
Forecasting the Business Cycle using Partial Least

Squares

Fredrik Lannsjö

Department of Mathematics,
KTH, Stockholm, Sweden

September 15, 2014





Abstract

Partial Least Squares is both a regression method and a tool for variable
selection, that is especially appropriate for models based on numerous (pos-
sibly correlated) variables. While being a well established modeling tool in
chemometrics, this thesis adapts PLS to financial data to predict the move-
ments of the business cycle represented by the OECD Composite Leading
Indicators. High-dimensional data is used, and a model with automated vari-
able selection through a genetic algorithm is developed to forecast different
economic regions with good results in out-of-sample tests.
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Chapter 1

Introduction

Forecasting the business cycle is a well studied field in finance, and many
qualitative and quantitative methods are commonly used. Most techniques
frequently use historical data and the study of leading indicators. According
to Stock and Watson (2004), academic work of macroeconomic forecasting
historically focuses on models with only a handful of indicators, while ana-
lysts in business and government often use numerous indicators. Stock and
Watson argues that this suggests there is information content in economic
data not being fully utilized in the major economic forecasts of today.

One of the major economic forecasts is the Composite Leading Indicator (CLI)
published by the Organisation for Economic Co-operation and Development
(OECD). It has historically shown a good forecast performance with a lead
of 6-9 months of the business cycle. However, a study by Fichtner et al.

(2011) indicates that the lead for the CLI has decreased in later years. They
argue that this is due to the CLI being solely based on domestic indica-
tors, while in an increasingly globalized market, much information about a
region’s economy can be found in the external environment.

Partial Least Squares (PLS) was developed in the 1970s as a regression tool
for analyzing quantitative collinear data in the field of chemometrics. In
recent years an extension of the method has been developed for variable se-
lection and statistical classification. This method has shown to often outper-
form established methods in finding relevant variables for prediction models
(Barker et al. (2003)).

This thesis aims to take advantage of the general unused quantitative infor-
mation in financial forecasting (Stock and Watson (2004)), and specifically
unused inter-regional information for the CLI (Fichtner et al. (2011)), by
adapting the latest advancements in PLS to financial analysis. The concrete
goal is to use this information to forecast the CLI itself, by using high-
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dimensional economic data and a PLS regression model with automated
variable selection.

Forecasting the CLI means predicting a prediction of the business cycle,
which may seem a bit unorthodox. An alternative approach would be to
recreate the methods of the CLI with an increased lead, however, this requires
many techniques and assumptions that fall outside of the scope of this thesis.
The end product with our approach is the same, and a good result would
imply the proficiency of PLS for finding and employing currently unused
information. In addition, a good prediction of the CLI, say six months ahead,
will give us an even greater lead on the business cycle of 12-15 months, via
the proven accuracy of the CLI [5].

In the subsequent parts of this thesis, Chapter 2 introduces the data being
used while Chapters 3 explains the main regression method under study.
Chapter 4 looks at alternative approaches and motivates our choice of re-
gression method. Chapter 5 introduces the discriminant analysis techniques
to be examined. Chapter 6 constructs the basics of our modeling methods
while Chapter 7 introduces the full model and its evaluation design, as well
as the examination of the discrimination techniques. The results of the fore-
cast performance are given in Chapter 8 and their accuracy is discussed in
Chapter 9, along with a discussion of the methods and assumptions of the
thesis in general. In Chapter 10 the fulfillment of our objectives is evalu-
ated and the validation and further applications of our methods are briefly
discussed.
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Chapter 2

Time series under study

2.1 Composite Leading Indicators

The Organisation of Economic Co-operation and Development (OECD) has
been publishing the Composite Leading Indicators (CLIs) since 1981. It
has been proven to have a good prediction power of the movements of the
economy [5]. To quote OECD, the CLI is designed to give "early signals of
turning-points in economic activity". As a proxy of economic activity, the
monthly Index of Industrial Production (IIP) is used, and the business cycle
is defined as the difference between the smoothed IIP data and its long term
trend. Since the goal of the CLI is to detect turning-points in the business
cycle, about six to nine months ahead, it is not aimed at forecasting cer-
tain levels or numerical values, but is rather a dimensionless event forecast,
with the turning-points as events. It is based on a selected set of economic
indicators and solely on historical data, not including expert judgement. In-
dividual CLIs are available for the member countries of the OECD as well
as some non-member economies and zone aggregates.

The regions chosen for this study are the ones with CLIs showing relatively
low inter-collinearity, see Table 2.1. Since some of the economic regions fea-
tured in OECD’s database have strongly collinear CLIs, applying the model
on these data can not be seen as independent model validations. Therefore
we do not consider regions such as G7 and United States, for example, show-
ing correlations of 0.99 and 0.95 respectively with the OECD’s CLI.
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Australia Austria Finland Italy OECD OMSNME Four Big Euro Japan
Australia 1 0.42632 0.65498 0.36106 0.65211 0.55862 0.49556 0.034314
Austria ... 1 0.68253 0.85366 0.82891 0.70106 0.93167 0.5443
Finland ... ... 1 0.52888 0.7493 0.71423 0.72833 0.25752
Italy ... ... ... 1 0.72069 0.52619 0.89878 0.39417

OECD ... ... ... ... 1 0.87361 0.90063 0.62585
OMSNME ... ... ... ... ... 1 0.77879 0.57956

Four Big Euro ... ... ... ... ... ... 1 0.53425
Japan ... ... ... ... ... ... ... 1

Table 2.1: Correlation matrix of the Composite Leading Indicators of the eight economic regions studied between 1990:01
and 2013:12. OECD is the combined economy of the OECD member countries, OMSNME stands for OECD plus Major Six
Non-Member Economies, and consist of the 30 OECD countries plus Brazil, China, India, Indonesia, the Russian Federation
and South Africa. Four Big Euro is the combined economies of France, Germany, Italy and United Kingdom
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2.2 Acquiring Data

The data is taken from the package named Main Economic Indicators -

complete database available at the OECD’s iLibrary. This includes national
accounts, business surveys, retail sales, production and employment data,
interest rates etc., as well as various CLI series. Most indicators are rep-
resented in different subsets, e.g. unemployment rates are partitioned into
different ages as well as aggregates of these. Further, many are also rep-
resented in different measures, e.g. indexed series or growth rate previous
year, with or without seasonal adjustments. This data is available for 58 dif-
ferent countries and zone aggregates, including all OECD members as well
as six non-members. The complete dataset includes 7882 time series of in-
ternational economic indicators, although the dates of available data differs
between subjects and regions. When selecting the data for our model the
time series would preferably not have blank entries. This gives us a trade-
off between number of observations of monthly data N and the number of
predictors, i.e. economic indicators, M . Figure 2.1 shows the available data
for the time series by date, from 1980:01 to 2013:12, with blank entries left
white.

Figure 2.1: Available monthly data from the OECD’s Main Economic In-
dicators dataset marked with blue. The time series of the predictors are
arbitrarily lined up along the split y-axis. The x-axes are the monthly time
steps from 1980:01 to 2013:12.

By inspection there is an influx of data available from 1990:01, at month
120, for many of the indicators, while some are blank until 2000:01 or even
later. Thus we choose to use the indicators with time series containing no
blank entries between 1990:01 to 2013:12. This gives us 288 observations

5



of monthly data for 5012 time series, to be evaluated for inclusion in the
modeling. The predictor series are not discriminated manually any further,
this discrimination is left for the model.

For the CLI we choose the measure named "12 month rate of change of
the trend restored CLI". Here trend refers to the long time growth of the
economy, and the Rate Of Change at time t0 is given by

ROC = (CLIt0 � CLIt�12)/CLIt�12 ,

where t�12 is the time step twelve months prior to t0. According to OECD
the fluctuations of this series are comparable with the growth rate of the
turning points of the real Gross Domestic Product (GDP). In short, the
interpretation is a positive value means the economy is expanding, while a
negative value means it is contracting, and the slope measures at which rate.
This version of the CLI is the one most sensitive to the movements of the
business cycles, and ideal for a forecast model.

2.3 Notation

We will use the convention of writing column vectors in bold-face lower-
case form and matrices in bold-face capital letters. To denote a transpose
we use "0", so that e.g. x

0 is the row vector of x. Scalars resulting from
vector multiplication will be included in parenthesis, (x0

x). The number of
elements of a vector or dimensions of a matrix are written in capital letters,
while the subscript indices for the corresponding elements have the lower-
case version of the same letter. If X is our data matrix with elements xnm for
the independent variables as column vectors with observations as rows, this
means we have N number of observations and M number of variables.
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Chapter 3

Partial Least Squares

Regression

3.1 Historical Background

Partial Least Squares on latent variables (PLS) is a method originally devel-
oped for multivariate regression in high dimensional and collinear data by
Herman Wold around 1975. It was later improved to better apply to science
and technology by Sven Wold and Harald Martens, around 1980 [17]. It
has since been a popular regression tool among scientists, particularly in the
field of chemometrics (cf. [2][4][7][10][12]). Its main features are the ability
to deal with strongly collinear data, and using numerous amounts of input
variables.

In recent years PLS has found additional applications as a tool for variable se-
lection in statistical discrimination [1][3]. This technique is usually referred
to as PLS-DA, for Discriminant Analysis, to distinct from the regression
method, referred to as PLSR. Today, PLSR and PLS-DA have been applied
to a broad variety of fields, including classifying wastewater pollution, to dis-
tinguish coffee beans, classify soy sauce, tumor classification for breast cancer
and distinguishing between diagnoses of mental disorder [1][12]. For a longer
list and references to these studies see Pérez and Tenenhaus (2003).

