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Abstract 

The aim of this study is to find a method that is able to locate multiple change-points in a time series 

with unknown properties. The methods that are investigated are the CUSUM and CUSUM of squares 

test, the CUSUM test with OLS residuals, the Mann-Whitney test and Quandt’s log likelihood ratio. 

Since all methods are detecting single change-points, the binary segmentation technique is used to 

find multiple change-points. The study shows that the CUSUM test with OLS residuals, Mann-

Whitney test and Quandt’s log likelihood ratio work well on most samples while the CUSUM and 

CUSUM of squares are not able to detect the location of the change-points. Furthermore the study 

shows that the binary segmentation technique works well with all methods and is able to detect 

multiple change-points in most circumstances. The study also shows that the results can, most of the 

time, be improved by using a combination of the methods. 
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Sammanfattning 

Syftet med studien är att hitta en metod som identifierar tidpunkterna för strukturella brott i en 

tidsserie med okända egenskaper. De metoder som undersöks är CUSUM och CUSUM av kvadrater, 

CUSUM test med OLS-residualer, Mann-Whitney-test samt Quandts log likelihood ratio. Eftersom alla 

metoder identifierar enbart en brytpunkt används binära uppdelningstekniken för att hitta multipla 

brytpunkter. Studien visar att CUSUM-test med OLS-residualer, Mann-Whitney-test och Quandt’s log 

likelihood ratio fungerar bra för de flesta stickproven medan CUSUM och CUSUM av kvadrater inte 

hittar tidpunkten för brytpunkterna. Vidare så visar studien att binära uppdelningstekniken fungerar 

bra med alla metoder och kan identifiera multipla brytpunkter i de flesta fallen. Studien visar också 

att resultaten för det mesta kan förbättras genom att använda en kombination av metoderna. 
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1 Introduction 

1.1 Background 
Time series are frequently used for analyzing the past and making predictions about the future. 

Generally it is assumed that a longer time series contains more information and that the prediction 

of the future becomes better the longer the time series is. It has however been observed that many 

time series contain structural breaks. A structural break is a change in the underlying distribution of 

the data and the point that the change occurs at is called a change-point. This means that the 

assumption of homogenous distribution throughout the whole time series is not correct. To be able 

to use all data available for analysis, the breaks need to be located. The theory surrounding change-

point detection aims to discover if and where such shifts are present in the data.  

The detection of change-points does not only help to avoid faulty assumptions about the data. The 

location and size of the shifts can be used to extract further information about the underlying 

properties of the data. When the change-points have been identified the analysis can be continued 

to explain why the break occurred. 

Change-point detection has applications in a wide variety of fields e.g. ecology (Beckage, et al., 2007), 

economics (Talwar, 1983) and medicine (Barros & Nunes, 2010) and is therefore of interest to many, 

both practitioners and theoreticians. But even though the theory has a wide range of applications, 

the properties of data are often similar from case to case. It consists of longitudinal data with a 

number of dependent and independent variables. This means that results based on a study in one 

field can often be applied in another field. 

However, even though the change-point detection finds many uses in practice, most of the methods 

are developed in a theoretical framework. This is often necessary to derive the correct properties of 

the tests but it presents an issue when applying the methods to real life data. Real life data do 

seldom fit the narrow assumptions made in the theoretical framework. A consequence of this is that 

there is uncertainty as to how the performance of the methods is affected when they are applied to 

real life data. 

The complicated mathematical models behind the investigated methods often lead to other 

simplifications. One such simplification is that most methods are only able to detect one change-

point in the data. This is a restriction that is not present in real life data and in reality it can often be 

observed that longer time series have multiple change-points. To be able to perform an appropriate 

analysis all change-points need to be located. 

As mentioned the interest for change-points is vast and ranges between many different subjects of 

which one is the financial sector. The financial sector deals with a massive data flow from which it 

often needs to identify if there is a structural break or not in different data ranging from market data 

to client accounts. Identifying change-points in individual accounts might be a tool to find irregular 

activities that would motivate further action from the bank. For this reason this thesis is carried out 

at Svenska Handelsbanken AB (publ), hereafter known as ‘the Bank’. The Bank provides data that 

represents the pattern of the daily balances for the Bank’s Swedish accounts.  
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1.2 Purpose 
This study aims to find a method that is able to detect the location of multiple change-points in a 

time series. Since the analyzed data does not always fit the assumptions of the methods, this study 

aims to investigate how the performance of the methods is affected when the assumptions are not 

satisfied. 

1.3 Outline 
The rest of this paper is structured as follows. Section 2 provides an overview of the literature in the 

field of change-point analysis and the methods used in this study are described.  Section 3 explains 

the methodology for this study and details of the calculations. Section 4 presents the results from the 

analysis performed on both artificially generated data and real life data. Section 5 contains 

interpretations and discussions of the results. Section 6 consists of concluding remarks and 

suggestions for further research. 
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2 Literature 
This chapter covers the theory surrounding change-point detection. It begins with defining what a 

change-point is and continues with presenting the different types of change-point problem. The final 

section of the chapter describes the different methods that are used to detect change-points. 

2.1 The change-point problem 
The change-point theory is usually based on the regression model 

      
                   (2.1) 

Where at time t,    is the observation on the dependent variable and    is the column vector of 

observations on   regressors. The first regressor is equal to one for all values of   if the model 

contains a constant.    is a     vector containing the model parameters and    is the error term 

which is usually assumed to be normally independently  distributed. 

The null hypothesis of no structural breaks is 

          (2.2) 

The alternative hypothesis is that there exist points                such that 

         
            

            
            (2.3) 

If the null hypothesis is rejected the time series         is said to have   structural breaks with the 

change-points           . 

The presence of structural breaks in time series has been known to exist for a long time.  One 

method to detect the breaks is to employ a moving average instead of a regression on the whole 

time period. However, this approach runs into problems when deciding the length of the moving 

window. As Page (1954) points out, a small window will be able to detect a large change rapidly but 

small changes are detected slowly. A large window is better for detecting small changes but large 

changes will be dampened by the smoothing effect of the moving average. The size of the window 

hence depends on the properties of the breaks, which are often not known in advance. 

Instead Page chooses another approach and develops the foundation for change-point detection 

theory (Page, 1954). The first application is quality control in factory productions and hence the 

initial theory is developed for so called online data. For online data new data is sequentially added to 

the time series and then tested for structural breaks. A key concept when analyzing online data is 

Average Run Length (ARL) which is defined as the expected number of articles sampled before action 

is taken. In a satisfactory setting ARL is measuring the Type I error1, since it measures the rate of false 

alarms. When the quality is poor it is measuring Type II error2, since it measures the time it takes to 

react to errors in the production. 

There is another branch of the theory that is concerning offline data, which is a fixed sample of 

historical data. The methods are based on the same principles as those for online data but they have 

somewhat different focuses. Tests for offline data are concerned with the significance of the 

                                                           
1
 A type I error is the incorrect rejection of a true null hypothesis 

2
 A type II error is the failure to reject  a false null hypothesis 
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detected change-points and search for change-points in the whole data set, while online tests only 

investigate changes at the end of the sample. This study will focus on tests on offline data. 

Depending on the nature of the problem and the prior knowledge about the data, a change-point 

problem can be sorted into three different categories. The method is then chosen appropriately to fit 

the category. The main categories of change-point problems are: 

1) A known number of change-points at known times 

2) A known number of change-points at unknown times 

3) An unknown number of change-points at unknown times 

The method for detecting change-points in category 1) is usually a Chow test (Chow, 1960). This test 

is appropriate when there is a specific point in time that is suspected to be a change-point, e.g. crime 

statistics before and after a law is passed. In many applications this is not the case, and in particular it 

cannot be applied to this study. 

Category 2) provides a simple model since the null and alternative hypotheses are easily constructed. 

In this category all parameters including the change-points can be estimated. Their statistical 

properties are investigated by Bai and Perron (1998). It is however unusual that the number of 

change-points are known in advance. 

