τ

′
ΣΣ′BN

τ (3.8)

dBN
τ

dτ
= −ρN1 − (K + ΣΛN )′BN

τ , (3.9)

with initial conditions AN0 = 0 and BN
0 = 0. These differential equations can be solved using

numerical methods. Then, if aNτ and bNτ are defined as

aNτ =
−ANτ
τ

bNτ =
−BN

τ

τ
,

the nominal yield yNt,τ takes an affine form and can be written as

yNt,τ = aNτ + bNτ
′
xt. (3.10)

3.2 Inflation Expectations

Since the main difference between the real yield and nominal yield is the inflation, it is of great
importance to model the market implied inflation. The price level process is assumed to be of
the following form

dqt = d(logQt) = π(xt)dt+ σ′qdB
P
t + σ⊥q dB

⊥,P
t , (3.11)

where π(xt) is the instantaneous expected inflation, σ′q is a 3 × 1 constant vector and σ⊥q is a
constant. The instantaneous expected inflation is assumed to be an affine function in the latent
variables

π(xt) = ρπ0 + ρπ1
′xt. (3.12)

The other part of the price level process, σ′qdB
P
t + σ⊥q dB

⊥,P
t , reflects the unexpected inflation.

The structure allows the price level to both depend on shocks that affect the nominal interest rate
and the expected inflation, dBP

t , and on so called orthogonal shocks, dB⊥,Pt , where dBP
t dB

⊥,P
t =

0. The orthogonal shock term is included to capture short-run inflation variations that may not
be spanned by the yield curve movements, see [5].

The inflation expectation at time t until time t+ τ is defined as

It,τ =
1

τ
Et

[
log

(
Qt+τ
Qt

)]
. (3.13)

It is also assumed that the inflation expectation takes an affine form in the latent variables

It,τ = aIτ + bIτ
′
xt, (3.14)

where aIτ is a constant and bIτ is a 3× 1 constant vector.
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Then, by the calculations given in the Appendix, Section A.4, the following expressions are
obtained

aIτ = ρπ0 +
1

τ
ρπ1
′
∫ τ

0

(
I − e−Ku

)
µdu (3.15)

bIτ
′

=
1

τ
ρπ1
′
∫ τ

0

e−Kudu. (3.16)

3.3 Real Yields and Real Bond Prices

Since the nominal short rate and the expected inflation both are defined, it is now possible to
model the real yield and the real bond price.

The real and the nominal pricing kernels are set up such that they must fulfil the following
no-arbitrage relation

MR
t = MN

t Qt, (3.17)

where MN
t and Qt are defined by (3.4) and (3.11) respectively. Then if one apply Itô’s formula

to (3.17) the following relation is obtained

dMR
t

MR
t

=
dMN

t

MN
t

+
dQt
Qt

+
dMN

t

MN
t

· dQt
Qt

. (3.18)

Through the calculations given in the Appendix, Section A.2, (3.18) can be written as

dMR

MR
= −rR(xt)dt− λR(xt)

′dBP
t + σ⊥t dB

⊥,P
t ,

where the real short rate and the real price of risk are given by

rR(xt) = ρR0 + ρR1
′
xt (3.19)

λR(xt) = λR0 + ΛRxt, (3.20)

where the parameter relations are given as

ρR0 = ρN0 − ρπ0 −
1

2
(σ′qσq + σ⊥q

2
) + λN0

′
σq (3.21)

ρR1 = ρN1 − ρπ1 + ΛN ′σq (3.22)

λR0 = λN0 − σq (3.23)

ΛR = ΛN . (3.24)

With the real short rate defined, it is now also possible to derive the no arbitrage prices for the
real bonds, in the same manner as for the nominal bond prices.

It is assumed that the real bond price possesses an affine term structure

pR(t, τ) = F (t, τ,xt) = eA
R
τ +BR

τ
′
xt , (3.25)

where ARτ and BR
τ are deterministic functions of τ , taking the maturity time T as a parameter.

Then, by the calculations given in the Appendix, Section A.3, the following differential equations
are obtained

dARτ
dτ

= −ρR0 + BR
τ

′
(Kµ−ΣλR0 ) +

1

2
BR
τ

′
ΣΣ′BR

τ (3.26)

dBR
τ

dτ
= −ρR1 − (K + ΣΛR)′BR

τ , (3.27)
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with initial conditions AR0 = 0 and BR
0 = 0. These differential equations can be solved using

numerical methods. Then, if aRτ and bRτ are defined as

aRτ =
−ARτ
τ

bRτ =
−BR

τ

τ
,

the real yield yRt,τ takes an affine form and can be written as

yRt,τ = aRτ + bRτ
′
xt. (3.28)

3.4 Breakeven Inflations and Inflation Risk Premiums

The true breakeven inflation is defined as the difference between the nominal yield and the real
yield

yBEIt,τ = yNt,τ − yRt,τ . (3.29)

The nominal and the real yields are defined by (3.10) and (3.28) respectively. Therefore it follows
that (3.29) can be rewritten as

yBEIt,τ = aNτ − aRτ + (bNτ − bRτ )′xt. (3.30)

Furthermore, an expression for the inflation risk premium can be derived. The inflation risk
premium is defined as the difference between the breakeven inflation and the expected inflation

℘It,τ = yBEIt,τ − It,τ = aNτ − aRτ − aIτ + (bNτ − bRτ − bIτ )′xt, (3.31)

where the breakeven inflation and the expected inflation are given by (3.30) and (3.14) respec-
tively.

3.5 Inflation Linked Yields

The inflation linked yield can be modelled by letting the nominal yield deviate from the market
implied true real yield. This is implemented by introducing a inflation linked bond specific
liquidity premium, LLt,τ , later referred to as the liquidity premium, at time t, defined as

LLt,τ = yLt,τ − yRt,τ , (3.32)

giving that the inflation linked yield is defined by

yLt,τ = LLt,τ + yRt,τ . (3.33)

The liquidity premium can partly be viewed as an extra compensation investors demand for
holding an instrument with less liquid market conditions. It should though, once again, be
pointed out that it also will comprise other factors that potentially could drive a wedge between
the real and inflation linked yields, see Section 2.1.3.

Moreover, the liquidity premium will in general be positive partly based on the less liquid
market conditions for inflation linked bonds, giving lower prices and higher yields.

Mathematically the liquidity premium is defined by adding a positive liquidity spread, lLt , to
the true real instantaneous short rate, used by investors while discounting the inflation linked
bond’s cash flow. Hence (3.32) can be rewritten as

LLt,τ = −1

τ
logEQt

[
exp
(
−
∫ t+τ

t

(rRs + lLs )ds
)]
− yRt , (3.34)
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where the expectation is taken under the risk-neutral measure Q. This way of using an extra
spread factor while discounting cash flows is analogous to the corporate bond pricing literature,
where default-able bond cash flows are discounted with an extra spread factor, see [5].

The liquidity spread is modelled as a function depending on four latent variables. Firstly, one
term represented by the latent variables in xt, letting the liquidity spread being dependent on
the state of the economy and secondly, one term that is independent to the state of the economy,
x̃t. Therefore, the liquidity spread is defined by

lLt = γ′xt + γ̃x̃t, (3.35)

where γ is a 3 × 1 constant vector and γ̃ is a constant. It is further assumed that x̃t follows a
Vasicek process which is defined by

dx̃t = κ̃(µ̃− x̃t)dt+ σ̃dB̃Pt , (3.36)

where κ̃, µ̃ and σ̃ are constants and B̃Pt is a P Brownian motion. Since x̃t is said to be independent
of xt it must hold that dB̃Pt dB

P
t = 0. It is also assumed that the independent liquidity factor

possesses a market price of risk defined as an affine function in x̃t

λ̃t = λ̃0 + λ̃1x̃t, (3.37)

where λ̃0 and λ̃1 are constants.
Then, by the calculations given in the Appendix, see Section A.5, the following expression

for the liquidity premium can be obtained

LLt,τ = [ãLτ + (aLτ − aRτ )] +
[
(bLτ − bRτ )′ b̃Lτ

][xt
x̃t

]
, (3.38)

where ãLτ , b̃Lτ and aLτ are constants and bLτ is a 3× 1 constant vector given by

ãLτ = γ̃
[(
µ̃∗ − 1

2

( σ̃
κ̃∗

)2

γ̃
)(

1− b̃Lτ
γ̃

)
+

σ̃2

4γ̃κ̃∗
τ(b̃Lτ )2

]
b̃Lτ =

γ̃

κ̃∗τ

(
1− e−κ̃

∗τ
)

aLτ = −A
L
τ

τ

bLτ = −BL
τ

τ

where ALτ and BL
τ solve the following system of differential equations

dALτ
dτ

= −ρR0 + BL
τ

′
(Kµ−ΣλR0 ) +

1

2
BL
τ

′
ΣΣ′BL

τ (3.39)

dBL
τ

dτ
= −(ρR1 + γ)− (K + ΣΛR)′BL

τ , (3.40)

with initial conditions AL0 = 0 and B0 = 0. These differential equations can be solved using
numerical methods.

From the above formulas it also follows that the inflation linked yield is given as

yLt,τ = [ãLτ + aLτ ] +
[
bLτ
′
b̃Lτ
][xt
x̃t

]
. (3.41)
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3.6 Decompositions

Based on the model assumptions made in the previous sections the nominal yield can be decom-
posed as

yNt,τ = yRt,τ + It,τ + ℘It,τ . (3.42)

This decomposition is given if one solves for yNt,τ in (3.29) and then uses the fact that

yBEIt,τ = ℘It,τ + It,τ , (3.43)

given by (3.31).
The linkers breakeven inflation is defined as the difference between the nominal yield and the

inflation linked yield
yBEI,Lt,τ = yNt,τ − yLt,τ . (3.44)

Then, if the above decomposition of the nominal yield, together with the definition of the inflation
linked yield, (3.33),

yLt,τ = LLt,τ + yRt,τ (3.45)

are inserted into (3.44) it follows that the linkers breakeven inflation can be decomposed as

yBEI,Lt,τ = It,τ + ℘It,τ − LLt,τ . (3.46)

Hence, if (3.46) is subtracted from (3.43) the difference between true breakeven inflation and the
linkers breakeven inflation can be identified as the liquidity premium

yBEIt,τ − yBEI,Lt,τ = ℘It,τ + It,τ − (It,τ + ℘It,τ − LLt,τ ) = LLt,τ . (3.47)
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This chapter will give a description of the data used for fitting the model. A thorough review of
the model is provided in Chapter 3.

