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Abstract

Email communication is valuable for any modern company, since it offers an
easy mean for spreading important information or advertising new products,
features or offers and much more. To be able to identify which customers
that would be interested in certain information would make it possible to sig-
nificantly improve a company’s email communication and as such avoiding
that customers start ignoring messages and creating unnecessary badwill.
This thesis focuses on trying to target customers by applying statistical
learning methods to historical data provided by the music streaming com-
pany Spotify.

An important aspect was the high-dimensionality of the data, creating cer-
tain demands on the applied methods. A binary classification model was
created, where the target was whether a customer will open the email or not.
Two approaches were used for trying to target the costumers, logistic regres-
sion, both with and without regularization, and random forest classifier, for
their ability to handle the high-dimensionality of the data. Performance
accuracy of the suggested models were then evaluated on both a training set
and a test set using statistical validation methods, such as cross-validation,
ROC curves and lift charts.

The models were studied under both large-sample and high-dimensional
scenarios. The high-dimensional scenario represents when the number of
observations, N , is of the same order as the number of features, p and the
large sample scenario represents when N � p. Lasso-based variable selec-
tion was performed for both these scenarios, to study the informative value
of the features.

This study demonstrates that it is possible to greatly improve the opening
rate of emails by targeting users, even in the high dimensional scenario. The
results show that increasing the amount of training data over a thousand
fold will only improve the performance marginally. Rather efficient cus-
tomer targeting can be achieved by using a few highly informative variables
selected by the Lasso regularization.

Keywords:
Statistical learning, logistic regression, random forest classifier, customer
relationship management, customer targeting.
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Högdimensionella klassificeringsmetoder med
tillämpning p̊a m̊algruppsinrikting för e-mejl

Sammanfattning

Företag kan använda e-mejl för att p̊a ett enkelt sätt sprida viktig in-
formation, göra reklam för nya produkter eller erbjudanden och mycket
mer, men för många e-mejl kan göra att kunder slutar intressera sig för
inneh̊allet, genererar badwill och omöjliggöra framtida kommunikation. Att
kunna urskilja vilka kunder som är intresserade av det specifika inneh̊allet
skulle vara en möjlighet att signifikant förbättra ett företags användning
av e-mejl som kommunikationskanal. Denna studie fokuserar p̊a att urskilja
kunder med hjälp av statistisk inlärning applicerad p̊a historisk data
tillhandah̊allen av musikstreaming-företaget Spotify.

En binärklassificeringsmodell valdes, där responsvariabeln beskrev huruvi-
da kunden öppnade e-mejlet eller inte. Tv̊a olika metoder användes för
att försöka identifiera de kunder som troligtvis skulle öppna e-mejlen,
logistisk regression, b̊ade med och utan regularisering, samt random forest
klassificerare, tack vare deras förm̊aga att hantera högdimensionella data.
Metoderna blev sedan utvärderade p̊a b̊ade ett träningsset och ett testset,
med hjälp av flera olika statistiska valideringsmetoder s̊a som korsvalidering
och ROC kurvor.

Modellerna studerades under b̊ade scenarios med stora stickprov och
högdimensionella data. Där scenarion med högdimensionella data re-
presenteras av att antalet observationer, N , är av liknande storlek som
antalet förklarande variabler, p, och scenarion med stora stickprov repre-
senteras av att N � p. Lasso-baserad variabelselektion utfördes för b̊ada
dessa scenarion för att studera informationsvärdet av förklaringsvariablerna.

Denna studie visar att det är möjligt att signifikant förbättra öppnings-
frekvensen av e-mejl genom att selektera kunder, även när man endast
använder sm̊a mängder av data. Resultaten visar att en enorm ökning
i antalet tränings-observationer endast kommer förbättra modellernas
förm̊aga att urskilja kunder marginellt.

Nyckelord:

Statistisk inlärning, logistisk regression, random forest klassificerare, kund-
relationshantering, kundinriktning.
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1 Introduction

To get an overview of the thesis the introduction first describes the problem
background, section 1.1, and discusses the problem at hand, section 1.2,
before moving on to defining the objective, section 1.3. Lastly the disposition
of the whole thesis is presented in section 1.4.

1.1 Problem Background

Email communication is important for many companies, since it is a way to
advertise new products or features, spread information, perform marketing
campaigns and much more. While it can be a powerful mean of communica-
tion it can also be a double-edged sword, since too many, to the customer,
irrelevant emails will generate badwill and even make future communication
through email impossible. As such it can be very valuable for a company
to refine their usage of email communication by carefully selecting which
customers to target with specific information.

Spotify, a global music streaming company, has over 60 million active users
world wide, [23], and sends a lot of emails to their users every day. The
emails are of different types such as notifications, offers and newsletters.
Understandably Spotify wishes to utilize their usage of this mean of com-
munication as well as they can, which makes the aim of this thesis to further
improve their email communication. This thesis will be performed by us-
ing data provided by them and it will constitute a foundation for further
research.

1.2 Problem Discussion

Targeting customers is closely connected to a subject called customer re-
lationship management, abbreviated CRM. CRM is essential for companies
and in this age of Big Data it is possible to extract and store enormous
amounts of information about each customer, which together with data min-
ing techniques create powerful methods for improving customer relations,
through for example effective marketing and targeted advertising etc.. A
number of papers and books have been written solely interested in these
kinds of problems. Application of data mining techniques in customer rela-
tionship management: A literature review and classification Ngai, Xiu and
Chau, [17], presents a good overview of the different subjects within the field
and classifies a number of relevant papers by their subject and which meth-
ods that were used. By trying to fit this thesis into the same framework, it
will be easier to relate to earlier work within the field. In [17] they present
four categories of CRM:

1. Customer Identification

1



1.2 Problem Discussion

2. Customer Attraction

3. Customer Retention

4. Customer Development,

which all contain some subgroups of problems. This thesis mainly falls un-
der customer identification and a subgroup called target customer analysis.
Some earlier studies in this field are An LTV model and customer segmenta-
tion based on customer value: a case study on the wireless telecommunication
industry by Hwang, Jung and Suh, 2004 [9], Constructing a multi-valued and
multi-labeled decision tree by Chen, Hsu and Chou, 2003 [5] and Targeting
customers via discovery knowledge for the insurance industry C-H. Wu, Kao,
Su and C-C. Wu, 2005 [26].

In Targeting customers via discovery knowledge for the insurance industry,
[26], C-H. Wu, Kao, Su and C-C. Wu uses data mining techniques to im-
prove the sales of an insurance company. The method used was ID3 for its
performance level and comprehensibility, which is important to be able to
more generally explain which customers to target. In the study they worked
closely with the company that provided the data and created general rules
for which customers to target, which is very important. To only state that
they should target whichever the model recommends is usually not enough,
since formalized rules can be used for creating future strategies and market-
ing etc., an aspect that was well treated in this study.