The applications of PLS in finance are rare and there is, as far as the author
is aware of, no similar published work of PLS for forecasting the business
cycle. Therefore some differences between financial data and data from the
fields mentioned above, needs be taken into consideration, and these will be
discussed throughout this paper.
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3.2 The data - X and Y

There are some variations on the PLS algorithm for making the multivariate
regression of X onto Y , and we will focus on the one given by Wold et

al. (2001) called NIPALS. In this algorithm there can be several dependent
variables, i.e. the Y-matrix may consist of any number of column vectors.
We will state the general algorithm, see next section, although our model
will only be using a single column in the Y-matrix. The X-matrix and the
Y-vector will consist of the previously mentioned predictors of the Main
Economic Indicators (MEI) and the Composite Leading Indicator (CLI),
respectively. Before applying the PLS to a dataset the X-matrix might be
scaled and centered, i.e. using the z-score of the column vectors of X. The
z-score, z, of a vector, v, is defined by subtracting the mean, µ, of the vector
and dividing it by its standard deviation, �, as

z =

v � µ

�
. (3.1)

This is not obligatory for PLS to function, and not always desired in chemo-
metric applications [17], thus not part of the algorithm. In our case however
it is crucial since the data used includes, for example, GPD measured in
trillions of dollars as well as rate of change indicators measured in percent.
These different orders of magnitudes will affect the PLS-weights and beta
coefficients, to be defined. We are not interested in the magnitude of the
variables, but simply their variance and covariance with the Y-matrix. The
PLS algorithm constructs a series of variables (weights, scores, loadings etc)
as linear combinations of the datasets, this is the latent variables giving the
PLS its full name. Similar to a Principal Component Regression, see Sec-
tion 4.3, the PLS decomposes the X- and Y- matrix to these latent variables
as

X = TP

0
+E, (3.2)

Y = UC

0
+G, (3.3)

where T, U, P and C are matrices consisting of the the scores and loadings
to be explained in the following section. The remaining terms E and G are
error terms, assumed to be independent and identically distributed random
variables.
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3.3 The PLS Algorithm

The zeroth step of the algorithm is finding a first representative for Y , a
preliminary Y-score vector, u. This parameter is later updated, and as a
start we use any column of Y , in our case the only column, u := y. The
latent variable matrices are then built one vector at the time through the
following projections.

(i) w = X

0
u/(u0

u) X-weights
(ii) t = Xw X-scores
(iii) c = Y

0
t/(t0t) Y-weights

(iv) u = Y c/(c0c) Y-scores
(v) p = X

0
t/(t0t) X-loadings

(vi) X := X � tp

0 peel off component info.

This procedure is repeated an arbitrary number of times, A, until the desired
number of components, represented by the vectors tp

0, have been obtained.
These components are (together) approximations of X, orthogonal to each
other, and contain as much unique variance of X as possible, in descending
order of a = 1, . . . , A. After the first component is created, the info it has
is "peeled off" from the original X-matrix in step (vi), i.e. the variance it
has been given from the data is subtracted from the X-matrix. The matrix
with the remaining values are set as the updated X-matrix as the steps (i -
vi) are repeated, this time with the Y-scores from step (iv) as u.

3.3.1 Interpretation

The PLS algorithm gives A vectors for the X-scores, ta. They are estimates
of the original X-vectors, by linear combinations with the X-loadings pa,
they model X (in element form) as

xnm =

X

a

tnapnm + enm, (3.4)

where the enk are the X-residuals, E. The X-scores are also estimates of Y
when multiplied with the Y-weights ca

yn =

X

a

catna + fn, (3.5)
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with the fn being the Y-residuals. The scores ta and ua contain information
about the predictors, how they relate to each other with respect to the model.
The weights wa and ca can give information about how the scores should
be interpreted. They tell us about how the variables combine to form the
quantitative relation between the X and Y [17].

Most multivariate regression methods gives the dependent variable as a lin-
ear model of the predictors in the form y =

P
�x + e. To arrive at this

representation of the PLS regression, we include the element form of the
construction of X-scores from the X-weights

tna =

X

k

wkaxnk. (3.6)

Now, the PLS representation of Y can be described as

ynm =

X

a

cma

X

m

wmaxnk + fnm (3.7)

(Y = XWC

0
+ F ). (3.8)

Renaming the matrix WC

0
= B the beta coefficients of the linear model

is obtained with the same number of columns as the Y-matrix, giving us
the vector � in our case. Conclusively, the scores and loading are good
at describing the structures and relations in X and Y , while the weights
combined as the estimated ˆ

B is the basis for predicting new Y-values, ˆ

Y ,
from new X-data, Xnew, as

ˆ

Y = Xnew ˆ

B. (3.9)

These are the main parts of the method of PLSR modeling, and shows how
a dataset can be projected onto an arbitrary number of synthetic compo-
nents.

The number of components can be chosen as any number between one and
the rank of the matrix. There is little reason, or even a hindrance to use
more components than necessary. Usually the algorithm is repeated until
there is no more information about Y left in X [17]. Wold et al. (2001) gives
a good example of how to use cross-validation to see when this number is
reached, but simply calculating the percentage of variance in X made up by
each component is an adequate method [16], see section 6.3
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In the following section we will state the mathematical proof of the PLS
weights being optimized to include as much of the information of X and Y

in as few components as possible. In the current notations this is explained
by the first X-weight vector w1 being the first eigenvector of the matrix
X

0
Y Y

0
X, by Wold et al. (2001) referred to as the "variance-covariance

matrix". For the later components, the wa is the first eigenvector of the
deflated variance-covariance matrix, Z 0

aY Y

0
Za [17]. Thus we get an alter-

native interpretation of the weights as

wa = eig
�
Z

0
aY Y

0
Za

�
, Za = Za�1 � T a�1P

0
a�1. (3.10)

The eigenvector relationship among the weights grants them the linear in-
dependence property, as their span forms an orthogonal set. This is the
original algorithmically defined PLS, and the interpretations of its proper-
ties, as formulated by Wold et al. (1985). The weights obtained can be seen
as the principal components of the empirical covariance matrix between X

and Y . In regular principal component analysis, the eigenvalues of the com-
ponents corresponds to the variation of the X-matrix, while for PLS, the w

instead corresponds to the maximum covariance of X and Y . This is not a
formal proof of the properties of PLS, but it gives a hint of their origin, and
will serve as a link between the following mathematically defined theorem,
equation (3.13), and the above mentioned algorithm.

3.4 Mathematical Background

Before recent years, PLS has not been given rigorous a mathematical defini-
tion, and up until the work of Delaigle and Hall (2011), PLS has never been
given an analytical proof of its properties. This definitions and the main
theorem will be presented here in relation to our algorithmically defined
PLS.

Let {(X1,Y 2), . . . , (Xn,Y n)} be a set of samples of independent data pairs,
distributed as (X, Y ). Here Y is a real-valued random variable and X =

(Xt)t2[0,T ] is a random function that takes values in the Hilbert space of
square integrable functions, say H = L2

([0, T ]), where [0, T ] is a compact
interval of R. In the following, we denote by h�,# i =

R T
0 �(t)#(t) dt the

usual inner product in H and by k�k the induced norm. Further, Xt satisfiesR T
0 E[X2

t ] dt < 1, and Y is generated by the linear model

Y = a+

Z T

0
b(t)Xt dt+ ✏,
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where a is a scalar parameter, ✏ is a scalar random variable with finite mean
square and E[✏|Xt] = 0, while b(t) is a deterministic square integrable func-
tion on [0, T ]. Stated this way, predicting Y given X means estimating

g(x) = E[Y |Xt = x] = a+

Z T

0
b(t)x dt,

by estimating a and b(t) from observed data. A general approach is to
express Xt and b(t) in terms of an orthogonal basis  1(t), 2(t), . . . defined
on [0, T ]. Expansions for Xt and b(t) in this basis can be written as

Xt =
X

j

✓Z T

0
Xt j(t) dt

◆
 j(t),

b(t) =
X

j

vj j(t), vj =

Z T

0
b(t) j(t) dt.

In practice, we have to use a finite integer number of terms p � 1, and
b(t) is approximated by the sum of p terms, estimated from the data. Note
that

R T
0 b(t)Xt dt =

P
j vj

R T
0 Xt j(t) dt for, possibly, an infinite amount of

terms, which motivates us to take

a = E[Y ]�
Z T

0
b(t)E[Xt] dt,

and define �1, . . . ,�p to be the finite sequence v1, . . . , vp that minimizes

sp(v1, . . . , vp) = E

8
<

:

Z T

0
b(t)(Xt � EXt) dt�

pX

j=1

vj

Z T

0
(Xt � EXt) j(t) dt

9
=

;

2

.

In terms of the algorithmically defined PLS, or indeed other multivariate
regression models, this step represents finding the beta coefficients B that
minimizes the residuals fi of the prediction in (3.7), with m = 1, and (3.8).
That is, the residual sum of squares

S(B) =

X

n

f2
n = (Y �XB)

0
(Y �XB).
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The functions

bp(t) =

pX

j

�j j(t),

gp(x) = E[Y ] +

Z T

0
bp(t)(x� EXt) dt = E[Y ] +

pX

j=1

�j

Z T

0
(x� EXt) j(t) dt,

are approximations to b(t) and g(x) and their accuracy depends on how the
sequence  1(t), 2(t), . . . is chosen. These can be chosen as explicit func-
tions, e.g. polynomial or trigonometric, which have the advantage that the
functions are known, but there is no reason why they should, in our case,
capture the most variance possible in the first p terms.