4.1 Time Series

The time series used are having different time steps between the observations, but the time step
remain uniform within each series. Therefore, to make the data samples appropriate for being
implemented in the Kalman filter, see Section 2.3, some transformations of the original time
series have been applied. Below, such transformations and further descriptions are provided for
each data sample used in this thesis. The discretization step, h, of the state space model, see
Section 2.2, is set to be weekly, thus h = 1/52.

Noticeable is that none of the used time series inherit any structural breaks, i.e. no disconti-
nuities, which possibly could have made the data inappropriate to be used in the estimation.

4.1.1 Nominal- and Inflation Linked Yields
The following data was used for fitting the model. Firstly, Swedish nominal government bond
yields with maturities 3-month, 6-month, 1- ,2- ,4- ,7- and 10-year. These yields were all extracted
from the nominal zero coupon yield curve. Secondly, Swedish inflation linked government bond
yields with maturities 5-, 7- and 10-year. These yields were all extracted from the inflation linked
zero coupon yield curve. Thirdly, Swedish consumer pricing index data.

The nominal and inflation linked yield data ranges from the 5th of January 2005 until the 4th
of February 2014. The yield levels were, as earlier mentioned, extracted form the zero-coupon
yield curves, whereas the bootstrap method was used to calculate the term structures. These
calculations were performed by Nordea Analytics, a software tool used within Nordea Markets
for analysis of financial time series. The time series were generated with daily intensity.

Since the discretization step, h, was set to be weekly and the time series were given on daily
frequency, transformations were applied. For sampling the data of daily observations to a data
sample of weekly observations, the following approach was used

yWeekly
t =

yDaily
t− 2

365

+ yDaily
t− 1

365

+ yDailyt + yDaily
t+ 1

365

+ yDaily
t+ 2

365

5
for t = h, 2h, ..., T,

with t, the date stamp, synchronized to always occur on a Wednesday.
This formula is complete for weeks containing five business days. For weeks with less than five

business days, averaging still were applied, but over the daily observations available within each
week. For each of these weeks, the date stamp was set to be on a Wednesday, unconditionally of
what weekdays that actually comprised to the averaging.

The yield data is visualized in Figure 4.1, where the nominal yield levels are given in panel
(a) and the inflation linked yield levels are given in the panel (b). Panel (c) visualizes the actual
breakeven inflations, given as the differences between the nominal and the inflation linked yields.
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Figure 4.1: Actual - Nominal Yields, Linker Yields and Linkers Breakeven Inflations

4.1.2 Consumer Pricing Index

Besides using nominal- and inflation linked yield data for fitting the model, monthly Swedish
consumer pricing index data also was used. This time series ranges from the 2nd of January
2005 until the 1st of January 2014 and was collected from Statistics Sweden.

The time series inherits seasonality. Thus, since the model does not accommodate season-
ality, the consumer pricing index data was seasonally adjusted before being used, see [5]. The
transformation of the original time series, was performed by Reuters EcoWin, an analysis and
charting software.

To make the time series appropriate for being implemented in the Kalman filter, the date
stamps for the respective consumer pricing index observations were set to coincide with the
closest available measurements of the weekly sampled yield data. This final consumer pricing
index data is given in Figure 4.2.
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Figure 4.2: Swedish Seasonally Adjusted Consumer Pricing Index

35





CHAPTER 5
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This chapter will provide a thorough description of the used approach for the parameter es-
timation and the model fitting. The assumptions regarding normalization of parameters and
estimation methodology coincide with those used in Tips from TIPS: the informational content
of Treasury Inflation-Protected Security prices, see [5].

5.1 Normalization

Before fitting the model and performing the estimation of the unknown parameters, the following
normalization was employed

µ = 0, Σ =

 0.01 0 0
Σ21 0.01 0
Σ31 Σ32 0.01

 , K =

 K11 0 0
0 K22 0
0 0 K33

 , σ̃ = 0.01.

These restrictions were necessary for achieving identification so as to allow a maximal flexible
correlation structure between the factors, that was critical in fitting the rich behaviour in the
risk premiums that can be observed in the data. The remaining 48 parameters were remained
unrestricted.

5.2 Parameter Estimation

To be able to estimate the parameters the model had to be discretized and reformulated on state
space form. This was needed to make the continuous model appropriate for being implemented
in the Kalman filter.

The general derivation of the state space model is provided in Section 2.2. The specific deriva-
tion of the discretized model dynamics are given in Section 2.2.1. The matrix state equation,
(2.12), is given by

x?t = Gh + Γhx
?
t−h + ηx

t , (5.1)

where

Gh =

 ρπ0h
Kµh
κ̃µ̃h

 , Γh =

 1 ρπ1
′h 0

0 I−Kh 0
0 0′ 1− κ̃h

 , ηx
t =

 σ′qηt + σ⊥q η
⊥
t

Σηt
σ̃η̃t

 ,
in which ηt, η⊥t and η̃t are independent of each other and the state vector x?t is defined by

x?t =

 qt
xt
x̃t

 .
37



Chapter 5. Method

Furthermore, the observation equation for the state space model is derived in Section 2.2.2,
where the matrix observation equation, (2.14), is given by

yt = At + Btxt + et, (5.2)

i.e. the observation equation is a linear combination of the state variables, including an additive
error term, that is assumed to equal the observed data, measured with error. At, Bt and et in
(5.2) are given by

At =

 0
AN

ã + AL

 , Bt =

 1 0′ 0

0 BN ′ 0

0 BL′ b̃

 , et =

 0
eNt
eLt

 ,
where a structure of identical and independently distributed measurement errors is assumed such
that

eNt,τN ∼ N(0, δ2
N,τN ) for τN = 3m, 6m, 1y , 2y, 4y, 7y, 10y (5.3)

eLt,τL ∼ N(0, δ2
L,τL) for τL = 5y, 7y, 10y. (5.4)

Then, since the errors are assumed to be independent, the linkers breakeven inflation measure-
ment error is defined as

eBEI,Lt,τ ∼ N(0, δ2
N,τ + δ2

L,τ ) for τ = 7y, 10y. (5.5)

Having the model given on state space form, consisting of the state equation (5.1) and the obser-
vation equation (5.2), the Kalman filter and maximum likelihood estimation were implemented
for fitting the model.

Since the innovations of both the state equation and the observation equation are assumed to
be normal, the Kalman filter is proved to give the best possible estimates of the state variables,
x?t . This is motivated in Section 2.3, where the recursive algorithm of the Kalman filter is being
derived.

Thereafter, since the Kalman filter allows to construct the logarithmic likelihood function
associated with the state space model, the logarithmic likelihood function could be produced
and maximized with respect to the parameter set.

Details of the numerical optimization procedure of the logarithmic likelihood function are
given in Section 5.3. The derivations of the logarithmic likelihood function for the Kalman filter
and general background on maximum likelihood estimation can be found in Section 2.4.

Finally, noticeable is that the matrices in the observation equation, At, Bt and et are time
dependent, which is of technical concerns while implementing the Kalman filter. This allows for
the case of missing observations, which is needed since the observation data for the nominal-
and linker yields are weekly sampled but the consumer pricing index data is only provided every
fourth week, see Chapter 4. Thus, the missing price level data can be interpreted as missing
observations and hence the dimensions of At, Bt and et in (5.2) varies in time.

5.3 Numerical Optimization

5.3.1 Parameters
As later described in Section 5.3.3, unrestricted numerical optimization was used. Thus, there
was high demand for having a good initial guess of the parameter values and the choice of starting
parameters thereby was essential. Particular in the sense that the logarithmic likelihood function
had a 48-dimensional surface, implying that the numerical methods used for the maximization
easily converged into local maximum points that gave unrealistic results.

Parameter values were chosen to equal the optimal parameter set, for Model L-II, see [5].
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5.3.2 State Estimates
When initializing the Kalman filter a qualified guess of the state variables and their variance-
covariance matrix was made.

The initial value of the state vector, x?0, was set to be a vector of zeros. This relied on the
assumption that the initial parameters, chosen above, would provide a Gh-matrix not to far
away from the true a priori estimate of the state vector, see (5.2).

As a starting guess of the state variance-covariance matrix, Q0,0, a matrix with moderate
sized entries was chosen such that the first couple of iterations would give larger weights on the
actual observations and less weights on the predictions.

5.3.3 Numerical Methods
Several different algorithms were tested for maximizing the logarithmic likelihood function with
respect to the unknown parameters.

With a large amount of parameters and a rather nested logarithmic likelihood function - the
case of reaching a local maximum point was of concern.

According to the book Introductory Econometrics for Finance, see [3], one can start by
using the simplex algorithm, that is a derivative-free algorithm. Since this algorithm does not
use derivative methods, it is generally slower in reaching an optimum and it cannot produce
standard error estimates. Still, the simplex algorithm is useful in the sense that it is more robust
to local curvature. Thereafter, it is suggested that the finalization of the optimization can be
performed by using the BHHH algorithm. This is a derivative method that besides optimizing
the logarithmic likelihood function also produces standard error estimates of the parameters.

The above mentioned approach was applied with 300 iterations of the simplex algorithm and
30 iterations of the BHHH algorithm.

39





CHAPTER 6
Results

In this Chapter all results will be given without any conclusions or further discussions. In
Section 6.1, parameter estimates, model fitting statistics and decomposition of variances will be
presented. Furthermore, in Section 6.2, graphs visualizing the model output will be given.

6.1 Tables

6.1.1 Parameter Estimates
Below the optimal parameters are given as well as the corresponding standard deviations. For
further interpretation of the parameters, see Chapter 3, and for details regarding the estimation
procedure, see Chapter 5.

Table 6.1: Parameter Estimates: State Variables Dynamics

dxt = K(µ− xt)dt+ ΣdBP
t

Parameter Estimate Std. Dev.