Hwang, Jung and Suh discuss customer lifetime value (LTV) in [9] and how
it can be used to categorise customers. They tested three different models,
decision trees, artificial neural networks and logistic regression, which all
preformed well in the given setting.

Constructing a multi-valued and multi-labeled decision tree, [5], introduces
possibilities to work with multi-valued targets and multi-labeled features, in
other ways than with for example dummy variables, since in some settings
such modifications are not desirable.

These earlier studies show that a lot can be gained by applying these tech-
niques, because they enable the company to be able to select existing or new
customers which seem to have a higher interest in buying their products and
target them. This relates closely to the problem at hand where we are trying
to select users to email and they create a solid foundation for this thesis.

There are several different data mining methods that are applicable in these
kinds of situations, for example response modeling, [1, pp. 96–97], or uplift
modeling, [20], but they are suited for slightly different scenarios, depending

2



1.2 Problem Discussion

on the objective and the available data. In Data mining techniques : [sic]
for marketing, sales, and customer relationship management, [1], Berry and
Linoff provide guidelines for anyone going to conduct data mining in connec-
tion to CRM. According to them any data mining process can be separated
into four points [1, p. 43]:

1. Identifying the problem

2. Transforming data into information

3. Taking action

4. Measuring the outcome

and this will act as a guideline for this work. Berry and Linoff also introduce
a methodology to avoid mainly two common mistakes, categorized as [1, p.
44]:

• Learning things that are not true.

• Learning things that are true, but not useful.

Berry and Linoff consider learning things that are not true to be the most
severe of the mistakes, [1, p. 44], which is very understandable, since the
risks are larger compared to learning something that is true but not useful,
but still none of the scenarios are desirable for a company. Learning things
that are not true can be caused by several different reasons and Berry and
Linoff mention mainly three causes [1, pp. 45–48]:

• Patterns may not represent any underlying rule.

• The model set may not reflect the relevant population.

• Data may be at the wrong level of detail.

Lots of examples of these scenarios are given in [1], but an example for
the first point could be overfitting, while for the second point it could be
caused by some kind of bias in the dataset and the last point could happen
if you have data for each day but instead study the changes over each month.

Learning things that are true but not useful is not as dangerous as its coun-
terpart, but still important to avoid. Berry and Linoff gives two examples
of this [1, pp. 49–50]:

• Learning things that are already known.

• Learning things that can’t be used.

3



1.3 Objective

No further discussion of these cases will be presented, but Berry and Linoff
gives an important reflection that not everything that appears useless is use-
less [1, p. 49].

The methodology that Berry and Linoff recommend, as a mean to try to
avoid these mistakes, can be summarized by eleven steps to follow when
preforming a data mining task in a CRM setting [1, pp. 54–55]:

1. Translate the business problem into a data mining problem.

2. Select appropriate data.

3. Get to know the data.

4. Create a model set.

5. Fix problems with the data.

6. Transform data to bring information to the surface.

7. Build models.

8. Asses models.

9. Deploy models.

10. Assess results.

11. Begin again.

This methodology will be applied in this thesis, because it introduces a solid
and well thought through framework for problems such as the one at hand.
Now is a natural time to transition to defining and formalizing the objective
of the thesis.

1.3 Objective

For a company the most interesting question would be which users should
be targeted to maximize the company’s profit, but since this study is sup-
posed to work as a foundation for further analysis the objective has instead
been chosen to try to nurse email communication. For example that the
users seem to appreciate the emails sent to them. How to measure this
appreciation is not entirely clear or for that matter simple, but some rele-
vant information that should reflect users interest in and appreciation of the
emails will be available. For example it will be possible to see if a user has
opened the email, which shows one level of appreciation, and then the next
level is whether the user clicked on a link in the email, which indicates that
this user has been targeted correctly. There might even be possibilities of

4



1.4 Disposition

a negative response, such as if the user has clicked on the unsubscribe link.
The objective can be formalized as follows:

Objective: to increase the positive response rate for emails by
targeting users with the help of statistical learning methods and
historical data.

Since large amounts of data are available, a secondary objective is to study
the effects of using a smaller amount of data and compare the performance
levels. This question is interesting since computations on large amounts of
data in many settings take a large amount of time, which might be deemed
unnecessary if there is no significant improvement compared to using a more
limited dataset. This objective can be formalized as follows:

Secondary objective: define and quantitatively measure differ-
ences in performance levels on the original problem when using
a smaller amount of training data.

1.4 Disposition

Since the plan is to follow the methodology and the four points of a data
mining process which Berry and Linoff suggest, the first part will be about
formalizing the business problem as a data mining problem and introduc-
ing some notation, sections 2.1 and 2.2, and then continuing on to selecting
and getting to know the data, sections 2.3 to 2.6. When the data has been
selected it becomes possible to study interesting models which can fulfil the
objective and discuss their appropriateness, advantages and disadvantages,
section 3, and, perhaps most importantly, how to evaluate the models, sec-
tion 4. The models are then tested, by first transforming the data in an
appropriate fashion. In section 6 the results are discussed and the perfor-
mances of the methods are evaluated. Lastly the conclusions and suggestions
for future work are presented in section 7.

5



2 Methodology

The methodology is based on the insights from Berry and Linoff, [1], as
described in the introduction. The first step is to translate the business
problem into a data mining problem, which is discussed in section 2.1. Sec-
tion 2.2 introduces a mathematical notation and formulation based on the
earlier discussion. Secondly data is selected, studied and discussed in sec-
tions 2.3 and 2.4. When some familiarity with the data has been achieved it
becomes possible to create a model set which can be used for the specified
problem, see section 2.5. Lastly data preprocessing is the topic in section
2.6.

2.1 Transforming the Business Problem into a Data Mining
Problem

The translation of the business problem is essential, since a bad translation
will lead to bad or irrelevant results. The translation needs to be closely
connected to the objective, which in this case means that there is a need to
translate user appreciation of email into something that is measurable in a
data mining setting. A simple initial model would be to measure appreci-
ation by studying whether a user opens the email or not. This model can
then be extended to include different levels of appreciation, for example if
the user clicks a link in the email then that indicates that the user is inter-
ested in the content of the email, whereas if the email is reported as spam it
indicates a negative response. This leads to the conclusion that some kind
of classification model is appropriate.

There is also the question of what kinds of emails one should look at, per-
haps notification emails should always be sent regardless and perhaps it is
more interesting to study emails containing offers or information about new
features.

Berry and Linoff ask two important questions, which makes the work relate
to the specified or sometimes unspecified goal of the company [1, pp. 57–58]:

• How will the results be used?