This study is concerned with category 3) since neither the number nor the locations of the change-

points are known in advance. Several methods have been suggested on how to find unknown 

change-points but there is no universally correct method that applies to all circumstances. Instead a 

method is chosen depending on the data the analysis is performed on and what the applications of 

the results should be. 

One of the difficulties of an unknown number of change-points is the construction of the null and 

alternative hypothesis. Since the number of change-points is unknown, it is impossible to in advance 

construct an accurate alternative hypothesis. Many articles are employing a test for one change-

point (versus none). In longer time series there is often multiple structural breaks and disregarding 

the possibility for multiple breaks will result in flawed results. 

One way to utilize single change-point methods when investigating the possibility of multiple change-

points is to employ the binary segmentation technique described by e.g. Chen and Gupta (2012). The 

technique starts with testing the whole period for a single change-point (versus none). If one change-

point is discovered, the time period is divided into two parts (divided by the change-point). The 

separate parts are then tested individually for the occurrence of a change-point. The procedure is 

repeated until no new change-points are discovered. This method allows the complex problem with 

an unknown number of change-points to be reduced to a test for one change-point versus none 

performed sequentially. Bai and Perron (1998) suggest a similar procedure to test for   versus     

breaks.  

2.2 Change-point detection methods 
The literature contains a plethora of change-point detection methods. A selection of methods is 

tested in this study. The methods are chosen because they are easy to implement, fast to calculate 

and commonly occurring in the literature. They are also chosen to work on different kinds of data, 

creating a heterogeneous set of methods. 
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CUSUM (cumulative sum) is a method that is well described in the literature. Page (1954) is the first 

to describe the method and introduces it as a test for online data. The method is further developed 

and made to fit offline data by e. g. Hinkley (1971) and Brown, Durbin and Evans (1975). The CUSUM 

method is based on the cumulative sum of the sequential residuals from an Ordinary Least Squares 

(OLS) regression. The null hypothesis is that there is no change-point and the alternative is that there 

is one change-point at an unknown time. The model rests on the assumption that the error terms are 

normally independently distributed. This assumption is then used to derive a limit for the rejection of 

the null hypothesis.  

The CUSUM of Squares (CUSUMSQ) test is a similar method that is also described by Brown et al. 

(1975). The method is instead using the sum of squared sequential residuals. This version of the test 

fits better to find haphazard changes rather than systematic changes and works well as a 

complement to the CUSUM test (Brown, et al., 1975). 

One disadvantage with the standard method of CUSUM is that the power for late structural breaks is 

rather low, meaning that structural breaks that occur late in the time series risk being undetected by 

the method. Ploberger and Krämer (1992) examine the relative performance of a CUSUM test on the 

OLS residuals (hereafter referenced as OLSCUSUM). Instead of sequential residuals, the method is 

using OLS residuals over the whole time period. This means that it performs better at detecting late 

structural breaks. The method is based on the assumption that the residuals are independent and 

identically distributed (i.i.d). The null distribution for this test is harder to derive since the OLS 

residuals are correlated and heteroscedastic even under the null hypothesis (Ploberger & Krämer, 

1992). Also, since the residuals sum to zero, the cumulative sum does not tend to drift off after a 

structural change. Despite those problems Ploberger and Krämer (1992) derive the null distribution 

and construct a test on the OLS residuals. They conclude that the OLS based CUSUM method reacts 

better on late structural shifts but that no version of the test is uniformly superior to the other.  

Another test for a single change-point is Quandt’s log-likelihood test (hereafter referenced as 

‘Quandt method’ or ‘Quandt’) which is first introduced by Quandt (1958). The method is based on 

the likelihood ratio   defined as 

 
  

     

     
 (2.4) 

where       is the unrestricted maximum of the likelihood function over the entire parameter space 

  and       is the maximum of the likelihood function over the subspace     to which one is 

restricted by the hypothesis. In this context   corresponds to no breaks while   corresponds to one 

break in the time series. The simple computations of this measurement make it preferred over more 

complicated methods. However, a severe limitation of the model is that the distribution of the ratio 

is unknown and hence the results are only indicative. This issue is resolved by Deutsch (1992) who 

calculates the distribution empirically, making the test more viable outside of an indicative nature. 

Since the method is based on the likelihood-function it is assumed that the underlying distribution of 

the data is known. 

Most of the described tests are constructed under the assumption that the data is normally 

distributed. This is not always true in practice and a more robust test seems appropriate. Talwar 

(1983) provides a comparison between some methods and their robustness. One such method is the 

homogeneity test discussed in the article by Brown et al. (1975) which turns out well against heavy 
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tailed distributions. The method is dividing the time series in different parts and performing a 

piecewise regression and then analyzing the differences in variances. It is however difficult to use the 

method to identify the locations of the change-points, and it rather works as an indicative method. 

Another robust method is the method based on the Mann-Whitney two sample test (MW) described 

by Pettitt (1979). The Mann-Whitney method is non-parametric which means that is not based on 

any assumptions of the underlying distribution of the residuals. Since it is based on ranks it is also 

insensitive to outliers.  

Some of the methods that are described are based on an assumption of i.i.d. residuals. This could 

become an issue since there is often a time-dependence in a time series. Alippi et al. (2013) try to 

resolve this problem by using an ensemble method where random subsamples of the data are 

drawn, which removes the time dependence from the sample. The analysis is then performed on the 

subsample. Then a new random sample is drawn and the analysis is performed on this sample. This 

procedure is repeated for a fixed number of times. The results are then combined by a weighted 

average. Alippi, et al. (2013) use the Lepage statistic which is based on the Mann-Whitney test 

statistic combined with the Mood test statistic. The Mann-Whitney statistic locates changes in the 

mean while the Mood statistic locates changes in the variance. Alippi et al. (2013) show that the 

Ensemble method improves the change-point estimates when the residuals are not i.i.d.  
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3 Methodology 
In this chapter the methods used in the study are described in detail. First the binary segmentation 

technique is presented. Then the change-point detection methods CUSUM, CUSUMSQ, OLSCUSUM, 

Quandt and MW are described. Thereafter the ensemble and combined method are explained. The 

chapter is concluded with a description of the data and how the methods are evaluated. 

3.1 Binary segmentation technique 
The binary segmentation technique is a technique that makes it possible to use a single change-point 

method to detect multiple change-points sequentially. The technique is described by e. g. Chen & 

Gupta (2012) and performed as follows. 

Let                  denote the partition of the interval       into subintervals 

                                  where             

1) The initial partition is          i.e. the whole sample 

2) Test each of the subintervals given by    for change-points    

3) Add the   found change-points    to the partition:                 
   ,           

4) Repeat from 2) 

The algorithm is iterated until no more change-points are found or with a set amount of iterations. 

One possible variation is to only add the most significant change-point to the partition in step 3. This 

is however more computationally demanding and most of the time does not make any difference in 

the final result. 

The binary segmentation technique is illustrated in Figure 1 on a fictional time series symbolized by 

rectangles. 

 
Figure 1 – Illustration of the binary segmentation technique 

Figure 1 demonstrates that the binary segmentation technique can locate multiple change-points 

using single change-point methods sequentially. It also shows that the time intervals become smaller 

and smaller. It should be noted that if no change-points are found in the subinterval, the subinterval 

is kept intact. 
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3.2 CUSUM and CUSUMSQ 
The CUSUM- and CUSUMSQ-test are based on the recursive residuals from a regression. The tests are 

described in detail by Brown et al. (1975) but the calculations are outlined in this section. The 

recursive residuals    from the observations        ,       are calculated as follows 

    
  

   

 (3.1) 

Where   

         
      (3.2) 

 

           
 

   

   

 

  

      

   

   

  (3.3) 

 

       
       

 

   

   

 

  

   (3.4) 

The CUSUM and CUSUMSQ statistics are then calculated as 

 
        

  

  

 

     

 (3.5) 

 
         

   
  

     

   
  

     

 (3.6) 

Where 

 

    
          

     

       
 (3.7) 

 
   

 

   
   

 

     

 (3.8) 

And   is the number of regressors. 

