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Abstract

Prices of assets traded in stock markets often exhibit out of equilibrium behaviours, e.g.
bubbles and recessions. Yukalov et al. have developed a model to describe these dynam-
ics, and this Master thesis focuses on the problem of calibrating it using an Evolutionary
algorithm and the Simulated Annealing method. In general, the parameter estimation
performs far from desired, and a Sloppy model analysis of the deterministic system shows
that the performance is linked to the sloppiness structure of the model. Accounting for
sloppiness, the calibration results can be seen in a different light and the model could
still be useful for predictions. Thus, the prediction performance on both synthetic and
real-world data is studied, with good results in artificial markets and poor performance
using real prices.





Sammanfattning

Aktier handlas ofta för priser som skiljer sig från jämviktspriser, exempelvis under finans-
bubblor eller i recessioner. Yukalov et al. har tagit fram en modell för att beskriva dessa
beteenden, och i den här Masteruppsatsen undersöks modellkalibrering genom en Evolu-
tionär algoritm och ’the Simulated Annealing method’. Generellt är modellparametrarna
dåligt uppskattade och en Sloppy model-analys av det deterministiska systemet visar att
kalibreringsresultatet är beroende av modellens sloppiness struktur. Med detta i åtanke
kan kalibreringsresultatet tolkas annorlunda och modellen kan fortfarande vara använd-
bar för prediktion. Således är prediktionsprecisionen studerad för både syntestisk och
riktig data, med god precision för simulerade marknader men sämre resultat för verkliga
priser.
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Chapter 1

Introduction

The prices of assets traded in the stock market are, according to neoclassical theories in
economics, the result of supply and demand of numerous market participants, ranging
from large institutional players and investment banks to individual investors. Economists
often model agents as utility maximizing individuals with assets prices as the output from
an equilibrium market. Aggregation of individual preferences into market equilibrium is
complex, and only recently analytical solutions for markets consisting of agents with het-
erogeneous utilities and income statements have been found by Christensen and Larsen
[10]. However, under rather restricted assumptions. To give an example, asset prices
are often modelled as Brownian Motions, an idea that dates back to 1900 and Bachelier
[2]. Another commonly used approach in equilibrium theory is the standard Black and
Scholes model [5], in which asset prices follow Geometric Brownian Motions.

Nevertheless, real markets tend to exhibit features that are in stark contrast to as-
sumptions made in classical theory, such as bubbles and crashes, the equity premium
puzzle, fat-tailed distributions, regime switches etc. [30]. Historical examples are the
.com-Bubble and the more recent subprime mortgage crisis that lead to the most recent
financial recession. To make models of asset prices more realistic, a body of literature has
emerged that aims to describe regime switches, with the first ground breaking work by
Hamilton in 1989 [15]. Generally, ad hoc econometric models with statistical processes
are used. In the specific case of asset prices, regime switching properties are often based
on measurements for periods of high and low volatility or long bull and bear markets.
These models match narrative interpretations of market fundamentals, quantities that
sometimes only can be interpreted ex post, but still be useful, e.g., for ex-ante real-time
forecasting or portfolio choice.

Another approach, unique of its kind, is proposed by Yukalov et al. [35]. They suggest a
dynamic model with competing attractors for non-equilibrium asset prices, providing a
natural framework for shifts between different market phases. Furthermore, in contrast
to other approaches, the model describes and quantifies the underlying characteristics
of the market and its participants, including price formation delay between decision and
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2 CHAPTER 1. INTRODUCTION

investment, market regulation and frictions, speculative momentum effects and mean-
reversal trading strategies. Thus, if it is possible to conclude that the model has high
explanatory power of asset prices, then model interpretations would provide new insights
about the dynamics of financial markets.

Based on these interesting features of the model by Yukalov et al., this Master thesis
analyses the performance of calibrating the model using two different parameter estima-
tion methods, the Evolutionary algorithm and Simulated annealing. The Evolutionary
algorithm is a search heuristic that implicitly tries to maximize the probability distribu-
tion of the parameters given the market prices, while the Simulated annealing method
is a search algorithm that explicitly estimates this quantity. This work proceeds two
earlier Master theses at the Swiss Federal Institute of Technology Zurich with similar
background. In those previous works, the parameter estimation performance is rather
poor. Therefore, the objective of this thesis is to obtain a deeper understanding of why
the calibration problem is hard and to apply new calibration methods to investigate if
these can help to improve the performance. In addition, an analysis of the asset pricing
model in terms of Sloppy models is performed to enhance the understanding about why
the different parameter estimation methods cannot calibrate the model satisfactory.

If it is possible to improve upon model calibration, then the model could be used to
describe asset prices and to model transitions between different mispricing regimes. In
particular, state dependent probabilities of regime switches for calibrated real-world ap-
plications are desirable. A more modest goal is to achieve usability of the calibrated
model in forecasting, which is examined in an introductory manner in this work using
distributions of simulated asset prices.

The analyses in this work show that the deterministic version of the asset pricing model
by Yukalov et al. has a considerable sloppiness structure. Thus, it is not reasonable to ex-
pect that the calibration methods should be able to perform perfectly. Nevertheless, the
model predictions could still be very accurate. In the context of synthetically generated
data, the prediction performance is very satisfactory, with thin prediction distributions
and high precision. However, the accuracy is not good on real financial data, which
suggests that further studies are needed to conclude whether the asset pricing model is
useful for real-world forecasting or not.

The model by Yukalov et al. is introduced in Chapter 2 and the different parameter
estimation methods are presented in Chapter 3. In Chapter 4, the calibration perfor-
mance of synthetically generated data is studied. The corresponding analysis of a S&P
500 time-series is conducted in Chapter 5. Finally, Chapter 6 concludes the thesis.



Chapter 2

Dynamic Asset Pricing Model

This chapter presents the continuous-time dynamic asset pricing model developed by
Yukalov et al. in Section 2.1. Moreover, Section 2.2 introduces state-space methods as
the main tool to approach the discrete realisations of the continuous-time model and
presents necessary model assumptions used in this work.

2.1 Non-equilibrium Asset Pricing Model

In Yukalov et al. [35], the price of a single asset traded by heterogeneous agents in
a market with uncertainty and regulatory constrains is derived in terms of a dynamic
continuous-time model. Their most general model considers i) price formation delay
between decision and investment, ii) linear and non-linear mean-reversal or speculative
trading, iii) market friction, iv) uncertainty in fundamental price, v) non-linear specula-
tive momentum effects and vi) market regulations.

The model differs from the traditional view that randomness in asset prices is due to
publicly accessible information only, as used for instance in the standard Black and Sc-
holes equilibrium model [5]. Instead, this model decomposes the consensus of the markets
participants’ value of the asset (the market value) in a fundamental value and a mispric-
ing part, whereas the fundamental value should represent the correct value of the asset.
The framework does not attempt to model the behaviour of single market participants,
but instead the aggregated actions and believes of all interacting agents. The mispricing
component for different market constitutions has different characteristics and the model
aims to describe both the properties and the underlying causes of mispricing regimes.

2.1.1 Mathematical Description

The model is introduced to describe the market price p(t) at time t of the single asset
traded in the market (where the time dependence subsequently will be dropped for ease
of notation), decomposed as a fundamental price pf and mispricing x as:

3



4 CHAPTER 2. DYNAMIC ASSET PRICING MODEL

x = log(p)− log(pf ). (2.1)

Thus, x denotes the systematic deviation from the fundamental price. E.g. in times
of highly overvalued asset prices (bubbles), the associated mispricing will be positive.
In this model, the mispricing x is assumed to be described by a Stochastic Differential
Equation (SDE) given by:

dx = ydt+ σxdWx, (2.2)

where Wx is a Wiener process. In equilibrium, the drift term y is determined from
the von Neumann-Morgenstern utility function of agents [16] based on consumption and
dividends in the economy [9]. In the case of non-equilibrium markets, Yukalov et al.
assume that y endogenously encounters these fundamentals of an economy by letting y
depend on the state (x, y) through:

dy = fNL(x, y)dt+ σydWy, (2.3)

where Wy is a Wiener process, possibly correlated with Wx. This structure implies a
feedback mechanism from the self-consistency and reflexivity of financial markets as a
consequence of the collective organization of investors, where reflexivity refers to agents
believes and actions being shaped by market expectations. Thus, the model is a second
order SDE where y can be interpreted as the inertia or resistance of changes in the
mispricing x. Moreover, the following assumptions are made: i) there are no further
external influences apart from the dynamics of the fundamental price, ii) the market is
asymmetric fNL(−x,−y) = −fNL(x, y), i.e., there are no drastic differences between
rising and falling prices, and iii) fNL is additive fNL(x, y) = f1(x) + f2(y). Now, using
the self-similar approximation theory [34], Yukalov et al. derive the higher order formula:

fNL(x, y) = αx+ βy +Ax3 exp(−x2/µ2) +By3 exp(−y2/λ2), (2.4)

where interpretations of the parameters are given in the next section. To completely
state the model, further assumptions on the dynamics of the fundamental price need to
be made, i.e., on dqf where qf = log(pf ).

2.1.2 Economic Interpretation of Model Parameters

The parameters in Equation (2.4) have the following economic interpretation:

• α. The individual behaviour of agents. α < 0 suggests that individuals follow
a mean-reversal strategy, while over-speculative markets are characterized by a
positive α.

• β. A factor that mitigates market frictions, i.e., lowers changes in the mispricing’s
drift. Positive β’s are associated with explosive prices and could only be transient
by definition. Since only static parameters are considered, positive β’s are ruled
out. Theoretically, a positive β together with negative B and sufficiently large λ
also yields non-explosive prices.
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• A. The collective behaviour of agents. A reduces or amplifies the effect of α. The
non-linearity makes A influential only for a sufficiently large degree of mispricing.
A > 0 represents collective speculation behaviour while A < 0 describes collective
correction behaviour.

• µ. A measure of the investors’ uncertainty about the fundamental price. It is only
important when A > 0. Small µs correspond to low uncertainty, which results in
smaller mispricings, and vice versa.

• B. Represents momentum strategies. B > 0 is associated with trend reinforcement,
while negative values on B suggest that investors follow contrarian strategies. In
practice, the latter strategy is seldom used by a majority of traders and therefore
only B > 0 is considered.

• λ. Measures market regulation. Large λs describe free markets and allow for larger
mispricing, while rigid markets (small λs) are not subject to this kind of mispricing.

2.1.3 Market Types

Different choices of parameters give rise to different market characteristics, reflecting
e.g., the individual and collective behaviour of agents and market properties such as
information access and regulation. A thorough analysis including phase diagrams and
attractor analysis of the deterministic version of the model is found in Yukalov et al.,
and in total there are 18 markets with different properties. A selection of these are
shown in Table 2.1, illustrating, e.g., possible fixed points. For clarity, market identifiers
are introduced. Each identifier refers to a number of a figure in the paper of Yukalov et al.

In the deterministic case, some of the markets have standard equilibrium characteristics
with one fixed point for the mispricing (x, y) = (0, 0). Other, non-equilibrium markets,
have both positive and negative mispricing attractors as well as limiting cycles. It is
notable, that some non-equilibrium markets exhibit completely different market phases,
depending on the present state of the mispricing (or, more formally, the initialization).

Adding stochasticity does not change the fundamental structure of the market types,
albeit it allows for regime switches. That is, stochasticity makes it possible for the mis-
pricing to change from positive to negative conventions and vice versa. This could be
interpreted as the asset price moving from bubble phases (over valuation) to recessions
(under valuation).
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Table 2.1: Overview of a selection of market characteristics for different market types and
investor preferences. Note: s > 0 is a fixed value and C(x,y) is a cycle around (x, y).

Market Characteristics Properties of Agents Fixed Points: {(x, y)}
Cycles: C(x,y)

1 Certain, µ→ 0 Mean-reverting, α < 0 {(0, 0)}
Over regulated, λ→ 0 Non-speculative, A < 0

3 Certain, µ→ 0 Mean-reverting, α < 0 {(0, 0)}
Unregulated, λ→∞ Non-speculative, A < 0 C(0,0)

4 Uncertain, µ→∞ Mean-reverting, α < 0 {(0, 0)}
Over regulated, λ→ 0 Non-speculative, A < 0

7 Uncertain, µ→∞ Mean-reverting, α < 0 {(0, 0)}
Unregulated, λ→∞ Non-speculative, A < 0 C(0,0)

8 Uncertain, µ→∞ Positive feedback, α > 0 {(±s, 0)}
Over regulated, λ→ 0 Non-speculative, A < 0

10 High uncert., µc < µ < µ1 Positive feedback, α > 0 {(±s, 0)}
Soft reg., λ1 < λ <∞ Non-speculative, A < 0 C(0,0)

12 Certain, µ→ 0 Mean-reverting, α < 0 {(0, 0)}
Over regulated, λ→ 0 Speculative, A > 0

14 Certain, µ→ 0 Mean-reverting, α < 0 {(0, 0)}
Unregulated, λ→∞ Speculative, A > 0 C(0,0)

15 Med. uncert., µc < µ < µ1 Mean-reverting, α < 0 {(0, 0), (±s, 0)}
Weak reg., λ1 < λ <∞ Speculative, A > 0

17 High uncert., µc < µ < µ1 Mean-reverting, α < 0 {(0, 0), (±s, 0)}
Soft reg., λ1 < λ <∞ Speculative, A > 0 C(0,±s)

2.1.4 Fundamental Price

As stated earlier, a complete specification of the model needs assumptions on the funda-
mental price. A simplified but still rich approach is to choose a deterministic fundamental
price pf with dynamics for qf = log(pf ) given by:

dqf = µfdt. (2.5)

The deterministic choice could be motivated to hold in the short run, but is primarily
chosen in order to mitigate the stochasticity of the model and to provide a better overview
and understanding of the already complex system dynamics. Other, more sophisticated
and realistic alternatives, would be the classical Geometric Brownian Motion fundamen-
tal price or an approach with a stochastic volatility component, e.g., a GARCH process.
However, increasing intricacy of the fundamental price makes it more difficult to justify
the exogenous fixing of some parameters because of lower transparency and increased
interdependence, cf., Section 2.2.3.
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One consequence of this assumption is that the mispricing x is given directly by elemen-
tary operations. More precisely, it is given, up to an additive constant, by subtracting
the fundamental price from the market price. Unless stated otherwise, the model is, in
this work, translated so that the initial fundamental price is given by pf (0) = 1, i.e.,
qf (0) = 0. Thus, the mispricing x can be considered the observed variable. Note that
the interpretation of the parameter µ as the investors’ uncertainty about the fundamen-
tal price is not dependent on the stochasticity of the fundamental price. For instance,
the investors could believe that the fundamental price follows some highly stochastic
dynamics. For real-world interpretations, a deterministic fundamental price seems to be
reasonable when studying asset prices ex post and the information about both the asset
and the stock market is greater, retroactively.

2.2 State-Space Representation

As a direct consequence of the specification of Yukalov et al.’s model, the interesting
components x and y that describe the mispricing are generally not observable. Exception
is the case with deterministic fundamental price, that immediately yields the mispricing
component x from the observed price. Nevertheless, the mispricing component y is still
hidden from direct observations. In addition, (x, y) describes a continuous time process
while observations of asset prices are given in a discrete time framework. An appropriate
mathematical tool in this set-up is a state-space representation, which will be introduced
in this section.

2.2.1 General Model

State-space models (SSM) refer to a class of methods that describe the probabilistic de-
pendence between the latent state variable Ut at time t, representing the state of the
system, and the observed measurement Vt at time t. The approach originates from the
American space program for tracking satellites, and has been successfully applied in e.g.,
engineering, statistics and finance.

A state-space model provides a general framework for analysing both deterministic and
stochastic dynamical systems that are observed or measured via a stochastic process. The
hidden state U evolves according to some dynamic, and the observations V are outcomes
of a probabilistic function of U. The system is in many applications Markovian, and the
models are therefore often called Hidden Markov Model (HMM). For instance, a first
order Markovian model has the properties:

(Ut ⊥⊥ U1:t−2,V1:t−1)|Ut−1, (2.6)
(Vt ⊥⊥ U1:t−1,V1:t−1)|Ut. (2.7)

However, there are more general state-space models than the HMM. For example the
dynamics could be non-linear and non-Gaussian. A schematic overview of a first order
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Hidden Markov Model is illustrated in Figure 2.1.

... - Ut−1
- Ut

- Ut+1
- ...

? ? ?

Vt−1 Vt Vt+1

Figure 2.1: Schematic overview of a general Markovian state-space model with state process U
and observation process V .