• How will the results be delivered?

In this case the results will be used to decrease the number of irrelevant
emails sent to the users, but also work as a foundation for future work and
studies, such as using the data to figure out information that can be inter-
esting for the user and much more.

6



2.2 Mathematical Formulation

It is desirable that the results can be delivered in easily interpretable rules,
that can be used for directed marketing and creating business strategies.
For example individuals over fifty tend to be more interested in emails then
the general user. These kinds of rules are useful in a different and perhaps
a more important way for a company than the information to target these
customers because the model says so [1, pp. 58–60]. Berry and Linoff il-
lustrates this with the question “who is the yoghurt lover?”, referring to a
supermarket setting where the task focused on finding out which customers
were interested in buying yoghurt [1, p. 59]. The yoghurt lover is not some-
one described by a high score by the model, instead perhaps described as
a middle-age woman living in the city. This information is useful to the
company which can then focus on advertising in areas where there live a lot
of middle-age women.

A reasonable model for achieving this is to study the opening rates of the
emails, which can be formalized as a classification problem, where the re-
sponse is whether an email was opened or not. With such a model it should
be possible to decrease the number of emails that will not be opened and
hopefully increase the number of opened emails. The model is more closely
defined in the next section.

2.2 Mathematical Formulation

The mathematical formulation will be very important for transforming the
business problem into a data mining problem and there are several formu-
lations depending on what you what to measure with the model. Since a
classification model has been chosen we can introduce some helpful notation.
First let us denote the number of emails sent with N . Each email sent will
be seen as an observation, note that the formalisation is not for each user
but instead for each email. This can be called a prospect, where a prospect
is represented by an unique email and a non-unique user, so there can be
several emails per user. For a classification problem it is important to iden-
tify the target variable, denoted Y , which in this case can be expressed as
a binary variable, Y ∈ {0, 1}, where Y = 1 represents that the email was
opened and Y = 0 represents that the email was not opened. In the dataset,
denoted D, there will be a number of positive observations and a number
of negative observations, let us denote them NP and NN respectively. The
features of each observation is denoted X and represents the traits of the
user who received the email and the properties of the email, such as if it is
a notification or a newsletter etc.. X can be written X = (X1, X2, . . . , Xp),
where p connotes the number of features and X1 connotes the first feature
and similarly for the other features. The different features can take differ-
ent forms, some can be categorical, for example gender can be divided into
“male”, “female” and “other”, while perhaps a feature such as the age of

7



2.3 Selecting the Data

the user can be numerical and some are binary variables. A specific set of
feature values for X is represented by x and similarly for the target variable
a specific value is denoted y. To summarise; the following notation has been
introduced:

• D: the dataset.

• N : the number of observations in the dataset.

• Y : the target variable, binary.

• NP : the number of positive instances in D.

• NN : the number of negative instances in D.

• X = (X1, X2, . . . , Xp): the features, can be in the form of categoricals,
numericals or binaries.

• p: the number of features.

• x: specific value of the features X.

• y: specific value of the target variable Y .

In the future it might be interesting to change the target variable to include
more categories and as such creating a more advanced model. Such a change
will greatly affect the possibilities and appropriateness of using different
learning methods.

2.3 Selecting the Data

In many settings the data that can be used is scarce because of limited re-
sources and lack of observations, but in this case a subset of the data needs
to be selected because the sheer amount of raw data, a typical example of
Big Data, at least in the sense of a large number of observations. Preferably
data would be selected in such a way that it is possible to see when the
email was sent and when it was opened, if it was opened, but it might be
unclear how many days it is necessary to study to be sure that the email
was not opened. A reasonable time frame would be a week or two. If the
email has not been read during this time it probably has lost some or all of
its relevance anyway. What features which could be interesting is something
that the model preferably should answer on its own, as such the selection of
features is done in a very including way, to be able to feed the model with
as much information as possible.

Depending on how the models will be evaluated different datasets might be
needed. Let us think back on the question raised in section 2.1: “how will
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the results be used?”, probably the results will be used to predict users to
email in the future. Perhaps the model is based on currently available data,
which dates back a week or two, but is supposed to be used on users today,
because of this it can be interesting to have two datasets, which are based on
emails sent with a few weeks apart. This is important to be able to evaluate
and validate the model properly.

2.4 Feature Study

Studying the behaviour and forms of the features is important, for example
to validate assumption made about the features. If a feature is supposed to
represent a count of something, then it should not contain negative values for
example. Usually features have some kind of description to describe what
the feature represents and a incorrectly described feature, which actually
represents something else, could be devastating for solving the problem.

To avoid such problems and other similar problems the features were studied
in several different ways, such as looking at the distribution of the features
by using histograms and investigating the range of the values a feature could
take. A complete description of the features was also created to reduce the
risk of misinterpreting the meanings of the features.

2.5 Creating a Model Set

Berry and Linoff describe the model set as the dataset that is to be used in
the modeling process. The model set contains data for training, validation
and evaluation and is usually formed by merging data from several sources
to create customer signatures, a form of customer description [1, p. 68].

2.5.1 Customer Signatures

A customer signature represents all that is know about the customer and is
usually represented by a row in the dataset [1, p. 68]. Creating customer
signatures is an iterative processes, [1, p. 588], which is initialized by iden-
tifying what the “customer” represents, it could be anything, but in this
case the simplest choice would be that a customer signature represents a
prospect and the available information about the email and the user receiv-
ing the email. When the customer has been identified it becomes possible
to add information about or features describing the customer, usually this
process is repeated and tested, by adding and removing features or creating
new features from existing ones, more on this subject in the preprocessing
section 2.6.
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The choice of target variable is essential for the customer signature, since
depending on the target different information might be interesting to study
and include in the model. In the analysis information that might have an
impact on whether a user will open the email or not will be the focus when
creating the customer signature.

2.5.2 Balancing the Model Set

Depending on the choice of target variable the sample of users might be
heavily skewed for one type of action, for example with email it is more
common for a user to ignore the email than opening it and perhaps only
around 1% will actually click on the link in the email. This is a common
problem within data mining since the positive examples are neglected when
negative examples constitutes a massive majority, but there are a few reme-
dies.

One alternative that has been suggested is to increase the weight on the
positive examples and by that evening out the impact from positive and
negative examples [1, pp. 68–69]. Another alternative is to balance the
number of positive and negative examples by using a random sample from
the negative examples of a comparable size to the number of positive ex-
amples, suggested by Berry and Linoff [1, pp. 68–69] and by Ling and Li
[15]. In [15] Ling and Li were able to improve the performance of the model
by applying the balancing method. Mainly the method of weighting the
observations by their relative frequency will be used.