K11 0.93596 (0.17593)
K22 0.04346 (0.17057)
K33 1.37640 (0.17462)
Σ21 -0.00365 (0.00294)
Σ31 -0.06333 (0.02466)
Σ32 -0.00682 (0.00456)
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Table 6.2: Parameter Estimates: Nominal Pricing Kernel

dMN
t /M

N
t = −rN (xt)dt− λN (xt)

′dBP
t

rN (xt) = ρN0 + ρN1
′
xt, λN (xt) = λN0 + ΛNxt

Parameter Estimate Std. Dev.

ρN0 0.04423 (0.00750)
ρN1,1 3.98740 (1.57974)
ρN1,2 0.54568 (0.25100)
ρN1,3 0.61299 (0.03045)
λN0,1 0.47174 (0.20603)
λN0,2 -0.22702 (0.13116)
λN0,3 -0.29033 (0.10798)
[ΣΛN ]11 -0.87312 (0.50910)
[ΣΛN ]21 2.27240 (1.41611)
[ΣΛN ]31 7.33100 (4.24987)
[ΣΛN ]12 0.03062 (0.17851)
[ΣΛN ]22 -0.24799 (0.20410)
[ΣΛN ]32 -0.96758 (0.98965)
[ΣΛN ]13 -0.12579 (0.11905)
[ΣΛN ]23 0.55925 (0.40787)
[ΣΛN ]33 1.05940 (0.57896)

Table 6.3: Parameter Estimates: Log Price Level

d(logQt) = π(xt)dt+ σTq dB
P
t + σ⊥q dB

⊥,P
t

π(xt) = ρπ0 + ρπ1
′xt

Parameter Estimate Std. Dev.

ρπ0 0.02459 (0.00378)
ρπ1,1 0.04265 (0.70041)
ρπ1,2 0.24336 (0.16966)
ρπ1,3 -0.01620 (0.14803)
σq,1 -0.00115 (0.00044)
σq,2 0.00058 (0.00058)
σq,3 0.00030 (0.00036)
σ⊥q 0.00717 (0.00036)

Table 6.4: Parameter Estimates: Linker Liquidity Premium

lLt = γ′xt + γ̃x̃t, dx̃t = κ̃(µ̃− x̃t)dt+ σ̃dB̃Pt
λ̃t = λ̃0 + λ̃1x̃t
Parameter Estimate Std. Dev.

γ̃ 0.60298 (0.02272)
κ̃ 0.23182 ( 0.27443)
µ̃ 0.01290 (0.01944)
λ̃0 0.30012 (0.22556)
λ̃1 -1.39300 (27.92300)
γ1 -0.97104 (0.79605)
γ2 -0.04916 (0.22130)
γ3 -0.10528 (0.15371)
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Table 6.5: Parameter Estimates: Measurement Errors - Nominal Yields

Parameter Estimate Std. Dev.

100 · δN,3m 0.10223 (0.00507)
100 · δN,6m -0.02231 (0.00430)
100 · δN,1y 0.05380 (0.00100)
100 · δN,2y 0.07122 (0.00197)
100 · δN,4y 0.03015 (0.00135)
100 · δN,7y -0.09724 (0.00357)
100 · δN,10y 0.04999 (0.00205)

Table 6.6: Parameter Estimates: Measurement Errors - Linker Yields

Parameter Estimate Std. Dev.

100 · δL,5y 0.06657 (0.00228)
100 · δL,7y -0.04024 (0.00572)
100 · δL,10y -0.06544 (0.00215)

6.1.2 Model Fit Statistics
Table 6.7 presents the model diagnostic statistics for the model implied inflation linked yields
when comparing to the observations, i.e. the market data. Table 6.8 presents the corresponding
statistics for the model implied linkers breakeven inflations.

Table 6.7: Fitting Test: Linker Yields

Maturity Corr RMSE R2

5-year 0.99734 0.05422 0.99468
7-year 0.99961 0.01905 0.99921
10-year 0.99671 0.06145 0.99343

Table 6.8: Fitting Test: Linkers Breakeven Inflation

Maturity Corr RMSE R2

7-year 0.99283 0.05090 0.98572
10-year 0.96808 0.09721 0.93718
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6.1.3 Decomposition of Variances
Tables 6.9, 6.10 and 6.11 present the model implied decompositions of the variances for the
nominal yields, the inflation linked yields and the linkers breakeven inflations, respectively. Due
to the autocorrelation in the time series, the decompositions are produced for the first order
differences, denoted by ∆, of each time series. The following formulas are being used

var
(
∆yNt,τ ) = cov

(
∆yNt,τ ,∆y

R
t,τ

)
+ cov

(
∆yNt,τ ,∆It,τ

)
+ cov

(
∆yNt,τ ,∆℘

I
t,τ

)
,

var
(
∆yLt,τ

)
= cov

(
∆yLt,τ ,∆y

R
t,τ

)
+ cov

(
∆yLt,τ ,∆L

L
t,τ

)
and

var
(
∆yBEI,Lt,τ ) = cov

(
∆yBEI,Lt,τ ,∆It,τ

)
+ cov

(
∆yBEI,Lt,τ ,∆℘It,τ

)
+ cov

(
∆yBEI,Lt,τ ,∆− LLt,τ

)
.

Table 6.9: Decomposition of Variance: Nominal Yields

Maturity Real Yield Inflation Exp. Inf. Risk. Premium
3-month 0.96691 0.10647 -0.07338
6-month 0.86299 0.16170 -0.02470
1-year 0.72940 0.19485 0.07574
2-year 0.67517 0.18576 0.13907
4-year 0.66270 0.19870 0.13861
7-year 0.66763 0.21499 0.11738
10-year 0.67553 0.22058 0.10389

Table 6.10: Decomposition of Variance: Linker Yields

Maturity Real Yield Liq. Premium
5-year 0.67475 0.32525
7-year 0.79789 0.20211
10-year 0.92043 0.07957

Table 6.11: Decomposition of Variance: Linkers Breakeven Inflation

Maturity Inflation Exp. Inf. Risk. Premium Liq. Premium
5-year 0.18921 0.14387 0.66691
7-year 0.23931 0.15100 0.60970
10-year 0.29678 0.15742 0.54580
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6.2 Graphs

6.2.1 Estimates and Model Fitting
In this section the model implied yields are given in combination with a comparison to the ob-
served data. Also, the measurement errors are presented as well as the corresponding quantile-
quantile plots. This is done for the model implied inflation linked yields and the model implied
breakeven inflations. In the inflation linked yield section, the model implied liquidity premium is
plotted for different maturities. Furthermore, the model implied inflation expectations are plot-
ted against the Prospera inflation expectation surveys and finally the model implied inflation
risk premium is presented for different maturities.

Inflation Linked Yields
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Figure 6.1: Actual- and Model Linker Yields and Real Yields

Figure 6.1 visualizes the model implied inflation linked yields, the black lines, as well as the
model implied real yields, the blue lines. The red lines represent the observed market implied
inflation linked yields.
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Figure 6.2: Linker Measurement Errors

Figure 6.2 visualizes the measurement error for the inflation linked yields, the blue lines, de-
fined as the differences between the observed market implied inflation linked yields and the
corresponding model implied yields. The red dashed lines represent the model implied 95% con-
fidence bounds. Further, it is worth noting that the measurement errors also can be seen in
Figure 6.1, represented by the differences between the red lines and the black lines.
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(a) QQ−Plot for the 5−year Linker Yield Measurement Error (percentage points)
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(b) QQ−Plot for the 7−year Linker Yield Measurement Error (percentage points)
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(c) QQ−Plot for the 10−year Linker Yield Measurement Error (percentage points)

Figure 6.3: Quantile-Quantile Plot of Linker Measurement Errors

Figure 6.3 visualizes the quantile-quantile plots of the inflation linked measurement errors, given
in Figure 6.2, as the blue crosses. A standard normal distribution is used as reference distribution.
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Figure 6.4: Linker Liquidity Premiums

Figure 6.4 visualizes the model implied liquidity premium for the maturities 5-, 7- and 10-years
of the corresponding inflation linked bonds.
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Breakeven Inflations
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Figure 6.5: Actual- and Model Linkers Breakevens and Model True Breakevens

Figure 6.5 visualizes the model implied linkers breakeven inflations and the model implied true
breakeven inflations as the black lines and the blue lines, respectively. The red lines represent
the observed market implied linkers breakeven inflations.
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Figure 6.6: Breakeven Inflation Measurement Errors

Figure 6.6 visualizes the measurement error for the inflation linked yields, the blue lines, de-
fined as the differences between the observed market implied inflation linked yields and the
corresponding model implied yields. The red dashed lines represent the model implied 95% con-
fidence bounds. Further, it is worth noting that the measurement errors also can be seen in
Figure 6.5, represented by the differences between the red lines and the black lines.
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(a) QQ−Plot for the 7−year Linkers Breakeven Inflation Measurement Error (percentage points)
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(b) QQ−Plot for the 10−year Linkers Breakeven Inflation Measurement Error (percentage points)

Figure 6.7: Quantile-Quantile Plot of the Breakeven Inflation Measurement Errors

Figure 6.7 visualizes the quantile-quantile plots of the linkers breakeven inflation measurement
errors, given in Figure 6.6, as the blue crosses. A standard normal distribution is used as refer-
ence distribution.
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Inflation Expectations
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Figure 6.8: Survey Inflation Expectations and Model Inflation Expectations

Figure 6.8 visualizes the model implied inflation expectations, the blue lines, and the Prospera
inflation expectation surveys, the red dots. The red lines represent linear interpolations for the
surveys. The inflation expectations should be interpreted as the expected yearly inflations k-
years from each point in time. So, for example, the 5-year inflation expectation curve should be
interpreted as the expected inflation 5 years from current point in time.
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Figure 6.9: Model Inflation Expectations and Survey Inflation Expectations

Figure 6.9 visualizes, in panel (a), the 1-, 5- and 10-year model implied inflation expectations.
In panel (b) the Prospera 1- and 5-year inflation expectation surveys are given.
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Figure 6.10: Inflation Risk Premiums

Figure 6.10 visualizes the model implied inflation risk premium for three different horizons.
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6.2.2 Decompositions
In this section the model implied decompositions of the nominal yield, the inflation linked yield
and the linkers breakeven inflation are given. These decompositions are given in the model
chapter, see Chapter 3.