PLS was invented to not only capture the most variance in the first p terms,
but also to capture the most covariance between X and Y [17]. This is
achieved by choosing  p(t) (corresponding to wa in Section 3.3) in a se-
quential manner to maximize the covariance functional, fp( p). A rigorous
mathematical definition of this objective can now be given as

maximize fp( p(t)) = cov
⇢
Y � gp�1(Xt),

Z T

0
Xt p(t) dt

�
(3.11)

subject to
Z T

0

Z T

0
 j(s)K(s, t) p(t) ds dt = 0, 1  j  p� 1

(3.12)
k pk = 1,

given that  1(t), . . . , p�1(t) have already been chosen, and where K(s, t) =
cov{Xs, Xt} is the covariance function for the random function Xt. In
short, the covariance is maximized by using the basis constructed by the
eigenfunctions of the linear transformation that takes  to K( ), given by
K( )(t) =

R T
0  (s)K(s, t) ds. For further details on the specifics of this basis

and its empirical representation, see Delaigle and Hall (2012). To show that
PLS in fact optimizes the covariance between predictors and the modeled
variable Y , Delaigle and Hall (2012) gives the following theorem, along with
the proof
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Theorem 3.4 If

R T
0 E[X2

t ] dt < 1 dt then the function  p(t) that maximizes

f at (3.11), given  1(t), . . . , p�1(t) and subject to (3.12), is determined by

 p(t) = c0

2

4K

8
<

:b(t)�
p�1X

j=1

✓Z T

0
b(s) j(s) ds

◆
 j(t)

9
=

;+

p�1X

k=1

ck k(t)

3

5

(3.13)

where, for 1  k  p � 1 the constants ck are obtained by solving the linear

system of p� 1 equations

Z T

0

Z T

0
 j(s) p(t)K(s, t) ds dt = 0, j = 1, . . . , p� 1, (3.14)

and where c0 is defined uniquely, up to a sign change, by the property

k pk = 1.

To prove this theorem, we recall the property of the covariance, � for con-
stants a, b, c, d and random variables x, y, z, w

�(ax+ by, cz + dw) = ac�(x, z) + ad�(x,w) + bc�(y, z) + bd�(y, w)
(3.15)

Proof. The right hand side of (3.11) can along with (3.15) be written
as

cov

8
<

:

✓Z T

0
b(t)Xt dt

◆
�

p�1X

j=1

✓Z T

0
b(t) j(t) dt

◆✓Z T

0
Xt j(t) dt

◆
,

Z T

0
Xt p(t) dt

9
=

;

=

Z T

0

Z T

0
b(s) p(t)K ds dt�

p�1X

j=1

✓Z T

0
b(t) j(t) dt

◆✓Z T

0

Z T

0
 j(s) p(t)K ds dt

◆
.
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Taking the partial derivative of this expression with respect to  p, yields

K

8
<

:b(t)�
p�1X

j=1

✓Z T

0
b(s) j(s) ds

◆
 j(t)

9
=

; .

The equation in ck at (3.14) is the result of adjoining Lagrange multipliers
on the right-hand side so as to accommodate the first p � 1 constraints in
(3.12). The factors c0 on the right-hand side of (3.13) accommodates the
last constraint in (3.12). ⇤
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Chapter 4

Alternative Methods

Many techniques are available for a multivariate regression model, and the ar-
guably most generic one is the Ordinary Least Squares regression. Although
used in similar fields, it is not as closely related to Partial Least Squares
as their names might suggest. A very close relative to PLS is rather the
technique called Principal Component Regression. This is often considered
as an alternative to PLS by scientists. We will present the basic concepts of
these two alternatives and argue for our technique of choice.

4.1 Ordinary Least Squares

A benchmark method to model dependency structures in science and tech-
nology is with the multivariate linear regression approach known as Ordinary
Least Squares (OLS) [14]. OLS aims to minimize the error terms ✏ in the
equation

y = �0 +
X

i

�ixi + ✏, (4.1)

where y is the variable to be modeled as linearly dependent of the x-variables
the predictors. The �0 is the intercept and the �i, i � 1 are the coefficients
to be estimated for each independent x-variable. If these variables are stored
as before in an N ⇥M matrix, X, the estimated beta coefficients are given
by

ˆ

� = (X

0
X)

�1
X

0
y. (4.2)
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These beta coefficients are then used to estimate y for new x-data with the
model

ŷ =

ˆ�0 +
X

n

ˆ�nx
new
n . (4.3)

The OLS and PLS both end up at similar expressions for predicting new y-
values, but from rather different ways. In order to relate them to each other,
it can be worth noting that in the special case when the X-matrix is diagonal,
and the Y -matrix consist of a single column vector, the PLS algorithm for
just one component gives the same beta coefficients as the OLS. This have led
to some calling PLS a more general version than OLS [17]. This special case is
however not realistic to be found in a real world application, since a diagonal
X-matrix would only have one non-zero observation per predictor.

Although OLS is a very common way to create statistical models it faces
several difficulties and puts high demands on the dataset. When numerous
amounts of predictors are used, especially in relation to the number of obser-
vations, an OLS model will likely suffer from overfitting. This occurs when
the model is too adjusted to the training data (and its noise) to give good
predictions.

When the predictors are strongly correlated, OLS faces a problem called
multicollinearity. From linear algebra we know that for a matrix to be in-
vertible, the column vectors cannot be linearly dependent. Since the OLS al-
gorithm includes the inverse of the X

0
X-matrix, multicollinearity can make

the computations difficult and inaccurate in the sense of unreliable regression
coefficients. Since collinear predictors have similar slope, the regression does
not "know" how to value them individually. This leads to bad predictability,
especially in combination with other obstacles such as over fitting.

4.2 PLS vs OLS

Two of the biggest obstacles for a model based on OLS regression are very
present in our case, namely multicollinearity and overfitting. The MEI
dataset offers a number of predictors in the thousands, while monthly data
observations are in the hundreds. In addition, the predictors of the MEI
dataset are not only strongly correlated, but in some cases actual aggrega-
tions of each other, e.g. the total GDP of the combined G7 region is one
of the available predictors, as are each of the included G7 countries individ-
ual GDPs. With such a dataset OLS can not be considered as a modeling
method.
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The PLS was originally developed to counter these problems in quantitative
strongly collinear data [8], and deals with them promptly. Since the infor-
mation from the predictors are regressed onto an arbitrarily chosen number
of synthetic components, overfitting need not be a problem, and since these
components themselves are orthogonal, there cannot be any multicollinear-
ity. These properties extends to the regression coefficients via the regression
in Equation 3.8.

The singularity problem in OLS arising from an non-invertible X

0
X matrix

in Equation 4.2 is also bypassed with PLS. In PLS there is no need for the
inverse of X

0
X since Y is regressed on the X-scores instead of X itself

[8][7].

4.3 Principal Component Regression

Principal Component Regression (PCR) is closely related to PLS [17]. It
also uses latent variables constructed to have maximum information from the
dataset in the first A components, rather than creating one component per
X-column, as in OLS. Thus PCR can overcome similar obstacles as the PLS,
namely multicollinearity and overfitting. Many papers discuss the difference
between PLS and PCR in detail. In PCR, the scores are created from X

alone, while in PLS the scores use both information from the X- and the
Y-matrix. While PCR focus on describing the variance in X, PLS focus on
describing the covariance between X and Y [8].

For a good summary of literature comparing PLS with PCR, Wentzell and
Vega (2003) lists the conclusions of 27 articles. The general conclusions
are either in favor of PLS as a prediction method, or that they are both
potent with no clear advantage for either method. A study showing PCR as
strictly advantageous does, to the knowledge of the author, not exist, which
is enough to only consider PLS methods for our model.

Wentzell and Vega (2003) completes their research by making their own
study of the subject, in the form of a spectroscopy experiment, and sides
with the view that none of the methods is more advantageous. However, a
factor not as thoroughly considered in their study is a very large number
of predictors in relation to observations. A later study by Boulesteix and
Stimmer (2006) focus on datasets with very numerous predictors, and find
the PLS superior.

Further our goal is not only to use PLS as a regression tool, but as a dis-
crimination method as well. For this purpose [1] shows that the PLS is the
preferred choice.
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Chapter 5

Variable Selection

Variable selection and statistical classification is a very important issue in
scientific engineering and statistical modeling. Identifying and discarding
redundant variables from the observation dataset is essential for making ac-
curate predictions. Although PLS was originally designed as a regression
method, applied scientists have recently started using it as a tool for statis-
tical classification and Discrimination Analysis (DA) ([1][3]). The advantage
of PLS-DA for variable selection is that the beneficial properties of the regres-
sion can be transferred to validation methods of the variables, or predictors.
While less sophisticated methods may only look at one variable’s correla-
tion to Y , PLS-DA uses information about between-group variation as well,
i.e. their covariance with both Y -data and other X-variables. Chong et al.

(2005) studies four different methods for discrimination and conclude that
the ones named PLS-VIP and PLS-Beta are the most prominent. Since nei-
ther has a clear advantage over the other in every situation [3], we will make
one version of the automated variable selection for each method.

The basic setup for creating a model using PLS-DA is two fold, including
one regression step for the variable selection, and one regression step for
the actual model creation. Initially a PLS regression is made on a given
dataset, X and Y , followed by calculating a discriminant function for each
predictor of X, constructed from the latent variables of the regression. The
discriminant function, or Selection Parameter, is then used to classify the
predictors as significant or redundant for modeling Y . Once every predictor
has been classified, the redundant predictors are discarded and a reduced
version of X is created using exclusively the significant predictors. Now the
regression can be repeated to create the actual model of Y .
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5.1 PLS-VIP

The Variable Influence on Projection (VIP) was originally defined by Wold in
1993 [3]. This parameter is the discriminant function of the PLS-VIP method
for selecting and classifying variables. The VIPm for the m-th predictor is
calculated as

VIPm =

vuutM
AX

k=1

⇣
SS(�ktk)

�
wjk/kwkk

�2⌘
/

AX

k=1

SS(�ktk).