2.5.3 Creating a Model Set Suitable for Prediction

Preferably the model should be as stable over time as possible and this is
achieved by including data over long time periods, when accessible, but for
this setting where users open emails the impact of different seasons are ex-
pected to be low and will not be regarded as a factor. Instead focus will be
on trying to predict users who will open emails in the future by studying
how the users have been acting in the recent past.

To do this the model set will be partitioned into a training set, a validation
set and a test set, where the training set and the validation set are from the
same time frame, as a way of measuring internal validity, and where the test
set is supposedly from a time frame in the future compared to the training
and validation set, perhaps a week forth. This method is recommended by
Berry and Linoff [1, pp. 70–72].
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2.6 Data Preprocessing

Data preprocessing is very important to be able to use the data at all and of
course to get good results. Fixing problems with the data, such as treating
missing values or finding strange abnormalities is essential. Then the data
can be transformed in different ways to bring information to the surface [1,
pp. 74–77]. Many researchers have studied this specific question, for exam-
ple Kotsiantis et al. addresses the issue of data preprocessing, in particular
for supervised learning problems, such as the problem at hand, in [11]. The
preprocessing is also dependent on the model of choice, some models can
not handle certain types of data or are bad at handling such data types.
For example regression models are sensitive to multicollinearity, where fea-
tures are strongly correlated [12, pp. 29–30], and cannot handle categorical
variables where there is no distance measure, while random forest does not
suffer from these problems, but instead might have trouble with numericals
and the performance can be increased by binning the numerical variables [1,
p. 551].

2.6.1 Treating Features with Low Variance

In some datasets it is possible to find features which only contain one unique
value, these features are as such useless for data mining, since they contain
no information which can be used to distinguish the target variable [1, p.
544]. Such features were removed from the dataset.

Another case is when a feature contains almost only one value and then
it is not as clear how the feature should be handled. A general rule of
thumb is that if 95% to 99% of the values are the same the feature by
itself is negligible, but it might be able to provide useful information in
combination with other features [1, p. 546]. Whether the feature contains
useful information or not is highly dependent on what the features represents
and therefore it is important to carefully study and understand such features
before dismissing them. Berry and Linoff discuss this in greater detail [1,
pp. 544–546].

2.6.2 Missing Values

Missing values can for some features be a problem, for example in numericals
such as ‘age’, but it is not really a problem for categorical features since a
missing value can be seen as a category itself and provide some information
about the user.

For numericals the missing values were substituted by the median of the
numerical values, which is an easy correction but not without its flaws,
since it changes the distribution of the feature. Another possible method
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would be to use the other features and compare to the observations without
missing values to try to model the missing values and replace them with the
predicted values of the mode, but this method also has its problems [1, p.
591].

2.6.3 Dummy Variables

For some methods categorical features are problematic and a simple solution
to this is to use dummy variables, where categorical features are split into
several binary variables, one for each category. It is important to remove at
least one of the dummies for one of the categories, otherwise it might cause
problems depending on the model, and then the category represented by the
removed dummy acts as a benchmark [10, pp. 85–86]. It is also possible
to remove several dummies representing categories with few instances, since
they have a low information value in accordance with the discussion above
in section 2.6.1.

2.6.4 Normalization

It is common to normalize the numericals so they range from zero to one,
which preserves the distribution but changes the values of the features. This
affects for example logistic regression, and might improve the results, but
not random forest, since for random forest only the order is considered,
which is unchanged by normalization [1, p. 550]. An alternative would
be standardization, where the numbers are transformed into the number of
standard deviations from the mean [1, p. 551]. For the following analysis
normalization will be used.

2.6.5 Binning

Some models have problems with handling numerical features and the values
of such features can instead be grouped into buckets or bins that represents
a range of values and as such converting the numerical feature into a cat-
egorical one. There are two types of binning equal-width and equal-height
binning, where equal-width binning transforms the values into ranges with a
fixed width. Equal-height binning on the other hand bins the values in such
a way that each bin has the same height and as such creating a uniformly
distributed variable [1, p. 551].

2.6.6 Creating New Features

It can also be interesting to create new features from the existing ones, per-
haps to find non-linear relations or interactions terms. This can be done in
several ways, but for numericals it is common to create ratios or proportions
of different kinds. For example for houses it might be interesting to have a
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feature which represents the price per square meter instead of just the price
of the house and the house area [1, p. 569]. It is also possible to use logical
operations to create new features [11].

Creating new features can be seen a method to bring information to the sur-
face, that otherwise would be hidden [1, pp. 74–76]. For example a feature
that may contain the date of birth of a person is in it original form quite
useless, since there will be almost unique values for each observation, but if
combined with the date of today you can create a new feature representing
the age of the costumer, which can be very valuable for the analysis.

2.6.7 Stratified Sampling

Stratified sampling is a sampling method for picking out a sub-sample from
a population with the same internal properties between mutually exclusive
strata [21, p. 100], or in this setting classes. It will be used for study-
ing the question of whether using a large amount of data will have a sig-
nificant impact on the performance level. If we denote the whole popu-
lation U = {1, . . . , i, . . . , N} it can be divided into H sub-populations or
strata, depending on the properties of each element. Let us denote them
U1, . . . , Uh, . . . , UH , where Uh = {i : i belongs to stratum h} in accordance
with the notation in [21, p. 101]. In the case of using a binary classifier the
population can be split into two strata, one for the positive class and one
for the negative class. Stratified sampling is done by selecting a sample sh
from Uh with the help of some kind of sampling design, where the selection
in each stratum is independent of each other [21, p. 101]. The final sub-
sample, denoted s, is created by the union of the individual samples from
each strata [21, p. 101]:

s = s1 ∪ s2 ∪ · · · ∪ sH (1)

The sampling in each strata is done with proportional allocation as described
in [21, p. 107]. Let us denote the sizes of the strata with N1, . . . , Nh, . . . , NH

and the expected sizes of the specific samples from the strata with
n1, . . . , nh, . . . , nH . The proportional allocation can then be defined as [21,
p. 107]:

nh = n
Nh

N
(2)

where n is defined as the total sample size, expressed by [21, p. 106]:

n =
H∑

h=1

nh. (3)
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The proportional allocation strategy is optimal in the cases where the stan-
dard deviation in each separate stratum is the same [21, p. 107], which is
the case for a setting with strata created from binary classes. In each strata
all observations are sampled uniformly.
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3 Choice of Statistical Learning Methods

Two different methods were chosen for testing: logistic regression and ran-
dom forest classifier and they will be discussed in greater detail below.

3.1 Logistic Regression

Logistic regression, abbreviated LR, is a widely used binary classification
method and is a kind of substitution for linear regression, since linear re-
gression is not suited for classification [10, pp. 129–130]. First logistic
regression is described in greater detail in section 3.1.1 and then some of the
advantages and disadvantages with the method are discussed, section 3.1.2.