Nominal Yields

In the model chapter the nominal yield, see (3.42), is decomposed as

yNt,τ = yRt,τ + It,τ + ℘It,τ . (6.1)
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Figure 6.11: Decomposition of Nominal Yields

Figure 6.11 visualizes the decompositions given by (6.1). The bold blue lines represent the
model implied nominal yields, the thin blue lines represent the model implied real yields, the red
lines represent the model implied inflation expectations and the black lines represent the model
implied inflation risk premiums.
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Inflation Linked Yields

In the model chapter the inflation linked yield, see (3.33), is decomposed as

yLt,τ = LLt,τ + yRt,τ . (6.2)
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Figure 6.12: Decomposition of Linker Yields

Figure 6.12 visualizes the decompositions given by (6.2). The bold blue lines represent the model
implied inflation linked yields, the thin blue lines represent the model implied real yields and the
red lines represent the model implied liquidity premiums.

56



6.2. Graphs

Breakeven Inflations

In the model chapter the linkers breakeven inflation, see (3.46), is decomposed as

yBEI,Lt,τ = It,τ + ℘It,τ − LLt,τ . (6.3)
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Figure 6.13: Decomposition of Linkers Breakeven Inflations

Figure 6.13 visualizes the decompositions given by (6.3). The bold blue lines represent the model
implied linkers breakeven inflations, the thin blue lines represent the model implied inflation
expectations, the black lines represent the model implied inflation risk premiums and the red
lines represent the model implied liquidity premiums.
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CHAPTER 7
Analysis

This chapter will be comprised of three different sections, were conclusions continuously will be
drawn.

Firstly, a section where the model will be evaluated with respect to the observed market data,
see Section 7.1.

Secondly, a section where discussions will be held regarding some of the model implied rela-
tionships in the Swedish bond market, see Section 7.2.

Finally, a short section containing the final conclusion regarding the problem formulation will
be given, see Section 7.3.

7.1 Model Evaluation

7.1.1 Inflation Linked Yields
The model implied inflation linked yields can be evaluated against the corresponding market
data by considering Figure 6.1. It can be seen that the model implied inflation linked yields
well model the market data for each of the three maturities and that the best fit is given for the
7-year maturity.

Table 6.7 states some diagnostic statistics for the comparison between the model implied and
market implied inflation linked yields. These statistics show that the model successfully manages
to fit the model output to the observed market data and that the best fit is given for the 7-year
maturity.

The corresponding measurement errors, given in percentage points, are visualized in Figure
6.2. The error stays fairly small for the entire time period and is close to centred around zero for
all maturities. Furthermore, visually it looks like the errors can be seen as Gaussian white noises.
This corresponds to the assumption made in the method chapter, see equation (5.4). To further
evaluate this assumption Figure 6.3 visualizes the corresponding quantile-quantile plots. Since
all quantile-quantile plots are approximately linear this strengthens the Gaussian assumption
even more.

Also, in Figure 6.1 the model implied real yields are visualized. It can be concluded that the
model implies real yields that do not coincide with the market implied inflation linked yields.
The spread between a model implied real yield and a model implied inflation linked yield can be
identified as the liquidity premium, see equation (3.32). The liquidity premiums are visualized
in Figure 6.4. It can be noted that the liquidity premiums stay in the interval between 0 and 1
percent during most of the time period with one big exception, during the financial crisis. An
analysis of what might drive the liquidity premium is given in Section 7.2.3.

7.1.2 Breakeven Inflations
The model implied linkers breakeven inflations can be evaluated against the corresponding market
data by considering Figure 6.5. It can be seen that the model implied linkers breakeven inflations
well model the corresponding market data. The best fit is once again given for the 7-year maturity.
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Table 6.8 states some diagnostic statistics for the comparison between the model implied
and the market implied breakeven inflations. These statistics show that the model successfully
manages to fit the model output to the observed market data and that the best fit is given for
the 7-year maturity. If these statistics are compared to the corresponding once for the inflation
linked yields, the conclusion can be drawn that the model gives a better fit for the inflation linked
yields. This result follows naturally since when modelling the breakeven inflation, there will be
some errors from both fitting the nominal and the inflation linked yields.

The measurement errors for the linkers breakeven inflations, given in percentage points, are
visualized in Figure 6.6. The error stays fairly small for the entire time period and is close
to centred around zero for both maturities. Once again the errors look like Gaussian white
noises, which is assumed in (5.5). To further evaluate this assumption Figure 6.7 visualizes the
corresponding quantile-quantile plots. The 7-year plot is approximately linear, meaning that the
corresponding measurement error can be approximated by a normal distribution. This conclusion
can not be drawn regarding the 10-year plot, that has sort of an s-shape. This indicates that
the measurement error has lighter tails than the normal distribution, see [8]. Hence, this puts
some doubt on the assumption of independence between the nominal and the inflation linked
measurement errors, used in (5.5).

Also, in Figure 6.5 the model implied true breakeven inflations are visualized. It can be
concluded that the model implies true breakeven inflations that do not coincide with the market
implied linkers breakeven inflations. This follows from the earlier drawn conclusion that the
model implied real yields do not coincides with the market implied inflation linked yields.

The spread between a model implied true breakeven inflation and a model implied linkers
breakeven inflation can once again be identified as the model implied liquidity premium, see
equation (3.32). The liquidity premiums are visualized in Figure 6.4.

7.1.3 Inflation Expectations

The model implied inflation expectations can, in some sense, be evaluated against the Prospera
inflation expectation surveys, see Figure 6.8. One can notice that the model implied inflation
expectations are of the same magnitudes as the inflation expectation surveys but that the model
does not reproduce the local variations in the surveys. This outcome was expected, since the
survey data was not included in the model fitting procedure.

It is worth noting that, if taking the entire time period under consideration, the magnitudes
of the model implied inflation expectations lie around 2%. This is a plausible result since it
coincides with the Swedish central bank’s, Riksbankens, inflation target at 2%, see [10].

In Figure 6.9 panel (a), one can see that the model implied inflation expectation for the
different horizons seem to be highly correlated. Noticeable is also that the inflation expectations
with shorter horizons constantly are lower then the once with longer horizons. The last mentioned
pattern can also be recognized in the inflation expectation surveys during most of the considered
time period.

7.2 Discussion

In the previous section the model fitting was evaluated. This section further focus on the model
implied market relations and their plausibility. Firstly, this is done by considering the decomposi-
tions of the nominal yield, the inflation linked yield and the linkers breakeven inflation. Secondly,
further investigations into what might driver the liquidity premium are performed.

7.2.1 Decomposition Analysis

All discussed variables in this part are referring to model implied outputs, hence this is not stated
before each variable.
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Nominal Yield

In Figure 6.11 the decompositions of the nominal yield are visualized as the sum of the real yield,
the expected inflation and the inflation risk premium. Based on these decompositions, Table 6.9
gives the corresponding decompositions of the nominal yields’ variances. One can notice that
the real yield explains most of the variance for all maturities, but that its influence is lower for
longer maturities. Further, the inflation expectation accounts for the second largest portion of
the variance and its influence is increasing for longer maturities. It can also be noticed that the
inflation risk premium’s portion is fairly constant for the longer maturities and has a negative
sign for the two shortest maturities. The above given portions can also, to some extent, be
recognized by visually comparing the different maturities in Figure 6.11.

Inflation Linked Yield

In Figure 6.12 the decompositions of the inflation linked yield are visualized as the sum of
the real yield and the liquidity premium. Based on these decompositions, Table 6.10 gives the
decompositions of the inflation linked yields’ variances. As with the nominal yield, one can notice
that the real yield explains most of the variance for all maturities and that its influence this time
increases for longer maturities. The liquidity premium’s portion thereby decreases for longer
maturities, from a portion of ∼ 33% to a portion of ∼ 8%. The above given portions can also,
to some extent, be recognized by visually comparing the different maturities in Figure 6.12.

Linkers Breakeven Inflation

In Figure 6.13 the decompositions of the linkers breakeven inflation are visualized as the sum
of the expected inflation, the inflation risk premium and the negative liquidity premium. Based
on these decompositions, Table 6.11 gives the decompositions of linkers breakeven inflations’
variances. One can notice that the liquidity premium explains most of the variance for all
maturities, but that its influence slightly decreases for longer maturities. Further, the inflation
expectation accounts for the second largest portion of the variance and its influence increases
for longer maturities. It can also be worth noting that the inflation expectation accounts for
fairly the same portions as it did for the nominal yields. Furthermore, the inflation risk premium
explains a nearly constant portion of ∼ 15%, for the different maturities. The above given
portions can also, to some extent, be recognized by visually comparing the different maturities
in Figure 6.13.

7.2.2 Inflation Expectation Analysis

In Figure 6.8 panel (b), the model implied 5-year inflation expectation is plotted versus the
Prospera 5-year inflation expectation survey. In this graph one might identify some lagged
correlation between the time series, where the survey seems to be lagged with 6 − 12 months.
This argument is contradictive in the backwash of the financial crisis, between 2009-2011. Such
events are though very rare and it is well known that this particular period generally is very
hard to analyse. Thus, this contradictive pattern can be disregarded as an anomaly from the
hypothesis of the lagged correlation.

The trend in the model implied inflation expectation seems to revert from its peaks and
valleys before the inflation expectation survey.

In that case, since the model inflation expectation has reached a minima between 2012-2013
and currently is trending upwards, one would therefore expect the inflation expectation survey
to revert in a near future and start trending upwards.
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7.2.3 Drivers of the Liquidity Premium

In light of the previous sections, where the consequences of having introduced a liquidity pre-
mium was shown, this section is trying to answer the question of what might drive the liquidity
premium.

Can the inflation be identified as the key driver?

Firstly, one driver might be the inflation. As mentioned in Section 2.1.1, inflation linked yield
levels are highly affected by inflation, this can be seen in equation (2.2). Then, since the inflation
linked yields are partly determined by their respective liquidity premiums, it seems reasonable
to believe that the inflation also will affect the liquidity premiums. Also, since the inflation has
a great impact on the economy in general, it will affect the risk premiums in the financial market
as well.

In Figure 7.1 the model implied 10-year liquidity premium is plotted versus the reversed
year-on-year spot inflation.

One can notice that when the inflation is high and rising, the liquidity premium is low and
decreasing. This might can be explained by reallocations among investors to inflation linked
bonds, to protect their investments from the rising inflation. Therefore, the liquidity increases
in inflation linked bond market and consequently the liquidity premium is decreasing.
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Figure 7.1: 10-year Liquidity Premium vs. y/y Swedish Consumer Pricing Index (reversed)

Can the inflation linked debt share be identified as the key driver?