2.2.2 Discretization of the State Variables

To be able to adapt the model by Yukalov et al. to observed (discrete) asset prices, a
state-space representation is needed. However, the continuous time model is not directly
transferable to the state-space representation with discrete dynamics. Nonetheless, this
is only a matter of discretization and the most straight forward method is to use the
Euler-Maruyama approximation scheme. This translates equations 2.2 and 2.3 into:

Xt+∆t = Xt + Yt∆t+ σx
√

∆tεxt+∆t, (2.8)

Yt+∆t = Yt + fNL(Xt, Yt)∆t+ σy
√

∆tεyt+∆t, (2.9)

where εx, εy ∼ N (0, 1) are the increments of the Wiener processes. From this point and
onwards, εx and εy are for simplicity assumed to be independent, although they could be
correlated. Capital letters X and Y represent the discretized version of the continuous-
time model given by lower-case letters x and y. For ease of notation, Xt+∆t and Yt+∆t

will be written as Xt+1 and Yt+1, respectively. That is, the time unit is assumed to be ∆t.

The assumptions made on the fundamental price in Section 2.1.4 imply that the inter-
dependency between the hidden state Y and the observed process X is more delicate
than in the HMM model. In particular, both the state and the observation process
interact with each other. A schematic overview is in Figure 2.2. The most critical prop-
erty of the dependence structure is the linkage of Yt with Xt−1 and Xt with Xt−1, i.e.,
the fact that the state depends on the previous observation and that observations are
interdependent. Classical filtering techniques cannot usually cope with this kind of de-
pendency, and special methods to be able to face this problem are presented in Chapter 3.

One way of implementing classical filtering methods, as previously studied in the Master
thesis by Robert [28], is adding stochasticity to the modelling by a non-deterministic
fundamental price. In his work, fundamental prices are modelled as Geometric Brownian
Motions, making it possible to have a two-dimensional state (X,Y ) and a observation
process given by the log-returns of market prices. For further details, see the work of
Robert.
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The distinguishing attempt of this work is to investigate if there is some possibility
to exploit the information structure in a less stochastic environment, focusing more on
the hidden mispricing structure. A well-suited calibration approach should not be overly
dependent on the complexity of the model. For instance, the need of imposing uncertainty
might be a sign of trying to fit the model into a framework that in reality is not designed
to contemplate the full structure of the problem. More detailed discussions on previous
works and properties of the attempts in these works are found in Sections 3.1 and 3.2.

... - Yt−1
- Yt

- Yt+1
- ...

@
@@R�
���

?
@
@@R�
���

?
@
@@R�
���

?
@
@@R�
���

... - Xt−1
- Xt

- Xt+1
- ...

Figure 2.2: Schematic overview of the state-space representation of Yukalov et al.’s model with
deterministic fundamental price, state process Y and observation process X.

2.2.3 An Example of a Simulated Process

With use of the Euler-Maruyama approximation scheme presented in Section 2.2.2, it
is possible to simulate asset prices from the dynamic model. It is a well-known fact in
macroeconomics that business cycles usually change on yearly time-scales. Moreover,
qualitative studies of the model by Yukalov et al. indicate that also the change of at-
tractors and cycles corresponds to a scale of a time unit in years. Using 250 trading days
every year gives a time increment of ∆t = 1/250, which is small enough to ensure that
the Euler-Maruyama numerical scheme converges appropriately.

With a fixed time scale, it is possible to adapt the other parameters to the model. In this
work, the parameters that globally describe the market price are assumed to be given
exogenously to enhance the transparency of the fundamental model characteristics. That
is, µf , σx and σy are assumed to be known. Naturally, this limits the direct usage of
the model in a real-world context, since these assumptions need to be verified externally,
but the relevance of the unique model properties given by the other parameters will be
more easily addressed. Thus, this assumption trades a less complex parameter space for
a less endogenous use of the model. However, there exist numerous studies of the global
market parameters µf and σx that can be used, see below.

µf is interpreted as the average yearly return, and the work of Robert used the value
12.5%. For simulation purposes with deterministic fundamental price, the growth rate
of the fundamental price is redundant, since it is added to the modelling of x to get
the market value p. However, for application to real financial data, the choice of µf is
crucial. In Chapter 5, the more realistic value on 4%, corresponding to the long-term
GDP growth, is used [31]. Furthermore, a short analysis of the sensitivity to µf is pre-
sented. In turn, σx describes the volatility of asset prices, which empirically is observed
to be about 1-2% daily. To mitigate the stochasticity of the problem, a daily volatility
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of 1% is chosen. This implies a yearly volatility of σx = 0.01
√

250. The case of σy is
more complicated, since its effect on the market price is not explicitly given, but influ-
ences the dynamics of the system indirectly. In accordance with the work of Robert [28],
σy = 3σx is chosen. This is set from testing of the filtering on Dow Jones Industrial Av-
erage (DJIA) data during the time-period 1970 to 2012. In general, the filtering does not
seem to be overly dependent on the choice of σy, and is therefore not investigated further.

Figure 2.3 exhibits one simulated trajectory of market 15 in Table 2.1. The mar-
ket has speculative, mean-reverting agents that trade in a weakly regulated market
with intermediate uncertainty about the fundamental price. The simulation starts at
(x0, y0) = (0, 0.1), which is close to the zero attractor (x, y) = (0, 0). It is interesting
to see how the mispricing x, after about 10 years, exhibits a change of regime to the
positive attractor around (x, y) = (3, 0). This can also be observed for the market price
p, which after 10 years clearly deviates from the exponential growth in fundamental price.

2.2.4 Summary of Model Assumptions

The closing part of this chapter provides a short list of all of the different assumption
made in this work with regard to the asset pricing model by Yukalov et al.

• The model parameters α, A, β, B, µ and λ are constant, with unknown values that
are to be estimated.

• The fundamental price is assumed to be deterministic and exponentially growing,
implying that the market price follows a type of Ornstein-Uhlenbeck process.

• The hyperparameters µf , σx and σy are known constants and the model is valid
on a yearly time scale. The constants are determined to keep the stochasticity of
the model as low as possible. Moreover, the Wiener processes driving x and y are
independent.

• The Euler-Maruyama discretization scheme has enough convergence properties to
be used in simulations of the model.
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Figure 2.3: One trajectory of the mispricing (x, y) and the market price p of a simulation of
the asset price in a market with parameters α = −1, A = 1, β = −1, B = 1,
µ = 2, λ = 1, µf = 0.125, σx = 0.01

√
250 and σy = 3σx. The simulation starts in

(x0, y0) = (0, 0.1).
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Chapter 3

Parameter Estimation Methods

This chapter starts in Section 3.1 with an overview of previous calibration studies on the
asset pricing model of Yukalov et al., their key findings and shortfalls. In addition, the
improvements of the earlier studied methods that are considered in this work are sum-
marized. In Section 3.2, the Evolutionary algorithm is presented as one new calibration
approach. Moreover, Section 3.3 contains another example of a parameter estimation
method that uses random walkers in the parameter space, called Simulated annealing.

3.1 Previously Studied Calibration Procedures

In this section, earlier attempts on model calibration are summarized, including both
their insights and limitations. These former works are two Master theses at the Swiss
Federal Institute of Technology, by Bertolace in 2009 [3] and Robert in 2012 [28]. The
reader is expected to be fairly familiar with the concepts in this section, and only general
discussions with no mathematical details and precise statements are included.

3.1.1 Kalman Filter Techniques

The Master thesis by Bertolace includes a method of solving for the probability distribu-
tion of the mispricing p(x, y|θ) numerically using a Fokker-Planck equation, where θ is the
vector of model parameters. Thereafter, the widely used Kalman filter is implemented.
Initially, a naive Linear Kalman filter is used, which is only theoretically applicable in
special cases of the asset pricing model. Finally, Bertolace implements the Extended
Kalman filter and attempts to calibrate the model using state augmentation.

For the filtering purpose, the Kalman filter performs rather well. But for the calibration
exercise, the results are heavily dependent on the initial conditions of the parameters.
Small deviations from the true parameter values result in a poor calibration, which could
be a consequence of biased estimates due to the non-linearity of the model. Moreover,
Bertolace mentions a concern regarding the possibility that the same attractors, and
hence the same mispricing realizations, can be reached for different sets of parameters.

13
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3.1.2 Sequential Monte Carlo Methods

Bertolace’s thesis is followed by the work of Robert, applying Sequential Monte Carlo
methods for calibration of the model, in particular Particle filters. For filtration, the
appropriate prediction and update densities are derived using Bayesian inference, and
Particle filters using systematic resampling are implemented. Most effort is put in de-
riving a fully adapted Particle filter. The properties of this filter are not examined, but
Kong et al. [23] show that using the posteriori itself (Robert’s choice) as importance
density gives minimal filtration variance. Often, a problem in practice is that this den-
sity is not explicitly known. However, very fortunately, this is given by Yukalov et al.’s
model. Regarding the calibration, Robert considers three major approaches:

• Maximum Likelihood estimation (ML)

• A Monte Carlo Markov Chain algorithm (MCMC)

• State augmentation

The traditional Maximum Likelihood estimation approach cannot be applied to the sys-
tem in a straight forward manner, since the probability distribution of the mispricing
p(x, y|θ) is not explicitly known. Thus, Monte Carlo estimations are needed to integrate
the hidden states out, demanding simulations of whole paths of the system. This, in turn,
increases the dimensionality of the problem leading to a very inefficient implementation
without reasonable results.

The MCMC algorithm is based on sampling of both the state and the parameters using
Gibbs samplers. However, it is by no means clear what an appropriate conjugate prior
for the parameters should be. Studying a reduced model with only α and β unknown,
a normal prior can be used as a consequence of their linear influence on the mispricing
dynamics. Nevertheless, the implementation was disappointing and with no reasonable
convergence, which can be explained by the state sampler mixing too slowly and high
variance of the estimators of α and β. Another reason could be non-appropriate priors.

Lastly, Robert investigates filtration with state augmentation as an opportunity to achieve
validity to the Sequential Monte Carlo approach after all. Both fixed and artificial dy-
namics of the parameters are considered, and both methods lead to a high degree of
sample impoverishment. The conclusion is that one cannot expect to estimate the pa-
rameters precisely, albeit signs of parameters and over-all market characteristics can be
acquired. Thereafter, Robert applies this procedure to Dow Jones Industrial Average
data with some interesting results. For further reading, please see Robert’s work [28].

3.1.3 General Remarks and Considered Improvements

An implication of Robert’s work is that, due to the lack of knowledge about the proba-
bility distribution of the mispricing in combination with no appropriate prior on the pa-
rameters, state augmentation is the only applicable calibration method with reasonable
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results. The greatest issue with the method is the wide-spread sample impoverishment,
meaning that only a few particles survive as the filtering proceeds. In this thesis, a few
methods to alleviate this drawback have been considered and are presented in detail in
the next paragraphs.

In the literature, there are two methods that are often used in the presence of sample
impoverishment; the Regularized Particle filter (RPF) and the Resample-Move algo-
rithm. The fundamental problem with sample impoverishment is that the continuous
distribution of asset prices in Yukalov et al.’s models is approximated via state-space
representation into a discrete one. In practice, this means that samples drawn from the
same distribution could be identical, whereas this does not occur for a continuous distri-
bution.

The Regularized Particle filter is designed to alleviate this problem by using a kernel
density estimate of the particles, rather than the particles themselves. This means that
particles are sent through a kernel during the resampling step. If a systematic resampling
is used, i.e., the particles are reweighted at every time-step to equal weights, Arulam-
palam et al. [1] derive the optimal kernel function and bandwidth minimizing the mean
integrated square error between the true filtering distribution and the kernel density esti-
mate, known as the Epanechnikov kernel. In the practical implementation for this asset
pricing model, the kernel uses the empirical covariance matrix of the states in the filter-
ing. With the state augmentation procedure and reasonably wide initial intervals for the
different parameters, the kernel moves the particles too widely and allows for explosive
behaviour of the filtering process. The only solution is to increase the number of particles
substantially, leading to a lack of computer power and no practical use. Another problem
concerns the relatively high dimensionality of the state, in turn demanding even more
particles to be used. Therefore, this method is not pursued any further.

Likewise, the Resample-move algorithm, introduced by Berzuini et al. [4], moves the
particles after (or before) resampling through a Markov kernel. Numerous kernels could
be constructed, and one of the most commonly used choices is a Gibbs sampler. Common
for all these kernels are that a proposal for the density of the vector of parameters θt+1

at time t + 1 given the vector of parameters θt at time t is needed, i.e., an assumption
about the dynamics of the parameters. In the work of Robert, a normally distributed
artificial dynamic is considered with only marginally improved results.

Another approach could be to impose the artificial dynamics by considering two possible
gains, i) to couple the parameters with those of the iterative Bayes’ estimation of the
states and ii) to provide top-down information of the parameters via a self-consistency
condition. The idea is that, given a state of the system (x, y) at time t, it is in principle
(numerically from Bertolace’s Fokker-Planck formulation) possible to reverse engineer,
which parameters θit are those that the observations up to time t can be associated with.
It would be possible to get a set i ∈ N of different suggestions, and a straight forward
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dynamic for a single parameter, e.g., α could be:

αt+1 = θα,it + η(αt − θα,it ) + noise, (3.1)

where 0 < η < 1 is a damping parameter, and in case of multiple suggestions of θα,it a
horse race could be performed to get the estimate. This approach fulfils the criterion
on coupling with the state estimation, and it also provides a top-down information on
suggestions for parameters.

However, even if the idea is theoretically clear, there exist practical issues. The biggest
challenge is how to reverse engineer the parameters efficiently. One suggestion would
be to have a set of fixed parameters to choose from, perhaps the ones corresponding to
different general market types presented by Yukalov et al., and compare the corresponding
probability distribution function p(x, y). This would be possible to implement, but would
constrain the search to a limited part of the parameter space. A more dynamic approach
on the parameter set would require solving the Fokker-Planck equation for every time
step at the interesting positions, increasing the complexity tremendously. This has not
been implemented, and one might get more insights on the problem by putting a higher
effort on this kind of approach. Nonetheless, this work chooses to consider the methods
presented in the next sections.

3.2 Evolutionary Algorithms

In contrast to the earlier proposed density estimation approach and the Kalman filter
technique, the Evolutionary algorithms (EAs) are search heuristics that imitate the pro-
cess of Darwinism and originate back to Fraser in 1957 [13]. Today EAs are widely used
in e.g. computer science, artificial intelligence and optimization. These approaches are
designed to solve the problem at hand more quickly than compared to classical methods,
achieved by trading optimality and precision for speed. In the following sections, the
concept of Evolutionary algorithms is introduced in a way applicable to the asset pricing
model in this work, focusing on computational efficiency.

3.2.1 Overview of the Algorithm in View of the Asset Pricing Model

A naive approach to calibrate the asset pricing model of Yukalov et al. would be to apply
a full-space search algorithm, i.e., try every possible combination of parameters. For this
model, with six unknown parameters and two unknown initial conditions to be specified
on rather wide continuous intervals, the search space would be overwhelmingly large. In
fact, with only 100 different values for each unknown variable the number of different
trails is 1008 = 1016, a huge number.

Evolutionary algorithms are methods invented to omit this increasingly high complexity.
Probably the most popular EA is the Genetic algorithm (GA), which is based on the idea
of natural selection by Darwin in 1859 [12], and has an associated terminology. In the
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case of the asset pricing model by Yukalov et al., every parameter α, A, β, B, µ, λ, and
each of the initial conditions (x0, y0) are called genes, while the specific values of genes
are named alleles. Strictly speaking, GAs are defined by genes coded in binary numbers,
and Evolutionary strategies (ESs) have real valued genes. Solutions, or combinations of
the unknown genes are referred to as chromosomes [6]. The fundamental idea of EAs
is to have a population of chromosomes and evolve good solutions by natural selection.
Thus, a measurement is needed to distinguish good solutions from bad solutions. Both
subjective and objective value functions could be used, but for programmability an ob-
jective function is often chosen. Once this is done, the algorithm evolves solutions using
the following schematic steps as presented in Burke et al. [6]:

• Initialization. The initial population of chromosomes is usually generated randomly
across the intended search space. Domain-specific knowledge is easily incorporated
in the set-up, and corresponds to setting a prior on the parameters and initial
conditions of the asset pricing model.

• Evaluation. For the initialized population or any off-spring, the fitness of the chro-
mosomes are calculated using the value function. For the asset pricing model, this
would in general correspond to comparing observed market prices with simulated
prices from each chromosome.

• Selection. The selection step represents the survival-of-the-fittest mechanism on
the chromosomes, where better fitted solutions, in terms of the value function, are
preferred.