3.1.1 Description

Logistic regression models the probability that an observation belongs to a
certain class, given its features, P (Y |X). This probability can be seen as
a score on the observation. A high probability represents a high score and
a low probability represents a low score. In the case of a binary classifier,
y ∈ {0, 1}, the probability is modelled by a sigmoid function [27]:

P (Y = 1|X = x,w) =
1

1 + e−wT x
(4)

for the positive class and

P (Y = 0|X = x,w) =
1

1 + ewT x
(5)

for the negative class, where w is a vector of weights for each variable in
X and an intercept. Otherwise the notation is the one introduced in sec-
tion 2.2, x represents a set of values of the features. An observation with
P (Y = 1|x,w) > t is classified as belonging to class 1 for a given threshold
t ∈ [0, 1], commonly t = 0.5. Figure 1 displays a binary classification ex-
ample, with a one-dimensional feature space, where the logistic regression
model has been fitted to the available data. In the figure it is possible to
observe the typical sigmoid shape of the probability P (Y = 1|X = x,w)
and see that for negative X far to the left P (Y = 1|X = x,w) is close to
zero, since the negative class is clearly dominating the area, while it is the
opposite far to the right. In the middle, where the observations from the
different classes are both present P (Y = 1|X = x,w) increases quite rapidly.

To find the weights w it is common to use the approach maximum likelihood
estimation. Given our binary classed data {xi, yi}Ni=1, xi ∈ Rp, yi ∈ {0, 1}
the likelihood, L(w), is defined as:
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3.1 Logistic Regression

Figure 1: A one-dimensional binary classification example with randomly
generated data. The blue circles and the red circles represents the observa-
tions belonging to the positive class and the negative class respectively. The
magenta coloured line represents the probability of belonging to the positive
class given by the logistic regression model, P (Y = 1|X = x,w).

L(w) =

N∏
i=1

P (Y = yi|X = xi, w). (6)

Finding the maximum of the likelihood is the same as finding the minimum
of the negative log-likelihood [10, p. 133], since the logarithm is a strictly
increasing function. The negative log likelihood is defined by [10, p. 133]:

l(w) = −
N∑
i=1

logP (Y = yi|X = xi, w). (7)

Since finding the optimum of equation 7 leads to non-linear equations, this
is usually done with the help of iterative methods [8, p. 33]. The Python
library scikit-learn, [18], uses stochastic gradient descent, or SGD, for solving
this optimization problem, as described in section 3.1.3.

For logistic regression it is also common to study the log-odds or logit,
which is linearly described by the features. For convenience we will denote
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P (Y = 1|x,w) as π(x), we omit the w. Then by rearranging the terms in
equation (4) we can express:

π(x)

1− π(x)
= ew

T x. (8)

The logit is described by the logarithm of this expression [10, p. 132], which
gives:

log

(
π(x)

1− π(x)

)
= wTx. (9)

From this expression it is clear that the logit is linearly described by the
features. This means that changing a feature in x by one unit will increase
the logit by the appropriate weight. It is also clear that the logit can take
any value in R, depending on the range of wTx [8, p. 6].

It is easy to extend logistic regression to be able to find non-linear decision
boundaries, instead of just linear decision boundaries, which is normally the
case. This is done by adding polynomial terms of the features to the model
[10, p.184–185]. An example of this for a single predictor, i.e. p = 1, would
be:

log

(
P (Y = 1|X = x1, w)

1− P (Y = 1|X = x1, w)

)
= w0 + w1x1 + w2x

2
1 + w3x

3
1 (10)

which leads to a cubic logistic regression model, which can give a decision
boundary formed as a third degree polynomial.

Logistic regression does not make the same basic assumptions as linear re-
gression, such as linearity or homoscedasticity. One of the assumptions is
the binomial assumption, which is an assumption on the distribution of the
error, denoted ε [19]. The error term comes from the following expression
of the target variable:

y = π(x) + ε. (11)

Since y ∈ {0, 1} is binary ε is also limited to only two possible values,
ε = 1 − π(x) if y = 1 with probability π(x) or ε = −π(x) if y = 0 with
probability 1−π(x) [8, p. 7]. This gives that the mean of the error is 0 and
that the variance is π(x)(1−π(x)), which gives a binomial distribution with
π(x) as the success probability [8, p. 7]. The binomial assumption is the
only assumption that should be verified according to Peng et al. in [19]. A
method for testing this assumption is a normal Z-test, but the assumption
is usually robust if the observations in the dataset are independent [19].
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For logistic regression different options of regularization are available and
are usually used when the number of features p is comparable to the sample
size N and is especially common in machine learning [14]. Regularization is
a mean to push coefficients towards zero, which can both reduce over fitting
and improve the performance of the model, by reducing the variance [10, pp.
214–215] [14]. It can also be used for variable selection [10, pp. 214–215].
With regularization an extra term is added to the negative log-likelihood
and for the L2-norm the negative log-likelihood is given by [27]:

lL2(w) = −C
N∑
i=1

logP (Y = yi|X = xi, w) +
1

2
wTw (12)

where C > 0 is a penalty parameter. For the L1-norm the formula is changed
to:

lL1(w) = −C
N∑
i=1

logP (Y = yi|X = xi, w) +
1

2

p∑
j=1

|wj | (13)

Decreasing C puts more weight on the regularization term, resulting in a
larger penalization on the weights, while increasing C reduces the impact
of the regularization term. These different variants of regularization have
different properties and are usually referred to as “ridge regression” for the
L2-norm, [13] , and “the lasso” for the L1-norm [14]. This is the formed
used in the Python library scikit-learn [18].

Equivalently equations (12) and (13) can be expressed on more well known
forms, only changed by a positive constant and as such with the same mini-
mum. The negative log-likelihood then takes the following forms, as seen in
[13] for the ridge regularization:

lL2(w) = −
N∑
i=1

logP (Y = yi|X = xi, w) + λwTw (14)

and in [14] for the lasso:

lL1(w) = −
N∑
i=1

logP (Y = yi|X = xi, w) + λ

p∑
j=1

|wj | (15)

where λ > 0 is also a positive penalty parameter, connected to C as λ =
1
2C . Equations (15) and (14) can actually be seen as the Lagrangian of the
following optimization problem [14]:
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min
w
−

N∑
i=1

logP (Y = yi|X = xi, w)

subject to ‖w‖j ≤ K

where j = {1, 2} represents the respective norm and K is a constant, con-
nected to λ so that for each λ there is a K for which the optimization
problem and the original problem give the same solution.