Secondly, one factor that might can be a driver of the liquidity premium is the supply of inflation
linked bonds. As mentioned in Section 2.1.2, the guideline is to have 25 percent of the total
national government debt financed with inflation linked bonds. When this share is to low, there
is a need for the Swedish national debt office, Riksgälden, to issue more inflation linked bonds and
conversely, when the share is to high there is a need for buybacks of the excess stock of inflation
linked bonds or a decreased issuance. Hence, there seems to be a clear connection between the
debt share and the liquidity conditions in the inflation linked bond market. Before investigating
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whether this relation is realised in the liquidity premium, the following two paragraphs will cover
the mechanisms connecting the inflation, the consumer pricing index and the debt share.

As mentioned in Section 2.1.1, the inflation linked yield levels are affected by the consumer
pricing index level. When the consumer pricing index is decreasing the inflation linked debt
share decreases as well, this can be seen in equation (2.2). Also, there is a tendency for shortage
in the government finances when the inflation is low, i.e. when having a downward trending
consumer pricing index. Larger shortage leads to an increased requirement for borrowing and
this shortage is primarily adjusted by issuing nominal bonds. This implies that the debt share
of inflation linked bonds decreases even further.

Conversely, if there is a high economic activity, the inflation will be high and the consumer
pricing index will be upward trending. Thus, the inflation linked bond prices will increase with
the consumer pricing index and the government earnings will increase due to the high economic
activity. In this case the total national debt will decrease, due to buybacks or less issuance of
nominal bonds, which implies that the share of inflation linked bonds will grow even further.

Based on the discussion in the previous two paragraphs, it is of interest to add the inflation
linked debt share to Figure 7.1. This is done in Figure 7.2 where the 10-year liquidity premium
is plotted versus both the reversed year-on-year spot inflation and the reversed inflation linked
debt share, given in percent.

In Figure 7.2 the previous stated events can be identified, where a rising consumer pricing
index corresponds to an increasing inflation linked debt share. It can also be seen that these
events are followed by a decreasing liquidity premium. This well corresponds to the earlier stated
hypothesis, that these events probably would enhance the liquidity conditions in the inflation
linked bond market and therefore give a lower liquidity premium. Thus the inflation linked debt
share might be a driver of the liquidity premium.

The converse situation with a downward trending consumer pricing index and a decreasing
inflation linked debt share, can be seen to imply a higher liquidity premium. Once again it is
therefore noted that the inflation linked debt share might be a driver of the liquidity premium.

For completeness, it needs to be stated that the inflation linked debt share cannot explain
the rapid movements in the liquidity premium during the financial crisis. Still, this period can
be considered as an extreme outcome and hence partly be disregard from the analysis.
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Figure 7.2: 10-year Liquidity Premium vs. y/y Swedish Consumer Pricing Index (reversed) and Infla-
tion Linked Debt Share (reversed)
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Further Discussions

It can furthermore be interesting to examine the behavior of the liquidity premium during the
2008 financial crisis. At the height of the crisis the global financial system experienced urgent
demand for cash from various sources, including counterparties, short-term creditors and espe-
cially existing borrowers. Thus, during this period the demand for reallocation into liquid assets,
such as nominal government bonds, increased. Moreover, during a financial crisis of this kind
the inflation can be seen to drop rapidly and the need for inflation protection will consequently
be very low. Then, which can be seen in Figure 7.2, the combination of the decreased demand
for inflation linked bonds and the high demand for reallocation into nominal bonds, caused the
liquidity premium to increase considerably during this period. This increase in the liquidity
premium could also be identified for inflation linked bonds with other maturities, see Figure 6.4.
Hence a driver of the liquidity premium during times of severe financial stress might be the risk
averse actions of investors reallocating their investments to more liquid assets.

To sum up, if the hypothesizes presented in this and the previous sections are reflecting what
actually is the case, then the following factors might be drivers of the liquidity premium:

• the inflation

• the inflation linked debt share

• the risk awareness among investors (during severe financial stress)

7.3 Final Conclusion

The aim of this thesis was to investigate the possibility of fitting a model, including an inflation
linked specific liquidity premium, to the Swedish bond market.

It was found that the estimation methodology and the model fitting were successful. Further-
more, the model implied results seemed to be intuitive and realistic. Thus it can be concluded
that the used model was appropriate for modelling the Swedish bond market.
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APPENDIX A
Model Derivations

A.1 Latent Variable Models

dxt = K(µ− xt)dt+ ΣdBP
t xt = [x1t, x2t, x3t]

T (A.1)

dqt = d(logQt) = π(xt)dt+ σ′qdB
P
t + σ⊥q dB

⊥,P
t xt = [x1t, x2t, x3t]

T (A.2)

dx̃t = κ̃(µ̃− x̃t)dt+ σ̃dB̃Pt , (A.3)

where π(xt) is the instantaneous expected inflation and is an affine function in the state variables

π(xt) = ρπ0 + ρπ1
′xt. (A.4)

A.2 Inflation and the Real Pricing Kernel

The real and the nominal pricing kernels must fulfil the following no-arbitrage relation

MR
t = MN

t Qt, (A.5)

where

dMN
t

MN
t

= −rN (xt)dt− λN (xt)
′dBP

t (A.6)

dqt = d(logQt) = π(xt)dt+ σ′qdB
P
t + σ⊥q dB

⊥,P
t , (A.7)

are the nominal pricing kernel and the price level respectively. Also, in (A.6) it is assumed that

rN (xt) = ρN0 + ρN1
′
xt (A.8)

λN (xt) = λN0 + ΛNxt, (A.9)

are the nominal short rate and the nominal prices of risk, respectively. Then, Itô’s formula can
be applied to (A.5)

dMR
t = QtdM

N
t +MN

t dQt + dMNdQt

=

{
divide on both sides by MR

t = MN
t Qt, (A.5)

}
⇔

dMR
t

MR
t

=
dMN

t

MN
t

+
dQt
Qt

+
dMN

t

MN
t

dQt
Qt

. (A.10)

One can see that the real pricing kernel is driven by three factors. Firstly, the change in the
nominal pricing kernel, secondly, the change in the price level and thirdly, the cross term of the
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previous two changes. Left is now only to calculate the term dQt
Qt

, since dMN
t

MN
t

is given by (A.6).
From (A.2) it follows that

logQt = logQ0 +

∫ t

0

π(xs)ds+

∫ t

0

σ′qdB
P
s +

∫ t

0

σ⊥q dB
⊥,P
s . (A.11)

Hence it can be used that
Qt = eF (t,Bt), (A.12)

where

F (t,B t) = logQ0 +

∫ t

0

π(xs)ds+

∫ t

0

σ′qdB
P
s +

∫ t

0

σ⊥q dB
⊥,P
s . (A.13)

Then, Itô’s formula can be applied to (A.12)

dQt =
∂F

∂t
Qtdt+

∂F

∂BP
QtdBP

t +
∂F

∂B⊥,Pt

QtdB
⊥,P
t +

1

2

∂2F

∂2BP
t

Qt
(
(dBP )′dBP

)
+

1

2

∂2F

∂2B⊥,Pt

Qt(dB⊥t )2

=

{
(dB⊥,Pt )2 = (dBP )′dBP = dt

}
= π(xt)Qtdt+ σ′qQtdB

P
t + σ⊥q QtdB

⊥,P
t +

1

2
σ′qσqQtdt+

1

2
σ⊥q

2
Qtdt

=
[
π(xt) +

1

2
σq
′σq +

1

2
σ⊥q

2
]
Qtdt+ σ′qQtdB

P
t + σ⊥q QtdB

⊥,P
t ,

where it has been used that dBP
t dB

⊥,P
t = 0. Then, if this expression together with (A.6) are

inserted into (A.10) and using the fact that dBP
t dB

⊥,P
t = dB⊥,Pt dt = dBP

t dt = 0, it follows that

dMR

MR
= −rN (xt)dt− λN (xt)

′dBP
t +

[
π(xt) +

1

2
σq
′σq +

1

2
σ⊥q

2
]
dt

+ σ′qdB
P
t + σ⊥q dB

⊥,P
t − λN (xt)

′σ′qdt

=
[
− rN (xt) + π(xt) +

1

2
σq
′σq +

1

2
σ⊥q

2 − λN (xt)
′σq

]
dt

+
[
− λN (xt)

′ + σ′q

]
dBP

t + σ⊥q dB
⊥,P
t

=

{
insert rN (xt), π(xt) and λ

N (xt); (A.8), (A.4) and (A.9)

}
=
[
− ρN0 − ρN1

′
xt + ρπ0 + ρπ1

′xt +
1

2
σq
′σq +

1

2
σ⊥q

2 − (λN0 + ΛNxt)
′σq

]
dt

+
[
− λN0

′ −ΛN ′xt + σ′q

]
dBP

t + σ⊥q dB
⊥,P
t

= −rR(xt)dt− λR(xt)
′dBP

t + σ⊥t
′
dB⊥,Pt ,

where

rR(xt) = ρR0 + ρR1
′
xt (A.14)

λR(xt) = λR0 + ΛRxt, (A.15)

where

ρR0 = ρN0 − ρπ0 −
1

2
(σ′qσq + σ⊥q

2
) + λN0

′
σq (A.16)

ρR1 = ρN1 − ρπ1 + ΛN ′σq (A.17)

λR0 = λN0 − σq (A.18)

ΛR = ΛN . (A.19)
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A.3 Nominal and Real Bond Prices and Yields

As in standard literature, see [2], the bond price at time 0 of a bond with maturity at time T is
given as

p(0, T ) = EQ
[
exp

{
−
∫ T

0

ri(s)ds

}]
. (A.20)

If then τ is defined as the time to maturity from the current time t, an equivalent expression for
the bond price at time t with maturity at time t+ τ is given by

pi(t, τ) = EQ
[
exp

{
−
∫ t+τ

t

ri(s)ds

}]
, i = N,R, (A.21)

where i states if the price is for a nominal or a real bond. As in the above calculations it is
assumed that the nominal short rate and the real short rate are given as

rN (xt) = ρN0 + ρN1
′
xt (A.22)

rR(xt) = ρR0 + ρR1
′
xt, (A.23)

where xt is given by (A.1). Bond prices are almost always assumed to posses affine term structures
which states that the bond prices can be expressed as

pi(t, τ) = F (t, τ,xt) = eA
i
τ+Bi

τ
′
xt , i = N,R. (A.24)

where Aiτ and B i
τ are deterministic functions of τ , taking the maturity time T as a parameter.