The SS(�ktk) = (�2kt
0
ktk) is the regression sum of squares, and is propor-

tional to the squared correlation between �k and tk, thus it explains the
amount of covariance modeled in these variables. The wjk measures the con-
tribution of each variable m to the k-th component. Thus, VIP quantifies
the influence on the response of each variable summed over all components,
relative to the models total sum of squares [12].

For a predictor to be significant the "greater than one rule" is generally
used as a criterion, since the mean of all VIPs is one [3][6]. That is, if
VIPj > ⌘ = 1, the j-th predictor is significant for modeling Y, and if not, it
is removed from the X-matrix and not used in the regression model. However
others argue that ⌘ = 0.8 is a good general rule and ⌘ = 2 for large K [12],
and [6] studies PLS-VIP down to ⌘ = 0.6. We will let our model find the
optimal cutoff value ⌘, se Section 7.2.

5.2 PLS-Beta

This variable selection method is based on the study of the beta coefficients,
�, obtained from the regression. In its simplest form, if the absolute value
of the beta coefficient corresponding to a certain predictor is large enough,
|�m| > µ, the predictor is selected for the model. The cutoff value µ, however,
has not been as researched as the ⌘ of the PLS-VIP, and features no general
rules or representations. Some versions of PLS-Beta does not even feature
this cutoff value, but use general methods from statistical discrimination
such as Mallow’s Cp [3] or running numerous simulations and choosing the
optimal value from the plot [6]. This is motivated by the beta coefficients
being interpreted as similar to the regression coefficients of an OLS.

One way to implement the PLS-Beta method given by Fujiwara et al. (2012)
employs the vector �select, which consists of the beta coefficients of the se-
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lected variables. The input variables for the vector are selected in descending
order until a certain threshold is met

k�selectk
k�allk

> µf , 0 < µf  1,

where �all is the full beta vector, and µf is the threshold parameter.

Inspired by Fujiwara et al. (2012) we construct a proportional, but perhaps
more illustrative, implementation of our own. As a cutoff we choose a pro-
portion of the average value of the magnitudes of the coefficients, to give the
significance criteria

|�m| > µ
1

M

MX

i=1

|�i|.

The parameter µ will be referred to as the cutoff value, and the numerical
values will be examined in Section 7.2. Reasons for not employing the exact
PLS-Beta method of Fujiwara et al. (2012) is that we want something that
can be related to the PLS-VIP method, and more importantly, combined
with this method in order to create an alternative PLS-DA approach, see
next section. An example of the selection parameters can be seen in Figure
5.1.
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Figure 5.1: Selection parameter values, y-axis, from a typical regression of
the basic model. The predictors are arbitrarily indexed along the x-axis.
Top: The values of the VIP. Bottom: The absolute values of the �.
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5.3 PLS-VIP-Beta

In their conclusion, Chong et al. (2005) suggest that the two above men-
tioned PLS-DA methods might be combined in order to create an even more
advantageous method, which is something early works of Wold have sug-
gested as well. This is never examined by neither author, and we will
therefore, without further academic guidance, include this combined vari-
able selection method, referred to as PLS-VIP-Beta, in a straight forward
interpretation

Xselect = {xm : VIPm > ⌘} \ {xm : �m > µ}.

If the predictor’s VIP value and � value are both larger than their respec-
tive cutoff value, the predictor is included in the dataset Xselect for the
model.
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Chapter 6

The Model

To be able to predict the future movements of the CLI, the model will use a
regression onto time lagged predictors. Modeling the CLI with data available
some time ago will let us forecast the future CLI when using the latest data
available today. The trick is to find Leading Indicators, and this is the initial
step of creating our model. A later step is to select only the most relevant
predictors for the model, and for this goal we will employ the three different
PLS-DA methods of Chapter 5.

6.1 Leading Indicators

A leading economic indicator is a variable whose movement is correlated to
the business cycle, but changes prior to the business cycle itself, and can
therefore be used to predict the economy. In our case we want to find the
indicators, i.e. predictors of the X-matrix, X(t) for time step t, that are
leading indicators to the CLI, our Y (t). For this reason we introduce the
correlation function C(s, t) = corr(Y (t), X(s)), for time steps s and t. We
calculate C(s, t) by measuring the correlation of Y with each predictor X for
different time misplacements, or lag, of the X(t). This is done for the full
set of observations for each column vector xm, representing X(s), by adding
different lag s up to 24 months, as X(t+s), s = 0,�1, . . . ,�24, while keeping
Y (t) fixed at t = 0. We choose to specify this study to forecasting six month
in advance, and will thus make the regression model on data available in the
MEI dataset six or more months prior to the forecasted CLI.
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The empirical correlation function for fixed Y is then given by
ˆC(s) = corr{(y25, y26, . . . , yn), (x25+s, x26+s, . . . , xn+s)}, s = �24,�23, . . . , 0

where the first 24 values of the Y-matrix is discarded since both time series
must have the same length. A predictor is regarded as a leading indicator
if its correlation with Y is stronger when lagged, i.e. ˆC(s) > ˆC(0) when
s < 0.

The lead of an indicator, or predictor, sm, is defined as the number of months
ahead, s, giving the maximum absolute value of the correlation function; in
our case

sm = argmax

s
{| ˆC(s)|}, �24  s  �6.

Predictors with a lead less than six month are discarded, since they are not
leading predictors and thus not suited for modeling the CLI. We choose the
maximum possible lead to be 24 months, since more might lead to interfer-
ence with a prior business cycle, as these have been known to be as short as
only two years in some cases [9].

�24 �18 �12 �6 0

1

0

�1

s

ˆ

C
(
s)

�24 �18 �12 �6 0

1
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�1
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Figure 6.1: Correlation as a function of time lag, ˆC(s), between a subset of
the Main Economic Indicators and the Composite Leading Indicator. Left:

The correlation of indicators with relevant lead on the CLI shown in red,
and non-leading in blue. Right: The correlation of leading indicators after
being lagged individually, now exhibiting their peak in correlation in sync
with the present time step of the CLI.

Not all leading predictors will have their optimal value for C(s, t) with ex-
actly a six month lag, as Figure 6.1 illustrates. Therefore we re-order the
X-matrix with each predictor lagged proportional to its lead

X

lag
= {Xm

(24� sm), Xm
(25� sm), . . . , Xm

(n� sm)}Mm=1.
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As the MEI-matrix is reordered with every indicator now synced at its max-
imum correlation with the CLI, the last six observations are saved for mak-
ing the prediction, i.e. the forecast. The preceding observations are used to
make up the updated, now leading, X-matrix for being used in the regression
model.

To the right in Figure 6.1 the correlation function for a subset of leading
predictors are shown, now perfectly lined up in correlation peak after being
lagged. In Figure 6.1 only about one thousand of the available MEI predic-
tors are examined, in order to give a not too overcrowded plot. In a typical
run of our model, about 3000-3500 of the original 5012 predictors meets
the criteria of leading indicators for the different regions. Note that in this
step no discrimination is done based on the actual magnitude of ˆC(sm), but
rather the temporal value of sm. The significance of the predictors is not
evaluated through their correlation, but rather their cutoff values discussed
in Section 7.1.

6.2 Basic Model

As the subset of lagged leading predictors of the MEI dataset, X, is regressed
onto the CLI, Y , the beta coefficients, ˆ

B, for the specific time interval are
obtained through the PLS-algorithm described in Section 3.3. The previously
excluded last six entries of the monthly data, Xnew, can now be projected
on the coefficients to obtain the six month forecast ˆ

Y through

ˆ

Y = Xnew ˆ

B.

This is the basic version of the forecast model, and shows how data known
at the present time can be used to forecast unknown data of the future.
The result of an arbitrarily chosen time interval for the CLI of the OECD
region can be seen in Figure 6.2. The fitted curve in green is X ˆ

B and shows
a close fit to the given Y -data, which is to be expected, see Section 6.3.
The forecasted values in red is a very good prediction of the movements
of the CLI and exhibits a correlation of 0.96 with the actual six month
period. We are not looking to predict the exact values of the CLI, since they
have little meaning of their own, but rather to catch the turning points and
directions they form for the next six months. Although this particular run
of the model shows very good results in this regard, this is no guarantee of
a reliable forecasting method for any given time or region. Indeed, several
runs of the basic model at different points in time assures us that this was
one of the luckier test runs. There are many parameters and variables to be
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Figure 6.2: The CLI for the OECD region in blue along with the fitted
regression in green. The last six entries in red constitutes the forecasted
curve.

examined before a reliable model can be proposed. In the following sections
all the important parameters for a forecasting model based on PLS will be
presented and a more universal Full Model will be proposed, valid for many
regions and various points in time.

6.3 Goodness of Fit

When evaluating regression models it is common to look at the goodness of fit
of the regression, represented by e.g. the Root Mean Square Error (RMSE)
between the fitted variable and the actual dependent variable. For PLS
regression however, this is not a good measure for how well the predictions
for new Y-values will be [12], which is our only concern.

With the number of predictors of the PLS algorithm, M , being in the thou-
sands we can always choose our number of components A large enough to
get a perfect fit for the regression. But as in the case with ordinary linear
regression, this would lead to over fitting, and poor forecasting properties for
new data. Figure 6.3 illustrates this by showing the curve of the CLI along
with the fitted model.

Instead of using goodness of fit for the regression, we will use the correlation,
⇢, and the RMSE, of the predicted values i.e. our six month forecast, and the
actual Y -values for this period. The RMSE of the forecast is given by
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Figure 6.3: A demonstration of the trade-off between goodness of fit and
accurate predictions. The basic model of the OECD CLI is applied to an
arbitrary time period with different number of components, A, for the PLS
algorithm.

RMSE =

sPn+h
t=n (ŷt � yt)

h
,

where ŷt and yt is the forecasted value and actual value at time t, respectively.
The number of predicted monthly values is h (in our case six), and the
regression is made on the first n � h observations of the data. Thus the
forecast starts at the n-th time step and the RMSE evaluates the performance
of the prediction or forecast only, not the fitting of the observed data.