Figure 2 shows the connection between the weights for the different types
of norms, were it can be seen that for the L1-norm the weights are located
on a diamond, while they are located on a circle, or sphere in higher dimen-
sions, for the L2-norm. The geometric figures can also be seen as constraint
regions for the resulting optimization problems for the different norms, as
seen in [10, pp. 221–223]. In figure 6.7 in [10, p. 222] there is a geometric
explanation to why the lasso results in variable selection and it is because
the solutions that are usually found are the edges on the diamond, where
some feature weights are zero.

The choice of the regularization parameter is an interesting question and is
highly dependent on the available data. One method is by empirically study
the effects of changing the parameter and especially in this case the area
under the ROC curve over k-fold cross validation will be used as a measure
for determining the optimal regularization parameter. This is because the
area under the ROC curve have specific traits that are valuable in this
setting, more on that in section 4.2.

3.1.2 Advantages and Disadvantages

Traditionally logistic regression has been widely used and studied and is as
such a well known and well understood method, making it a natural choice
for testing and comparison.

Logistic regression is very convenient to use for a company since it directly
models the probability for the observation to belong to a certain class,
P (Y |X,w), a score that can be used for making marketing decisions. It
also produces an indication on how important the features are, a significant
weight indicates that the impact of the specific feature is non-negligible,
while a non-significant weight represents a small or negligible impact.

Regularization can often improve the performance of the model, but it comes
at an computational cost and should as such be motivated before usage. One
difference between the regularizations is that the ridge, L2, regularization
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Figure 2: Image displaying the relation between the weights in 2 dimensions
for the L1-norm, shown in blue, and the L2-norm, shown in red, when the
sum of the weights adds to 1.

pushes small weights closer to 0, but does not put them to exactly 0 [10, pp.
215–216], while the lasso, L1, regularization sets feature weights to 0, which
as mentioned before is called feature selection or variable selection [10, pp.
219–220], [14]. Variable selection can also be used for data processing and
to decrease the number of features, which is especially important in settings
where N and p are of comparable sizes. This could be a strong reason to
use regularization.

Whether the lasso or ridge regression will perform the best is hard to know
beforehand. They have similar qualities, but are specialized for different
settings. For example in a scenario where the target is dependent, perhaps
to a small extent, on all features lasso will incorrectly discard some features
while ridge will not. Similarly for a scenario where the target is not depen-
dent on certain features, ridge regression will not be able to ignore these
features entirely, as discussed in [10, pp. 223–224].
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In Machine Learning: A Probabilistic Perspective, [16], Kevin P. Murphy rec-
ommends L2-regularization for logistic regression even when large amounts
of data are available [16, p. 254]. For example if the data is linearly sepa-
rable the maximum likelihood estimation, in the case of logistic regression
without regularization, will result in that ‖w‖ → ∞, which corresponds to
an infinitely steep sigmoid function [16, pp. 254-255]. Such a solution puts
the maximal amount of probability mass on the training data, which results
in that the solution probably will not generalize well [16, p. 255]. Murphy
recommends L2-regularization as a remedy to this problem [16, p. 255].

For logistic regression to be able to handle categorical variables it is neces-
sary that there is some kind of distance measure between the categories, if
that is not the case it becomes necessary to somehow transform the categor-
ical variables into a form that can be handled by the regression. This can
be done with the help of dummy variables, which can greatly increase the
number of features. Compared to decision trees which can handle categori-
cal variables without such transformations and as such preserve the number
of necessary features. An increase in the number of features can cause prob-
lems especially for smaller sample sizes.

In the case of classification problems with more than two response classes
logistic regression is not as widely used [10, p. 137]. Which makes it less of
a natural choice for comparison in such a setting.

Because of these features and flaws with logistic regression the different
regularizations and different choices the regularization parameters will be
studied and compared to normal logistic regression without regularization.

3.1.3 Stochastic Gradient Descent

The following description of SGD is based on Léon Bottou’s work in Large-
scale machine learning with stochastic gradient descent, [3]. Let us first
introduce some notation. Let z connote an observation with features and
the target variable (x, y), note that y is not necessary representing classes
any more, but can represents the target in a regression model. We then
define a loss function l(ŷ, y), where ŷ represents the predicted y value. Note
that l should not be confused with negative log-likelihood defined above, but
the negative log-likelihood is an example of the loss function for logistic re-
gression. l(ŷ, y) measures the cost of predicting ŷ when the correct value is y.
Then we limit ourselves to a family F of functions that are parametrized by
a weight vector w, fw(x). The sigmoid function in equation (4) is an exam-
ple of such a family of functions. The objective is to find the function f ∈ F
that minimizes the average loss, over the examples, Q(z, w) = l(fw(x), y)
[3]. Given a set of observations {z1, z2, . . . , zN} the empirical risk can be
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expressed:

En(f) =
1

N

N∑
i=1

l(fw(xi), yi). (16)

Usually one has to settle for the empirical risk since the expected risk :

E(f) =

∫
l(f(x), y) dP (z) (17)

which would be desirable to calculate, is not available because of the un-
known distribution dP (z), which represents the true underlying distribution.
According to Bottou the minimization of the empirical risk instead of the
expected risk is justified by the results in [24] as long as the chosen family
of functions F is sufficiently restrictive [3].

Regular gradient decent, or GD, is an alternative for minimizing the empir-
ical risk, where the weights w are updated iteratively with the help of the
gradient of En(f) [3]:

wt+1 = wt − γ
1

N

N∑
i=1

∇wQ(zi, wt) (18)

where γ is a gain which has to be chosen carefully and ∇w = [ d
dw1

, . . . , d
dwp

].
GD achieves linear convergence under sufficient assumptions of regularity
and if the initial estimate w0 is not too far away from the optimum and the
gain γ is small enough [3].

SGD is a simplification of GD, where instead of evaluating the gradient of
En(f) one estimates the gradient with the help of a single randomly selected
observation zt [3]:

wt+1 = wt − γt∇wQ(zt, wt). (19)

This leads to a stochastic process {wt, t = 1, . . . }, which depends on the
randomly selected observations and the idea is that equation (19) will be-
have as equation (18), since (18) is the expectation of (19).

Convergence for SGD is usually achieved under certain conditions of the
decreasing gains γt. The conditions are

∑
t γ

2
t <∞ and

∑
t γt =∞ [3].

SGD is especially powerful when performing calculations on large amounts
of data because of its efficiency, both in performance and computational
time [3]. A disadvantage is the gain parameter γt that might need to be
tuned to achieve quick convergence.
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3.2 Random Forest Classifier

The random forest classifier is based on the basic decision tree and was in-
troduced by Leo Breiman [4] and has since then been used in many different
applications. As before the method is first described more closely and then
some pros and cons are discussed.