Itô’s formula applied to (A.24) then gives

dpi(t, τ) = dF (t, τ,xt) =
∂F

∂τ
dτ +

∂F

∂xt
dxt +

1

2

∂2F

∂x2
t

(dx′tdxt)

=

{
notation; ∂Aiτ =

∂Aiτ
∂τ

, ∂B i
τ =

∂B i
τ

∂τ

}
= (∂Aiτ + ∂B i

τ

′
xt)Fdτ + B i

τ

′
Fdxt +

1

2
B i
τ

′
B i
τF (dx′tdxt)

=

{
τ = T − t⇔ dτ = −dt

}
= −(∂Aiτ + ∂B i

τ

′
xt)Fdt+ B i

τ

′
Fdxt +

1

2
B i
τ

′
B i
τF (dx′tdxt)

=

{
(A.1), dxt = K(µ− xt)dt+ ΣdBP

t

}
= −(∂Aiτ + ∂B i

τ

′
xt)Fdt+ B i

τ

′
F (K(µ− xt)dt+ ΣdBP

t ) +
1

2
B i
τ

′
ΣΣ′B i

τFdt

=
[
− (∂Aiτ + ∂B i

τ

′
xt) + B i

τ

′K(µ− xt) +
1

2
B i
τ

′
ΣΣ′B i

τ

]
Fdt+ B i

τ

′
ΣFdBP

t

=

{
Girsanov transformation (Theorem 2.6); dBP

τ = ϕtdt+ dBQ
τ

}
=

{
−ϕit = market price of risk = λi(xt) = λi0 + Λixt i = N,R

}
=
[
− (∂Aiτ + ∂B i

τ

′
xt) + B i

τ

′K(µ− xt) +
1

2
B i
τ

′
ΣΣ′B i

τ −B i
τ

′
Σ(λi0 + Λixt)

]
Fdt

+ B i
τ

′
ΣFdBQ

t .
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Since the above expression is given under the risk neutral measure Q, the drift must equal the
local rate of return

ri(xt) = −(∂Aiτ + ∂B i
τ

′
xt) + B i

τ

′K(µ− xt) +
1

2
B i
τ

′
ΣΣ′B i

τ −B i
τ

′
Σ(λi0 + Λixt). (A.25)

Then, if (A.25) is inserted into (A.22) and (A.23) the following relation is given

[
− ∂Aiτ + B i

τ

′Kµ+
1

2
B i
τ

′
ΣΣ′B i

τ −B i
τ

′
Σλi0 − ρi0

]
+
[
− ∂B i

τ

′ −B i
τ

′K−B i
τ

′
ΣΛi − ρi1

′]
xt = 0.

This equation must hold for all t, τ and xt. If one consider the equation for fixed t and τ it still
must hold for all xt. Hence, the constant term in front of xt must equal zero. Therefore the
other constant term also must equal zero. The following system of ordinary differential equations
is then generated

dAiτ
dτ

= −ρi0 + B i
τ

′
(Kµ−Σλi0) +

1

2
B i
τ

′
ΣΣ′B i

τ (A.26)

dB i
τ

dτ
= −ρi1 − (K + ΣΛi)′B i

τ , (A.27)

with initial conditions Ai0 = 0 and B i
0 = 0. The initial conditions are given by the fact that the

bond price must equal the face value at maturity and hence the exponent in (A.24) must equal
0 for τ = 0.

Equation (A.26) and (A.27) can then be solved using numerical methods. Finally, the bond
prices are given by inserting these solutions into (A.24).

Also, it follows that the nominal and real yields are given as

yit,τ = aiτ + biτ
′
xt, i = N,R. (A.28)

Where it has been used that

aiτ = −A
i
τ

τ
(A.29)

biτ = −Bi
τ

τ
. (A.30)
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A.4 Inflation Expectations

The inflation expectation is assumed to take an affine form

It,τ =
1

τ
Et

[
log

(
Qt+τ
Qt

)]
= aIτ + bIτ

′
xt, (A.31)

where Qt is given by (A.2)

d(logQt) = π(xt)dt+ σ′qdB
P
t + σ⊥q dB

⊥,P
t . (A.32)

The first step in order to identify the constant, aIτ , and the constant vector, bIτ , in (A.31) is to
integrate the expression in (A.32) and insert into (A.31)

τIt,τ = Et

[
log

(
Qt,τ
Qt

)]
=

{
(A.2), Qt = exp

{
logQ0 +

∫ T

0

π(xs)ds+

∫ T

0

σ′qdB
P
s +

∫ T

0

σ⊥q dB
⊥,P
s

}}

= E

[
log

(
exp

{∫ t+τ

0

π(xs)ds+

∫ t+τ

0

σ′qdB
P
s +

∫ t+τ

0

σ⊥q dB
⊥,P
s

}
· exp

{
−
(∫ t

0

π(xs)ds+

∫ t

0

σ′qdB
P
s +

∫ t

0

σ⊥q dB
⊥,P
s

)})]
= E

[ ∫ t+τ

t

π(xs)ds+

∫ t+τ

t

σ′qdB
P
s +

∫ t+τ

t

σ⊥q dB
⊥,P
s

]
=

{
linearity; E[Itô integral] = 0

}
= E

[ ∫ t+τ

t

π(xs)ds

]
=
{
fubini

}
=

∫ t+τ

t

E
[
π(xs)

]
ds

=

{
(A.4), π(xt) = ρπ0 + ρπ1

′xt

}
=

∫ t+τ

t

E
[
ρπ0 + ρπ1

′xs
]
ds =

{
linearity

}
= ρπ0 τ + ρπ1

′
∫ t+τ

t

E
[
xs
]
ds.

The above calculations yield the following relation

τIt,τ = ρπ0 τ + ρπ1
′
∫ t+τ

t

E
[
xs
]
ds. (A.33)

Left is now to calculate the integral in (A.33), or more specifically, calculate E[xs]. This can be
done by applying Itô’s formula to the expression eKsxs, s ∈ (t, t+ τ),

d
(
eKsxs

)
= KeKsxsds+ eKsdxs + 0 · dx′sdxs

=

{
(A.1), dxt = K(µ− xt)dt+ ΣdBP

t

}
= KeKsxsds+ eKs(K(µ− xs)ds+ ΣdBP

s )

= eKsKµds+ eKsΣdBP
s .
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The expression at the last page can then be integrated with respect to s

eKsxs − eKtxt =

∫ s

t

eKuKµdu+

∫ s

t

eKuΣdBP
u

=

{
multiply by e−Ks on both sides

}
⇔

xs = eK(t−s)xt +

∫ s

t

eK(u−s)Kµdu+

∫ s

t

eK(u−s)ΣdBP
u

=

{
take expectations; t is determinsistic

}
⇔

E
[
xs
]

= eK(t−s)xt + E

[ ∫ s

t

eK(u−s)Kµdu
]

+ E

[ ∫ s

t

eK(u−s)ΣdBP
u

]
=

{
funbini; E[Itô integral] = 0

}
⇔

E
[
xs
]

= eK(t−s)xt +

∫ s

t

E
[
eK(u−s)]Kµdu

= eK(t−s)xt +
[ 1

KeK(u−s)
]s
t
Kµ

= eK(t−s)xt +
(
I − e−K(s−t)

)
µ.

By inserting the last expression into (A.33) it is given that

τIt,τ = ρπ0 τ + ρπ1
′
∫ t+τ

t

(
eK(t−s)xt +

(
I − e−K(s−t)

)
µ

)
ds

= ρπ0 τ + ρπ1
′
∫ t+τ

t

(
I − e−K(s−t)

)
µds+ ρπ1

′
∫ t+τ

t

eK(t−s)dsxt

=

{
substitution, u = s− t

}
= ρπ0 τ + ρπ1

′
∫ τ

0

(
I − e−Ku

)
µdu+ ρπ1

′
∫ τ

0

e−Kuduxt.

Therefore, the following relation is given

It,τ = aIτ + bIτ
′
xt, (A.34)

where

aIτ = ρπ0 +
1

τ
ρπ1
′
∫ τ

0

(
I − e−Ku

)
µdu (A.35)

bIτ
′

=
1

τ
ρπ1
′
∫ τ

0

e−Kudu. (A.36)
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A.5 Linker Yields

The inflation linked yield is defined as

yLt,τ = LLt,τ + yRt,τ , (A.37)

where LLt,τ is the liquidity premium and yRt,τ is the market implied real yield.
Mathematically the liquidity premium is defined by introducing a positive liquidity spread,

lLt , to the true real instantaneous short rate, used by investors when discounting an inflation
linked bond’s cash-flow

LLt,τ = −1

τ
logEQt

[
exp
{
−
∫ t+τ

t

(rRs + lLs )ds
}]
− yRt , (A.38)

where the expectation is taken under the risk-neutral measure Q and rRs is the real short rate.
The liquidity spread is modelled as a function depending on four latent variables. Firstly, one

term represented by the latent variables in xt, modelled by (A.1), letting the liquidity spread
being dependent on the state of the economy and secondly, one term independent of the state of
the economy, x̃t. Therefore, the liquidity spread is defined by

lLt = γ′xt + γ̃x̃t, (A.39)

where γ is a constant vector and γ̃ is a constant. It is further assumed that x̃t follows a Vasicek
process, which is given as

dx̃t = κ̃(µ̃− x̃t)dt+ σ̃dB̃Pt , (A.40)

where κ̃, µ̃ and σ̃ are constants and B̃Pt is a P Brownian motion. Since x̃t is said to be independent
of xt it must hold that dB̃Pt dB

P
t = 0. It is also assumed that the independent liquidity factor

possesses a market price of risk defined as an affine function in x̃t

λ̃t = λ̃0 + λ̃1x̃t, (A.41)

where λ̃0 and λ̃1 are constants.
Then, if (A.38) is inserted into (A.37), the following is given

yLt,τ = −1

τ
logEQt

[
exp
{
−
∫ t+τ

t

(rRs + lLs )ds
}]