The upper and lower critical values for        are 

 

         
     

     
 
 

  (3.9) 

Where   in equation (3.9) is given by Brown et al. (1975) to be 1.143 for significance level 0.01, 0.948 

for 0.05 and 0.850 for 0.10. 

The critical values for          are 

 
   

     

   
 (3.10) 

Where the value of   in equation (3.10) is obtained from a table by Durbin (1969) if 

 
 

 
          . Edgerton and Wells (1994) provide a method of obtaining the value of   for 

larger samples. 
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If the statistic moves outside of the critical value-boundaries the conclusion is that there is a 

structural break and the change-point is set to be the point where the statistic first crosses the 

boundary. 

The CUSUM and CUSUMSQ statistics and their boundaries are illustrated with an example in Figure 2 

and Figure 3. 

 
Figure 2 – A time series with a break and the statistic        with upper- and lower confidence bounds 

 
Figure 3 – A time series with a break and the statistic          with upper- and lower confidence bounds 
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3.3 OLSCUSUM 
The calculations of the OLSCUSUM test are similar to those of the CUSUM and CUSUMSQ test, but 

they are based on an OLS on the entire sample. The details and the proof of the method can be 

found in the article by Ploberger and Krämer (1992). In this section the calculation of the method is 

outlined.  

The cumulated sum of the OLS residuals is given by 

 
  

   
 

 

    
   

   

 

   

 (3.11) 

Where 

   
   

      
      (3.12) 

 

           
 

   

   

 

  

      

   

   

  (3.13) 

 

    
 

 
    

   
 

 
 

     

 (3.14) 

And finally the test statistic is 

             
     

   
   

  (3.15) 

Ploberger and Krämer (1992) show that 

 
                                   

 

   

 (3.16) 

As     

They also provide the critical values of   for different significance levels, 1.22 (     ),  

1.36 (    ) and 1.63 (    ). Furthermore they show that the asymptotic approximation works 

well for moderate sample sizes and that the test is almost always conservative. 

The test statistic for an example time series is illustrated in Figure 4. 

  

Figure 4 – A time series with a break and the statistic   
   

 from the OLSCUSUM method 
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3.4 Quandt’s log likelihood ratio 
The Quandt’s log likelihood ratio is based on the likelihood ratio of one break versus no breaks in the 

time series. Assumptions of the distribution of the data have to be made to calculate the likelihood 

function. Because of its simple implementation and its frequent occurrence a normal distribution is 

assumed. The calculation of the statistic is outlined next, but described in more detail by Quandt 

(1958) and Deutsch (1992).  

The likelihood ratio statistic is given by 

 

  
    

  
  
     

  
    

 

     
 
 

 (3.17) 

Where 
    

  
       

     
   

   

  
 (3.18) 

 
   

  
       

     
  

      

    
 (3.19) 

and 
    

       
    

  
   

 
 

(3.20) 

Where     is the estimated parameters from an OLS regression on              ,     is the estimated 

parameters from an OLS regression on              and    is the estimated parameters from an 

OLS regression on the whole sample. 

The test statistic is then calculated as 

            
        

      (3.21) 

The critical values are given by Deutsch (1992) empirically. He also shows that the tail is practically 

not affected by the sample size when it is larger than 100. The critical values for a sample size of 200 

are given in Table 1. 

P 0.50 0.75 0.90 0.95 0.99 

Critical value 6.2 8.1 10.5 12.6 17.2 
Table 1 - Cumulative distribution of Quandt’s statistic with 2 explanatory variables and a sample size of 200 

The Quandt test statistic is illustrated in Figure 5. 

 
Figure 5 – A time series with a break and the statistic -       from the Quandt method 
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3.5 Mann-Whitney 
The Mann-Whitney test is a non-parametric test which means that it can be used on data regardless 

of the underlying distribution. It is described in detail by Pettitt (1979) but the calculations of the test 

are outlined in this section. The test is based on the residuals   
   

 from an OLS on the whole sample 

(calculated as in equation (3.12)). 

Let  

           
   

   
   

  (3.22) 

Where 

 

        

        
        

         

  (3.23) 

Then 

 
          

 

     

 

   

 (3.24) 

     in equation (3.24) is sometimes easier to calculate using the equivalent formula 

                 (3.25) 

Where 

 
      

 

   

 (3.26) 

And    is the rank of the residual   
   

. 

Then the test statistic is calculated as 

       
     

       (3.27) 

The significance level is given by Pettitt (1979) to be 

 
                   

    

     
 

 

   

        
   

     
  (3.28) 

Where     and the approximation works well, accurate for two decimal places, for         

The statistic is illustrated with an example time series in Figure 6. 
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Figure 6 – A time series with a break and the statistic      from the MW method 

3.6 Ensemble method 
The purpose of the ensemble method is to remove time dependency in observations by drawing 

random subsamples iteratively and then combining the results. The algorithm used in the method is 

described in detail by Alippi et al. (2013). In this study a simplified version is tested. It is based on the 

sequence of residuals      
   

          from an OLS on the whole sample (calculated as in 

equation (3.12)). 

1) Draw (without replacement)   random observations from  , denoted by   
    

2) Apply a method for finding a change-point in   
    

3) If a change-point is found, add it to the list of found change-points      

4) Repeat from 1)   times 

5) Apply the method for finding a change-point in   

6) If a change-point is found, add it to the list of found change-points      

7) The change-point is the (weighted) average of all discovered change-points in      

In this study the change-point detection method in the ensemble method is the MW method. The 

random sampling parameter   
 

 
 and the number of individual estimates      . In step 7 the 

average is taken to be the arithmetic mean with all change-points having equal weights. 

3.7 Combined method 
In an attempt to improve the performance of the individual methods a combined method is 

examined. The main reason for the construction of this method is to reduce the number of false 

positives. By combining several methods the probability of multiple false positives coinciding is 

significantly reduced. 

The three best performing methods are used to generate change-points. Then the combined method 

identifies change-points only if multiple methods have detected the same point. Depending on the 

preferences of the analysis, the critical value is for two methods to identify the same change-point or 

for all three methods to identify the same change-point.  
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That the combined method reduces the number of false positives can be explained by calculating the 

probability of random subsamples overlapping.  

Let the sizes of the subsamples be          and the entire sample size be   

The probability of   triple overlapping points when drawing 3 subsamples is 

 

        
   

 
      

    
 

  
  

 
 

  
 
     

    
 

  
  

 

           

   

  (3.29) 

Which gives 

 

                   
   

 
      

    
 

  
  

 
 

    
  

 

  
  

 

           

   

 (3.30) 

Since   usually is much larger than any of          the probability of points identified as change-

points using the triple change-point criterion is very low. And this is assuming that all points are 

chosen randomly, in reality the individual methods are constructed to result in very few false 

positives (1 % error risk) which means that the probability of false positives is reduced further. 

The requirement for triple overlapping points can be relaxed to double overlapping points. Then the 

probability of   (at least) double overlapping points when drawing 3 subsamples is 

 

        
   

 
      

    
 

  
  

 
 

         
   

              
        

 

  
  

 

             

              

 (3.31) 

Which gives 

 

                  
     

  
 

  
  

 
 

          
  

 

  
  

 
 

 

(3.32) 

The details of the calculations of the probabilities and plots for some examples of sample sizes can be 

seen in Appendix A. 

3.8 Data 

3.8.1 Real life data 

Real life data is provided by the Bank and consists of anonymized and scaled daily balances for all 

Swedish accounts at the Bank. The maximum length of the time series is between 26 November 2012 

and 13 Jan 2014 (414 days), but accounts opened and closed in that time period are also included. 

The data is mainly used to extract properties of real life data in order to generate artificial data with 

similar properties. 