• Recombination. From the pool of selected chromosomes, a recombination of two
parental solutions are formed to create new, possibly better off-springs.

• Mutation. While recombination operates on parental chromosomes, mutation per-
forms a random walk in the vicinity of a candidate solution to enlarge the parameter
space reached by the population.

• Replacement. After the off-springs are created by selection, recombination and
mutation, replacement of poorly fitting parents with better suited off-springs are
done.

The algorithm repeats the steps including and followed by evaluation until some termi-
nating condition is met, e.g., a maximum number of generations created. For an overview
of the algorithm, see Algoritm 1. Goldberg [14] has shown that the operators selection,
recombination, mutation and replacement are individually ineffective, but performs well
when combined together. For example a combination of selection and mutation is said to
give continual improvement, a form of hill climbing, and selection together with recom-
bination allows for cross-fertilization. In the next section, these operators are introduced
and explained more thoroughly.
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Algorithm 1: Overview of a general Evolutionary algorithm.
Generate a population P randomly with n chromosomes
generation := 1
while generation ≤ genmax do

Clear the new population P ′

Evaluate each individual in P with a fitness function f(.)
while P ′ ≤ n do

Select two parents from P
Perform crossover with rate pc
Perform mutation with rate pm
Insert offsprings in P ′

end
Replace P with most fitted chromosomes in P and P ′

generation = generation+ 1
end
Output: population P

3.2.2 Comparison Evolutionary Strategy and Genetic Algorithm

From a theoretical point of view, ESs and GAs are nearly identical. Both are direct,
global search methods based on recombination and mutation of chromosomes in a pop-
ulation. Nevertheless, the difference in representation is highly important. Using binary
chromosomes, GAs are easily implemented and recombination together with mutation
are performed by switching parts of the binary strings between different chromosomes.
Operating on ESs’ real-valued chromosomes is not as straight forward as on the GAs’
solutions, but is better suited for self-adaptive mechanisms achieving a higher rate of
convergence [18]. However, self-adaptive methods have also been developed for GAs [24],
where e.g. crossover and mutation rates are being adapted. Apart from the traditional
denominational difference between GA and ES, parts of the literature and practice seldom
distinguishes between binary and real-valued genes. In addition, papers on EAs are of-
ten named GAs. This work uses the terminology GAs even for real-valued chromosomes,
which are to be studied.

3.2.3 Basic Genetic Algorithm Operators

In this section, the basic EA operators, selection, recombination, mutation and replace-
ment, are presented in a similar fashion as in Burke et al. [6]. The methods presented in
this section are highly intuitive and often used as the first mode of procedure. Moreover,
the objective value function to distinguish fitness among candidate solutions needs to be
specified. This will be done explicitly in Chapter 4.

Initially, the highly important size of the population needs to be determined. Small
populations might lead to premature convergence at suboptimal solutions, while on the
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other hand large population sizes increases the computational complexity. For the most
basic methods, a reasonable number of chromosomes are selected from a computational
point of view. In more intricate cases, the optimal number of chromosomes can be
calculated, but the computational power is still a limiting factor. This work uses a fixed
number of chromosomes, set by the limits on computational power.

Selection Methods

Basic selection methods are broadly classified in two classes, fitness proportionate selec-
tion and ordinal selection. The most classical fitness proportionate selection method is
the roulette-wheel selection [19], which assigns a chromosome i a roulette wheel slot pi
sized in proportion to its fitness fi. Usually, the choice pi = fi/

∑n
j=1 fj is made, where

n is the number of chromosomes. The cumulative distribution is formed as Fi =
∑i

j=1 pj
and the selection step is performed as generating n uniformly distributed random vari-
ables r. If rk < F1, then choose the first chromosome, else select the chromosome i such
that Fi−1 < rk ≤ Fi for every k ∈ {1, ..., n}. These chromosomes form the mating pool.

In turn, ordinal selection chooses the fittest individuals in certain groups. For instance,
groups could be formed randomly and compete towards each other, or the whole popu-
lation could be one group. The advantage of using ordinal selection is that it is easy to
implement on parallel machines. However, the complexity is higher than the roulette-
wheel selection when there are multiple groups. Another drawback is that the number
of groups and how many chromosomes to be replicated from each group needs to be
determined. This is especially crucial when the whole population forms only one group,
since there is a trade-off between the efficiency on choosing a few, good chromosomes and
a lost of chromosome diversification if the replication pool is too small. In addition, it
is possible to formulate the roulette-wheel selection to depend on only one random vari-
able, called systematic resampling in particle filter terminology. This enhanced method
is given in Algorithm 2, where Ni denotes the number of times chromosome i is selected.

Algorithm 2: Enhanced roulette-wheel selection method.
Input: {pi}ni=1

// Sample r
r ∼ Unif(0, 1/n)
for i ∈ {1, ..., n} do

ri = r +
i− 1

n
end
// Transform by F−1

n :
for i ∈ {1, ..., n} do

Ni = {#rj :
∑i−1

k=1 pk < rj ≤
∑i

k=1 pk} = {#rj : Fi−1 < rj ≤ Fi}
end
Output: {Ni}ni=1
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Recombination Operators

From the mating pool, new, hopefully more suited, individuals are created via recombi-
nation, also called crossover. Most recombination operators randomly selects two chro-
mosomes and these are crossed over with a probability pc, the crossover probability. In
practice, recombination is determined by generating a uniform random number on [0, 1]
and if r ≤ pc then the chromosomes are recombined, otherwise not. The value of pc is
traditionally set experimentally. As an empirical rule of thumb, the crossover probability
be should about 0.5 ∼ 1.0 [24]. Heuristically, a higher crossover probability leads to
quicker exploitation of local minima, while a too high pc disrupts chromosomes before
they could be exploited. In this work, the most efficient values of pc is tested to be 0.5.

In turn, to actually perform the crossover, the literature suggests numerous of different
methods and it is also possible to develop problem specific methods. The simplest and
most widely applied crossover method on binary chromosomes is the k-point crossover.
The method is illustrated in Figure 3.1 for k = 1 and k = 2 respectively. In the one-point
crossover (k = 1), a crossover point is randomly selected over the chromosome, and the
alleles on one side of the site are exchanged. For the k-point crossover, k crossover points
are generated and the alleles are exchanged accordingly.

In the case of real-valued chromosomes, k-point recombination is not particularly suit-
able and is easily understood by an example. Imagine a problem of two variables (u, v)
increasing along the line u = y with one optimum, say (0.25, 0.25), and two chromosomes
are at hand, c1 = (u1, v1) = (0, 0) and c2 = (1, 1). By 1-point recombination, non-trivial
offspring are c3 = (1, 0) and c4 = (0, 1). These are worse than their parents, and the
algorithm would only depend on mutation. The solution is a linear crossover, at each
step constructing two out of three possible offspring by weighting the two parental chro-
mosomes by one of the equally probable weight pairs {(0.5, 0.5), (1.5,−0.5), (−0.5, 1.5)}.

Figure 3.1: Schematic overview of the k-point recombination operator when k = 1 and k = 2
respectively.
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Mutation Operators

Using the recombination operator, new generations of chromosomes are formed to get a
better and better fitness. However, if parental chromosomes, or even worse the whole
population, have the same allele at a given gene, then a simple k-point crossover would
not change this. In other words, that gene will never change its allele. As a solution, the
concept of mutation is introduced, and adds diversity to the population, which ensures
exploration of a greater part of the search space.

In analogy with recombination, the mutation operation is determined by the mutation
probability pm. One of the most widely used mutations is the bit-flip mutation, where
every allele is decoded as a binary string and each digit is altered with the mutation prob-
ability. Empirical studies show that pm usually should be in the range of 0.001 ∼ 0.05
[24]. More tangible, pm controls the speed of the GA in exploring new domains of the
search space.

An improvement of the bit-flip mutation for real-valued chromosomes consist of methods
for EAs based on parametric distributions [21], and examples include Gaussian, Cauchy
and Adaptive Lévy mutation. The tail properties of the distributions allow for different
characteristics. For instance, normal mutation has lighter tails than a Cauchy distributed
mutation, leading to larger mutation, preventing premature convergence but giving a less
accurate local search. In comparison, the Lévy mutation acts as an intermediary case,
with both Gaussian and Cauchy mutations as explicit choices of the scaling parameter.
What choice to make is a matter of taste and the properties of the fitness function. In
this work, Gaussian mutation is considered since the study by Koenig [21] shows that for
quadratic fitness functions (see. Chapter 4), the different mutation methods performed
similarly. In addition, the mutation is of higher importance for chromosomes with real-
valued genes, and it is often valid to use pm ∼ 1.

The Gaussian method operates on each chromosome ci = (αi, Ai, βi, Bi, µi, λi) for all
i ∈ {1, 2, ...n}, i.e. pm = 1, and an offspring is created by:

σ′i,j = σi,j exp(τ ′Ni(0, 1) + τNi,j(0, 1)), (3.2)
c′i = ci + σ′iNi(0, 1), (3.3)

where j ∈ {x0, y0, α,A, β,B, µ, λ} and N(0, 1) denotes a standard Gaussian distributed
random variable. The random variable Ni(0, 1) is common for all the genes in one
chromosome. Moreover, Schwefel has suggested that [21]:

τ =

(√
2
√
lc

)−1

, (3.4)

τ ′ =
(√

2lc

)−1
, (3.5)

where lc is the length of the chromosome vector, in this case lc = 8. What still needs to
determined is the values of σi,j , which in the most general case can differ between both
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chromosomes and parameters. However, if there is no prior knowledge of the uncertainty
of the different parameters it is reasonable to use a common variance for all object
variables. Usually, this is set by trial-and-error, and testing in this work suggests the
initial value σi,j = 1.

Replacement Methods

As the last step of each iteration of the GA, the fitness of offspring chromosomes are
compared with the fitness of their parents. Even for this step, there exists a lot of differ-
ent methods. A straight forward, efficient and parameter-free method is to simply choose
the n most fit chromosomes as the next generation. More sophisticated approaches, such
as checking for duplicates, could be used, but are all inferior regarding implementation
speed.

3.3 Simulated Annealing Parameter Estimation

As seen earlier, one of the greatest concerns regarding parameter estimation is due to the
fact that the probability distribution of the model parameters contained in the vector θ
given the mispricing pair (x, y), denoted p(θ|x, y), is unknown. The previously studied
sequential Monte Carlo methods try to estimate the distribution p̂(θ|x, y) and extract
information about the parameters sequentially. The Evolutionary algorithm is instead a
search algorithm that uses the whole time-series and implicitly tries to find the optimum
of p(θ|x, y). In this section, a new method for calibration using a search algorithm to ex-
plicitly estimate the probability distribution p(θ|x, y) is suggested, which consequentially
is used for parameter estimation.

3.3.1 Intuition and Background of the Algorithm

The idea behind the Simulated annealing parameter estimation apporach is a problem
formulation by the Nobel laureate de Gennes in statistical mechanics called ’Ant in a
labyrinth’ and concerns percolation. In this description, he used the terminology ants
for random walkers diffusing through porous materials and used them to calculate the
probability distribution of ants inside the material. From this set-up, an analogy can be
made to construct an algorithm useful for parameter estimation. In this case, the param-
eter dependent landscape imposed by the model’s fitness works as the porous material
and the ants should diffuse over this landscape. This diffusion is to be governed by the
properties of the fitness over the parameter space. Starting with many ants distributed
uniformly over the parameter space, the steady-state location of ants should approxima-
tively be distributed as p(θ|x, y). As discussed before, the observation from real financial
markets are assumed directly to be the mispricing component x. Thus, this probability
distribution will be denoted p(θ|x).
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The name Simulated annealing was introduced by Kirkpatrick et al. [20], linking opti-
mization and statistical mechanics for deterministic problems. Their work has later been
enlarged to methods for parameter estimation of stochastic systems [17]. The key insight
in the work of Kirkpatrick et al. is the introduction of mechanisms from statistical me-
chanics and regards the diffusion of random walkers in parameter space. Given a fitness
function, a simulated time-series from a point in the parameter space and an observed
mispricing time-series, the fitness could be interpreted as a potential energy. Thus, in
statistical mechanics, the system (the position of the random walker) could be weighted
by its Boltzmann probability factor, exp(−V (θ)/kBT ), where V (θ) is the potential of
the random walker with parameter set θ [20]. The classical criterion for changing the
state is proposed by Metropolis et al. [27], the Metropolis rule, and accepts the new state
with probability min(1, exp(−∆V/kBT )). This means that states with lower energy are
always preferred to higher energy states, but also higher energy states are possible and
introduced to avoid the problem of getting stuck in a state that is only a local minimum,
not the global. By repeatedly constrain random walkers with the Metropolis rule, one
simulates the thermal motion of atoms in thermal contact with a heat bath with tem-
perature T . This yields that the system evolves into the Boltzmann distribution.

The free parameter in the Metropolis rule, the temperature T , determines the sensitivity
to energy increases. In the limit T → 0, the system freezes and no changes occur. The
annealing process consist of first optimizing the system at a high effective temperature
and then lower the temperature until freezing occurs. It is important that the procedure
continues long enough for the system to reach steady state, to be able to estimate p(θ|x)
accurately.

3.3.2 Description of the Algorithm

The details of the diffusion of one random walker in the parameter space is specified in
Algorithm 3. The crucial decisions in the implementation of the algorithm introduced
in the previous section concern the normalization used in the potential, i.e., the corre-
sponding value to kB in the statistical mechanics analogy, and the search method for
suggestion of the new position of the random walker in the parameters space.

Concerning the normalization, a quantity representative for the fitness landscape is nec-
essary for the Boltzmann probability to be useful. If the normalization constant is too
large, the random walker will walk freely in the parameters and is not stopped from
climbing the potential and vice versa, cf., the intuition of the free temperature param-
eter T . For example, the average of the initial potential of all of the ants can be used.
In this thesis, an adaptive choice of normalization constant is used via the potential of
the old position of the ant. The advantage is that it will be relatively more difficult for
the random walker to climb the potential when the potential is low, i.e., closer to the
optimum, which makes it harder for the ant to leave this position.

For efficiency, the suggested new position of the random walker is chosen via Monte-
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Carlo sampling. This is done by sampling a vector r on a hypersphere in the parameter
space. The length of the radius of the hypersphere is adjusted through analyses of the
performance of the diffusion, and chosen to be r = 0.4. Likewise, a plausible set of
temperatures and number of steps K at each temperature need to be adjusted for the
annealing method to be useful. These parameters are also set by hand-on tuning.

Algorithm 3: Simulated Annealing Parameter Estimation Algorithm
Input: {xt}Tt=0 // Mispricing time-series
// Initialize position of random walker, i.e. sample θ
θ ∼ Uniformly on parameter space
// K is the number of steps to obtain steady-state
for T ∈ {T1, ..., Tn} do

for i ∈ {1, ...,K} do
V = f(θ, {xt}Tt=0) // Potential (fitness) of random walker
// Monte-Carlo sampling of suggested position
r ∼ Uniformly on hypersphere in parameter space
θ′ = θ + r
V ′ = f(θ′, {xt}Tt=0)

p = exp(− 1

T

V ′ − V
V

) // Boltzmann probability

s ∼ Unif(0, 1)
if s < min(1, p) then

θ = θ′

end
end

end
Output: θ // Position of random walker in parameter space

3.3.3 Simulated Annealing Calibration Step

After the diffusion of ants, a set of points in the parameter space is obtained and from
these the joint probability distribution p(θ|x) can be estimated. In this work, two different
methods are considered, an adapted kernel estimation method as well as the k-Nearest
Neighbour (kNN) density estimator. The adapted, multivariate kernel estimation is
used to smooth the ants’ positions to be able to estimate the probability distribution
function. In detail, the kernel estimation technique in d-dimensions can be constructed
as a product of d univariate kernels with independent smoothing parameters. This means
that the estimate of the probability distribution p̂0(θ|x) is given by:

p̂0(θ|x) =
1

nah1...hd

na∑
i=1

d∏
j=1

K

(
θj − θaij
hj

)
, (3.6)

where na is the number of ants, K the univariate kernel distribution function with
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smoothing parameters h1, ..., hd and for ant ai, θai = (yai0 , α
ai , Aai , βai , Bai , µai , λai).