=
{

(A.14), rR(xt) = ρR0 + ρR1
′
xt; (A.39), lLt = γ′xt + γ̃x̃t

}
= −1

τ
logEQt

[
exp
{
−
∫ t+τ

t

(
γ̃x̃s + ρR0 + (ρR1

′
+ γ′)xs

)
ds
}]

= −1

τ
logEQt

[
exp
{
−
∫ t+τ

t

γ̃x̃sds
}
· exp

{
−
∫ t+τ

t

(
ρR0 + (ρR1

′
+ γ′)xs

)
ds
}]

=
{
x̃t and xt are independent

}
= −1

τ
logEQt

[
exp
{
−
∫ t+τ

t

γ̃x̃sds
}]
− 1

τ
logEQt

[
exp
{
−
∫ t+τ

t

(
ρR0 + (ρR1

′
+ γ′)xs

)
ds
}]
.
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The expression at the last page can be solved by looking at the two terms separately. The
first term,

− 1

τ
logEQt

[
exp
{
−
∫ t+τ

t

γ̃x̃sds
}]
, (A.42)

can be solved by letting γ̃x̃t = ỹt. Hence, the following expression is under consideration

k̃L(t, T ) = EQt

[
exp
{
−
∫ t+τ

t

ỹsds
}]
, (A.43)

where k̃L(t, T ) can be interpreted as the bond price at time t of a bond with maturity T = t+ τ
when ỹt represents the market rate, or the local rate of return. It can now be assumed that
k̃L(t, τ) possesses an affine term structure

k̃L(t, τ) = F̃ (t, τ, x̃t) = eÃ
L
τ +B̃Lτ x̃t (A.44)

where ÃLτ and B̃
L

τ are deterministic functions of τ , taking the maturity time T as a parameter.
If (A.44) is inserted into (A.42), the following is given

−1

τ
logEQt

[
exp
{
−
∫ t+τ

t

γ̃x̃sds
}]

= −1

τ
log
(
eÃ

L
τ +B̃Lτ x̃t

)
= − Ã

L
τ

τ
− B̃Lτ

τ
x̃t

= ãLτ + b̃Lτ x̃t, (A.45)

where the these substitutions have been used

ãLτ = − Ã
L
τ

τ
(A.46)

b̃Lτ = − B̃
L
τ

τ
. (A.47)

Now, a solution to (A.42) is yielded if one can find ÃLτ τ and B̃Lτ τ such that (A.44) holds for all
τ, t and x̃t. Therefore, Itô’s formula is applied to (A.44) which gives that
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dk̃L(t, τ) = dF̃ (t, τ, x̃t) =
∂F̃

∂τ
dτ +

∂F̃

∂x̃t
dx̃t +

1

2

∂2F̃

∂x̃2
t

(dx̃t)
2

=

{
notation; ∂ÃLτ =

∂ÃLτ
∂τ

, ∂B̃
L

τ =
∂B̃

L

τ

∂τ

}
= (∂ÃLτ + ∂B̃Lτ x̃t)F̃ dτ + B̃Lτ F̃ dx̃t +

1

2
(B̃Lτ )2F̃ (dx̃t)

2

=

{
τ = T − t⇔ dτ = −dt

}
= −(∂ÃLτ + ∂B̃Lτ x̃t)F̃ dt+ B̃Lτ F̃ dx̃t +

1

2
(B̃Lτ )2F̃ (dx̃t)

2

=

{
(A.40), dx̃t = κ̃(µ̃− x̃t)dt+ σ̃dB̃Pt

}
= −(∂ÃLτ + ∂B̃Lτ x̃t)F̃ dt+ B̃Lτ F̃ (κ̃(µ̃− x̃t)dt+ σ̃dB̃Pt ) +

1

2
(B̃Lτ )2σ̃2F̃ dt

=
[
− (∂ÃLτ + ∂B̃Lτ x̃t) + B̃Lτ κ̃(µ̃− x̃t) +

1

2
(B̃Lτ )2σ̃2

]
F̃ dt+ B̃Lτ σ̃F̃ dB̃

P
t

=

{
Girsanov transformation (Theorem 2.6); dB̃t = ϕ̃tdt+ dB̃Qt

}
=
[
− (∂ÃLτ + ∂B̃Lτ x̃t) + B̃Lτ κ̃(µ̃− x̃t) +

1

2
(B̃Lτ )2σ̃2 + B̃Lτ σ̃ϕ̃t

]
F̃ dt

+ B̃Lτ σ̃F̃ dB̃
Q
t

=

{
− ϕ̃t = market price of risk = λ̃(x̃t) = λ̃t = λ̃0 + λ̃1x̃t

}
=
[
− (∂ÃLτ + ∂B̃Lτ x̃t) + B̃Lτ κ̃(µ̃− x̃t) +

1

2
(B̃Lτ )2σ̃2 − B̃Lτ σ̃(λ̃0 + λ̃1x̃t)

]
F̃ dt

+ B̃Lτ σ̃F̃ dB̃
Q
t

=
[
− (∂ÃLτ + ∂B̃Lτ x̃t) + B̃Lτ (κ̃µ̃− σ̃λ̃0) +

1

2
(B̃Lτ )2σ̃2 − B̃Lτ (κ̃+ σ̃λ̃1)x̃t

]
F̃ dt

+ B̃Lτ σ̃F̃ dB̃
Q
t

Since the above expression is given under the risk neutral measure Q, the drift must equal the
local rate of return

ỹt(x̃t) = γ̃x̃t = −(∂ÃLτ + ∂B̃Lτ x̃t) + B̃Lτ (κ̃µ̃− σ̃λ̃0) +
1

2
(B̃Lτ )2σ̃2 − B̃Lτ (κ̃+ σ̃λ̃1)x̃t. (A.48)

Then if one collect terms, (A.48) is equivalent to[
− ∂ÃLτ + B̃Lτ (κ̃µ̃− σ̃λ̃0) +

1

2
(B̃Lτ )2σ̃2

]
+
[
− ∂B̃Lτ − B̃Lτ (κ̃+ σ̃λ̃1)− γ̃

]
x̃t = 0. (A.49)

This equation must hold for all t, τ and x̃t. If one consider the equation for fixed t and τ , it
still must hold for all x̃t. Hence, the constant term in front of x̃t must equal zero. Therefore the
other constant term also must equal zero. The following system of ordinary differential equation
is then generated

dÃLτ
dτ

= µ̃∗κ̃∗B̃Lτ +
1

2
σ̃2(B̃Lτ )2 (A.50)

dB̃Lτ
dτ

+ κ̃∗B̃Lτ = −γ̃, (A.51)
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with initial conditions ÃL0 = 0 and B̃L0 = 0. The initial conditions are given by the fact that the
bond price must equal the face value at maturity and hence the exponent in (A.44) must equal
0 for τ = 0. The following substitutions are being used in (A.50) and (A.51)

κ̃∗ = κ̃+ σ̃λ̃1 (A.52)

µ̃∗ =
1

κ̃∗
(κ̃µ̃− σ̃λ̃0) (A.53)

This system of ordinary differential equations is of the kind that can be solved analytically, hence
this will be done below. Since ÃLτ clearly is a function of B̃Lτ , it follows naturally to first solve
for B̃Lτ . (A.51) can be identified as a first order differential equation and can therefore be solved
using the integrating factor method. Multiplying both sides of (A.51) with eκ̃

∗τ , τ = T − t, gives
that

eκ̃
∗τ dB̃

L
τ

dτ
+ eκ̃

∗τ µ̃∗κ̃∗B̃Lτ = −eκ̃
∗τ γ̃

=

{
eκ̃
∗τ dB̃

L
τ

dτ
+ eκ̃

∗τ µ̃∗κ̃∗B̃Lτ =
d

dτ

(
eκ̃
∗τ B̃Lτ

)}
⇔

d

dτ

(
eκ̃
∗τ B̃Lτ

)
= −γ̃eκ̃

∗τ

=

{
integrating with respect to τ

}
⇔

eκ̃
∗τ B̃Lτ = − γ̃

κ̃∗
eκ̃
∗τ + C

B̃Lτ = − γ̃

κ̃∗
+ Ce−κ̃

∗τ (A.54)

Therefore, if the initial condition, B̃L0 = 0, is used one get that

B̃L0 = 0 = − γ̃

κ̃∗
+ C

⇔

C =
γ̃

κ̃∗
. (A.55)

Then if (A.55) is inserted into (A.54) the solution to B̃Lτ is given as

B̃Lτ = − γ̃

κ̃∗

(
1− e−κ̃

∗τ
)
. (A.56)

Then, if it is used that b̃Lτ = − B̃
L
τ

τ , as in (A.47), (A.56) corresponds to

b̃Lτ =
γ̃

κ̃∗τ

(
1− e−κ̃

∗τ
)
. (A.57)
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Now, (A.50) can be solved by firstly integrating with respect to τ ∈ (0, T − t),

ÃLτ − ÃL0︸︷︷︸
=0

= ÃLτ = µ̃∗κ̃∗
∫ τ

0

B̃Ls ds+
1

2
σ̃2

∫ τ

0

(B̃Ls )2ds

=

{
(A.56), B̃Lτ = − γ̃

κ̃∗

(
1− e−κ̃

∗τ
)}

= µ̃∗κ̃∗
∫ τ

0

− γ̃

κ̃∗

(
1− e−κ̃

∗s
)
ds+

1

2
σ̃2

∫ τ

0

( γ̃
κ̃∗

)2(
1− e−κ̃

∗s
)2

ds

= −µ̃∗γ̃∗
(∫ τ

0

ds−
∫ τ

0

e−κ̃
∗sds

)
+

1

2

( σ̃γ̃
κ̃∗

)2
(∫ τ

0

ds−
∫ τ

0

2e−κ̃
∗sds

∫ τ

0

e−2κ̃∗sds

)
= −µ̃∗γ̃∗

[
s
]τ
0

+ µ̃∗γ̃∗
[
− 1

κ̃∗
e−κ̃

∗s
]τ

0

+
1

2

( σ̃γ̃
κ̃∗

)2[
s
]τ
0
−
( σ̃γ̃
κ̃∗

)2[
− 1

κ̃∗
e−κ̃

∗s
]τ

0
+

1

2

( σ̃γ̃
κ̃∗

)2[
− 1

2κ̃∗
e−2κ̃∗s

]τ
0

= −µ̃∗γ̃∗τ +
µ̃∗γ̃∗

κ̃∗

(
1− e−κ̃

∗τ
)