Deciding the number of components can give a trade-off between a good fit
for the training data, and an accurate forecast [13]. As can be seen in Figure
6.3, the results depend on this parameter being within "reasonable" bounds.
For five components we get large deviations from the actual value in the
regression, and cannot expect the forecast to be any better than this fitting.
With 150 components we get a close to perfect fit, but unusable regression
coefficients, giving a forecast with values three order of magnitudes above
the CLI’s range, and a forecast correlation of -0.2459.
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To choose the right amount of components a good method is to calculate
the PCTVAR, the percentage of variance of Y made up by each component
added to the PLS algorithm [16].

PCTVAR(A) =

PA
j=1 c

2
jPn

k=1(yk � ȳ)2
,

where cj is the Y -weights and ŷ is the mean value of y. Using the minimum
amount of components that still make up for most of the variance is ideal.
Fig 6.4 shows the PCTVAR as a function of A for the basic model regression,
and it is clear that there is little use for having more than twelve components,
giving us A = 12. By inspection of several regressions made in different time
steps we conclude that this A is at the same time small enough not to cause
overfitting.
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Figure 6.4: Percentage of the variation of Y explained by the components
as a function of number of A
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6.4 Historically Relevant Variables

With the methods for variable selection introduced in Chapter 5, the di-
mension of the model, i.e. number of predictors for the regression, can be
reduced. A good variable selection generally gives better predictions by only
selecting relevant variables for the modeling. However, in our case we will
also use this method to classify which variables can be considered histori-
cally relevant for the forecast, i.e. predictors showing a time independent
significance for describing the CLI.

The movements of economic variables may differ over time, and this must
always be taken into consideration when creating financial models. Common
methods for dealing with this fact are, for autoregressive models, to assume
that the variable under study is a stationary time series, or for low dimension
regression models, to assume that the relationship between e.g. the business
cycle and industrial production is time independent. For models based on
few variables and simple, maybe linear, relationships, these assumptions can
be valid based on qualitative knowledge of the involved time series. But in
our case, with a very large M , and a sophisticated algorithm taking inter-
predictor relations into consideration, manually evaluating each predictor
and its relation to every other predictor would be too tedious. Therefore,
the time dependency of the variables need to be quantitatively assessed with
automated variable selection.

To select the historically relevant variables, the basic model and variable
selection methods will be applied and evaluated through iterations over dif-
ferent time steps of a training set, see Section 7.1.
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Chapter 7

Cross-validation - Full

Model

To evaluate the complete forecasting model, including the methods for vari-
able selection, lagging predictors and the actual PLS-regression, a Cross-
Validation (CV) approach is adapted. In CV the dataset is partitioned into
disjoint subsets, where separate data are used for constructing and evalu-
ating the model. A common type of CV is the 2-fold version, where two
subsets of equal size are used, the training set and the validation set. The
model is constructed and tuned using only data from the training set. The
predictive performance of the model is then evaluated using the validation
set, thus data-snooping is prevented and the validation becomes an out-of-
sample test. In ordinary 2-fold CV the roles of the sets are then interchanged,
and the procedure repeated, in order to further assess the prediction perfor-
mance. We will use this method, with the exception of interchanging the
sets, since in our case some of the predictors involved are of the kind "same
period previous year". This means if we do not keep the chronological or-
der of the observations and subsets, data from predictors showing previous
year’s values of certain economic indicators will be used in the training set,
and then again in the validation set, via the present time version of the same
economic indicators, containing the same data. This would let the model
use future data. To avoid this the training set has to exclusively contain
data available prior in time to the validation set, thus we let the first half of
our observations make up the training set and the second half the validation
set.

With our 288 observations spanning from 1990:01 to 2013:12, we get 144
data points in each partition. The training set will then span from 1990:01
to 2001:12 and the validation set from 2002:01 to 2013:12.
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7.1 Model Training

To perform the variable selection discussed in Section 6.4, we construct an
iterative method for evaluating the historical significance of the predictors.
In the first step, the correlation function, ˆC(s), is calculated for the entire
training set and the predictors considered leading indicators are selected for
the model and lagged accordingly.

Secondly the basic model, with its included six month forecast, is itera-
tively applied to shorter intervals of the training set, Ii = [ti, tr+i], for
i = 0, 1, . . . ,K where K = T � r, and T is the number of observations
in the training set while k is the length of the intervals.

The interval’s length, r, is chosen to represent an average length of a busi-
ness cycle. According to Moore and Zarnowitz (1984), five years is a good
estimation, i.e. we let r = 60. This will give every iteration of the model
a chance to capture the full periodical movements of a business cycle, and
include this information for variable selection.

With the original CV partition for the model training consisting of 144
monthly data, we discard 24 while lagging the matrix, see Section 6.1, and
are left with T = 120. This gives us K = 60 iterations from which the
predictors can be evaluated for historical significance through the variable
selection methods and forecast performance.

As the basic model is applied to the time intervals, Ik, the M predictors’
values for VIPm

k and �mk are calculated. The predictors not meeting the
respective cutoff values, ⌘ and µ, for the variable selection are excluded
and the basic model is again applied to the same interval. This time the
six month forecast is calculated and saved, along with the values of the
selection parameters VIPm

k and �mk . The process is repeated for the K
iteration intervals, Ii, i = 0, . . . ,K. A typical run of this process can be
seen in Figure 7.1. The resulting six month forecasts are shown for every
iteration of CLI for the OECD region, along with the actual values, as well
as the corresponding forecast correlation in a bar diagram, ⇢k.

The ideal predictor, to be included in the final model, should have con-
tributed to a correlated forecast and have selection parameter values above
the cutoff, i.e. be significant, in every iterative time step of the training set.
To select these predictors we can gather the ones that have fulfilled the vari-
able selection criteria in every time step, and thus are considered significant,
independent of the time frame, i.e. historically significant. However, not
every iteration succeeds in casting an accurate forecast, as Figure 7.1 shows.
While the majority of iterations, Ik, show good forecasting performance with
high correlation values, shorter periods fail completely, even showing nega-
tive correlation. Therefore the information about significant predictors from
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Figure 7.1: The forecast performance of the basic model with known lag in
the training set. Top: The six month forecasts in blue along the actual CLI,
red, re-modeled for each iteration. Bottom: The corresponding correlation
between each forecast and the actual CLI .

the iterations with ⇢k < 0 will be discarded, since the basic model have
failed in this time step, and there is no useful information for the variable
selection to identify historically significant predictors. The iterations with
useful information are thus defined as

Ik = {k : ⇢k > 0}, k = 1, . . . ,K.

Reasons for the basic model failing in specific time periods, i.e. exhibiting
negatively correlated forecasts in some iterations, might be explained by real
world events. In the case of OECD’s CLI, Figure 7.1 shows a period of
negative correlation for forecasts made about the late 1997. This might be
caused by irregularities in the behaviors of the economic predictors, due to
events following the 1997 Asian financial crisis and the subsequent Ruble
crisis. Regardless of the reason, these periods are overlooked in the auto-
mated variable selection. The number of iterations with negative ⇢ varies
for the different regions and cutoff values, and are usually between five and
zero.

The predictors showing historical significance, Xselect, and thus considered
as stationary time series on X are now chosen as
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Xselect = {xm} 2 Iselect (7.1)

Iselect = {m : VIPk
m > ⌘,�km > µ, 8k 2 Ik}, m = 1, . . . ,M. (7.2)

As the predictors showing historical significance on the training set have
been selected, the "historical" beta coefficients can be calculated. These are
created by a regression of Xselect on the full training set of T observations at
once. These coefficients, ˆ�, can now be used to describe the CLI throughout
the twelve years of training observations, and will likely be able to predict
the corresponding values of the twelve years of validation observations.

We now have a historically optimized model, represented in selected vari-
able indices Iselect, with corresponding beta coefficients ˆ

� and known lead
sm

ŷt =
X

i2Iselect

Xi(t� sm)

ˆ�i. (7.3)

This information will be carried over to the validation set, to examine the
validity of our model and variable selection algorithm, see Section 7.3

7.2 Cutoff values

As mentioned in Chapter 5, there is a lack of consensus among researchers
when it comes to an optimal value for the cutoff parameters ⌘ and µ. While
many applications of PLS-DA in chemometrics uses cutoff values within sim-
ilar ranges, it has been shown that the optimal values depend on different
factors of the dataset [3]. With little guidance for PLS-DA applied in finan-
cial analysis, we will include a way to obtain the optimal cutoff values in
our automated variable selection, inspired by similar work of Chong et al.
(2005) and Fujiwara et al. (2012). The different economies under study will
likely have different numbers of significant predictors to be found in the MEI
dataset, depending on the region’s size and trading partners. Therefore the
cutoff values will be evaluated individually for each region, as part of the
model training.

Like Fujiwara et al. (2012) we use trial and error to find the range of cut-
off parameters to be evaluated, with the exception of not assuming a lower
bound, i.e. we include zero as a possible value. This corresponds to the
case of all variables being classified as significant enough for inclusion in
the forecast model, which should be considered in our case since we want
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a method that does not need any prior knowledge of the economic indi-
cators involved. The upper bound of the cutoff values are chosen as the
highest value where the algorithm does not experience singularities. If the
number of predictors selected are lower than the number of components
chosen for the PLS algorithm, in our case A = 12, the regression can not
be made. This gives the possible cutoff values for the PLS-VIP parameter
⌘ = {0, 0.1, . . . , 1.6, 1.7}.

For the PLS-Beta parameter, the steps between the lower values give rel-
atively large number of discarded variables. Thus the cutoff values will be
closer for the ten first steps, µ = {0, 0.01, . . . , 0.09, 0.1, 0.2, 0.3, . . . , 2.4}.