3.2.1 Description

Random forest, abbreviated RF, is a form of bagged decision trees, but the
trees have been slightly decorrelated [10, p. 320]. Random forest can be
used for both regression and classification, but we are mainly interested in
the random forest classifier. Let us start by describing the decision tree.

Decision trees are widely used for both classification and prediction and
one major reason is its easy interpretation, since splits in decision trees can
be represented as rules [1, p. 165]. Berry and Linoff gives an intuitive
description of the decision tree by referring to the famous Swedish botanist
and zoologist Carl Linnaeus:

“A decision tree is a structure that can be used to divide up a
large collection of records into successively smaller sets of records
by applying a sequence of simple decision rules. With each suc-
cessive division, the members of the resulting sets become more
and more similar to one another. The familiar division of living
things into kingdoms, phyla, classes, orders, families, genera, and
species, invented by the Swedish botanist Carl Linnaeus in the
1730s, provides a good example. Within the animal kingdom, a
particular animal is assigned to the phylum chordata if it has a
spinal cord. Additional characteristics are used to further subdi-
vide the chordates into the birds, mammals, reptiles, and so on.
These classes are further subdivided until, at the lowest level in
the taxonomy, members of the same species are not only mor-
phologically similar, they are capable of breeding and producing
fertile offspring.” [1, p. 166]

This is the essential idea of a decision tree, to divide the groups into smaller
subgroups by studying features of the group. Decision trees are as such
non-parametric and make no assumption on the distribution of the data [7].
Figure 3 gives an example of a decision tree for whether a person should go
out and play tennis or not.

When choosing which feature to study different criteria can be used, such
as the Gini index or the cross-entropy. Both give a measure on the quality
of the split [10, p. 312]. The Gini index is defined by the equation:
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Figure 3: An example of a decision tree of whether to play tennis or not.
The image and example was taken from [22].

G =

K∑
k=1

p̂mk(1− p̂mk) (20)

where K is the number of classes in the target variable and p̂mk is the
proportion of training observations from the class k in the mth set [10, p.
312]. Similarly the cross-entropy is expressed by:

D = −
K∑
k=1

p̂mk log p̂mk (21)

The tree is then built by splitting until further splitting is not possible,
allowed or necessary and the remaining subsets are called leafs. The obser-
vation is classified as the majority class in the specific leaf it falls in. There
are several possible specifications for stopping that can be made to the tree,
for example maximum depth or a lower bound on the number of observa-
tions in a branch [1, p. 175]. After the tree has been built it is possible
to prune the tree. Pruning is a method for stabilizing the tree, making it
less vulnerable to noise in the training data [1, p. 184]. By pruning the
tree leaves and other nodes are combined to a single leaf, usually done in
such a way that the classification error is minimized on a validation set [1,
pp. 189–190]. There are several different methods for pruning a tree, for
example C5 pruning, pessimistic pruning and stability-based pruning [1, pp.
190–191], but these will not be discussed further.

Decision trees can be tinkered with in many ways to improve performance,
but let us focus on when you combine several decision trees into a classifier
or more specifically the random forest classifier. Random forest is different
from the ensemble method of bagged decision trees, since random forest in-
troduces an improvement that decorrelates the trees [10, p. 320], which in
turn raises the variance. This decorrelation is done by limiting the number
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3.2 Random Forest Classifier

of features each decision tree in the random forest is allowed to consider,
meaning that each decision tree can only split on a random subset of fea-
tures, but as with bagging the tree is trained on bootstrapped samples from
the training data [10, p. 320].

As with logistic regression it is desirable to be able to rank or score each
observation with the probability of that observation belonging to a certain
class. For the random forest this probability will be estimated by the mean
of the probability estimations of each tree in the forest and were each tree
estimates the probability by taking the fraction of the samples of the same
class of the observation in the particular leaf that the observation ends up
in. This is called relative class frequency and is suggested by Boström in [2],
were this method for estimating the probabilities clearly out preforms other
alternatives, such as average vote, Laplace estimate and the m-estimate, on
most of the studied datasets in terms of accuracy, area under the ROC curve
and Brier score.

3.2.2 Advantages and Disadvantages

Decision trees in themselves have some desired properties as described in
[10, p. 315], for example being non-parametric, how easy it is to explain
how decision trees works and to display and interpret the results. It is also
possible to then translate these results into rules [1, p. 165], which, as dis-
cussed before, can be very useful for a company. Decision trees are also said
to mimic human decision-making to a greater extent than most algorithms
[10, p. 315]. Logistic regression suffered from the problem of being unable
to handle categorical variable without distance measures, decision trees are
instead perfect for handling such variables, which can be done without the
need of dummy variables, thus preserving the number of features [10, p. 315].

A problem with a single decision tree is that in many settings it is unable
to perform well and random forest is a method to improve the accuracy [10,
p. 316], but some of the advantages with the decision tree decreases, for ex-
ample the interpretability of the result and the ability to create generalized
rules.

In Breiman’s original paper he introduces several strengths with random
forest, such as accuracy comparable and sometimes better than Adaboost,
which at the time was not generally achieved by similar decision tree ensem-
ble methods [4]. Outliers and noise are problematic for some methods, but
random forest is comparably robust and good at handling such problems
[4]. Compared to bagging or boosting random forest is faster, while it is
also easy to parallelize [4].
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4 Evaluation Theory

Evaluating the models is essential and there are several tools available de-
pending on the setting of the problem. This section discusses some methods
for measuring the appropriateness of the models. First let us introduce some
necessary additional notation for when a model is applied on a dataset:

• TP : the number of true positives, given by the model.

• FP : the number of false positives, given by the model.

• TN : the number of true negatives, given by the model.

• FN : the number of false negatives, given by the model.

FP means that the observation is classified as positive, but it is actually
negative and vice versa for FN . By the definition of NP and NN from
section 2.2 the following equations can be deduced:

TP + FN = NP (22)

and

TN + FP = NN . (23)

With this notation it becomes possible to introduce some measures for eval-
uating the models.

4.1 Precision, Recall and Accuracy

Precision and accuracy are often used to measure the performance of binary
classifiers and are defined as follows [25]:

Precision =
TP

TP + FP
(24)

and

Accuracy =
TP + TN

NP +NN
(25)

Precision represents the ratio between the number of true positives and the
total number of predicted positives and measures how well the model is able
to distinguish between positive and negative examples. Accuracy measures
the models ability to correctly identify the examples. A third measure is
recall and it is defined by:

Recall =
TP

NP
(26)

26



4.2 ROC Curves

for the positive class and for the negative class just replace TP with TN
and NP with NN . The recall of a model is connected to the precision of the
model. A high recall but low precision is not an indication of a successful
model, but instead of a model that predicts that most observations are
positive. The reversed with high precision and low recall is probably not
desirable either, since then model is able to accurately classify some positive
examples but misses a large portion of all the existing positive examples in
the dataset. Instead a well performing model is usually characterised by
both high precision and high recall.