︸ ︷︷ ︸
=−µ̃∗B̃Lτ

+
1

2

( σ̃γ̃
κ̃∗

)2

τ −
( σ̃γ̃
κ̃∗

)2 1

κ̃∗

(
1− e−κ̃

∗τ
)
− 1

4

( σ̃γ̃
κ̃∗

)2 1

κ̃∗

(
1− e−2κ̃∗τ

)
= −µ̃∗γ̃∗τ − µ̃∗B̃Lτ +

1

2

( σ̃γ̃
κ̃∗

)2

τ

−1

4

( σ̃γ̃
κ̃∗

)2 1

κ̃∗

(
1− 2e−κ̃

∗τ + e−2κ̃∗τ
)

︸ ︷︷ ︸
=− σ̃2

4κ̃∗ (B̃Lτ )2

−1

2

( σ̃γ̃
κ̃∗

)2 1

κ̃∗
+

1

2

( σ̃γ̃
κ̃∗

)2 1

κ̃∗
e−κ̃

∗τ

= −µ̃∗γ̃∗τ − µ̃∗B̃Lτ +
1

2

( σ̃γ̃
κ̃∗

)2

τ − σ̃2

4κ̃∗
(B̃Lτ )2−1

2

( σ̃γ̃
κ̃∗

)2 1

κ̃∗

(
1− e−κ̃

∗τ
)

︸ ︷︷ ︸
= 1

2 ( σ̃
κ̃∗ )2γ̃B̃Lτ

= −µ̃∗γ̃∗τ − µ̃∗B̃Lτ +
1

2

( σ̃γ̃
κ̃∗

)2

τ − σ̃2

4κ̃∗
(B̃Lτ )2 +

1

2
(
σ̃

κ̃∗
)2γ̃B̃Lτ

=

{
(A.46), ÃLτ = −τ ãLτ ; (A.47), B̃Lτ = −τB̃Lτ

}
⇔

−τ ãLτ = −µ̃∗γ̃∗τ + µ̃∗τ b̃Lτ +
1

2

( σ̃γ̃
κ̃∗

)2

τ − σ̃2

4κ̃∗
τ2(b̃Lτ )2 − 1

2
(
σ̃

κ̃∗
)2γ̃τ b̃Lτ

⇔

ãLτ = γ̃
[
µ̃∗ − µ̃∗b̃Lτ

γ̃
− 1

2

( σ̃
κ̃∗

)2

γ̃ +
σ̃2

4γ̃κ̃∗
τ(b̃Lτ )2 +

1

2
(
σ̃

κ̃∗
)2b̃Lτ

]
⇔

ãLτ = γ̃
[(
µ̃∗ − 1

2

( σ̃
κ̃∗

)2

γ̃
)(

1− b̃Lτ
γ̃

)
+

σ̃2

4γ̃κ̃∗
τ(b̃Lτ )2

]
. (A.58)

With ãLτ defined as in (A.58) and b̃
L

τ defined as in (A.57) an analytical solution to (A.43) are
then given by inserting ãLτ and b̃

L

τ into (A.45).
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Left is then to calculate the solution to the second term which is given as

− 1

τ
logEQt

[
exp
{
−
∫ t+τ

t

(
ρR0 + (ρR1

′
+ γ′)xs

)
ds
}]
. (A.59)

Then, to be able to solve this expression it is of interest to use the substitution

yt = ρR0 + (ρR1
′
+ γ′)xt. (A.60)

Then, to be able to solve (A.59) it helps to first consider

kL(t, τ) = EQt

[
exp
{
−
∫ t+τ

t

ysds
}]
, (A.61)

where kL(t, τ) can be interpreted as the bond price at time t of a bond with maturity t+ τ when
yt represents the market rate, or the local rate of return, and is an affine function of the latent
variable xt

yt = ρR0 + c′xt, (A.62)

where it has been used that c = (ρR1 + γ). It can now be assumed that kL(t, τ) possesses an
affine term structure

kL(t, τ) = F (t, τ,xt) = eA
L
τ +BL

τ
′
xt . (A.63)

where ALτ and BL
τ are deterministic functions of τ , taking the maturity time T as a parameter.

If (A.63) is inserted into (A.59), the following is given

−1

τ
logEQt

[
exp
{
−
∫ t+τ

t

(
ρR0 + (ρR1

′
+ γ′)xs

)
ds
}]

= −1

τ
log
(
eA

L
τ +BL

τ
′
xt
)

= −A
L
τ

τ
− BL

τ

′

τ
xt

= aLτ + bLτ
′
xt, (A.64)

where the these substitutions have been used

aLτ = −A
L
τ

τ
(A.65)

bLτ = −BL
τ

τ
. (A.66)

Now, a solution to (A.59) is yielded if one can find ALτ and BL
τ such that (A.63) holds for all τ, t
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and xt. Therefore, Itô’s formula is applied to (A.63) which gives that

dkL(t, τ) = dF (t, τ,xt) =
∂F

∂τ
dτ +

∂F

∂xt
dxt +

1

2

∂2F

∂x2
t

(dx′tdxt)

=

{
notation; ∂ALτ =

∂ALτ
∂τ

, ∂BL
τ =

∂BL
τ

∂τ

}
= (∂ALτ + ∂BL

τ

′
xt)Fdτ + BL

τ

′
Fdxt +

1

2
BL
τ

′
BL
τ F (dx′tdxt)

=

{
τ = T − t⇔ dτ = −dt

}
= −(∂ALτ + ∂BL

τ

′
xt)Fdt+ BL

τ

′
Fdxt +

1

2
BL
τ

′
BL
τ F (dx′tdxt)

=

{
(A.1), dxt = K(µ− xt)dt+ ΣdBP

t

}
= −(∂ALτ + ∂BL

τ

′
xt)Fdt+ BL

τ

′
F (K(µ− xt)dt+ ΣdBP

t ) +
1

2
BL
τ

′
ΣΣ′BL

τ Fdt

=
[
− (∂ALτ + ∂BL

τ

′
xt) + BL

τ

′K(µ− xt) +
1

2
BL
τ

′
ΣΣ′BL

τ

]
Fdt+ BL

τ

′
ΣFdBP

t

=

{
Girsanov transformation (Theorem 2.6); dBP

τ = ϕRt dt+ dBQ
τ

}
=
[
− (∂ALτ + ∂BL

τ

′
xt) + BL

τ

′K(µ− xt) +
1

2
BL
τ

′
ΣΣ′BL

τ + BL
τ

′
ΣϕRt

]
Fdt

+ BL
τ

′
ΣFdBQ

t

=

{
−ϕRt = market price of risk = λR(xt) = λR0 + ΛRxt}

=
[
− (∂ALτ + ∂BL

τ

′
xt) + BL

τ

′K(µ− xt) +
1

2
BL
τ

′
ΣΣ′BL

τ

−BL
τ

′
Σ(λR0 + ΛRxt)

]
Fdt+ BL

τ

′
ΣFdBQ

t

Since the above expression is given under the risk neutral measure Q, the drift must equal the
local rate of return

yt(xt) = −(∂ALτ + ∂BL
τ

′
xt) + BL

τ

′K(µ− xt) +
1

2
BL
τ

′
ΣΣ′BL

τ −BL
τ

′
Σ(λR0 + ΛRxt). (A.67)

Then, if this expression is inserted into (A.62) the following relation is given

−(∂ALτ + ∂BL
τ

′
xt) + BL

τ

′K(µ− xt) +
1

2
BL
τ

′
ΣΣ′BL

τ −BL
τ

′
Σ(λR0 + ΛRxt) = ρR0 + c′xt.

(A.68)

Then if one collect terms, (A.68) is equivalent to[
− ∂ALτ + BL

τ

′Kµ+
1

2
BL
τ

′
ΣΣ′BL

τ −BL
τ

′
ΣλR0 − ρR0

]
+
[
− ∂BL

τ

′ −BL
τ

′K−BL
τ

′
ΣΛR − c′

]
xt = 0. (A.69)

This equation must hold for all t, τ and xt. If one consider the equation for fixed t and τ it still
must hold for all xt. Hence, the constant term in front of xt must equal zero. Therefore the
other constant term also must equal zero. The following system of ordinary differential equations
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is then generated

dALτ
dτ

= −ρR0 + BL
τ

′
(Kµ−ΣλR0 ) +

1

2
BL
τ

′
ΣΣ′BL

τ (A.70)

dBL
τ

dτ
= −(ρR1 + γ)− (K + ΣΛR)′BL

τ , (A.71)

with initial conditions AL0 = 0 and BL
0 = 0. The initial conditions are given by the fact that the

bond price must equal the face value at maturity and hence the exponent in (A.63) must equal
0 for τ = 0.

Then, a solution to the second term is given if (A.70) and (A.71) are solved using numerical
methods. Then by inserting this solution together with the analytical solution to the first term
into (A.38) the following expression for the liquidity premium is given

LLt,τ = ãLτ + b̃
L

τ x̃t + aLτ + bLτ
′
xt − yRt . (A.72)

Then if the solution to yRt , (A.29), is inserted to (A.72) the liquidity premium can be expressed
as

LLt,τ = [ãLτ + (aLτ − aRτ )] +
[
(bLτ − bRτ )′ b̃Lτ

][xt
x̃t

]
, (A.73)

where

ãLτ = γ̃
[(
µ̃∗ − 1

2

( σ̃
κ̃∗

)2

γ̃
)(

1− b̃Lτ
γ̃

)
+

σ̃2

4γ̃κ̃∗
τ(b̃Lτ )2

]
b̃Lτ =

γ̃

κ̃∗τ

(
1− e−κ̃

∗τ
)

aLτ = −A
L
τ

τ

bLτ = −BL
τ

τ

aRτ = −A
R
τ

τ

bRτ = −BR
τ

τ
.

Furthermore, the inflation linked yield is given if (A.38) and (A.29), for i = R, are inserted into
(A.37)

yLt,τ = [ãLτ + aLτ ] +
[
bLτ
′
b̃Lτ
][xt
x̃t

]
. (A.74)
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