The performance of the training model is measured in mean correlation for
the iterated forecasts, ⇢̂train and average Root Mean Squared Error of the
forecasts, RMSE. The results, along with the number of predictors classified
as historically significant, M , are shown in Figures 7.2 and 7.3 as functions
of of the different cutoff values. The most relevant parameter for choosing
the optimal cutoff value is the RMSE, while the correlation is more of a
complement.

It is clear that the variable selection improves the performance by discarding
un-significant variables, since no region shows its lowest RMSE for cutoff
values at zero. Similarly, the maximum correlation is often found in the mid
range of the cutoff values, when a considerable amount of predictors have
been discarded.

Noticeably the forecast performance for the region of Japan shows some
irregularities in its dependence on the cutoff values. As will be discussed,
the available data in the MEI dataset is not favorable for Japan, and the
model shows limited forecast performance for this region overall.

The optimal cutoff values and corresponding performance for the PLS-VIP
and PLS-Beta can be seen in Table 8.1.

As expected, the optimal cutoff values and number of variables included,
differs between the regions, and the "greater than one" rule is not encouraged
by the model. The goal for examining the cutoff values is not to contribute
to the debate on general rules, but rather a proposed method to deal with
the lack of consensus.

For the proposed method of PLS-VIP-Beta, there is hardly any academic
guidelines, Chong et al. (2005) simply mentions that this method should use
small cutoff values. Indeed, with variables being excluded by two combined
criterions, the cutoff values sooner meets the limit of too few variables for
the regression, especially in the ⌘ dimension. The combined cutoff values
considered is thus ⌘ = {0, 0.1, . . . , 1.4}, µ = {0, 0.1, . . . , 2.4}, and the optimal
values can be seen in Table 8.2.
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Figure 7.2: Performance of the model on the training set for different cutoff
values µ along x-axis. Top: The number of predictors considered histori-
cally significant. Middle: Average RMSE of the training forecasts. Bottom:

Average correlation of the training forecasts.
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7.3 Model Validation

The resulting model to be validated, represented by Iselect, ˆ� and sm, are
carried over to the validation set, Xval, consisting of the 144 observations
between 2002:01 and 2013:12. To validate the forecast performance we will
predict every observation of Y val using X-data available six months in ad-
vance. This is done in a similar way to the forecasting of the basic model,
but for all observations of the validation set at once

ŷval
t =

X

i2Iselect

Xval
i (t� sm)

ˆ�i. (7.4)

In words, the procedure uses the following steps. Firstly the predictors not
showing historical significance are discarded. Secondly the remaining X-
matrix, Xval

select, is lagged with the known leads sm, as explained in Section
6.1, leaving us with V = 120 observations left. Finally the predictors are
weighted with the beta coefficients ˆ

� and summed up to give the estimated
Y -time series, the CLI, for the whole validation set at once.

One measure of the forecast performance of the full model is the correla-
tion between the out-of-sample prediction, ˆ

y, and the actual CLI for the
validation set, y, that is, ⇢val = corr(y, ˆy). However, in a live version of
the model, the forecast will be made at a given point in time for the sub-
sequent six months, with the goal of predicting the movements and turning
points of the CLI for this short period. A high correlation, ⇢val, for the
complete 120 month validation interval, might not guarantee a good forecast
performance in a shorter six month forecast. Thus dividing the validation
set into six month subintervals, and measuring the mean of these intervals
correlation with the corresponding actual CLI, ⇢̄val, is a more appropriate
validation measure, and will be our main parameter for valuing the forecast
performance of the full model.

⇢̄val =
1

V � h

V�hX

i=1

corr{(Y i, . . . ,Y i+h), ( ˆY i, . . . , ˆY i+h)},

where V is the length of the validation set and h the length of the forecast,
i.e. 120 and 6, respectively.
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Chapter 8

Results

The resulting prediction ˆ

y = Xvalˆ� is shown along with the actual CLI for
each region in Figure 8.1, for the PLS-VIP and PLS-Beta methods.

The optimal cutoff values, µ⇤ and ⌘⇤ are the ones giving the best results
in the training set, i.e. the lowest mean RMSE for the training forecasts
RMSE⇤. The predictors being classified as historically significant using these
cutoff values, are the ones included in the Iselect vector of indices. These are
the predictors carried over to the validation set for evaluating the model
in Equation 7.4. The results from the model training and validation for
the PLS-VIP and PLS-Beta methods can be seen in the Table 8.1. The
two column to the farthest right are the results from the validation set,
and measures the actual out-of-sample performance of our full model. A
visualization of the results is given in Figure 8.1.

The model shows good forecasting performance for most regions, the ex-
ceptions being especially Australia and to some extent Japan, the reasons
will be discussed in Chapter 9. Comparing the discrimination methods, PLS-
VIP out-performs PLS-Beta in most cases. Notably, the variation of optimal
number of predictors, M⇤, chosen by the PLS-VIP model is far greater than
that of the PLS-Beta model, with ranges from 113 to 2947 and 243 to 838
respectively.

The results of our proposed PLS-VIP-Beta method can be found in Table
8.2 as well as Figure 8.2. Regardless of performance measure, this method
outperforms the singular methods for almost every region. While our exper-
iment is not extensive enough to prove this method universally superior, it
is still interesting that our findings are well in line with the assumptions of
Fujiwara and Wold.
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PLS-Beta
RMSE⇤ µ⇤ M⇤ ⇢̄⇤train max(⇢̄train) min(⇢̄train) ⇢̄val ⇢val

Australia 0.27394 0.7 500 0.80059 0.84361 0.52974 -0.24065 -0.0442
Austria 0.21581 1.8 594 0.76128 0.77192 0.64571 0.78044 0.85775
Finland 0.19711 1.2 838 0.89648 0.92359 0.84487 0.64133 0.81154
Italy 0.17707 2.2 371 0.82954 0.82954 0.65064 0.61684 0.85794
OECD - Total 0.17201 2.4 347 0.83108 0.83741 0.59626 0.60277 0.86392
OECD + Major Six NME 0.18018 2.4 438 0.87646 0.88138 0.78802 0.51524 0.74719
Four Big European 0.18298 1 243 0.89238 0.89771 0.70671 0.72111 0.83207
Japan 0.29383 2.4 392 0.66458 0.66549 0.4375 0.50296 0.18974

PLS-VIP
RMSE⇤ ⌘⇤ M⇤ ⇢̄⇤train max(⇢̄train) min(⇢̄train) ⇢̄val ⇢val

Australia 0.3299 0.7 838 0.70358 0.70358 0.2103 -0.23314 -0.0353
Austria 0.26947 0.4 2501 0.64762 0.65062 0.56568 0.82592 0.81284
Finland 0.23173 0.2 2947 0.92367 0.92367 0.7453 0.69562 0.83364
Italy 0.27725 1.4 388 0.73541 0.73541 0.64355 0.61282 0.77255
OECD - Total 0.22569 1.2 135 0.82328 0.82328 0.59626 0.64387 0.76861
OECD + Major Six NME 0.2924 1.4 571 0.77513 0.80148 0.71066 0.64326 0.67571
Four Big European 0.20514 1.2 113 0.77772 0.81175 0.60349 0.68699 0.87641
Japan 0.47758 1.2 587 0.49722 0.49722 0.27621 0.33979 0.48785

Table 8.1: The results from the cutoff-value-optimization for the PLS-Beta and PLS-VIP methods. The optimal cutoff values
µ⇤ and ⌘⇤ are the ones where the Root Mean Squared Error is at its minimum, RMSE⇤. The optimal values for mean
correlation ⇢̄train and number of predictors M , resulting from the optimal cutoff values, are marked with ⇤. The two rightmost
columns are the resulting mean and total correlation of the validation set ⇢val. OECD - Total is the combined economy of the
OECD member countries, OECD + Major Six NME stands for OECD plus Major Six Non-Member Economies, and consist
of the 30 OECD countries plus Brazil, China, India, Indonesia, the Russian Federation and South Africa. Four Big European
is the combined economies of France, Germany, Italy and United Kingdom
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PLS-VIP-Beta
RMSE⇤ ⌘⇤ µ⇤ M⇤ ⇢⇤train max(⇢̄train) min(⇢̄train) ⇢̄val ⇢val

Australia 0.27394 0.1 0.8 500 0.80059 0.84361 0.21063 -0.1979 0.00474
Austria 0.13956 0.5 2.4 100 0.90565 0.91317 0.56791 0.8416 0.89195
Finland 0.18768 0.2 0.3 946 0.94027 0.95413 0.70594 0.65566 0.81798
Italy 0.15027 0.1 0.8 329 0.87681 0.92698 0.64355 0.65888 0.78917
OECD - Total 0.15222 0.5 2.3 60 0.84032 0.86931 0.55033 0.68713 0.86378
OECD + Major Six NME 0.14431 0.2 1 251 0.93848 0.95574 0.75401 0.8853 0.80085
Four Big European 0.17985 0.7 1.3 177 0.89125 0.91135 0.65548 0.69258 0.88405
Japan 0.28725 0.7 1 159 0.7661 0.82503 0.11489 0.46803 0.43737

Table 8.2: The results from the cutoff-value-optimization for the combined PLS-VIP-Beta method. The optimal cutoff values
µ⇤ and ⌘⇤ are the ones where the Root Mean Squared Error is at its minimum, RMSE⇤. The optimal values for mean
correlation ⇢̄train and number of predictors M , resulting from the optimal cutoff values, are marked with ⇤. The two rightmost
columns are the resulting mean and total correlation of the validation set ⇢val. OECD - Total is the combined economy of the
OECD member countries, OECD + Major Six NME stands for OECD plus Major Six Non-Member Economies, and consist
of the 30 OECD countries plus Brazil, China, India, Indonesia, the Russian Federation and South Africa. Four Big European
is the combined economies of France, Germany, Italy and United Kingdom
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Figure 8.1: Forecasting performance for out-of-sample tests for the PLS-
Beta, green, and PLS-VIP, red, against the actual CLI in blue.
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One of our objectives with this thesis was to see if the lead of the CLI could be
improved, or rather, the CLI itself could be forecasted, by a model including
non-domestic data. To inspect the ratio of internal and external predictors,
i.e. domestic and non-domestic, chosen by the automated variable selection,
the nationality of the predictors are presented in Table 8.3. The results
are shown for the most accurate version of the model, i.e. the predictors
selected by the PLS-DA with highest ⇢̄val for each region. The number of used
internal predictors are shown along with the total number of predictors used,
total number of internal predictors available and the percentage of internal
predictors among the ones used. The larger zone aggregates clearly have
more internal than external variables in the dataset, and the region OECD
+ Major Six Non-Member Economiest of course includes all of the regions
covered in the MEI, and thus all 5012 economic indicators are internal.