3.8.2 Generated data 

To evaluate the performance of the methods, artificial data are generated. This data have known 

properties that make it easy to judge how well the methods are performing. For each set of different 

distributed data 1000 time series are generated with 365 observations (which correspond to daily 

observations over a year). 
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First data from a normal distribution is generated. This is in order to test the performance of the 

methods under ideal conditions and provide a baseline for further tests. The first tests are performed 

on data with a single structural break with varying size. This will hence illustrate the performance of 

the methods on a single change-point and how the size of the shift affects the performance. 

Secondly normal distributed data with two structural breaks is tested. This will illustrate how well the 

methods perform on data with multiple breaks. In this stage the location of the change-points will be 

varied to extract the performance of the methods on differently located change-points. 

The next stage of the study is performed on data with different distribution than a normal 

distribution. Some heavy tail distributions are investigated, including the student’s t-distribution and 

the Cauchy distribution. Data from a uniform distribution is also tested. The results show how well 

the methods perform on data that is not following the assumptions of normal distribution. 

Lastly data generated from an autoregressive model with lag 1, AR(1), is used to test how well the 

methods are performing on data that is not i.i.d. 

3.9 Evaluation of the methods 
The analysis on the data, both real life and generated, are performed using the program SAS 

(Statistical Analysis System). 

All methods are first tested on the artificially generated data. Since the true locations of the change-

points are known it is easy to evaluate the performance of the methods both regarding the number 

of correctly identified change-points and the spread of falsely identified change-points. The 

ensemble method is also tested to see if it is able to improve the performance of the regular MW 

method. 

The performance of the methods is evaluated according to two criteria, the number of correctly 

identified change-points (true positives) and the number of incorrectly identified change-points (false 

positives). A good method produces a large amount of true positives and a low amount of false 

positives. A low amount of false positives is the most important property in this study. This is because 

wrongly identified change-points create misinformation about the properties of the time series while 

missed true positives only limits the amount of information available. The sooner is more severe than 

the latter, at least in this study. 

The binary segmentation technique is used for each method, even on data with a single change-

point. This is because in reality the number of change-points is unknown and it is of interest to know 

how the binary segmentation technique performs on data where it should not be needed. 

When the individual methods have been evaluated the combined method is tested in a similar way. 

The different criteria are evaluated to see if they are able to improve the performance of the 

individual methods. 

As a final evaluation, the analysis is performed on the real life data provided by the Bank with 

unknown properties and locations of the change-points. This will give an indication on how well the 

methods perform on data with the complex properties and the unpredictability that real life data 

has. However, since the true properties of the data are unknown the results from these tests can 

only be of an indicative nature.   
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4 Results 
This chapter begins with an investigation on how the data from the Bank is distributed. It is followed 

by the results of how the methods are performing on generated data with different (known) 

properties. Furthermore the performance of the combined method is evaluated. The chapter ends 

with an evaluation on how well the methods perform on real life data. 

4.1 The distributions of the residuals 
In this section the properties of the data from the Bank are investigated. It should be noted that the 

data contains structural breaks while the analysis assumes homogenous data. That is because it is 

impossible to in advance locate the change-points and make appropriate corrections. The results 

from this section should hence only be used indicatively and not as a confirmation about the true 

properties of the data. 

First the distribution of the residuals is examined by producing Q-Q plots. Figure 7 shows a Q-Q plot 

of residuals from an OLS regression (in relation to the value of the time series) on 1,000,000 accounts 

versus a normal distribution. The aggregated result is resting on the assumption that the residuals 

from all accounts have the same distribution, which is a somewhat questionable assumption. But it 

gives an overview of how the distribution of the residuals could look. 

 
Figure 7 – Q-Q plot of the residuals versus a normal distribution 

As Figure 7 shows, the data does not seem to come from a normal distribution. The most obvious 

reason for this is that the tails are much heavier for the data than for the normal distribution. 

However, those heavy tails could also be seen as outlier that does not fit the general distribution of 

the data. Hence a Q-Q plot is produced where residuals larger than two times the value of the time 

series are removed. This is presented in Figure 8. 
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Figure 8 – Q-Q plot of the cropped residuals versus a normal distribution 

In Figure 8 the behavior of the data in the center is more clearly illustrated. As can be seen, the tails 

can still be considered heavy, but it can also be observed that the data does not follow the normal 

distribution in the middle either.  

The autocorrelation of the data is investigated next to see how well motivated the assumption of 

i.i.d. seems to be. An initial inspection shows that the most accounts have time dependence. Some 

examples are presented in Appendix B . To investigate the AR lag for all real life time series the 

partial autocorrelation function is used on roughly 1,000,000 accounts. The histogram over the 

identified lags is presented in Figure 9. 

 
Figure 9 – Identified lags of the AR-process using the partial autocorrelation function on roughly 1,000,000 accounts 

Figure 9 shows that for most of the accounts the data seem to come from an AR(1)-process. It can 

also be noted that lag 0 has the lowest frequency meaning that the i.i.d. assumption does not seem 

to hold.  
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The results from the initial analysis is hence that the residuals of the real data comes from a heavier 

tailed distribution than a normal distribution and that the assumption of i.i.d. is questionable, with an 

AR(1)-process being more likely. These results could come from the fact that the time series contains 

structural breaks but are still used when generating the data that the methods are tested on. 

4.2 Evaluating the individual methods 
The analysis is performed using the methods CUSUM, CUSUMSQ, OLSCUSUM, Quandt’s log likelihood 

ratio and MW on generated test data. The binary segmentation technique is used to be able to 

identify multiple change-points. The iteration limit is set to two which mean that the maximal 

identified change-points are three. This is because the number of change-points in these tests is 

known to be at most two. Since the number of false positives is an important factor the significance 

level is set to 1 %. 

4.2.1 Normal distribution 

4.2.1.1 Single change-point 

The first test is constructed to investigate the performance of the individual methods and how the 

size of the structural break affects the ability of locating the change-point. The test data used have 

only one change-point to keep the results clear and easy to interpret.  

A set of 1000 time series consisting of 365 observations (with a change-point at 99) are generated as 

follows: 

 
 

                

                  
              

(4.1) 

Where        denotes a normal distribution with expected value   and standard deviation  . 3 

Each of the tested methods is then used respectively on the generated data. To see how the 

identified change-points are distributed the figures present three levels of identified change-points: 

1) All identified change-points (false positives and true positives) 

2) Identified change-points within 3 observations from the true value (almost true positives) 

3) Correctly identified change-points (true positives) 

This will hence demonstrate how well the methods perform regarding both true positives and false 

positives. Level 2) is included to get an overview of the distribution of the false positives and whether 

they lie close to the true value or not. 

A good performance is for the bars in each category to be of equal height (meaning that all identified 

change-points are at the true location) and of height one (meaning all change-points are identified). 

The exception is for the shift of size 0 where no change-point should be identified. 

                                                           

3
 The probability density function of          is       

 

    
 

 
      

    for        
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Figure 10 – Identified change-points using the CUSUM method on normally distributed data with varying shifts 

 
Figure 11 – Identified change-points using the CUSUMSQ method on normally distributed data with varying shifts 

 
Figure 12 – Identified change-points using the OLSCUSUM method on normally distributed data with varying shifts 
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Figure 13 – Identified change-points using the Quandt method on normally distributed data with varying shifts 

 
Figure 14 – Identified change-points using the MW method on normally distributed data with varying shifts 

As can be seen in Figure 10-Figure 14 the methods OLSCUSUM, Quandt and MW are outperforming 

the CUSUM and CUSUMSQ test using both performance criteria (number of true positives and 

number of false positives). 

All methods are producing a small amount of false positives when there is no change-point in the 

data (where the size of the shift is 0). This means that all methods perform as expected when used 

on data with no structural break and no method is superior when the null hypothesis of no shifts is 

true. 

For small breaks (1 standard deviation) no method is able to detect a large amount of the true 

change-points. As the shift increases the number of identified change-points is increasing and the 

differences between the methods become more apparent. The OLSCUSUM, Quandt and MW 

methods have a large percentage of true positives compared to false positives and for shifts larger 

than 8 standard deviations the methods are able to detect all change-points without any false 

positives. The CUSUM and CUSUMSQ are not able to detect the location of the change-points. 
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4.2.1.2 Multiple change-points 

Next, the performance of the methods on data with two change-points is investigated. The data is 

generated as follows. 