A well understood and studied choice of kernel K is the standard Gaussian density, i.e.:

K(x) =
1√
2π

exp(−x2/2). (3.7)

Another useful choice is the Epanechnikov kernel, which (as mentioned earlier) can be
proved to be optimal in a mean variance sense [33]. In this thesis, the Gaussian kernel
will be used, which gives positive definiteness, infinite differentiability and is defined on
an infinite support. This means that the estimate p̂0 is smooth and well-defined in the
tails. The other part of the kernel, the bandwidth h, specifies the scale of the smoothing
and is determined by the data. In the limit of normally distributed data, the optimal
bandwidth in a mean integrated squared error sense is given by:

h∗j =

(
4

d+ 2

)1/(d+4)

σjn
−1/(d+4)
a , (3.8)

where σj is the estimated standard deviation of the parameter j. However, for grounds of
self-consistency, h∗j should be determined by local quantities, but σj is a global quantity.
Thus, the adapted kernel estimation method includes a second step of the estimating
procedure p̂1(θ|x), with an adapted bandwidth. In addition, as proposed by Cranmer
[11], the covariance structure of the data needs to be considered. This means that the
diagonal covariance structure of the kernels might not match with that of the random
walkers’. A linear transformation that diagonalize the covariance matrix Σ specified by
the data (given by D = AΣAT ), can be applied to mitigate this effect. The following
optimal bandwidth in the Gaussian case is:

h∗ij =

(
4

d+ 2

)1/(d+4)

n−1/(d+4)
a

(σj
σ

)
σ(1−d′/d)p̂

−1/d′

0 (θi), (3.9)

where σ = det(AΣAT )1/2d is the geometric mean of the standard deviations of the trans-
formed data and d′ the effective dimensionality. d′ could be determined by performance
measurements, but is often approximately given by d, therefore d′ = d is chosen. Thus,
with hij given by Equation (3.9), the estimate of the probability distribution function
p(θ|x) is given by the analogue of Equation (3.6) for p̂1(θ|x).

In contrast to the adapted kernel estimation, the k-Nearest Neighbour method uses the
local positions of the k ants closest to the considered ant (including the ant itself). Lu-
enberger and Woehrmann [25] have shown that an unbiased estimate for the probability
distribution p(θ|x) is given by:

p̂(θ|x) =
k − 1

naV (rk)
, (3.10)

with 2 ≤ k < n where rk is the distance to the k-th nearest neighbour from θ and V (rk)
is the volume of the hypersphere with radius rk, given by:
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V (rk) =
πd/2

Γ(d/2 + 1)
rdk. (3.11)

Furthermore, for k > 2, the variance of the estimate is given by:

Var(p̂(θ|x)) =

(
(k − 1)(na − 1)

(k − 2)na
− 1

)
p̂(θ|x)2. (3.12)

Another issue with the kNN-method is the choice of k. As can be seen in Equation (3.12),
the variance of the estimate vanishes only if both na → ∞ and k → ∞. Nonetheless,
if a Monte Carlo estimate of the probability density is used, the variances goes to zero
and it is even possible to find the optimal number (related to computational efficiency
and accuracy) of neighbours k. However, since the generation of ants in steady-state is
computationally heavy, it is not reasonable to re-run the program to get a Monte Carlo
estimate for which the optimal number of neighbours can be specified. Nevertheless,
Luenberger and Woehrmann have shown that the most efficient value of k will be low (∼
5-15), hence values in this span are considered.

Finally, the estimates of the parameters of the asset pricing model is given by maximizing
the estimated posterior probability distribution function p̂(θ|x) for the adapted kernel
and the kNN estimate, respectively.



Chapter 4

Calibration of Synthetic Data

This chapter begins in Section 4.1 with preliminary assumptions needed for model cal-
ibration on synthetic data. Thereafter, the asset pricing model is analysed in terms of
Sloppy Models in Section 4.2, and the parameter estimation results from applying the
Evolutionary algorithm and Simulated annealing methods are presented and analysed in
Sections 4.3 and 4.4, respectively.

4.1 Simulation Preliminaries

In this section, necessary further assumptions on the parameter space, initial conditions
and the calibration methods are made. Furthermore, market types that are selected for
the purposes of this study of the asset pricing model are presented more thoroughly than
in Section 2.1.3.

4.1.1 Value Function

A critical component for the implementation of Evolutionary algorithms and Simulated
annealing is the choice of the value function or potential (in Evolutionary algorithm and
Simulated annealing terminology respectively). As implied by the work of Koenig [21], the
combination of value function and mutation operator is highly affecting the performance
of the convergence of the Evolutionary algorithm. In this work, the squared L2-norm of
the difference between the model of the mispricing component xmodel and the observed
value xobs will be chosen as value function and potential. To smooth the simulated
mispricing xmodel, the average at every time-point of 5 simulations is used. That is, for
all considered times steps {0, 1, ..., T}, the value function for chromosome/ant i is given
by:

fi =
∑

j∈{0,1,...,T}

|xobsi (j)− xmodeli (j)|2. (4.1)

This value function corresponds to a classical least squares measure, which is a well
understood approach and assigns a reasonable weight to deviations. As a consequence

27
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of this choice of value function, the objective of any Evolutionary algorithm is to reach
as small values as possible of f for all the chromosomes in the population. Thus, to
be able to use the roulette-wheel selection operator, the probability pi corresponding to
chromosome i is instead constructed by:

pi =
1/fi∑n
j=1 1/fj

. (4.2)

The inverse-roulette-wheel operator assigns high probability to chromosomes with a bet-
ter fit, i.e., lower fi, and vice versa. In the limit, a perfectly fitting chromosome gets
probability 1. Moreover, the choice of fi as potential in Simulated annealing is straight
forward and transferees naturally without any need of modifications.

4.1.2 Prior-Distributions of Parameters and Initial Conditions

To generate the initial population of chromosomes and initial positions of ants, composed
of real values for the initial conditions (x0, y0) and the parameters α, A, β, B, µ and λ,
assumptions on how to sample in the parameter space must be made. Ideally, a joint
prior sampling the chromosomes/ants simultaneously would be used. However, no such
prior is obvious and other approaches are needed.

Nevertheless, there is some domain-specific knowledge available, restricting the param-
eter space somewhat. Using the asset pricing model with constant parameters implies
that e.g., β is negative and B is positive. In addition, both α and A cannot be positive,
since it would create an unsustainable market condition. With this information at hand,
the chosen prior-distribution is to sample most parameters independently and uniformly
distributed over reasonable ranges of values. Hopefully, this will introduce enough diver-
sity among the chromosomes to have a good starting population, as well as distribute
initial positions of ants properly. In theory, the algorithms should be applicable even with
poor starting populations, but with slower convergence as a consequence. The chosen
ranges for the different parameters and initial conditions are shown in Table 4.1. The
joint sampling of α and A is constructed by first sample between the three different valid
situations {{α > 0, A < 0}, {α < 0, A > 0}, {α < 0, A < 0}} with equal probability. In
addition, note that the signs of both µ and λ are irrelevant because of the symmetric
dependence in fNL, cf. Equation 2.4.

The simulation trajectories are sampled over a time period of 7 years, which is chosen as
a trade-off between having a sufficiently long time horizon to incur changes in mispricing
behaviour and computational complexity. For every point in the parameter-space and in
every iteration, the fitness function f is calculated. Thus, if the time horizon is too long,
the simulation of time-series and computation of the fitness will be computationally very
heavy.
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Table 4.1: Prior-distributions of unknown parameters and initial conditions. Note: Both α and
A cannot be positive and are sampled jointly to avoid this case.

Unknown Variable Range Sampling Properties
x0 {−3, 3} Independently, uniform
y0 {−3, 3} Independently, uniform
α {−5, 0} or {0, 5} Jointly with A, uniform
A {−12, 0} or {0, 12} Jointly with α, uniform
β {−5, 0} Independently, uniform
B {0, 5} Independently, uniform
µ {0, 6} Independently, uniform
λ {0, 6} Independently, uniform

4.1.3 Studied Market Types

For the simulations in this work, a subset of the market types in Section 2.1.3 are chosen
and quantified. To keep track of the different market types, identifiers are introduced.
The market identifiers are in correspondence with the work by Yukalov et al. [35], where
each identifier refers to a number of a figure in their paper. These graphs show the
associated phase portrait for the deterministic system. Once again, studies of these are
highly recommended to get a deeper understanding of the asset pricing model. For in-
terpretation of the parameters, see Section 2.1.3.

The chosen markets are presented in Table 4.2 and could also be found in Table 2.1.
These choices are made to test the calibration procedures on a range of different market
complexities. Firstly, market 1 represents the most simple equilibrium market with indi-
vidual and collective mean-reverting strategies, over regulation and rather certain knowl-
edge about the fundamental price. Secondly, market 10 includes individual speculative
traders balanced by a collective mean-reversal strategy in a softly regulated market with
high uncertainty about fundamental price. This market has two different attractors and
a limiting cycle. Lastly, market 15 is somewhat reversed with individual mean-reverting
and collective speculative behaviours, representing a situation where some groups of
traders can create big market changes with their speculations. These market conditions
allow for three different attractors of the mispricing.

4.2 Sloppy Model Analysis

To get a deeper understanding of why the performance of the past calibration procedures
(and results in this thesis) are far from perfect, the asset pricing model is analysed in
the context of Sloppy models introduced by Brown et al. [7]. A Sloppy model is a
multi-parameter model, whose behaviour depends only on a few stiff combinations of
parameters, and there are many sloppy directions which are rather unimportant. A well-



30 CHAPTER 4. CALIBRATION OF SYNTHETIC DATA

Table 4.2: Parameter values of market types studied in this work.

Market α A β B µ λ Fixed Points {(x, y)}
Cycles C(x,y)

1 -1 -10 -1 1 1 1 {(0, 0)}
10 5 -1 -1 1 5 3 {(±3, 0)}, C(0,0)

15 -1 1 -1 1 2 1 {(0, 0), (±3, 0)}

known problem with multiple parameters models is ill-conditioning, i.e., that different
parameter sets can exhibit similar behaviour, which Brown et al. denote the sloppiness
of the model. For a model designer, ending up with a Sloppy model is displeasing, since
the interpretation of the model parameters is rather meaningless in the sloppy directions.
Nevertheless, the model could still be very useful for predictions. There are numerous
models that are sloppy but still very precise. One example is quantum Monte Carlo
modelling of variational wave-functions for high-accuracy molecular energy calculation,
and other examples are found in system biology. In this section, the asset pricing model
is formulated in a way that admits a sloppiness analysis.

4.2.1 Deterministic Model Analysis

Since the introduction of Sloppy models in 2004, mostly deterministic models from sys-
tem biology have been analysed. Only recently, published in November 2013, a method
to investigate the sloppiness of stochastic models has been introduced [26]. However,
this approach is not directly applicable to the stochastic model of Yukalov et al., since
the model lacks knowledge about the probability density p(x, y|θ) and more precisely
the Hessian of it. Nevertheless, it is possible to find a description of the deterministic
counterpart of the asset pricing model, which allows the use of parts of the determin-
istic framework. Since the model-stochasticity is in form of driving Wiener-processes,
an analysis of the deterministic system would be highly informative in the sense that
the stochasticity alters the behaviour of the stochastic model between different phases
of the underlying deterministic dynamics. Thus, understanding the properties of the de-
terministic model implies foundations for what to be expected from the stochastic system.

For sloppiness analysis, a cost function χ2(xmodelt , ymodelt , xobst , yobst , θ), where in the most
general setting θ = (x0, y0, α,A, β,B, µ, λ) corresponds to the parameters to be esti-
mated, is considered. The cost function measures the deviation of the model from obser-
vations and gives rise to sub-domains of the parameter space where the cost is constant.
In the case of two unknown parameters, it is possible to visualize this by constructing
contour plots, see Figure 4.2. On sufficiently small scales, the level curves around the
optimal point, i.e., with minimal cost, will form ellipsoids. The sloppiness at this point in
the parameter space is then measured in terms of the eigenvalues and the eigenvectors of
the cost function’s Hessian evaluated at this point, also denoted the Fisher Information



4.2. SLOPPY MODEL ANALYSIS 31

Matrix. The eigenvectors point along the axes of the ellipsoid and the lengths of the
axes are proportional to one over the square root of the corresponding eigenvalue. Thus,
eigendirections with large eigenvalues represents stiff directions, i.e., where the cost is
sensitive to changes in the parameters associated with this direction. The Hessian ma-
trix is a local quadratic approximation to the cost function, and Brown and Sethna [8]
conclude from a Principal component analysis of extensive Monte Carlo simulations that
the sloppiness of the Hessian is indicative for the full cost function.

One possible choice of cost function is the value function given by Equation (4.1). How-
ever, the mispricing xmodel does not explicitly depend on the vector of parameters θ.
Instead, the analogous deterministic Euler-forward discretization of Equations (2.8) and
(2.9) reads as:

X̄t =
Xt+1 −Xt

∆t
= Yt, (4.3)

Ȳt =
Yt+1 − Yt

∆t
=
X̄t+1 − X̄t

∆t
= fNL(Xt, Yt). (4.4)

Thus, with this formulation, it is on one hand possible from observations to construct
Ȳ and on the other hand calculate it from the model via fNL(Xt, Yt), which explicitly
depends on the unknown parameters θ given that Yt is observable or possible to estimate
with high precision. As a first approximation, assume that Yt is observable. This as-
sumption will later be examined in Section 4.2.2 using a Savitsky-Golay filter. Moreover,
if explicit knowledge about x0 and y0 is assumed, then the cost function can be chosen
as:

χ2(α,A, β,B, µ, λ) =
1

2

∑
t∈{0,1,...,T−1}

(fNL(Xt, Yt)− ȳobst )2, (4.5)

with a slight simplification of notation with only the unknown parameters explicitly
stated and the time steps denoted by {0, 1, ..., T}. Consequently, the Hessian is given by:

Hχ2

i,j =
∑

t∈{0,1,...,T−1}

∂fNL(Xt, Yt)

∂θi

∂fNL(Xt, Yt)

∂θj
, (4.6)

where i, j ∈ {α,A, β,B, µ, λ}. The full derivation and explicit expression for the deriva-
tives care found in Lemma A.1.1 and Section A.2, respectively. From the above equations,
the sloppiness of the asset pricing model is easily calculated in terms of the eigenvalues
λE of the Hessian for different markets with changing initial conditions. Different initial
conditions are chosen to pin-point the discrepancy between in and out-of-equilibrium dy-
namics and in particular to match with the real financial time-series studied in Chapter 5.

However, for direct transferability of the results of the deterministic sloppiness analysis
to the stochastic case, the vanishing of the second order terms in the stochastic analogue
of Lemma A.1.1 needs to be motivated. If the second derivative of fNL is constant, this
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Figure 4.1: Overview of sloppiness structures for the deterministic model for market 1, market
10 and market 15 with initial conditions a) (x0, y0) = (1.5, 0.2), b) (x0, y0) =
(0.8, 0.1), c) (x0, y0) = (0.8,−0.1) and d) (x0, y0) = (0.1, 0.1). Eigenvalues are
normalized by the largest eigenvalue λEmax for every market and initial conditions.

term would be negligible by the law of large numbers. But, this might be too much to ask
because of the strongly non-linear behaviour of fNL, and further analyses should be made
to determine this. Investigating the properties of fNL in more detail is, however, beyond
the scope of this thesis. Therefore, the deterministic sloppiness analysis is assumed to
be declaratory even for the stochastic system.

As can be seen in Figure 4.1, the quotients of the eigenvalues of the Fisher Information
Matrix ranges from 10−4 to 10−11, showing that the asset pricing model has sloppy di-
rections in the parameter space. Especially market 15 seems to be particularly sloppy,
implying even more difficulties in calibrating more sophisticated markets. Another inter-
esting observation is the dependence of the initial conditions (x0, y0), or more specifically
the distance from equilibrium. For market 1 and market 15, with an attractor at the
equilibrium point (x, y) = (0, 0), the initial point d) (x0, y0) = (0.1, 0.1) has a sloppier
structure then the far from equilibrium initial point point (x0, y0) = (1.5, 0.2). On the
other hand, market 10 has no attractor at the equilibrium point (x, y) = (0, 0) and ex-
hibits not such a change in sloppiness. This implies that the calibration of the asset
pricing model is highly dependent of the access to information about out-of-equilibrium
dynamics. It is clear in the case of the deterministic market 1 in equilibrium, since then
fNL(0, 0) = 0 and the mispricing is always in equilibrium. That is, there is no informa-
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Table 4.3: Overview of the stiffest and the sloppiest directions as well as the alignment ratio
for the different bare directions for market 1, market 10 and market 15 with initial
conditions a) (x0, y0) = (1.5, 0.2), b) (x0, y0) = (0.8, 0.1), c) (x0, y0) = (0.8,−0.1)
and d) (x0, y0) = (0.1, 0.1). Note: When a direction is given in parenthesis, the
difference in size of the corresponding eigenvalues are small.