Internal Total Total Internal Pct Interior
Australia 25 500 244 5 %
Austria 13 100 147 13 %
Finland 89 2947 160 3 %
Italy 18 329 156 5.5 %
OECD - Total 51 60 4619 85 %
OECD + MSNME 251 251 5012 100 %
Four Big European 61 243 553 25.1 %
Japan 0 392 242 0 %

Table 8.3: The number of selected Internal predictors are shown along with
the Total number of variables selected by the model. Total Internal are the
number of available domestic variables in the MEI for the specific region, and
Pct Internal is the percentage of the selected predictors that are domestic.

When available the model often choses a combination of external and internal
data, and often discards many of the internal predictors in favor of external
ones. The exception, again, is Japan, where no internal predictors where
chosen.

At this point it might be interesting to see exactly what kind of economical
indicators of the MEI the full model uses, and in which way they are included
in the prediction. Since different indicators are picked for different regions,
and some regions using indicators in the thousands, a complete overview of
the resulting modeling variables is too extensive. Instead we give an example
of how they may look by presenting one of the most accurately predicted
regions with relatively few predictors, namely the PLS-VIP-Beta prediction
of Austria. The complete set of variables for modeling, namely ˆ

�, sm and
Iselect (represented here by the actual name of the indicators), are presented
in Appendix A.
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Chapter 9

Discussion

When inspecting the model performance on the validation set in Figure 8.1
and 8.2, the financial crisis of 2008 is evident in the middle of the validation
set for every region’s CLI. The model recognizes the trough and the following
expansion of this period, but fails somewhat to predict the extent of the
recession, in most cases. Since the goal of the model is, as mentioned, to
predict the turning points and the movements rather than the actual values
of the composite leading indicator, this is not a big setback. Further one may
discuss the possibility or even the validity of a model being able to predict the
extent of the financial crisis based solely on historical data. With hindsight a
model could well be constructed to put heavier weights on variables known to
play a big part in triggering the crisis, however, only using data available at
the time, one may argue that these variables have not had the same extreme
impact on the economy in the previous observations of the dataset employed.
Therefore a model recognizing the exact extent of the financial crisis, might
have weighted certain variables, e.g. interest rate spread and mortgage rate,
higher than would be historically correct, and thus might not give accurate
predictions in a post crisis forecast.

While the overall forecast performance is good, a small number of periods
show less satisfying results, where the model’s forecast deviates from the
actual CLI. We will not go into detail for each time period of the concerned
regions, in order to find real world explanations for every deviation. How-
ever, two regions stand out with very unsatisfying forecast performances that
needs to be addressed, namely Australia and Japan.

The most pronounced deviation in the forecasted and actual values of the
CLI is the model for Australia, in the period of the 2008 financial crisis.
Compared to the composite leading indicator, the forecast does not even sig-
nal a trough, but rather an expansion followed by a lowest period a couple of
years later. While this is an exceptionally bad forecast of the CLI, the actual
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economy of Australia did not suffer a severe recession in this period, but is
rather the only developed nation to grow in the first half of 2009 [11]. Thus
the CLI itself is at fault with its prediction, and the deviation of our forecast
might be excused for this period. With this said, the overall performance of
Australia and Japan is still not satisfactory for the validation sets, as well as
the training set of Japan. Looking at the larger picture, one explanation can
be the location of these regions in relation to the available data. The major-
ity of the OECD member regions are located in Europe, leaving most of Asia
and the Pacific unrepresented in the MEI dataset. This leaves Australia and
Japan with little data about occurrences of their neighboring markets, and
with that a large part of their international trade.

We have deliberately focused on the quantitative analysis, and not letting
qualitative knowledge or assumptions about individual economic indicators
and regional markets affect the design of the model or variable selection.
Similarly, choosing the amount of predictors used in the optimal model is
decided by the automated variable selection method, when the forecast is
optimized in the training set.

Reasons for our cutoff values in some cases being significantly smaller than
other studies, and does not fulfill the greater than one rule in some cases,
can be the iterations of discrimination over multiple time steps. With many
iterations, each discrimination puts relatively weak demands of significance
on the predictors, the idea being; it is better for a predictor to be moderately
significant in all of the time steps than being extremely significant for just
one time step.
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Chapter 10

Conclusion

This thesis assessed the regression and variable selection methods of partial
least squares for financial forecasting. Using these methods to select and
use numerous economic variables made it possible to accurately predict the
movements of the OECD composite leading indicators ahead of time for most
of the regions under study.

Overall, the partial least squares approach shows to be very useful in financial
analysis. The regression method does not demand dimension reduction when
the variables used are of significance, and the variable selection method does
not need any prior knowledge or individual studies of the variables nor their
collinearity, to be evaluated for significance. Therefore more data is never a
disadvantage, and the number of variables to be studied can preferably be
as large as possible.

The out-of-sample tests implies that there is much information to be found
in inter-regional data, which is not taken into account today by the OECD’s
forecast. This is in agreement with the results of Fichtner et al. (2011),
claiming that complementing the forecasting model with non-domestic vari-
ables can increase the lead of the composite leading indicators for many
regions, or equivalently, forecast the leading indicator itself.

The method developed in this thesis to find historically significant variables
has not been previously employed. It is developed with the specific dataset
and objectives in mind, and thus its external validity might be discussed.
However, it shows the effectiveness of the Variable Importance on Projection
and the Beta coefficients as econometric parameters for financial analysis.
The length of the iteration intervals as well as the number of iterations in the
model training should be closer examined if this method is to be applied in
further studies. Conclusively it is an idea for algorithmically dealing with the
non-stationary properties of financial time series, that shows potential.
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Appendix A

The below table shows the resulting full model of the Composite Leading
Indicator for Austria, represented by the complete set of predictors used,
by OECD referred to as subjects, and their respective regression coefficients
� and lead s. The time series of the predictors can be obtained from the
OECD website iLibrary from the package named Main Economic Indicators -
Complete Database. Acronyms for the specific Measures, M, of the predictors
include

GPY = ’Growth rate same period previous year’

LRN = ’Level, rate or national currency’

NCM = ’National currency, monthly level, s.a.’

NOR = ’Normalised, seasonally adjusted (normal = 100)’

s.a. = seasonally adjusted.

Once the specific time series have been obtained from the database, the
model specifications below can be used to forecast the future CLI up to
six months ahead. Firstly the predictors need to be centered and scaled as
explained in Section 3.2 before applying Equation 7.3.
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Country Subject M s �

Australia Leading Indicators OECD > Leading indicators > CLI > Trend restored GPY, s.a. 6 8.479989e-02
Austria Leading Indicators OECD > Leading indicators > CLI > Amplitude adjusted LRN, s.a. 15 2.016549e-02
Austria Leading Indicators OECD > Leading indicators > CLI > Normalised LRN, s.a. 15 2.095110e-02
Austria Leading Indicators OECD > Component series > BTS - Business situation > Normalised LRN, s.a. 14 2.421221e-02
Austria Leading Indicators OECD > Component series > BTS - Business situation > Original series LRN, s.a. 14 7.805710e-03
Austria Leading Indicators OECD > Component series > BTS - Order books > Normalised LRN, s.a. 13 3.683123e-02
Austria Leading Indicators OECD > Component series > BTS - Order books > Original series LRN, s.a. 13 -8.031397e-04
Austria Business tendency surveys (manufacturing) > Production > Tendency > National indicator LRN, s.a. 14 -2.215161e-02
Austria Business tendency surveys (manufacturing) > Finished goods stocks > Level > National indicator LRN, s.a. 14 3.066804e-02
Austria Business tendency surveys (manufacturing) > Order books > Level > National indicator LRN, s.a. 13 -8.031397e-04
Austria Business tendency surveys (manufacturing) > Export order books or demand > Level > National indicator LRN, s.a. 12 -2.880231e-02
Austria Business tendency surveys (manufacturing) > Selling prices > Future tendency > National indicator LRN, s.a. 13 -5.747147e-02
Austria Business tendency surveys (manufacturing) > Confidence indicators > Composite indicators > National indicator LRN, s.a. 14 -2.673673e-02
Austria Business tendency surveys (manufacturing) > Confidence indicators > Composite indicators > OECD Indicator NOR 14 -4.285786e-02
Belgium Leading Indicators OECD > Reference series > Gross Domestic Product (GDP) > Ratio to trend LRN, s.a. 14 -1.150100e-01
Belgium Leading Indicators OECD > Reference series > Gross Domestic Product (GDP) > Normalised LRN, s.a. 14 -1.151701e-01
Belgium Leading Indicators OECD > Leading indicators > CLI > Amplitude adjusted LRN, s.a. 15 -6.808495e-02
Belgium Leading Indicators OECD > Leading indicators > CLI > Normalised LRN, s.a. 15 -6.811692e-02
Belgium Leading Indicators OECD > Component series > CS - Confidence indicator > Normalised LRN, s.a. 12 -4.752689e-02
Belgium Business tendency surveys (manufacturing) > Export order books or demand > Level > National indicator LRN, s.a. 14 1.708603e-02
Chile Share Prices > All shares/broad > Total > Total GPY 16 -3.557249e-02
Denmark Leading Indicators OECD > Component series > BTS - Employment > Normalised LRN, s.a. 14 -6.089601e-02
Denmark Leading Indicators OECD > Component series > CS - Confidence indicator > Normalised LRN, s.a. 13 -1.895632e-02
Denmark Business tendency surveys (manufacturing) > Order books > Level > National indicator LRN, s.a. 13 2.108563e-02
Denmark Business tendency surveys (manufacturing) > Export order books or demand > Level > National indicator LRN, s.a. 13 4.897350e-03
Denmark Business tendency surveys (manufacturing) > Employment > Future Tendency > National indicator LRN, s.a. 13 -3.773022e-02
Denmark Consumer opinion surveys > Economic Situation > Future tendency > National indicator LRN, s.a. 14 -1.441759e-02
Denmark Currency Conversions > US$ exchange rate > Average of daily rates > National currency:USD GPY 6 4.170035e-03
Denmark International Trade > Imports > Value (goods) > Total GPY, s.a. 15 -2.473760e-03
Euro area Leading Indicators OECD > Leading indicators > CLI > Amplitude adjusted LRN, s.a. 14 -2.000094e-02
Euro area Leading Indicators OECD > Leading indicators > CLI > Normalised LRN, s.a. 14 -2.349089e-02
Euro area Business tendency surveys (manufacturing) > Finished goods stocks > Level > National indicator LRN, s.a. 14 5.154920e-02
Euro area Business tendency surveys (manufacturing) > Order books > Level > National indicator LRN, s.a. 12 1.054844e-02
Euro area Business tendency surveys (manufacturing) > Export order books or demand > Level > National indicator LRN, s.a. 12 8.257322e-03
Euro area Business tendency surveys (manufacturing) > Selling prices > Future tendency > National indicator LRN, s.a. 12 -5.973115e-02
Euro area Business tendency surveys (manufacturing) > Confidence indicators > Composite indicators > National indicator LRN, s.a. 13 1.037582e-02
Euro area Business tendency surveys (manufacturing) > Confidence indicators > Composite indicators > OECD Indicator NOR 13 1.285426e-02
Euro area Currency Conversions > US$ exchange rate > Average of daily rates > National currency:USD GPY 7 5.099938e-03
European Union Production > Industry > Total industry > Total industry excluding construction GPY, s.a. 15 1.149903e-03
France Leading Indicators OECD > Component series > BTS - Export orders > Normalised LRN, s.a. 12 -7.362950e-02
France Leading Indicators OECD > Component series > BTS - Export orders > Original series LRN, s.a. 12 3.745184e-04
France Leading Indicators OECD > Component series > BTS - Production > Normalised LRN, s.a. 14 -6.521366e-02
France Leading Indicators OECD > Component series > CS - Confidence indicator > Normalised LRN, s.a. 11 6.951113e-02
France Business tendency surveys (manufacturing) > Production > Tendency > National indicator LRN, s.a. 12 1.969416e-02
France Business tendency surveys (manufacturing) > Order books > Level > National indicator LRN, s.a. 12 5.776520e-04
France Business tendency surveys (manufacturing) > Export order books or demand > Level > National indicator LRN, s.a. 12 3.745184e-04
Four Big European Leading Indicators OECD > Leading indicators > CLI > Amplitude adjusted LRN, s.a. 15 -7.559021e-03
Four Big European Leading Indicators OECD > Leading indicators > CLI > Normalised LRN, s.a. 14 2.272419e-03
Germany Leading Indicators OECD > Leading indicators > CLI > Amplitude adjusted LRN, s.a. 15 2.152083e-02
Germany Leading Indicators OECD > Leading indicators > CLI > Normalised LRN, s.a. 15 2.126322e-02
Germany Leading Indicators OECD > Component series > BTS - Business situation > Normalised LRN, s.a. 14 2.421221e-02
Germany Leading Indicators OECD > Component series > BTS - Business situation > Original series LRN, s.a. 14 7.805710e-03
Germany Leading Indicators OECD > Component series > BTS - Finished goods stocks > Normalised LRN, s.a. 13 -4.574814e-02
Germany Business tendency surveys (manufacturing) > Selling prices > Future tendency > National indicator LRN, s.a. 12 -6.475695e-02
Germany Business tendency surveys (manufacturing) > Business situation > Current > National indicator LRN, s.a. 14 7.805710e-03
Iceland Consumer Price Index > OECD Groups > Energy (Fuel, electricity & gasoline) > Total GPY 24 -1.185126e-01
Ireland Leading Indicators OECD > Component series > Exports of goods > Normalised LRN, s.a. 9 3.504725e-02
Italy Leading Indicators OECD > Leading indicators > CLI > Amplitude adjusted LRN, s.a. 12 -4.172970e-02
Italy Leading Indicators OECD > Leading indicators > CLI > Normalised LRN, s.a. 12 -4.183325e-02
Italy Leading Indicators OECD > Component series > BTS - Order books > Normalised LRN, s.a. 12 2.626831e-02
Italy Leading Indicators OECD > Component series > BTS - Production > Normalised LRN, s.a. 14 -1.589780e-03
Italy Leading Indicators OECD > Component series > BTS - Production > Original series LRN, s.a. 14 2.232003e-02
Italy Leading Indicators OECD > Component series > CS - Confidence indicator > Normalised LRN, s.a. 12 -8.231776e-02
Italy Leading Indicators OECD > Component series > Orders > Normalised LRN, s.a. 12 -3.173817e-02
Italy Production > Industry > Total industry > Total industry excluding construction GPY, s.a. 13 3.310629e-02
Italy Business tendency surveys (manufacturing) > Production > Future Tendency > National indicator LRN, s.a. 14 2.232003e-02
Italy Business tendency surveys (manufacturing) > Selling prices > Future tendency > National indicator LRN, s.a. 12 3.931008e-02
Italy Business tendency surveys (manufacturing) > Confidence indicators > Composite indicators > National indicator LRN, s.a. 13 2.563783e-02
Italy Business tendency surveys (manufacturing) > Confidence indicators > Composite indicators > OECD Indicator NOR 13 3.279551e-02
Italy International Trade > Imports > Value (goods) > Total GPY, s.a. 14 -2.956249e-03
Mexico Leading Indicators OECD > Component series > BTS - Finished goods stocks > Normalised LRN, s.a. 10 -5.370177e-02
Netherlands Leading Indicators OECD > Component series > BTS - Business situation > Normalised LRN, s.a. 14 2.421221e-02
Netherlands Leading Indicators OECD > Component series > BTS - Business situation > Original series LRN, s.a. 14 7.805710e-03
Netherlands Leading Indicators OECD > Component series > BTS - Finished goods stocks > Normalised LRN, s.a. 12 -1.098570e-02
Netherlands Business tendency surveys (manufacturing) > Selling prices > Future tendency > National indicator LRN, s.a. 13 -3.839206e-03
Netherlands Labour Force Survey - quarterly levels > Harmonised unemployment - monthly levels > Aged 15-24 > Females LRN 19 -6.635479e-03
Netherlands Labour Force Survey - quarterly levels > Harmonised unemployment - monthly levels > Aged 15-24 > Females LRN, s.a. 19 2.256546e-02
Netherlands Labour Force Survey - quarterly rates > Harmonised unemployment - monthly rates > Aged 15-24 > Females LRN 19 1.615350e-03
Netherlands Labour Force Survey - quarterly rates > Harmonised unemployment - monthly rates > Aged 15-24 > Females LRN, s.a. 19 5.464048e-02
Netherlands Consumer Price Index > OECD Groups > Energy (Fuel, electricity & gasoline) > Total GPY 16 -2.372285e-02
New Zealand Leading Indicators OECD > Component series > Short-term interest rate > Normalised LRN, s.a. 9 -7.705664e-02
Norway Monetary aggregates and their components > Broad money and components > Broad money, index GPY, s.a. 19 2.915270e-02
OECD - Europe Leading Indicators OECD > Leading indicators > CLI > Amplitude adjusted LRN, s.a. 15 7.593098e-04
OECD - Europe Leading Indicators OECD > Leading indicators > CLI > Normalised LRN, s.a. 15 -9.655715e-03
Portugal Leading Indicators OECD > Component series > BTS - Export orders > Normalised LRN, s.a. 14 -8.682508e-02
Slovak Republic Leading Indicators OECD > Component series > Imports > Normalised LRN, s.a. 17 3.747295e-02
Slovak Republic International Trade > Imports > Value (goods) > Total GPY, s.a. 15 4.724419e-03
Slovak Republic International Trade > Net trade > Value (goods) > Total NCM, s.a. 14 -1.714230e-02
South Africa Leading Indicators OECD > Component series > BTS - Business situation > Normalised LRN, s.a. 14 -2.300338e-03
South Africa Leading Indicators OECD > Component series > Interest rate spread > Normalised LRN, s.a. 13 -1.711648e-02
Spain Business tendency surveys (manufacturing) > Export order books or demand > Level > National indicator LRN, s.a. 12 5.942555e-02
Spain Business tendency surveys (manufacturing) > Selling prices > Future tendency > National indicator LRN, s.a. 12 4.283469e-02
Sweden Leading Indicators OECD > Component series > Long-term interest rate > Normalised LRN, s.a. 10 -1.595587e-01
Switzerland Business tendency surveys (retail trade) > Order intentions or Demand > Future tendency > National indicator LRN, s.a. 16 -5.414331e-03