 

 

                

                 
                   

  
(4.2) 

Where     and    are the true change-points. The time series are generated in sets with different 

values for     and     to examine how well the methods are performing depending on the location of 

the change-points. 1000 time series are produced for each configuration of change-points. 

 

             

First two change-points that are relatively evenly spaced are investigated. This aims to isolate the 

multiple change-points from interference effects of the change-points and the edges. All methods 

are used on the test data and the identified change-points are plotted in histograms. The histograms 

have a discrete x-axis which means that only points that are observed are on the axis. The axis is 

hence not linear. The reason for this is to improve the visibility of the plots. The true locations of the 

change-points are marked with a lighter colour (note that Figure 15 – Identified change-points using 

the CUSUM method on normally distributed data with shifts at 99 and 199Figure 15 does not have 

any light coloured bar). A method is considered to perform well if the lighter coloured bars are close 

to 1.0 (which means that all true change-points are located) and the rest of the bars are close to zero 

(which means that no false change-points are identified). 

 
Figure 15 – Identified change-points using the CUSUM method on normally distributed data with shifts at 99 and 199 
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Figure 16 – Identified change-points using the CUSUMSQ method on normally distributed data with shifts at 99 and 199 

 
Figure 17 – Identified change-points using the OLSCUSUM method on normally distributed data with shifts at 99 and 199 

 
Figure 18 – Identified change-points using the Quandt method on normally distributed data with shifts at 99 and 199 
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Figure 19 – Identified change-points using the MW method on normally distributed data with shifts at 99 and 199 

As can be seen in Figure 15-Figure 19 the OLSCUSUM, Quandt and MW methods are producing the 

best results according to both performance criteria. There are a high percentage of true positives 

with a smaller portion of false positives which are closely spread around the true change-point. The 

CUSUM and CUSUMSQ are not able to locate the change-points and instead are much more spread 

out. From the histograms it can be observed that the change-point locations identified by the CUSUM 

method are lagging the true value. Because of the large variance and inability to produce true 

positives in close to ideal circumstances the CUSUM and CUSUMSQ are deemed to not perform well 

at locating change-points and are not investigated further. 

The ensemble method is a method that aims to be used on time dependent time series to improve 

the performance of the methods. To see how well it performs on time series with i.i.d. data and with 

multiple change-points it is tested on the same data as the individual methods. Since the ensemble 

method is used with the MW method it should be compared with the regular MW method. The 

performance of the ensemble method is presented in Figure 20. 

 
Figure 20 – Identified change-points using the MW Ensemble method on normally distributed data with shifts at 99 and 
199 
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In Figure 20 it can be seen that the MW Ensemble method is not performing as well as the regular 

MW method (Figure 19). In Figure 20 the largest spikes are not at the true locations of the change-

points. Also, the identified change-points are more spread out which means that the uncertainty of 

the results from the method is larger. It can furthermore be observed that there is an increased 

probability of detecting change-points in the middle of the true change-points. This result together 

with the inaccuracy leads to the conclusion that the ensemble method is not working well when 

multiple change-points are present in the data and the method is not investigated further in this 

study.  

 

            

1000 new time series are generated as in (4.2) with true change-points close to the beginning and 

end of the time series. This is then used to see how well the methods perform on data with change-

points on the edges of the data and if it matters whether the change-point is in the beginning or the 

end. Neither the OLSCUSUM nor the MW method manages to locate a single change-point. The 

Quandt method works better and the results are presented in a histogram (with a discrete x-axis). 

 
Figure 21 – Identified change-points using the Quandt method on normally distributed data with shifts at 9 and 357 

As these results demonstrate, the OLSCUSUM and MW method are performing poorly when the true 

change-points lie close to the edges of the time series. Only the Quandt method is able to produce a 

similar histogram as for the previous data (Figure 21) and manages to identify both change-points 

with sufficiently large accuracy. 

 

              

To investigate if there is an interference effect of change-points that lie close to each other 1000 

time series with change-points closely located are generated as in (4.2). The results are presented in 

Figure 22-Figure 24. 
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Figure 22 – Identified change-points using the OLSCUSUM method on normally distributed data with shifts at 99 and 109 

 
Figure 23 – Identified change-points using the Quandt method on normally distributed data with shifts at 99 and 109 

 
Figure 24 – Identified change-points using the MW method on normally distributed data with shifts at 99 and 109 



 

26 
 

As can be seen in the results, the MW method is only able to detect the last (and largest) of the two 

change-points (Figure 24). The OLSCUSUM performs similarly but with a larger amount of true 

positives (Figure 22). The only method that reliably identifies both change-points is the Quandt 

method (Figure 23). 

4.2.2 Student’s t-distribution 

Data generated from a Student’s t-distribution are used next to evaluate the methods. The sizes of 

the shifts are chosen to correspond to the magnitude of the shift for the normal distribution. The 

true change-points are put in the middle of the time series and relatively evenly spaced at 99 and 

199. 1000 time series are generated as follows. 

 

 

                                     

                    

                    

  
(4.3) 

Where      denotes a student’s t-distribution with   degrees of freedom4. 

 
Figure 25 – Identified change-points using the OLSCUSUM method on Student’s t-distributed data with shifts at 99 and 
199 

 
Figure 26 – Identified change-points using the Quandt method on Student’s t-distributed data with shifts at 99 and 199 

                                                           

4
 The probability density function of        is       

  
   

 
 

     
 

 
 
   

  

 
 

 
   

 
for       , where      is 

the gamma function 
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Figure 27 – Identified change-points using the MW method on Student’s t-distributed data with shifts at 99 and 199 

As can be seen in Figure 25-Figure 27 the methods seems to perform roughly the same as for the 

normally distributed data. Most of the detected change-points are at the correct location. The false 

positive change-points are spread around the true change-points. 

4.2.3 Cauchy distribution 

In this section the performance of the methods on Cauchy distributed data is investigated. Since the 

Cauchy distribution does not have any defined mean or variance, it is not possible to produce a shift 

of the same magnitude (in relation to the variance) as for the previous distributions, instead the 

same size of shift as for the student’s t-distribution is chosen. The change-points are again set to be 

roughly evenly spaced at 99 and 199. 1000 time series are generated as follows. 

 

 

                       

                           

                            

  (4.4) 

Where              denotes a Cauchy distribution with location parameter    and scale parameter 

 .5 The results are plotted in histograms.  

                                                           
5
 The probability density function of                is       

 

 
 

 

            for        
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Figure 28 – Identified change-points using the OLSCUSUM method on Cauchy distributed data with shifts at 99 and 199 

 
Figure 29 – Identified change-points using the Quandt method on Cauchy distributed data with shifts at 99 and 199 

 
Figure 30 – Identified change-points using the MW method on Cauchy distributed data with shifts at 99 and 199 
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The efficiency of the methods is somewhat reduced compared to the distributions with lighter tails 

as can be seen in Figure 28-Figure 30. But for the OLSCUSUM and the MW method, the majority of 

the identified change-points are on the correct location or nearby. The MW method does however 

produce a larger amount of true positives. The method that is most affected by the heavy tailed 

distribution is the Quandt method (Figure 29) with a large spread of false positives over most of the 

interval. 

4.2.4 Uniform distribution 

Next, the methods are tested on data from a uniform distribution. As before the true change-points 

are at 99 and 199. 

 

 

                 
                   
                    

  (4.5) 

Where        denotes a (continuous) uniform distribution with minimum   and maximum  .6 

 
Figure 31 – Identified change-points using the OLSCUSUM method on uniformly distributed data with shifts at 99 and 199 

 
Figure 32 – Identified change-points using the Quandt method on uniformly distributed data with shifts at 99 and 199 
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 The probability density function of          is        
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Figure 33 – Identified change-points using the MW method on uniformly distributed data with shifts at 99 and 199 

For the uniform distribution the methods are also able to detect the change-points as can be seen in 

Figure 31-Figure 33. However, the discovered change-points are more spread out than for the normal 

distribution. The Quandt method is only managing to find one of the change-points, the other 

change-point produces a local maximum but it is too small to be noted globally (Figure 32). 