Market 1a) b) c) d) 10a) b) c) d) 15a) b) c) d)
Stiff µ (β) β (µ) β (µ) α A A A A α α α α
Sloppy A A A λ µ µ µ µ λ λ λ µ (λ)
Iα/Pα 0.34 0.34 0.35 0.29 0.06 0.12 0.12 0.12 0.38 0.19 0.23 0.28
IA/PA 0.26 0.15 0.16 0.08 0.07 0.12 0.12 0.16 0.37 0.09 0.11 0.08
Iβ/Pβ 0.48 0.30 0.30 0.39 0.40 0.67 0.65 0.87 0.32 0.31 0.28 0.42
IB/PB 0.59 0.14 0.14 0.12 0.39 0.52 0.52 0.52 0.12 0.08 0.08 0.15
Iµ/Pµ 0.69 0.25 0.26 0.11 0.12 0.16 0.17 0.17 0.22 0.12 0.14 0.10
Iλ/Pλ 0.44 0.25 0.25 0.18 0.39 0.50 0.50 0.50 0.19 0.11 0.11 0.22

tion for the calibration of the parameters. This is also shown empirically in this work
using the different parameter estimation approaches.

Furthermore, after establishing that the asset pricing is sloppy, it is of highest inter-
est to find the sloppy and stiff directions. An imprecise approach is to consider the
eigenvectors corresponding to the smallest and largest eigenvalues, respectively, and to
subsequently infer in which directions the model is sloppy. To enhance this analysis it
is possible to define a measure of alignment by studying the ratio of the projection Pi
of the hyper-ellipsoid on the bare directions (the parameter axes) and the intersection Ii
of the bare direction and the ellipsoid for i ∈ {α,A, β,B, µ, λ}. This alignment ratio is
mostly governed by the direction of the sloppiest direction, i.e., in the direction where
the ellipsoid is largest. Ideally, this direction is aligned with one of the bare directions
(or axis directions in the parameter space), which would imply that all the other bare
directions are rather stiff and should be easier to calibrate.

The results of this analysis is shown in Table 4.3. For market 1a), the stiff direction is
rather aligned with the bare direction (µ), which also can be seen in the contour plot
shown in Figure 4.2. Likewise, Figure 4.3 illustrates that the stiff and the sloppy direc-
tions are not well-aligned for market 10 (note that the logarithm of the fitness function
log(f) is used). Table 4.3 also suggests that the most stiff and the most sloppy directions
are associated with the same bare directions apart from when the sloppiness changes
drastically, i.e., near the equilibrium mispricing. Unfortunately, the sloppy directions
are generally badly aligned with the corresponding bare directions, which implies less
precision in the parameter calibration due to larger projections in all the other bare di-
rections. Nonetheless, the alignment ratio is never extremely low (< 10−2) in any of the
directions, which is a good sign. This means that the sloppy direction is not too badly
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Figure 4.2: Contour plot in the sloppy A-direction and the stiff µ-bare direction around pa-
rameter optimal (A,µ) = (−10, 1) of the fitness landscape given by the function f
in Equation 4.1 for market 1 with (x0, y0) = (1.5, 0.2).
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Figure 4.3: Contour plot in the sloppy µ-direction and the stiff A-bare direction around pa-
rameter optimal (µ,A) = (5,−1) of the fitness landscape given by the logarithm of
the function f in Equation 4.1 for market 10 with (x0, y0) = (0.8, 0.1).
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aligned with a bare direction. At least not in comparison with the existing sloppiness in
these directions. In particular, this suggests that it should be possible to estimate the
parameters in the stiff directions fairly well, maybe with exception for market 10 with
very small alignment ratios. These insights are investigated in the subsequent sections
on parameter estimation.

In this context of identifying properties of the asset pricing model, it is interesting to
pose the question on model construction with regard to Sloppy models. The work by
Transtrum et al. [32] discusses this topic using differential geometry. In summary,
Transtrum et al. discuss the difference in sloppiness when the parameters of a model
is re-scaled. Imagine an analogue graph to Figure 4.2 with perfect ellipses around the
optimal parameter point. By re-parametrization, the landscape can be transformed into
circles, removing the old sloppiness structure. In consequence, the model constructor
questions if this is always possible, i.e., whether sloppiness is a characteristic of the
model that could be tuned away. This is briefly studied in Section 4.3.4 by considering a
new parametrization. In further studies, a more thorough analysis, including a calcula-
tion of the corresponding sloppiness of the re-parametrized, system should be conducted.

Moreover, the work by Transtrum et al. studies the question whether sloppiness is intrin-
sic or not, by viewing the model geometrically as a function mapping from the parameter
space to the model’s prediction space. By varying the parameter vector, the model sweeps
out a hyper-surface embedded in the prediction space, called the model manifold, and it
has the same structure irrespective of the parametrization. The intrinsic sloppiness can
now be studied by investigating geodesics, i.e., paths on the model manifold that are
the closest approximations to straight lines that stay on the manifold, along the eigendi-
rections of the Fisher Information Matrix. Thus, if the manifold’s widths are large the
sloppiness of the model is an intrinsic property corresponding to the physical limits of the
prediction space. In this thesis, the widths of the model manifold are not studied, since
the objective is to investigate the given asset pricing model by Yukalov et al. Nonethe-
less, a study of this type would be highly interesting for further work, since it could both
indicate in what bare directions the sloppiness could be reduced by re-parametrization,
and show the intrinsic sloppiness structure.

4.2.2 Filtering of the Mispricing Component y

In Equation (4.3), Yt is given by the difference quotient of Xt+1 and Xt. Thus, in the
deterministic case, it is possible to calculate Yt from the observable time-series of x.
On the other hand, the stochastic system includes noise that does not allow for direct
calculation of the time-series of y. In this section, the Savitzky-Golay filter is applied
to the estimated values of Ŷt to smooth the data in order to estimate the time series y.
The Savitzky-Golay filter fits, by linear least squares, successive sub-sets of adjacent data
points to a low-degree polynomial. There are off-the-shelves packages available, e.g., in
Matlab, with an implementation of the method, which is used in this work. For more
details about the algorithm, see the original work by Savitzky and Golay [29].
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Figure 4.4: Smoothing of one estimated time-series of y, i.e. of (Xt+1 −Xt)/∆t, for market 1
with (x0, y0) = (1.5, 0.2) using a Savitzky-Golay filter with a polynomial of order 13
and 21 data points twice, and a moving-average smoothing between the application
of the filters with 45 data points. The red line corresponds to the true values of y.

In Figure 4.4, the estimated time-series of y for market 1 with (x0, y0) = (1.5, 0.2) is
illustrated. The smoothing uses a Savitzky-Golay filter with a polynomial of order 13
and 21 data points twice, and a moving-average smoothing between the application of
the filters with 45 data points. The smoothing seems to be rather good, especially when
there are large changes in the mispricing x, i.e. when y deviates from 0. Closer to
y = 0, the smoothing is poorer but still satisfactory. These preliminary results suggests
that, in principle, it is possible to obtain y given x, irrespective of any knowledge about
parametrization of the asset pricing model. Previous Master theses have shown good
filtering results when either the parameters are estimated or known. These results are
sufficient for the further use in this work.

4.3 Evolutionary Algorithm Calibration Results

In this section, the results from the Evolutionary algorithm are presented, including both
the full evolution of the chromosomes and a more efficient approach concerning the final
set of chromosomes only. Moreover, with background in the Sloppy model analysis, the
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predictive power of the calibrated model is investigated as well as a re-parametrized
version of the model.

4.3.1 Evolution of Generations

The first insight from running the Evolutionary algorithm for calibration is the depen-
dence of the chosen starting point of the synthetic time-series, which was expected given
the results from the Sloppy model analysis. The closer the initial conditions are to
equilibrium, the less information about the market can be extracted and the calibration
results are poorer. Thus, the starting point (x0, y0) = (1.5, 0.2) is chosen as a reasonable,
but substantial mispricing. If it is not possible to calibrate this model, it would be ex-
tremely more difficult to calibrate a market showing a less out-of-equilibrium behaviour.

In the first approach, the evolution of the chromosomes in every generation is studied,
and the results are reported in Figures 4.5-4.7 and in Appendix B.1.1. In each figure, the
evolution of the 10% fittest chromosomes are shown for 50 generations. Moreover, the
initial condition x0 is included in the calibration notwithstanding that, by assumption,
it could be observed. Doing so, however, helps to improve the understanding about how
the sensitivity to discrepancies in this initial condition reflects the calibration, and is
only considered for the Evolutionary algorithm. In Chapter 5, where a real financial
time-series is studied, the level of observability of x in practice is examined in more de-
tail. From the figures it is obvious that the precision of the estimation of x0 is far from
perfect, but it is not too bad either. If x0 would have been estimated perfectly it would
most likely have corresponded to a stiff direction, which implies, that the model is highly
dependent on this estimation, and the conclusion would be that the observability of the
mispricing in the real market is very important. Hence, these results show that the model
seems not to be super-sensitive to the ability of observing the correct mispricing x0 in
the market. In addition, the other initial condition y0 is poorly estimated, and this is
what we expect close to y = 0, cf., Section 4.2.2.

For market 1, Figure 4.5 illustrates a moderately satisfactory estimation of the param-
eters. For instance, the stiff parameter µ is not estimated correctly and the algorithm
seems to diverge from the correct estimate for this parameter. The explanation might
be found in Figure 4.2, where it is clear that the "stiffness" of the µ-direction (this
quantity is not well-defined at points where the fitness function is not at a minima) is
heavily dependent on the A-level, and since A is not perfectly estimated (in fact it is
the sloppiest direction) it is not surprising that µ cannot be well-estimated. These prop-
erties of the fitness landscape make the parameter estimation problem even more difficult.

Moreover, the deterministic counterpart of market 1 illustrated in Figure 4.6 provides
further information about this calibration approach. The population of chromosomes
fast (after about 5 generations) turns out to be homogeneous at sub-optimal parameters.
However, the mutation of the chromosomes introduces a fitter chromosome after a while
(22 generations), and this chromosome accedes the population after some additional time.
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Apart from showing the superiority of the mutation step in an Evolutionary algorithm
to a greedy hill-climbing search, the deterministic case also indicates that the underlying
deterministic system is more sensitive to the parameter values, since few chromosomes
take over the whole population. This supports that the stochasticity of the model acts
blurringly on the mispricing paths, as expected by the Wiener-processes driven dynamics.
Furthermore, this indicates that the large size of the parameter space aggravates the cal-
ibration. Introduction of the optimal chromosome after a while changes the population
to the perfect alleles quickly, i.e., the algorithm is highly dependent on the soundness of
the mutation operator.

For the more sophisticated market 10 and market 15, the corresponding differences be-
tween the deterministic and stochastic systems is observed for market 10 but not for
market 15. The explanation lies in the fact that the calibration of market 15 is rather
good in the stiff direction (α) already for an early generation, a consequence of a lucky
initialization of chromosomes. The deterministic market 15 in Figure B.3 is also rather
well estimated, but does not have the same lack of diversity among chromosomes.

Turning to market 10 in Figures B.1 and B.2, the performance of the algorithm is poorer.
It is somewhat puzzling that the calibration of the stiff A-direction becomes worse when
the number of generations increases, but once again this could be a result of the fitness
landscape. Moreover, for both the deterministic and the stochastic system, the calibra-
tion seems to push the values of A and α to opposite signs. Analysing the phase plot of
the corresponding system with A = 8 and α = −4 gives the same limiting cycle of the
system but not the same attractors. Thus, if the time-series gets stuck in the limiting
cycle it is difficult to distinguish between the two systems. In fact, this is exactly what
happened with the synthetically generated mispricing time-series, and what explains the
poor calibration results. More interesting is that using (x0, y0) = (1.5, 0.2) as starting
point for the deterministic system yields convergence to the positive attractor, not to
the limiting cycle. Thus, this exemplifies the impact of the stochaticity of the model.
In addition, the Sloppy model analysis for market 10 shows that the alignment ratio in
both the α- and A-direction are very low, which implies high uncertainty.

As mentioned earlier, the introduction of nearly perfect chromosomes changes the popu-
lation quickly towards the true parameters. Thus, the performance of the Evolutionary
algorithm could presumably be enhanced by improving the mutation operator. Trials
of tuning the operator and straight forward applications of random noise in mutation
resulted, however, in no significant improvements. This problem is left for further works.
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Figure 4.5: Market 1. Calibration results of initial conditions (x0, y0) and parameters α, A,
β, B, µ and λ using the 10% fittest chromosomes out of 20000 and 50 generations
(x-axis). The grey areas are the inter-quartile ranges, the solid lines the medians
and the dashed lines the means. The red lines correspond to the true values.
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Figure 4.6: Market 1, deterministic. Calibration results of initial conditions (x0, y0) and pa-
rameters α, A, β, B, µ and λ using the 10% fittest chromosomes out of 20000 and
50 generations (x-axis). The grey areas are the inter-quartile ranges, the solid lines
the medians and the dashed lines the means. The red lines correspond to the true
values.
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Figure 4.7: Market 15. Calibration results of initial conditions (x0, y0) and parameters α, A,
β, B, µ and λ using the 10% fittest chromosomes out of 20000 and 50 generations
(x-axis). The grey areas are the inter-quartile ranges, the solid lines the medians
and the dashed lines the means. The red lines correspond to the true values.
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4.3.2 Extensive Calibration Study

The previous section examines the performance of the Evolutionary algorithm using one
initial population and by allowing evolution to take its course in the fitness landscape.
Using for instance the high-performance cluster Brutus of ETH Zurich, it is possible to
run this calibration algorithm in parallel to obtain a larger off-spring set and to fur-
ther investigate the parameter estimation performance. Focusing only on the stochastic
systems, and running the algorithm in parallel 25 times on the same time-series yields
the results presented in Figure 4.8 and with descriptive statistics summarized in Table
B.1. The choice of analysing the same time-series is partly due to that this is the case
in reality and partly because the limiting performance of the algorithm will be examined.

Once again for market 1, the joint performance of the calibration yields satisfying results.
The previously misspecified α-direction is better estimated, but not specified with enough
certainty to, e.g., determine its sign. However, in 36 % of the cases all parameters are
correctly specified, which is fairly good. More puzzling is still the inability to calibrate
the stiff µ-direction with high alignment ratio more precisely. The explanation must once
again originate from effects of the fitness landscape that are suggested in Figure 4.2. In
addition, the intervals of the box plot include the true parameter values, but it is some-
what non-satisfactory that for some parameters the intervals are rather wide. Note that
for µ and λ are the absolute value of the estimates used, since the calibration of these
parameters is independent of signs. In conclusion, it seems possible to obtain the correct
parameters for the simple market 1. The use of this calibration is further examined in
Section 4.3.3.

Again, the synthetic time-series x generated for market 10 attracts to the limiting cy-
cle. Thus, the estimates for the parameters α and A given by the EA are more or less
indistinguishable form the true values of α = 5 and A = −1. With this in mind, the
calibration of market 10 performs seemingly well. The only issue concerns the interpre-
tation of the parameters, i.e., the calibration changes the interpretation from a market
consisting of speculative individuals and collectively correcting agents to mean-reversion
individuals with a collectively speculative behaviour. Thus, the reliability of the real
world interpretation from the calibration could be low, but hopefully it could still be
used for forecasting.

The extended calibration of market 15 is not as good as the calibration in Figure 4.7,
simply because the initialization cannot be as fortunate when running the parameter
estimation procedure 25 times. Nonetheless, the median values in Table B.1 are not
particularly far from the true values. However, the uncertainty bounds are rather large.
This suggests that the calibration performs well, but it needs more chromosomes to
generate thinner bounds.
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In summary, the extended Evolutionary algorithm performs rather well in calibrating the
model. Some of the wrongly calibrated parameters actually allow for very alike dynamics
for the mispricing. Nevertheless, the uncertainty bounds of the parameters are rather
large, and decreasing these is a question of computational power. The cluster used for
these simulations uses 12 cores in parallel and the computation takes about 12 hours per
market, hence it is manageable to use more computer power if it is available.

4.3.3 Investigation of Prediction Power

The Sloppy model theory suggests that a Sloppy model could still be useful for prediction
purposes. In this section, the prediction power of the stochastic models for market 1,
market 10 and market 15, calibrated by the extended Evolutionary algorithm in Section
4.3.2, are analysed. The median values of the parameters given in Table B.1 are used
as the parameter estimates, and in accordance with the observability of x and Section
4.2.2, the true values for the mispricing components x and y after 7 years are utilized.
With the parameters and the initial conditions set, the distribution of the mispricing
component x is simulated for time-periods of 1 week and 1 month using 10 000 different
trajectories.