4.2.5 AR(1)-process 

To test the effect of time dependence on the methods a time series with AR(1)-process is 

constructed. The coefficient        is chosen to be relatively large to get a clearer result of the 

effect of the time dependence. As before the true change-point locations are at       and 

       and 1000 time series are generated as follows. 

                
 

(4.6) 

 

 
 

 

                

                 
                   

  
(4.7) 
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Figure 34 – Identified change-points using the OLSCUSUM method on data from an AR(1)-process with shifts at 99 and 
199 

 
Figure 35 – Identified change-points using the Quandt method on data from an AR(1)-process with shifts at 99 and 199 

 
Figure 36 – Identified change-points using the MW method on data from an AR(1)-process with shifts at 99 and 199 
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Figure 34-Figure 36 shows that even with strong time dependence the methods are able to locate 

the (approximate) location of the change-points. However, there is a larger variance than for a purely 

normal distributed process. The peaks of the located change-points are also slightly lagged in 

comparison to the true change-points. 

4.3 Evaluation of the combined method 
Even though most methods seem to perform sufficiently well on their own it can be noted that the 

performance of the methods varies with the distribution of the data. In some cases the amount of 

false positives is too large to make the method viable and even in the optimal circumstances the 

methods produce a spread around the change-point. To remedy the problem with too many false 

positives, a combined method is investigated. This method uses the results from OLSCUSUM, Quandt 

and MW since they were the best performing individual methods and combines them. Depending on 

the preferred number of true positives versus false positives, three criteria are presented: 

1) The single criterion – all change-points identified with OLSCUSUM, Quandt and MW method 

are classified as change-points 

2) The double criterion – Only change-points identified by at least two of the OLSCUSUM, 

Quandt and MW methods are classified as change-points 

3) The triple criterion – Only change-points identified by all of OLSCUSUM, Quandt and MW 

methods are classified as change-points 

4.3.1 Normal distribution 

As for the individual methods a set of 1000 time series is generated as follows: 

 
 

                

                  
              

 
(4.8) 

The combination method is then tested by counting how many change-points are identified, how 

many change-points are identified within 3 observations of the correct location and how many are on 

the correct location. 

 
Figure 37 – Identified change-points using the single criterion on normally distributed data with a varying shift 
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Figure 38 – Identified change-points using the double criterion on normally distributed data with a varying shift 

 
Figure 39 – Identified change-points using the triple criterion on normally distributed data with a varying shift 

As can be seen by Figure 37-Figure 39 the double and triple criterion produces less amount of false 

positives while the single criterion produces a larger amount of true positives. The difference is 

almost negligible though and as the shift increases the methods perform almost equally well. 

4.3.2 Cauchy distribution 

The data is not necessarily normally distributed and therefore the combination method is evaluated 

on data which is performing weaker when applying the individual methods. One such case is the 

Cauchy distributed data where the individual methods are able to locate the change-points but are 

also producing plenty of false positives. 1000 time series are generated as follows. 

 
 

                       

                         
               

 
(4.9) 

A similar procedure as for the normal distribution is employed. The results are presented in the 

following figures. 
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Figure 40 – Identified change-points using the single criterion on Cauchy distributed data with a varying shift 

 
Figure 41 – Identified change-points using the double criterion on Cauchy distributed data with a varying shift 

 
Figure 42 – Identified change-points using the triple criterion on Cauchy distributed data with a varying shift 
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In Figure 40-Figure 42 the differences between the three criteria are clearly illustrated. The single 

criterion is able to identify most of the true change-points. However it produces a massive amount of 

false positives (note the different scale of the y-axis in Figure 40). The triple criterion produces almost 

only true positives but the amount is smaller than for the single criterion. The double criterion 

performs somewhere in between with more true positives than the triple criterion but also slightly 

more false positives. 

4.3.3 AR(1)-process 

The individual methods are not performing well on data generated from an AR(1)-process. The 

spread is large and the peaks are not centered at the true change-points. The combined method is 

tested on data from an AR(1)-process to see if the method is able to resolve the issues from the use 

of the individual methods. 1000 time series are generated as follows with a varying shift. 

                
 

(4.10) 

 
 

                

                  
               

 

(4.11) 

The results are presented as before where the spread of the identified change-points can be seen. 

 
Figure 43 – Identified change-points using the single criterion on data from an AR(1)-process with a varying shift 
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Figure 44 – Identified change-points using the double criterion on data from an AR(1)-process with a varying shift 

 
Figure 45 – Identified change-points using the triple criterion on data from an AR(1)-process with a varying shift 

In Figure 43-Figure 45 it can be seen that the results are different from the earlier plots. The amount 

of false positives is larger for all criteria. In Figure 45, the triple criterion, it can be observed that the 

number of identified change-points is reduced when the size of the shift is increasing which might 

seem counterintuitive. The double and triple criteria are not able to find any significant amount of 

true change-points. The double criterion does however find plenty of change-points within three 

observations of the true value. The single criterion is able to identify most of the true change-points, 

but as for the Cauchy distribution it comes with the disadvantage of a large amount of false positives. 

The strange behavior of the plots makes it interesting to investigate how well the individual methods 

perform with varying shifts. Hence similar plots are produced for the individual methods. 
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Figure 46 – Identified change-points using the OLSCUSUM method on data from an AR(1)-process with a varying shift 

 
Figure 47 – Identified change-points using the Quandt method on data from an AR(1)-process with a varying shift 

 
Figure 48 – Identified change-points using the MW method on data from an AR(1)-process with a varying shift 
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In Figure 46-Figure 48 it can be seen that the only method that is able to detect a significant amount 

of true locations of the change-points is the Quandt method. However, it only detects the true 

location for large shifts. All methods are producing large amount of false positives and even though 

some are lying close to the true location, many are lying further than 3 observations from the true 

value. Furthermore, all methods are getting around 1000 change-points within 3 observations of the 

true value for relatively small shifts. This indicates that the methods are detecting the shift but it is 

somewhat lagged from the true location. This is an observation that is confirmed by the earlier 

histograms in Section 4.2.5. Hence the bad performance of the individual methods is explaining why 

the combined method is performing much worse than for i.i.d. data. The conclusion is that the 

combined method does not significantly improve the results for systematic errors caused by strong 

time dependence. 

4.4 Methods applied to real data 
To further investigate how the methods perform in a real life setting they are tested on the data 

provided by the Bank (daily balances for individual accounts). Since the positions of the true change-

points are unknown, the judgment of the performance is based on ocular inspection and relies on the 

observer’s ability to judge if a change has occurred or not. 

The binary segmentation technique is used with two iterations (meaning that a maximum of three 

change-points can be found). All methods are run on the data and the identified change-points are 

then plotted together with the underlying time series to investigate the performance of the 

methods. A sample of figures is presented below. The scale on the y-axis is removed for 

confidentiality reasons. 

 
Figure 49 – Identified change-points using all methods on example time series 1 
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Figure 50 – Identified change-points using all methods on example time series 2 

 
Figure 51 – Identified change-points using all methods on example time series 3 

The following analysis is based on the assumption that Figure 49 has two change-points, one at 10 

April and the other at 14 August, that Figure 50 has one change-point at 4 January and that Figure 51 

has one change-point at 9 April. It is not certain that these points are the true change-points or that 
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those are the only ones, but they are the points that the author identifies as an obvious shift in the 

underlying distribution. 

The result from an ocular inspection of Figure 49-Figure 51 is that most of the results from earlier 

sections seem to hold. It can be observed that the CUSUM and CUSUMSQ methods are not able to 

find the location of the change-points in any of the plots. It can also be observed that the other three 

methods, OLSCUSUM, Quandt and MW are able to detect the correct location of the change-point 

most of the time. 