The calibration in the previous section also contains a generation of a corresponding
out-of-sample mispricing time-series. Thus, using this time-series and the simulated dis-
tribution of mispricing, it is possible to calculate the probability of finding more extreme
mispricings than the "true mispricing" xobs at the end of the considered time-period.
One possible measure is to consider the tail of the distribution larger than xobs. If this
probability is very large or very small, then it means that xobs is located in one of the
tails of the distribution and the forecast is poor. Ideally, the value 0.50 is obtained, i.e.,
half of the distribution is above and half is below xobs.

Using the corresponding one-dimensional Gaussian kernel density estimator to the one
presented in Section 3.3.3, the density of the mispricing x as well as the cumulative dis-
tribution of x at a future point in time can be estimated. Applying the kernel estimator
yields the results presented in Table 4.4. Generally, the standard deviation of the esti-
mated distribution is small for both time-spans, which is good if the model is to be used
in real life forecasting. However, to be reliable, the prediction also needs to be consistent
with real outcomes.

On a 1 week time scale, all the markets are predicted very well, the largest discrepancy is
one standard deviation only. However, on the longer time scale, market 1 and market 10
are far (greater than two standard deviations) from the predicted value. It should also
be mentioned that the calibration for market 10 is dependent on the mispricing following
the limiting cycle. Thus, if the mispricing leaves this domain, then the forecasts would
probably be way off. A speculative interpretation is that it might be more difficult to
predict the mispricing close to equilibrium, since e.g., the mispricing component y is
more difficult to estimate.
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In summary, this initial investigation of the prediction performance indicates that the
model calibrated by the Evolutionary algorithm performs rather well on a weekly time
horizon. A more thorough prediction performance analysis would probably provide more
insight, and could be the topic of further studies.

Table 4.4: Descriptive statistics of estimated mispricing distribution x̂ (mean and standard
deviation) and the true outcome xobs after 1 week and 1 month respectively. P (x̂ >
xobs) gives a measure of the probability of more extreme events.

1 week 1 month
xobs m(x̂) sd(x̂) P (x̂ > xobs) xobs m(x̂) sd(x̂) P (x̂ > xobs)

Market 1 0.29 0.28 0.01 0.15 0.31 0.25 0.02 8.6 · 10−4

Market 10 -4.09 -4.09 0.01 0.60 -4.30 -4.38 0.02 2.4 · 10−4

Market 15 3.25 3.26 0.01 0.75 3.29 3.29 0.02 0.67

4.3.4 Re-Parametrized Calibration

As mentioned in Section 4.2.1, the chosen parametrization used in the calibration of
the asset pricing model might reflect the parameter estimation results. In particular,
sloppy directions might be transformed into stiff directions and vice versa. Furthermore,
convergence properties of an estimator can depend on the chosen parametrization, e.g.,
unbiasedness. One natural suggestion would be to use 1/µ2 and 1/λ2 as parameters
instead of µ and λ. Thus, the parameter estimation approach corresponding to the one
in Section 4.3.2 is chosen and the results for the different parametrizations are compared.
Since the issue of re-parametrization has been brought up relatively late, only the re-
parametrization for the Evolutionary algorithm is considered without the corresponding
prediction power analysis. Therefore, the results presented here are indicative and a more
thorough analysis should be made in future works. In addition, further analyses should
be accompanied by studies of the model manifold, cf., end of Section 4.2.1.

In Figure 4.9 and Table B.2, the values of µ and λ are transformed to the original
parametrization for comparison. The performance of the re-parametrized calibration
is similar to the previous results for market 1 and market 10. In particular, the new
parametrization allows for the same calibration for market 1, and the small deviations
are solely due to different realizations of the simulations. Thus, the differences for market
1 originates from the mutation operator, and since the differences are considerable, this
might be optimized further. Nevertheless, the uncertainty for calibration of market 15 is
substantially decreased, as a consequence of the new parametrization. This suggests that
the sloppiness is dependent on the parametrization and that this dependence structure
hinges on market characteristics. Hence, there does not seem to be an easy answer to
the parametrization dependence and further investigations would be desirable.
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However, the insights that the calibration of market 10 seems to not be dependent on the
parametrization and that the median values for the estimates of market 15 are similar
are more convincing. Thus, the analyses made in the previous sections could be assigned
more confidence, simply because the results in this section provides further support to
the earlier findings. This also indicates that the sloppiness structure is intrinsic, at least
partly, since the results are similar for different parametrizations.

4.4 Simulated Annealing Calibration Results

The underlying idea of introducing the Simulated annealing parameter estimation method
originates from the properties of the "sloppiness structure" at different positions in the
parameter space. The Simulated annealing approach with iteration over temperatures
should alleviate the random walkers to explore the parameter space more broadly at high
temperatures. Thus, the work to climb the potential is low initially and one could hope
that the ants do not wind up in sub-optimal valleys, which is one of the greatest problems
with the parameter estimation. In the example of Figure 4.2, this suggests that an ant
starting at, e.g., (µ,A) = (5,−7), at high temperatures should easily walk along the
potential towards µ = 1, which would make it easier to calibrate the stiff µ-direction. In
this section, the results from the Simulated annealing calibration approach is presented
together with a prediction study.

4.4.1 Parameter Estimation

As a consolidation of the intuitive idea of the Simulated annealing method, the dimin-
ished market 1 with only µ and A unknown is analysed graphically. Figure 4.10 illustrates
the initial positions of ants as well as the positions at steady-state for different tempera-
tures. The steady-state is tested to occur after about 1000 walks. Relevant temperatures
are, also after testing, chosen to be T ∈ {0.001, 0.01, 0.1, 1} for the application of the
algorithm on the full parameter space. As expected, the ants are spread for high tem-
peratures, while for lower temperatures they cluster around positions in the parameter
space where the potential is low, cf., Figure 4.2. Since no restrictions on the parameters
are used, some of the ants walk out of the domain used for the initialization. Thus, the
interpretation of the ants’ positions has to be treated with caution.

The presentation of the results from the Simulated annealing method applied to the full
model with a multidimensional parameter space is not as easy as the two-dimensional
case in Figure 4.10. Instead, the results are presented quantitatively in Tables 4.5 and
4.6 for the adapted kernel estimation and the kNN method, respectively. A highly im-
portant issue regarding the Bayesian maximum likelihood estimation under the posterior
probability distribution to calibrate the asset pricing model is to consider if there exists
multiple local maxima in different parts of the parameter space. Consequently, descrip-
tive statistics of the 10 points with highest probability for each market can be found in
Tables B.3 and B.4 for the two different methods, respectively.
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Figure 4.10: Initial position of ants in the Simulated annealing calibration method and steady-
state configurations for temperatures T ∈ {0.1, 0.01, 0.001}. Note the symmetry
in the µ-direction for low temperatures.

The performance of the two methods is rather similar and it should be pointed out that
the density is estimated on the final positions of the ants. The k in the kNN method has
been set by tuning to k = 5 for market 1 and market 10, where the differences in the
results for different k’s are negligible, and to k = 10 for market 10 where the differences
are greater. In turn, for the kernel method, the choice of the bandwidth reflects highly
the value of the estimated probability density. A too small bandwidth will make the es-
timates too large and vice versa. Thus, for the nominal value of the probability density,
the unbiased estimate from the kNN method should be more reliable.

However, the nominal value of the density is not important for the posterior maximum
likelihood estimation per se, but is relevant for the question regarding the size of the
bandwidth itself. In this case, all the points where the distribution is estimated contain
a perfect observation (since the ants’ positions are used). Thus, all the points have a
contribution of equal size, and comparing the most likely ant position with the most
unlikely one will provide an insight on the coupling of the position of the ants with the
probability density. The estimation yields that the smallest probability is about 10−13,
i.e., the difference with the most likely position is distinct and the estimation can be
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considered reliable.

Table 4.5: Bayesian parameter estimation results obtained by maximizing the posterior prob-
ability distribution p̂(θ|x) given by kernel density estimation of ants for market 1,
market 10 and market 15. The values in the parenthesis are the true parameter
values.

y0 α A β B µ λ p̂(θ|x)

Market 1 1.0 (0.2) -3.6 (-1) -1.0 (-10) -0.6 (-1) 3.0 (1) 1.7 (1) -0.4 (1) 2.6 · 10−9

Market 10 3.5 (0.2) -4.4 (5) 1.9 (-1) -1.7 (-1) 3.1 (1) 1.0 (5) 2.5 (3) 6.4 · 10−10

Market 15 -1.1 (0.2) -2.5 (-1) 4.0 (1) -7.3 (-1) 2.2 (1) 1.9 (2) 0.7 (1) 1.2 · 10−9

Table 4.6: Bayesian parameter estimation results obtained by maximizing the posterior proba-
bility distribution p̂(θ|x) given by the kNN method of ants for market 1, market 10
and market 15. The values in the parenthesis are the true parameter values.

y0 α A β B µ λ

Market 1 1.7 (0.2) -4.3 (-1) -0.4 (-10) -0.7 (-1) 1.7 (1) 1.0 (1) -0.4 (1)
Market 10 -0.7 (0.2) -4.9 (5) 7.4 (-1) -0.9 (-1) 1.2 (1) 1.9 (5) 3.0 (3)
Market 15 -2.0 (0.2) -0.5 (-1) 3.9 (1) -3.7 (-1) 5.4 (1) 1.6 (2) -0.4 (1)

p̂(θ|x) k V̂ar(p̂(θ|x))

cont. Market 1 5.1 · 10−5 5 8.6 · 10−10

cont. Market 10 1.4 · 10−4 5 6.2 · 10−9

cont. Market 10 2.7 · 10−6 10 8.9 · 10−13

Turning to the performance of the two methods on market 1, the stiff direction (µ) is well
estimated, and the 10 most probable ants are roughly in the same region. As seen before,
y0 is poorly estimated, and the same applies to the sloppy A-direction. It should again
be noted that the sign of λ is irrelevant because of the symmetric (quadratic) dependence
in the function fNL. The symmetry is visible for instance in Figure 4.10. For the signs of
all parameters, the kernel method performed perfectly while the kNN method succeeded
in 70 % of the cases. In summary, the method performs well on market 1.

For market 10, again the issue of attraction of the mispricing time-series x to the limiting
cycle occurs. Once again, this results in opposite estimation of the α and A parameters.
However, the calibration performance is seemingly good for this "new market".

The calibration of market 15 is more troublesome. For the kNN method, the result is
highly dependent on the number of neighbours, and for small ks are the estimated values
not in the vicinity of the true parameters. The probability density is maximized close
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to another point in parameter space. However, increasing k transforms the optimum to-
wards a more realistic point in the parameter space. This indicates that the probability
density has different local maxima, which makes the parameter estimation more diffi-
cult. Thus, when applying the method on real data, a spectrum of different ks should
be used. For the kernel estimation this problem does not occur, i.e., the bandwidth
seems to be well-suited for the calibration. Nevertheless, the estimates of the parame-
ters for both methods on market 15 are fairly good, even though the uncertainty for the
kNN method is rather high (high standard deviation of estimates). The stiff µ-direction
is almost perfectly estimated, while both the A and the β parameters are not as good.
However, these direction are not stiff, and hopefully the predictions could still be reliable.

4.4.2 Analysis of Prediction Power

The performance of the predictions upon using the estimates reported in Tables 4.5 and
4.6 is exhibited in the same fashion as in Section 4.3.3, which contains details regarding
the construction of the prediction distributions. As can be seen in Tables 4.7 and 4.8,
the prediction on the 1 week horizon is almost spot-on and the standard deviations are
small. For 1 month, the results are also very good and exhibit small standard deviations.

A remark for the very promising results is the assumption about knowledge of y0. A
sensitivity analysis has been conducted, and its results are summarized in Table B.5.
Nevertheless, for the shorter time-period, the prediction performance is generally still
great, but the 1 month prediction performance is slightly worse. However, for a longer
time-frame it should be possible to estimate y more precisely, and thus the input pa-
rameter should be more reliable. An additional remark concerns the usability of the
predictions. These tests show that the calibration and out-of-sample predictions work
well when applied to synthetically generated data. To test the performance on real asset
prices, a real financial time-series is needed and this is studied in Chapter 5.

In summary, both the Evolutionary algorithm and Simulated annealing seem to perform
rather well in forecasting the synthetic time-series on a weekly time-horizon. The two
Simulated annealing approaches perform somewhat better on a longer time-scale and
might hence be preferable, even though the differences are not very large. Regarding
parameter estimation, the Simulated annealing approach also performed slightly better,
e.g., in terms of determining signs of parameters (y0 exempted).
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Table 4.7: Descriptive statistics of estimated mispricing distribution x̂ (mean and standard
deviation) and the true outcome xobs after 1 week and 1 month, respectively, using
the adapted kernel estimation. P (x̂ > xobs) gives a measure of the probability of
more extreme events.

1 week 1 month
xobs m(x̂) sd(x̂) P (x̂ > xobs) xobs m(x̂) sd(x̂) P (x̂ > xobs)

Market 1 0.55 0.55 0.01 0.71 0.55 0.53 0.02 0.19
Market 10 -4.09 -4.09 0.01 0.76 -4.30 -4.32 0.02 0.25
Market 15 3.25 3.25 0.01 0.72 3.29 3.26 0.02 0.15

Table 4.8: Descriptive statistics of estimated mispricing distribution x̂ (mean and standard
deviation) and the true outcome xobs after 1 week and 1 month, respectively, using
the kNN method. P (x̂ > xobs) gives a measure of the probability of more extreme
events.

1 week 1 month
xobs m(x̂) sd(x̂) P (x̂ > xobs) xobs m(x̂) sd(x̂) P (x̂ > xobs)

Market 1 0.55 0.55 0.01 0.70 0.55 0.53 0.02 0.16
Market 10 -4.09 -4.09 0.01 0.71 -4.30 -4.33 0.02 0.12
Market 15 3.25 3.25 0.01 0.70 3.29 3.27 0.02 0.23
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Chapter 5

A Study of a Financial Time-Series

In this chapter, a real-world financial time-series is studied. Motivation of the chosen
time-span and index is presented in Section 5.1. The two parameter estimation methods
studied in this thesis are applied to the time-series in Sections 5.2 and 5.3, respectively.
The analyses use an estimation window of 8 years and study a forecast period of up to 1
year, to measure the performance of the asset pricing model in a real world environment.

5.1 Motivation of Choice of Studied Time-Series

To be able to apply the Evolutionary algorithm and the Simulated annealing approach,
the same assumptions as stated in Chapter 2 and summarized in Section 2.2.4 are needed.
In particular, this specifies the fundamental price pf and the hyperparameters µf , σx and
σy as defined in Section 2.2.3. Moreover, since the market price is assumed to follow a
type of Ornstein - Uhlenbeck process, the deterministic fundamental price needs to be
extracted from the market price time-series. This can be done in various ways, but with
ex-post knowledge about the financial climate in certain time periods this is easily done
by a simple trend-fitting of the time-series of, what could be considered as, market prices
in equilibrium.

In this thesis, the stock market index Standard & Poor’s 500 (S&P 500) is studied. The
index consists of the 500 largest companies in terms of market capitalization listed on
NYSE or NASDAQ. Thus, the asset pricing model is applied to a collection of stocks,
which implies that the model parameters to be estimated should be interpreted as the
joint market behaviour. As previously seen, the calibration is highly dependent on the
out-of-equilibrium properties of the mispricing. Therefore, the time period from 2000
to 2008 is chosen, since it begins with the crash of the .com-bubble (climax in March
10, 2000) and ends with the start of the Great recession, e.g., the filing of bankruptcy
of Lehman Brothers on September 15, 2008. In contrast to earlier applications of the
calibration methods, an estimation window of 8 years instead of 7 years is used. This
uses more information from the time-series and should improve calibration. However,
the most important reason is that this will end the estimation window at the last trading
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Figure 5.1: Time-series of the S&P 500-index from 2000 to 2008 and the extracted mispricing
x. The graph emphases the two most important financial events during this time
period.

day of 2007, i.e., before the Great recession. Thus, it will be possible to examine how
well an event like the Great recession is projected by the asset pricing model.

In Figure 5.1, the time-series of the S&P 500-index is illustrated for the chosen time
period. It includes the fundamental price pf fitted to the S&P 500 time-series with
µf = 0.04 as well as the extracted mispricing component x. The fit highlights that the
mispricing varies from a maximal mispricing of about 0.6 to a minimal mispricing of −0.4.