There is however also differences in the performance between generated data and real life data. The 

number of false positives is larger than for the analysis on the generated data which can be most 

clearly seen in Figure 50 where the change-points are seemingly scattered all over the time series. It 

can also be observed that even though the shifts are large in Figure 49 and Figure 50, only 

OLSCUSUM manages to identify all shifts. Figure 50 seems to confirm that the MW method has 

problems identifying change-points close to the beginning of the time series. 

Furthermore it can be seen that the OLSCUSUM method is the only method being close to identify 

the shift in Figure 51. It can also be seen that the Quandt method has a tendency of detecting false 

change-points at the end of the time series as can be seen in Figure 49 and Figure 51. Lastly it is 

observed that the combination method seems to perform well, since the points where the change-

points coincide are the points with the most obvious shifts. 
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5 Discussion 
In this chapter the results from the previous chapter are discussed. Firstly the performance of the 

binary segmentation technique is evaluated. Then the results from each of the methods are discussed. 

Thereafter the ensemble and combined methods are evaluated. Lastly the performance of the 

methods on real life data is analyzed. 

5.1 Binary segmentation 
The binary segmentation technique is shown to be useful when testing for an unknown number of 

change-points using methods that detect single change-points. The simplicity of the implementation 

makes it preferred over more complicated models. However, there are some disadvantages with the 

technique. One disadvantage is that it is computationally expensive since the analysis is run on the 

same data multiple times. This means that the calculations are generally slower than a technique 

that is able to find multiple change-points simultaneously. However, since the tested methods are 

quickly calculated this is not a serious issue unless one has very large data samples. 

Another issue with the technique is that the time intervals are sequentially reduced. Some of the 

methods are based on large samples. The reduction of the size of the samples might hence affect the 

performance of some of the methods. OLSCUSUM is based on limit theorems which assume infinite 

sized samples which means that small samples will not correspond to the assumptions behind the 

model. Ploberger and Krämer (1992) do however show that the results are valid for moderately sized 

samples and that the estimation is almost always conservative for smaller sample sizes. For the 

Quandt method, the limits for rejecting the null hypothesis are based on a sample of 200. If the 

sample size is reduced below that size, the performance is affected. However, it can be seen in the 

article by Deutsch (1992) that the limits are conservative for smaller sample sizes. Since this study is 

mostly concerned with the number of false positives and the tests are conservative for small 

samples, the issue with small samples is not that severe. 

Another disadvantage with the binary segmentation technique is that it does not combine well with 

methods that perform badly at the edges of time series. Since the time series is sequentially divided 

into subintervals it means that the number of edges is increasing for every iteration. A consequence 

of this is that the binary segmentation technique is reducing the ability to identify change-points that 

are close to each other with methods that do not work well on the edges (which are shown to be 

OLSCUSUM and MW). Methods that detect multiple change-points collectively are more difficult to 

implement but do only have two edges in the time series and hence do not have the same risk of 

missing change-points within the sample. 

The study shows that the binary segmentation technique works well on samples with only a single 

change-point. It does not produce significantly more false positives even though it actively looks for 

change-points even after the first change-point is identified. This shows that there is no significant 

disadvantage of using the technique on data with few change-points and hence it could most of the 

time be safely used on data with an unknown amount of change-points. 

5.2 CUSUM and CUSUMSQ 
CUSUM and CUSUMSQ are methods primarily constructed to test for existence of structural breaks 

rather than finding the exact location of the change-points. This is confirmed by the results of this 
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study where the methods are shown to only identify the correct location of the change-points on 

rare occasions.  

Both the CUSUM and CUSUMSQ tests have limits in the derivation of the methods. The variance 

under the null hypothesis is varying but the rejection limits are straight lines. This means that the 

probability of crossing the line is not equal over the whole sample. This is not optimal but it is a 

necessary simplification since calculating the crossing probability for a non-straight line is very 

difficult. The implication of this simplification is that the power of the test is varying over the sample. 

This is shown empirically by e.g. Deutsch (1992) who points out that the power of the CUSUM test is 

high for structural breaks in the beginning of the time period and that the power of the CUSUMSQ 

test is high for structural breaks at the end of the time period. 

5.3 OLSCUSUM 
Similarly to the CUSUM and CUSUMSQ methods the OLSCUSUM method produces a straight critical 

line when in reality there is a non-constant variance in the null hypothesis. This, again, means that 

the probability of crossing the line is not constant in the whole sample, which affects the power 

function.  

Another limitation is that the critical levels are calculated asymptotically with infinite sample sizes. In 

reality the samples are not as large and are sometimes very small. As discussed earlier the binary 

segmentation technique makes the sample sizes sequentially even smaller. Ploberger and Krämer 

(1992) do however show via Monte Carlo simulations that the OLSCUSUM method works well for 

moderate sample sizes and that the test is almost always conservative. Since this study is mostly 

concerned with false positives small sample sizes do not severely impact the results. 

The OLSCUSUM method performs well on multiple change-points that lie evenly spaced in time. It 

does however, not perform well on data with change-points close to the edges, where it does not 

manage to locate either the change-point in the beginning or at the end. On data with change-points 

close to each other the method finds one of the change-points but not the other. This can be 

explained by the inability of detecting change-points close to the edges. Because the binary 

segmentation technique is used it means that when the first change-point is found, the other ends 

up on the edge of one of the subintervals and hence is not detected. 

5.4 Quandt’s log likelihood ratio 
Quandt’s log likelihood ratio is based on the distribution function of the residuals. For a simpler 

implementation it is assumed that the data is normally distributed in this study. As seen when 

analyzing the data provided by the Bank, the distribution of the residuals are heavier tailed than a 

normal distribution which means that the normality assumption is questionable. However this study 

shows that the method works sufficiently well for distributions that are similar to the normal 

distribution and that it performs very well on normally distributed data. Unlike the MW and 

OLSCUSUM method it is able to detect change-points that lie close to the edges and change-points 

that lie close to each other. 

For data that is not similar to the normal distribution the Quandt method is performing worse than 

the MW and OLSCUSUM methods. This means that as long as the data is sufficiently close to 

normally distributed the Quandt method performs well. If the data is very heavy tailed or has a 

distribution that is far from normally distributed, the performance of the Quandt method is 
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worsened. In a setting with data of unknown distribution, careful distribution analysis should be 

performed or a combination method that limits the effect of a single method should be used. 

5.5 Mann-Whitney 
One of the limitations of the Mann-Whitney test is that the significance is based on an 

approximation. The approximation does however hold well for significance levels under 50% (Pettitt, 

1979). The Mann-Whitney test is more robust against outliers compared to other parametric 

methods. This is a good property since it means that random spikes in the data do not affect the 

detection of change-points and only permanent shifts are detected. 

The Mann-Whitney test is a non-parametric test which means that it performs well on data with 

unknown distribution. When the data is known to be close to normally distributed it is however 

performing worse than methods based on the normality assumption. The benefits of the method are 

hence limited in that setting. This study has shown that the method works well for normally 

distributed data and the difference between other methods are negligible. Also, in reality it is not 

certain which distribution the data belongs to which makes the MW test preferred over tests based 

on normality assumptions.  

The Mann-Whitney method performs well on evenly spaced change-points not too close to the 

edges. If the change-points lie too close to the edges it does not manage to find the true location of 

the change-points. Similarly to the OLSCUSUM method it only manages to identify one of two 

change-points if they lie close to each other. The reason for this is similarly that the binary 

segmentation technique makes one of the change-points ends up on the edge of the subinterval 

when the first change-point has been identified.  

5.6 Ensemble method 
This study shows that the ensemble method on normally independently distributed data with 

multiple change-points is performing worse than the regular MW method. This might be because it 

was developed and tested on data with a single change-point. With the presence of multiple change-

points it is possible that the method detects different change-points in different iterations which can 

skew the results. This can be observed in Figure 20 in Section 4.2.1.2 where there is an increased 

probability of detecting a change-point in between the two true change-points which is not seen for 

the regular MW method. 