5.2 Evolutionary Algorithm Calibration

In this section, the application of the Evolutionary algorithm on the S&P 500 time-series
is presented and analysed.

5.2.1 Parameter Estimation

Calibrating the model on S&P 500 data using the Evolutionary algorithm and µf = 0.06
(cf. Section 5.2.2) gives the results shown in Figure 5.2 with descriptive statistics in
Table 5.1. For the real data calibration, the uncertainty bounds are seemingly large,
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Figure 5.2: Box plot of the parameter estimation results for the S&P 500 time-series including
initial conditions (x0, y0) and parameters α, A, β, B, µ and λ using the 10% fittest
chromosomes out of 20000 and 50 generations for 25 parallel estimations.

especially for the A parameter. However, as seen for the calibration of market 15 in
Section 4.3.2, the parameter estimation could still be rather satisfactory in forecasting,
but a higher number of chromosomes would be necessary to decrease the uncertainty.
The interesting α parameter is estimated to be negative, i.e., that individuals follow a
mean-reversal strategy. This seems reasonable in the aftermath of the .com-bubble. In
addition, the median value of A is positive, indicating speculative joint behaviour of the
market participants. However, the uncertainty in this estimate is very high.

Figure B.4 provides the phase plot of the corresponding deterministic system given by the
median values of the most fit chromosomes (the values in Table 5.1). This deterministic
system has only one stable attractor at the equilibrium point (x, y) = (0, 0). Thus,
this calibration seems to yield a model that describes well how the market retreats from
the bubble-phase in beginning of the sample data, but that probably cannot capture
the market development after January 1, 2008 when the market changes to a negative
regime. This is investigated further in the next section.
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Table 5.1: Descriptive statistics (median and standard deviation in parenthesis) of the 10 %
fittest chromosomes of the extended Evolutionary algorithm calibration on the S&P
500 data with 25 parallel runs of the algorithm and 20000 chromosomes in each run.

x0 y0 α A

0.44 (0.12) 1.70 (1.09) -4.36 (1.69) 0.49 (5.60)

β B µ λ

-5.11 (1.69) 0.30 (2.25) 2.03 (2.84) 2.14 (2.55)

5.2.2 Sensitivity Analysis of Fundamental Price

As a consequence of a deterministic fundamental price, the choice of the market growth-
rate µf directly affects the behaviour and amplitude of the mispricing x. A smaller
growth-rate yields a larger contribution of the mispricing component in market prices
and vice versa. Therefore, the calibration results for the cases µf = 0.02, µf = 0.04,
µf = 0.06 and µf = 0.13 are investigated in this section. Table 5.2 reports the median
values and standard deviations of the parameter estimates for the different values of µf .

As can be seen in this table, the calibration results depend heavily on the choice of µf .
For µf = 0.02 and µf = 0.04, the estimates do not seem to converge. In particular,
the uncertainties in the estimates are huge and the estimates are unreasonable regarding
both signs and sizes. Meanwhile, the results for µf = 0.06 and µf = 0.13 are similar.
From a practical point of view, the explanation is a consequence of the realization of
the mispricing x. Comparing Figure 5.1 (µf = 0.04) with Figure B.6 (µf = 0.06), the
states of the mispricing x with µf = 0.06 are more distinguishable. This means that
the mispricing changes from a positive regime, to equilibrium and further on towards a
negative mispricing. In the case µf = 0.04, the mispricing does not stay at or close to
equilibrium. Instead it grows again after the .com-Bubble, before it drops as a conse-
quence of the Great recession.

With this in mind, the calibration results suggest that the asset pricing model is useful
for determining market characteristics only when it is possible to clearly distinguish mis-
pricing regimes. This goes in hand with the long-term objective of the model to be useful
for calculations of regime switching probabilities, but demands an increased user aware-
ness and pin-points the drawbacks of a deterministic fundamental price. This means that
small fluctuation in market prices should be encountered by the fundamental price, not
the mispricing, for calibration to be meaningful, which is not possible in the determin-
istic case. Furthermore, this does not mean that in general µf = 0.06 is a better choice
than µf = 0.04, since the increases in the mispricing after the .com-Bubble could be a
consequence of stochasticity of the fundamental price, cf., a trajectory of a random walk.
Nevertheless, in this particular application of the Evolutionary algorithm, the calibration
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Table 5.2: Descriptive statistics (median and standard deviation in parenthesis) for different
values of µf of the 10 % fittest chromosomes of the extended Evolutionary algorithm
calibration on the S&P 500 data with 25 parallel runs of the algorithm and 20000
chromosomes in each run.

x0 y0 α A

µf = 0.02 0.59 (0.28) 2.46 (6.43) 5.47 (9.61) -48.12 (96.70)
µf = 0.04 0.51 (0.22) 2.08 (3.20) -0.03 (1.65) -17.56 (20.99)
µf = 0.06 0.44 (0.12) 1.70 (1.09) -4.36 (1.69) 0.49 (5.60)
µf = 0.13 0.67 (0.11) 1.55 (1.04) -4.73 (1.44) 3.63 (4.61)

β B µ λ

cont. µf = 0.02 -10.03 (15.46) -6.18 (11.58) 9.80 (17.07) 6.37 (13.77)
cont. µf = 0.04 -7.09 (6.17) -1.97 (6.56) 5.39 (7.31) 3.17 (7.36)
cont. µf = 0.06 -5.11 (1.69) 0.30 (2.25) 2.03 (2.84) 2.14 (2.55)
cont. µf = 0.13 -4.72 (1.05) 0.17 (1.13) 1.32 (1.94) 2.14 (2.55)

results are much more reliable for µf = 0.06 and is thus used for the prediction study in
the following section. In fact, it is not even a too unrealistic estimation of the long-term
growth rate of the S&P 500 index. Using µf = 0.04 and changing the parameters with
one standard deviation leads to no consistency in the prediction distributions.

In conclusion, this sensitivity analysis suggests that choosing a deterministic fundamental
price might be a too big simplification of the real-world dynamics when applying the
Evolutionary algorithm for parameter estimation. For the calibration to be applicable,
it is necessary to be able to distinguish in which regime the mispricing is.

5.2.3 Prediction Power Analysis

To be able to analyse the prediction power of the calibrated model, the same procedure
as in Chapter 4 is used. However, for the real financial time-series it is not possible to
use an exact value for y at the start of the prediction period, and the estimation method
presented in Section 4.2.2 is applied. Performing this smoothing, the y value at January
1, 2008 seems to be in the interval [−0.5, 0.5]. Therefore, both the cases -0.5 and 0.5 are
analysed, and the results are shown in Table 5.3.

As can be seen in the Table 5.3, the estimated mispricing distributions are narrow (the
standard deviation is small). However, the model is unable to predict the true values, i.e.,
the xobs are located in the tails of the prediction distributions. This is non-satisfactory,
since it suggests poor performance when using the model to forecast asset prices. In
addition, the 1 year result indicates that the Great recession was a one-in-ten million
year event. As of now, with the understanding of what happened in 2008 and the risk
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Table 5.3: Descriptive statistics of the estimated mispricing distribution x̂ (mean and standard
deviation) and the true outcome xobs after 1 week, 2 weeks, 1 month and 1 year,
respectively, when using the parameter estimates found in Table 5.1. P (x̂ > xobs)
gives a measure of the probability of more extreme events.

y = −0.5 y = 0.5
xobs m(x̂) sd(x̂) P (x̂ > xobs) xobs m(x̂) sd(x̂) P (x̂ > xobs)

1 week 0.15 0.10 0.01 3.0 · 10−6 0.15 0.12 0.01 0.01
2 weeks 0.11 0.10 0.01 0.12 0.11 0.13 0.01 0.91
1 month 0.06 0.08 0.02 0.86 0.06 0.15 0.02 1− 2.5 · 10−7

1 year -0.44 -0.00 0.06 1− 1.3 · 10−7 -0.44 0.11 0.06 1− 3.2 · 10−7

management methods used, the likelihood of this event was probably to be assigned a
higher probability. To get a deeper understanding of the prediction performance, these
results should be compared with the Simulated annealing results.

5.3 Simulated Annealing Parameter Estimation

In this section, the corresponding analysis to the one in Section 5.2 is performed. Further-
more, a comparison between the prediction performance of the two different parameter
estimation approaches is conducted.

5.3.1 Calibration of Parameters

In comparison with the results from the Evolutionary algorithm, the Simulated annealing
method is not as sensitive to changes in µf , especially not the adapted kernel estimator.
The results are summarized in Tables 5.4 and 5.5, and the ants seem to reach a steady-
state for all the different parametrizations of µf . However, the uncertainty is high for
the kNN method with µf = 0.02. The estimated sign of the A parameter differs be-
tween the two calibration methods, but the uncertainty for the Evolutionary algorithm
is high and might therefore be an explanation. The corresponding phase plots of the
deterministic systems are, however, similar. There is only one attractor at equilibrium
(x, y) = (0, 0) and the out-of-equilibrium mispricing converges towards this value. Never-
theless, a comparison of Figures B.4 and B.5 yields that the convergence follows different
paths, implying distinguished properties of the mispricing behaviour. With the results
for the time-series in mind, the calibrated models describe the behaviour during the in-
sample data well, and an extensive discussion of the performance in the post estimation
window is presented in the following section.

The deviations of the calibrated parameter values between the two different methods for
probability density estimation are small. However, the uncertainty is generally higher
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for the kNN method. For instance the A parameter (the parameter estimate that dif-
fers most from the Evolutionary algorithm results) has very large uncertainty bounds.
This indicates that this parameter is particularly difficult to estimate for the considered
time-series, and a qualitative interpretation should be made with caution. Furthermore,
the results from the Simulated annealing method ought to be more reliable than the
Evolutionary algorithm results. The positions of the ants seem to have converged well
into the steady-state distribution, while this is clearly not the case for the chromosomes
in the Evolutionary algorithm for small values on µf .

Table 5.4: Position of the most fit ant and the standard deviation in parenthesis of the 10 fittest
ants for different µf using the adapted kernel density for 12 000 ants.

y0 α A β

µf = 0.02 0.06 (0.53) -1.43 (0.65) -4.11 (1.80) -7.90 (0.78)
µf = 0.04 1.07 (0.53) -3.20 (0.80) -3.63 (1.78) -7.38 (0.77)
µf = 0.06 1.18 (0.59) -4.83 (0.55) -2.43 (1.47) -7.58 (0.62)
µf = 0.13 0.78 (0.41) -5.35 (0.75) -0.55 (1.38) -7.84 (0.58)

B µ λ

cont. µf = 0.02 0.19 (1.65) 4.01 (1.33) 2.53 (0.42)
cont. µf = 0.04 1.38 (1.00) 4.02 (0.59) 3.32 (1.09)
cont. µf = 0.06 1.19 (1.51) 4.57 (0.91) 2.83 (0.93)
cont. µf = 0.13 -0.37 (1.59) 1.65 (1.73) 2.15 (0.80)

Table 5.5: Position of the most fit ant and the standard deviation in parenthesis of the 10 fittest
ants for different µf using the kNN method on 12 000 ants.

y0 α A β

µf = 0.02 -0.43 (0.67) -1.66 (1.00) 5.25 (8.02) -8.89 (2.37)
µf = 0.04 0.13 (1.01) -1.70 (0.81) -7.37 (4.63) -7.32 (2.37)
µf = 0.06 0.91 (0.36) -3.96 (1.48) -2.55 (3.89) -5.72 (1.67)
µf = 0.13 1.20 (0.56) -5.66 (0.93) -0.48 (4.95) -7.79 (1.62)

B µ λ k

cont. µf = 0.02 3.55 (1.47) 1.31 (3.13) 1.93 (0.52) 5
cont. µf = 0.04 0.21 (3.02) 3.93 (2.19) 1.97 (1.94) 5
cont. µf = 0.06 3.16 (3.01) 2.67 (3.25) 0.83 (1.13) 5
cont. µf = 0.13 -1.71 (3.19) 0.81 (2.48) 1.24 (1.79) 5
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5.3.2 Investigation of Prediction Power

In this section, a corresponding analysis of Section 5.2.3 is conducted for the parameter
estimates of the Simulated annealing method. Once again, two different starting points
for y are chosen (-0.5 and 0.5) and the results are presented in Tables 5.6 and 5.7, respec-
tively. The performance of the predictions are not satisfactory, since the true outcomes
are located in the tails of the narrow prediction distributions. This could imply that the
model might not be able to explain the American stock market well, or that the chosen
calibration window is unrepresentative. Note that the values of xobs differ compared to
the Evolutionary algorithm predictions, since different values of µf are used. Neverthe-
less, the inability to predict the actual realizations of the mispricing of the S&P 500 index
are alike for all three methods of generating the prediction distribution. This emphasises
that the calibrated model has difficulties in describing the true market performance. In
particular, the results are present for different values of µf , i.e., different interpretations
of the mispricing x, and for different ys, which suggests that the poor predictions are a
consequence of the model’s properties.

As previously stated, the phase plots of the deterministic systems precisely describe the
convergence of out-of-equilibrium prices to the mispricing (x, y) = (0, 0) and reflect the
time-period January, 2000 to December 2007 well. Thus, when trying to describe ac-
tual market prices with the model of Yukalov et al. with constant parameters, other
market phases should presumably also be used to calibrate the model. This means that
the parameter estimates at hand only describe the convergence of the mispricing from
a positive attractor, i.e., the burst of a bubble. One suggestion could be to perform
similar calibrations on the building-up phase of bubbles and also for the beginnings and
recoveries of recessions. From this, it might be possible to construct dynamic parameters
depending on the present mispricing x to be able to predict the actual market prices
more precisely. More effort in this direction could improve the knowledge about these
issues. The usage of a relatively short time-period goes in hand with the earlier studies
on synthetic data, and the main constraint for longer time-series is the computational
power needed for repeated simulation. Hence, using longer estimation windows could
be profitable, since the data would include different regime switches and the calibrated
model could capture these transitions.

In conclusion, these introductory results on performance of calibration and prediction of
the asset pricing model of Yukalov et al. in a real-world context are not as satisfactory
as desired, neither for the Evolutionary algorithm nor the Simulated annealing approach.
It is even hard to motivate if one of the approaches are preferable, but the Simulated
annealing approach with an adapted kernel estimator is least sensitive to changes in µf
and should hence be more reliable. One idea that might improve the performance is
to study enlarged time-series to capture other regime switches than the bursting of the
.com-Bubble.
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Table 5.6: Descriptive statistics (mean and standard deviation) of the estimated mispricing dis-
tribution x̂ from the Simulated annealing method with kernel density approximation
and the true outcome xobs after 1 week, 2 weeks, 1 month and 1 year, respectively,
using the estimates in Table 5.4 for µf = 0.04. P (x̂ > xobs) gives a measure of the
probability of more extreme events.

y = −0.5 y = 0.5
xobs m(x̂) sd(x̂) P (x̂ > xobs) xobs m(x̂) sd(x̂) P (x̂ > xobs)

1 week 0.31 0.26 0.01 7.2 · 10−7 0.31 0.28 0.01 0.01
2 weeks 0.27 0.26 0.01 0.10 0.27 0.29 0.01 0.89
1 month 0.22 0.24 0.02 0.86 0.22 0.30 0.02 1− 6.5 · 10−7

1 year -0.26 0.13 0.06 1− 1.4 · 10−7 -0.26 0.22 0.06 1− 1.5 · 10−7

Table 5.7: Descriptive statistics (mean and standard deviation) of the estimated mispricing
distribution x̂ from the Simulated annealing method with the kNN method and the
true outcome xobs after 1 week, 2 weeks, 1 month and 1 year, respectively, using the
estimates in Table 5.5 for µf = 0.04. P (x̂ > xobs) gives a measure of the probability
of more extreme events.

y = −0.5 y = 0.5
xobs m(x̂) sd(x̂) P (x̂ > xobs) xobs m(x̂) sd(x̂) P (x̂ > xobs)

1 week 0.31 0.26 0.01 1.5 · 10−7 0.31 0.28 0.01 0.01
2 weeks 0.27 0.26 0.01 0.11 0.27 0.29 0.01 0.88
1 month 0.22 0.24 0.02 0.86 0.22 0.30 0.02 1− 1.4 · 10−7

1 year -0.26 0.16 0.07 1− 1.6 · 10−7 -0.26 0.25 0.06 1− 1.7 · 10−7



62 CHAPTER 5. A STUDY OF A FINANCIAL TIME-SERIES



Chapter 6

Conclusion

In terms of the objective of this Master thesis, to get a deeper understanding of why
the calibration of the asset pricing model by Yukalov et al. is difficult, both the Sloppy
model analysis and the performance of the two different parameter estimation approaches
are highly informative. Firstly, the calibration of the model is highly dependent on the
access to information about out-of-equilibrium dynamics. In the limit of deterministic
prices in equilibrium, there is no information at all that is useful for calibration. Sec-
ondly, the Sloppy model analysis shows that the deterministic systems corresponding to
different market types have sloppy directions. This means that in the sloppy directions,
the information needed to calibrate the model simply would not be enough.

Hence, the calibration methods studied so far are probably adequately involved to match
the dimension of applicability given by the parameter estimation problem in general. The
methods perform similarly and it is not clear whether one of the approaches are prefer-
able, but the Simulated annealing method with an adapted kernel density approximation
yields lowest uncertainty bounds. If new method are to be studied, one idea is to develop
a type of maximum likelihood estimation based on numerical Fokker-Planck solutions of
the mispricing probability distribution function conditioned on the model parameters.
Nevertheless, the insights from Sloppy model-theory suggests that the usage of a Sloppy
model could still be rich, e.g., for forecasting purposes.

Thus, the prediction power of the model is studied. For the calibrated model in terms
of the synthetic data, the forecasting performs seemingly well. The prediction distribu-
tions are thin and the actual outcomes are often located well inside the distributions.
However, for an application of the parameter estimations methods on a real time-series
taken from the American stock index S&P 500, the performance of the prediction is poor.
The prediction distributions are still thin, but the true outcomes are located in the tails.
The explanation could be that the sample time-series is taken from a period of a burst
of a bubble into equilibrium pricing, and that the calibrated model only describes this
behaviour (as can be seen in the corresponding deterministic phase plots).
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Therefore, to enhance the performance of the prediction power, dynamic parameter esti-
mates depending on the state of the mispricing should be considered, and the time-series
for calibration should be chosen accordingly. This has not been studied in this thesis,
and could be the starting point of further studies. In particular, the study of the pre-
diction performance and the real world applicability of the model is highly relevant for
understanding if the model by Yukalov et al. has explanatory insights on asset pricing,
or if it is a complex way to describe historical data.

In contrast to earlier studies of the asset pricing model, the fundamental price has been
modelled as deterministic. This is a less sophisticated choice, but tries to increase the
transparency of the fundamental properties of the model. To get an even deeper un-
derstanding of the sloppiness structure of the model, case-specific stochastic Sloppy
model-tools might be possible to find to allow for comparison with the results from
the deterministic system. There is no clear way how to do this as of now, but there are
other more straight forward analyses that could be conducted. For instance, the model
manifold and the intrinsic sloppiness of the model should be studied for improved knowl-
edge about what parts of the sloppiness that are model specific and what parts that are
dependent on the parametrization.

Furthermore, the study of a real-world financial time-series suggests that the assumption
on a deterministic fundamental price presumably is too simplistic. For the model to
be useful, small changes in market prices should not be explained by movements in the
mispricing. In addition, the underlying idea of the mispricing approach is to be able to
distinguish between different regimes, not small fluctuations in the market price. Luckily,
the Simulated annealing method is rather robust with respect to this assumption. Thus,
it might not be of highest priority to analyse stochastic fundamental prices in a first
further study.

In conclusion, this Master thesis mainly improves on earlier works in terms of insights
about why the calibration of the asset pricing model is hard, cf., the model’s sloppiness
structure. Furthermore, it indicates that the usage of the model for forecasting is not
completely straight forward, since dynamic approaches might be needed. The long-term
objective of usage of the model for forecasting transition probabilities between different
mispricing regimes is distant, but still seems tractable with base in an enhanced prediction
power analysis of more sophisticated parameter dynamics.



References

[1] M. Arulampalam, S. Maskell, N. Gordon and T. Clapp, 2002, A Tutorial on Particle
Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions
on Signal Processing, 50(2), 174-188.

[2] L. Bachelier, 1900, Théorie de la Spéculation. Annales Scientifiques de l’École Normale
Supérieure, 3(3), 21-86.

[3] A. Bertolace, 2009, Study of a Nonlinear Model of the Price of an Asset: Kalman
Filter Calibration to data. http://www.er.ethz.ch/publications/MAS_Thesis_
Bertolace.pdf

[4] C. Berzuini and W. Gilks, 2001, Following a Moving Target - Monte Carlo Inference
for Dynamic Bayesian Models. Journal of the Royal Statistical Society, 63(1), 127-
146.

[5] F. Black and M. Scholes, 1973, The Pricing of Options and Corporate Liabilities. The
Journal of Political Economy, 81, 637–654.

[6] K. Burke and G. Kendall, 2005, Search Methodologies - Introductory Tutorials in
Optimization and Decision Support Techniques. Springer Science and Business Media,
New York.

[7] K. Brown, C. Hill, G. Calero, C. Myers, K. Lee, J. Sethna and R. Cerione, 2004,
The Statistical Mechanism of Complex Signaling Networks: Nerve Growth Factor
Signaling. Physical Biology, 1, 184-195.

[8] K. Brown and J. Sethna, 2003, Statistical Mechanical Approaches to Models with
Many Poorly Known Parameters. Physical Review, 68.

[9] S. Cecchetti, P. Lam and N. Mark, 1990, Mean Reversion in Equilibrium Asset Prices.
American Economic Review, 80, 398-418.

[10] P. Christensen and K Larsen, 2012, Incomplete Continuous-time Securities Markets
with Stochastic Income Volatility. http://arxiv.org/abs/1009.3479v2.

[11] K. Cranmer, 2001, Kernel Estimation in High-Energy Physics. Computer Physics
Communications, 136, 198-207.

65

http://www.er.ethz.ch/publications/MAS_Thesis_Bertolace.pdf
http://www.er.ethz.ch/publications/MAS_Thesis_Bertolace.pdf
http://arxiv.org/abs/1009.3479v2


66 REFERENCES

[12] C. Darwin, 1859, On the Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle of Life. Journal of Researches During
H.M.S. Beagle’s Voyage round the world.

[13] A. Fraser, 1957, Simulation of Genetic Systems by Automatic Digital Computers. II:
Effects of Linkage on Rates under Selection. Australian Journal of Biological Science,
10, 492–499.

[14] D. Goldberg, 2002, Design of Innovation: Lessons From and For Competent Genetic
Algorithms. Kluwer, Boston, Massachusetts.

[15] J. Hamilton, 1989, A New Approach to the Economic Analysis of Non-stationary
Time Series and the Business Cycle. Econometrica, 57, 357-384.

[16] H. He, and H. Leland, 1993, On Equilibrium Asset Price Processes. Review of Fi-
nancial Studies, 6, 593-617.

[17] O. Hellwich, 1998, Model Parameter Estimation using Simulated Annealing. Inter-
national Archives of Photogrammetry and Remote Sensing, 32, 233–238.

[18] F. Hoffmeister and T. Bäck, 1991, Genetic Algorithms and Evolution Strategies:
Similarities and Differences. Springer, Berlin, Heidelberg.

[19] J. Holland, 1975, Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor, Michigan.

[20] S. Kirkpatrick, C. Gelatt and M. Vecchi, 1983, Optimization by Simulated Annealing.
Science, 220(4598), 671-680.

[21] A. Koenig, 2002, A Study of Mutation Methods for Evolutionary Algorithms. Ad-
vanced Topics in Artificial Intelligence, CS 447.

[22] D. Koller and N. Friedman, 2009, Probabilistic Graphical Models. MIT Press, Cam-
bridge, Massachusetts.

[23] A. Kong, J. Liu, and W. Wong, 1994, Sequential Imputations and Bayesian Missing
Data Problems. Journal of the American Statistical Association, 89, 278–288.

[24] W. Lin, W. Yuan and T. Hong, 2003, Adapting Crossover and Mutation Rates in
Genetic Algorithms. Journal of Information Science and Engineering, 19, 889-903.

[25] D. Luenberger and P. Woehrmann, 2007, On kNN Density Estimation. National Cen-
tre of Competence in Research - Financial Valuation and Risk Management, Working
Paper no. 417.

[26] Benjamin Machta, Ricky Chachra, Mark Transtrum and James Sethna, 2013, Pa-
rameter Space Compression Underlies Emergent Theories and Predictive Models. Sci-
ence, 342, 604-607.



REFERENCES 67

[27] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, 1953, Equa-
tion of State Calculations by Fast Computing Machines. Journal of Chemical Physics,
21(6), 1087-1092.

[28] S. Robert, 2012, Sequential Monte Carlo Methods for a Dynamical Model
of Stock Prices. http://www.er.ethz.ch/publications/MAS_Thesis_Sylvain_
Robert_Aug2012.pdf

[29] A. Savitzky and M. Golay, 1964, Smoothing and Differentiation of Data Simplified
Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639.

[30] D. Sornette, 2004, Why Stock Markets Crash: Critical Events in Complex Financial
Systems. Princeton University Press, Princeton.

[31] D. Sornette and P. Cauwels, 2014, 1980-2008: The Illusion of the Perpetual Money
Machine and What it Bodes for the Future. Risks, 2, 103-131.

[32] M. Transtrum, B.Machta and J. Sethna, 2012, Why are Nonlinear Fits to Data so
Challenging? Physical Review Letters, 104(6), 060201.

[33] M. Wand and M. Jones, 1995, Kernel Smoothing. Monographs on Statistics and
Applied Probability, 60.

[34] V. Yukalov, 1991, Method of Self-Similar Approximations. Journal of Mathematical
Physics, 32(5), 1235–1239.

[35] V. Yukalov, D. Sornette and E. Yukalova, 2009, Nonlinear Dynamical Model of
Regime Switching Between Conventions and Business Cycles. Journal of Economic
Behaviour & Organization, 70(1-2), 206-230.

 http://www.er.ethz.ch/publications/MAS_Thesis_Sylvain_Robert_Aug2012.pdf
 http://www.er.ethz.ch/publications/MAS_Thesis_Sylvain_Robert_Aug2012.pdf


68 REFERENCES



Appendices

69





Appendix A

Mathematical Derivations and
Expressions

In this chapter, some mathematical results for the asset pricing model by Yukalov et al.
are derived and presented.

A.1 Hessian Matrix of the Cost Function at Minimum

This section treats the mathematical derivation of the expression for the Hessian matrix
of the deterministic system given by Equation (4.6).

Lemma A.1.1 For the cost function

χ2(θ) =
1

2

∑
t∈{0,1,...,T−1}

(fNL(Xt, Yt)− ȳobst )2, (A.1)

the Hessian matrix at the minimizing point in parameter space is given by

Hχ2

i,j =
∑

t∈{0,1,...,T−1}

∂fNL(Xt, Yt)

∂θi

∂fNL(Xt, Yt)

∂θj
. (A.2)

Proof Hχ2

i,j is given by

Hχ2

i,j =
∂

∂θj

∂

∂θi
χ2

=
∂

∂θj

∑
t∈{0,1,...,T−1}

(fNL(Xt, Yt)− ȳobst )
∂fNL(Xt, Yt)

∂θi

=
∑

t∈{0,1,...,T−1}

∂fNL(Xt, Yt)

∂θj

∂fNL(Xt, Yt)

∂θi
+

∑
t∈{0,1,...,T−1}

(fNL(Xt, Yt)− ȳobst )
∂2fNL(Xt, Yt)

∂θj∂θi
.
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At the minimizing point, the difference fNL(Xt, Yt) − ȳobst equals zero, and the claim
follows.

�

A.2 Calculation of the Elements of the Hessian Matrix

The elements of the Hessian matrix given by Equation (4.6) is easily calculated from the
following derivatives:

∂fNL(Xt, Yt)

∂α
= Xt, (A.3)

∂fNL(Xt, Yt)

∂A
= X3

t exp(−X2
t /µ

2), (A.4)

∂fNL(Xt, Yt)

∂β
= Yt, (A.5)

∂fNL(Xt, Yt)

∂B
= Y 3

t exp(−Y 2
t /λ

2), (A.6)

∂fNL(Xt, Yt)

∂µ
=

AX5
t exp(−X2

t /µ
2)

µ3
, (A.7)

∂fNL(Xt, Yt)

∂λ
=

BY 5
t exp(−Y 2

t /λ
2)

λ3
. (A.8)



Appendix B

Results

In this chapter, supplemental results not directly stated in the report from the calibration
of synthetic data as well as parameter estimation of the S&P 500 time-series are presented.

B.1 Calibration of Synthetic Data

Supplemental results from calibration of the time-series of synthetic data both for the
Evolutionary algorithm and the Simulated annealing method are presented in this section.
In addition, the sensitivity of y in predictions are investigated.

B.1.1 Evolutionary Algorithm Supplemental Results

For the Evolutionary algorithm, the supplemental results are presented in Figures B.1 -
B.3 and in Tables B.1 and B.2 on the following pages.

B.1.2 Simulated Annealing Supplemental Results

The supplemental Simulated annealing results are summarized in Tables B.3 and B.4 on
the following pages.
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Figure B.1: Market 10. Calibration results of initial conditions (x0, y0) and parameters α, A,
β, B, µ and λ using the 10% fittest chromosomes out of 20000 and 50 generations
(x-axis). The grey areas are the inter-quartile ranges, the solid lines the medians
and the dashed lines the means. The red lines correspond to the true values.
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Figure B.2: Market 10, deterministic. Calibration results of initial conditions (x0, y0) and
parameters α, A, β, B, µ and λ using the 10% fittest chromosomes out of 20000
and 50 generations (x-axis). The grey areas are the inter-quartile ranges, the solid
lines the medians and the dashed lines the means. The red lines correspond to the
true values.
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B.1.3 Sensitivity of y in Predictions

In this section, a stress test of the prediction performance on synthetic data when the
assumption of perfect observation of y is alleviated is presented in Table B.5. Similar
results hold for the Evolutionary algorithm, Simulated annealing with a kernel density
as well as for Simulated annealing with a kNN density for market type 10. Only the
sensitivity of the kNN method on market 1 and market 15 are shown for clarity.

Table B.5: Descriptive statistics of the estimated mispricing distribution x̂ (mean and standard
deviation) and the true outcome x after 1 week and 1 month, respectively, for
different values of y and using the kNN method, cf., Table 4.5. P (x̂ > xobs) gives a
measure of the probability of more extreme events. The second column shows how
many multiples of the true y that is used for the predictions.

1 week 1 month
xobs m(x̂) sd(x̂) P (x̂ > xobs) xobs m(x̂) sd(x̂) P (x̂ > xobs)

Market 1 y 0.55 0.55 0.01 0.70 0.55 0.53 0.02 0.16
0.5y 0.55 0.55 0.01 0.78 0.55 0.54 0.02 0.28

2y 0.55 0.55 0.01 0.55 0.55 0.52 0.02 0.04
−y 0.55 0.56 0.01 0.92 0.55 0.57 0.02 0.76

−0.5y 0.55 0.56 0.01 0.88 0.55 0.55 0.02 0.61
−2y 0.55 0.57 0.01 0.97 0.55 0.58 0.02 0.94

Market 15 y 3.25 3.25 0.01 0.70 3.29 3.27 0.02 0.23
0.5y 3.25 3.25 0.01 0.61 3.29 3.26 0.02 0.11

2y 3.25 3.25 0.01 0.87 3.29 3.29 0.02 0.55
−y 3.25 3.24 0.01 0.35 3.29 3.23 0.02 3.9 · 10−3

−0.5y 3.25 3.25 0.01 0.43 3.29 3.24 0.02 0.02
−2y 3.25 3.24 0.01 0.17 3.29 3.21 0.02 02.7 · 10−4

B.2 Calibration of a S&P 500 Time-Series

In this section, the supplemental results from the calibration studies on the S&P 500
time-series are presented.

B.2.1 Phase Plots of Deterministic Systems

The phase plot given by the deterministic counterpart of the calibrated system is pre-
sented in this section.
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Figure B.4: Phase plot of the, by the Evolutionary algorithm, calibrated deterministic system
for the S&P 500 time-series. The estimates used for the parameters are the median
values found in Table 5.1.
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Figure B.5: Phase plot of the calibrated deterministic system for the S&P 500 time-series when
using the Simulated annealing method with the adapted kernel density estimator.
The estimates used of the parameters are the median values found in Table 5.4 for
µf = 0.04.
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B.2.2 Mispricing Time-Series for µf = 0.06

As a comparison with Figure 5.1 with µf = 0.04, the corresponding graph for µf = 0.06
is presented in this section.
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Figure B.6: Time-series of the S&P 500-index from 2000 to 2008 and the extracted mispricing
x using µf = 0.06, emphasising the two most important financial events during
this time period.
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