Another disadvantage of the method is that it is computationally expensive and takes longer to run 

than a single run of the whole sample. In analysis of a few time series, this difference is negligible but 

for larger sets of time series this becomes an important issue that is to the method’s disadvantage. 

5.7 Combined method 
This study has shown that the combined method can be a useful tool when the distribution of the 

data is unknown. The usefulness does however depend on the underlying data. The combined 

method applied to normally distributed data does not provide any advantage and performs similarly 

to the individual methods. When applying the method to the heavier tailed Cauchy distribution, the 

advantages of the method becomes more apparent. This study shows that when trying to reduce the 

number of false positives, the combined method produces much better results for the Cauchy 

distribution than the individual methods. When the issue of false positives is not that severe, and the 

number of true positives is more important, the single criterion does however perform better. 
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This finding shows that if the underlying distribution of the data is known to be normal, the 

combination method does not provide a significantly improved performance and hence could be 

avoided. If the underlying distribution of data is different from normally distributed the combination 

method can produce significantly improved results, at least for heavy tailed distributions. Since the 

method does not perform significantly worse for normally distributed data it is clear that the 

combination method is superior when used on data with an unknown underlying distribution and 

when the number of false positives is the important factor of the test. 

The interpretation of the effect of the combined method on data from an AR(1)-process is more 

difficult. The performance is considerably worse than for the other two examples of distributions 

with plenty of false positives. The observation that the triple method identifies fewer change-points 

for larger shifts also seems counterintuitive. The reason for this is that there is a systematic lag in the 

individual methods. This means that the identified change-points are centered on an incorrect 

location. Since the combined method mostly reduces the spread and not systematic errors the 

method is not able to improve the results of systematic lags. As can be seen when the spread for 

individual methods are plotted the Quandt method seems to locate the correct location (for large 

shifts) but the other two methods are identifying positions with a lag from the true position. Since all 

three methods are combined in the triple criterion they are not able to center on the true position. In 

fact it is sufficient for one method producing systematic errors to affect the performance of the triple 

criterion negatively. There is hence a potential need to modify the combined method when applying 

it to data with (strong) time dependence. 

The choice of using the double or triple criterion depends on the preferences of the number of false 

positives versus the number of true positives. In most cases the double criterion is performing 

sufficiently well since it manages to locate most change-points while keeping the number of false 

positives low. But if false positives have a very large impact on the analysis the triple criterion should 

be considered. 

5.8 Methods applied to real life data 
The methods are also tested on data that comes from real life situations with unknown properties. 

This means that it has the complexity of real life data that is difficult to replicate. It does however 

also mean that the true properties of the data are unknown and it is therefore impossible to base the 

conclusions solely on this analysis. The results can however be used indicatively and as a comparison 

with the results based on generated data. 

The results show that most of the results from the generated data seem to hold for real life data. The 

best performing methods are MW, OLSCUSUM and Quandt, while CUSUM and CUSUMSQ are not 

able to locate the assumed positions of the change-points. It also shows that the amount of false 

positives is larger than what is observed for the generated data. This means that the issue with 

incorrectly identified change-points seems more severe in a real life application. However, since the 

number of change-points is unknown it is also possible that the data contains that many change-

points and that the methods are able to locate them. 

A common property for most of the plots is that the biggest shifts in the data are identified by 

multiple methods, while the other identified change-points are spread out. This means that the 

combination method works very well on the real life data. Since it only counts change-points if 

multiple methods identify them, it is able to identify the largest shift and avoid most of the false 
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positives. As for the generated data it can be observed that the double criterion is able to identify a 

larger amount of true change-points than the triple method but the triple method has potentially 

fewer false positives.   
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6 Conclusions 
This study has demonstrated that the binary segmentation technique is a good technique to find 

multiple change-points and that it mostly works well with all tested methods. There is however a 

disadvantage of using the technique in combination with methods that do not perform well on edges 

(OLSCUSUM and MW). This is because the technique is sequentially adding edges to the data. The 

CUSUM and CUSUMSQ methods are shown to work indicatively, but are not able to locate the 

change-points. The OLSCUSUM, Quandt’s log likelihood ratio and MW test are individually 

performing well and are able to locate most of the change-points. No method is universally better 

than the other; instead the performance is based on the properties of the data. 

The individual methods are shown to produce plenty of false positives, especially for heavier tailed 

distributions, which means that the usefulness of the results is reduced. This study tries to resolve 

this problem by using a combination of the methods where only change-points located by several 

methods are considered true change-points. The results from the tests show that this combined 

method is able to lower the number of false positives, even in a non-ideal setting. However, on data 

that creates systematic errors, such as for time dependant data, the combined method will not be 

able to improve the performance and will at most minimize the number of false positives. This study 

also shows that the ensemble method does not perform well in a setting with multiple change-

points. 

Hence, it is possible to use simple methods to locate multiple change-points even though the 

properties of the data are unknown in advance and the assumptions behind the models are not 

necessarily fulfilled. 

6.1 Suggestions for further research 
This study is evaluating the performance of several methods on real life data. To be able to draw any 

conclusions, artificial data has been created in an attempt to replicate the properties of real life data. 

The complexity of those properties has made it difficult to replicate all properties and how they 

interact with each other. Further studies on the behavior of real life data and a more accurate 

replication of the data will shed further light on the performance of the methods. 

This study does not manage to get an improved performance by using the Ensemble method 

described by Alippi et al. (2013). This might be because this study is mainly performed on data with 

multiple shifts which is not investigated by Alippi et al. The method could possibly be modified to fit a 

wider range of data and if so, it could improve the performance of the methods on time dependent 

data. 

The binary segmentation technique has proven to be a, for most cases, successful method for 

adapting single change-point methods to detect multiple change-points. One limitation with the 

technique is that it does not work well with methods that do not perform well on the edges. Neither 

is it optimal for methods based on limit theorems and large sample sizes. A method constructed to 

detect multiple change-points simultaneously could hence be investigated to see how well it 

performs in comparison. 

There exist more change-point detection methods than those that have been investigated in this 

study. They could be tested to see if the performance could be enhanced. One such method is the 
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MOSUM method that is based on moving sums. Also more advanced methods that are more difficult 

to implement but works for a wider range of data could be investigated. 

The combined method could possibly be extended to provide even better results. Instead of exactly 

coinciding change-points it could allow for a window where if multiple change-points are inside that 

window, is classified as a change-point. This could possibly improve the results further when there is 

an unsystematic spread around the true change-point.  
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Appendix A – Probabilities of overlapping subsamples 

Triple overlapping subsamples 

In this section the probability of three subsamples overlapping is calculated. 

Let   be the original sample with cardinality   and          be the sets of subsamples with 

cardinality          such that     ,     ,      

Let              be the number of overlapping elements in    and    

Let                   be the number of overlapping elements in   ,    and    

The probability of   triple overlapping points when drawing 3 subsamples is 

 

                                

           

   

           (0.1) 

where the law of total probability is used in equation (0.1). 

Furthermore, since the subsamples are drawn without replacement, the distributions are 

 
                       

 

 
  (0.2) 
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which gives the probability density function7 
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Double overlapping subsamples 

Similar calculations are performed for the (at least) double overlapping points. 

Let              be the number of overlapping elements in    and    

And                                 be the number of overlapping elements 

between    and    and    and    (not counting the triple overlapping elements in   ,    and   ). 

And                                  be the number of (at least) double overlapping 

points. It can be noted that                

The probability of   (at least) double overlapping points when drawing 3 subsamples is 

                                                           
7
 The probability density function for a hypergeometric distributed stochastic variable              is 
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 (0.5) 

Or equivalently 

 

                                       

             

              

 (0.6) 

 

Furthermore the distributions are 
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  (0.8) 

   

Which gives the probability density function 
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Probabilities for different sizes of subsamples 

The probabilities for different sample sizes are presented below. For a clearer presentation it is 

assumed that           . 
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Appendix B – Autocorrelation plots for real life data 
In this section plots of autocorrelation and partial autocorrelation for 4 time series are displayed. 

 

 

 

 