4.2 ROC Curves

ROC, Receiver Operating Characteristics, curves have been used for evaluat-
ing models for many decades [1, p. 98]. First let us assume that a model has
scored all of the test observations with a probability P (Y = 1|X = x) and
that if P (Y = 1|X) > t for an observation then the observation is classified
as positive, where t is the classification threshold of the model. Let us also
denote the predicted class Ŷ and define it as Ŷ = 1{P (Y=1|X)>t}, where 1 is
the indicator function. The ROC curve is defined by a parametric definition
of the false positive rate and true positive rate:

FP -rate(t) =
FP (t)

NN
=

NN∑
j=1

1{P (Y=1|X=xj)>t}

NN
, (27)

where the sum is over the negative observations and

TP -rate(t) =
TP (t)

NP
=

NP∑
i=1

1{P (Y=1|X=xi)>t}

NP
, (28)

where similarly the sum is over the positive observations in the dataset.
The false positive rate and the true positive rate have probabilistic inter-
pretations that can be expressed as FP -rate(t) = Pt(Ŷ = 1|Y = 0) and the
TP -rate(t) = Pt(Ŷ = 1|Y = 1) [6, p. 8]. This means for example in the
case of the TP -rate the probability that a positive example is classified as
positive by the model.

The x-axis of the ROC curve is defined by the FP -rate [25]:

x-axis = FP -rate(t) (29)

and the y-axis by the TP -rate [25]:

y-axis = TP -rate(t). (30)
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See figure 4 for a typical example of a ROC curve. In the figure the origin,
the point (0, 0), represents the threshold where no observations are classified
as positive and as such the false positive rate and the true positive rate are
both zero. Then when t is decreased the curve takes shape and at the point
(1, 1) all observations are classified as positive and as such both the false
positive rate and the true positive rate are 100%. A feature of the ROC
curve is that it is independent of the ratio between NP and NN , which is
usually desirable when the ratio varies [25].

Figure 4: An example of a ROC curve, where the blue line indicates the
performance of the model and the dotted grey line represents a random
classifier. The area under the ROC curve, AUC, is given in the legend.

The ROC curve is useful by itself but it is also interesting to measure the
area under the ROC curve or AUC. The AUC is defined by [25]:

AUC =

∫ 1

0

TP

NP
d
FP

NN
=

1

NPNN

∫ NN

0
TP dFP. (31)

In words equation (31) gives a method for calculating the area under the
ROC curve, where the interpretation of dFP

NN
is a small step on the x-axis.

By inserting equations (27) and (28) we obtain:
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AUC =

∫ 1

0

NP∑
i=1

1{P (Y=1|X=xi)>t}

NP
d


NN∑
j=1

1{P (Y=1|X=xj)>t}

NN

 =

=


d

(
1

NN

NN∑
j=1

1{P (Y=1|X=xj)>t}

)
dt

=
1

NN

NN∑
j=1

δ{P (Y=1|X=xj)=t}

 =

=
1

NPNN

∫ 1

0

NP∑
i=1

1{P (Y=1|X=xi)>t}

NN∑
j=1

δ{P (Y=1|X=xj)=t} dt = {unique

probability scores} =
1

NPNN

NN∑
j=1

NP∑
i=1

1{P (Y=1|X=xi)>P (Y=1|X=xj)},

where δ is the delta function. As described by Vuk and Curk in [25] the
probability that a random positive observation in the test set, ZP , has a
higher assigned score by the model M than a random negative example,
ZN , is calculated by, if all the scores are unique, for each negative example
calculating the number of positive examples with a higher score, sum it
together and divide by NPNN or:

P (Zscore
P > Zscore

N | M) =
1

NPNN

NN∑
j=1

NP∑
i=1

1{P (Y=1|X=xi)>P (Y=1|X=xj)},

(32)
where the score superscript represents the score of the observation given by
the model. By comparison we see that:

AUC = P (Zscore
P > Zscore

N | M). (33)

For a perfect classifier this probability is equal to 1 and for the worst kind
of classifier, which is just randomly guessing, this probability is equal to 0.5
[1, p. 99].

If the scores are not unique, meaning that negative and positive observations
both have the same score, equation (33) still holds true if the points with
equal score are connected by the lower sides of a right-angled triangle [25].
There are alternatives to this method, such as if several observations have
the same score you include all of the observations and move diagonally in the
diagram, this method will be used when necessary. With this approach the
AUC gets a new interpretation which is very similar to the old interpretation
[25]:
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AUC = P (Zscore
P > Zscore

N |M) +
1

2
P (Zscore

P = Zscore
N | M) (34)

The only modification is a term for describing the case where a random
positive example and a random negative example have the same score given
by the model.

From the ROC curve it is possible to find the classification threshold t which
maximizes the accuracy of the classifier. From equation (25) we obtain:

Accuracy =
TP (t) + TN(t)

NP +NN
=
TP -rate(t)NP + (1− FP -rate(t))NN

NP +NN
,

(35)
which means that the threshold that maximizes the accuracy is easily ob-
tained from the ROC curve. This threshold is then useful when studying
the precision and the recall of the classifier.

4.3 Lift Charts and Cumulative Captured Response

Another common evaluation tool is lift charts, which are closely connected
to the cumulative captured response, CR, [1, pp. 81–84]. Captured response
is the portion of positive examples that you would reach out to, y-axis, if
you only contact a portion of the total population, x-axis, if the observations
have been ordered according to the scores given by the model [1, p. 82], see
the left plot in figure 5. Let us define the number of positive examples in the

sub sample as ÑP , then the captured response can be expressed as CR = ÑP
NP

,
and the proportion contacted as PC . Lift, L, is defined as the portion of
positive examples in the sample divided by the overall response rate, so if a
sample contains 30% positive examples and the dataset contains around 5%
positive examples overall then the lift is equal to 6, 30/5 = 6 [1, p. 82]. If
we denote the size of the sub sample as Ñ the lift can be expressed by the
following equation:

L =

ÑP

Ñ
NP

NP+NN

(36)

The connection to the captured response curve becomes more apparent if
the terms are rearranged:

L =

ÑP
NP

Ñ
NP+NN

=
CR

PC
(37)

The lift is as such the division of the y-values and x-values on the captured
response curve. See the right plot in figure 5 for a typical example of a lift
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chart.

The lift chart is a bit problematic, for example even if there is a huge lift
it might not mean that the model is desirable to use, perhaps if the sample
where the lift is large is so small that it is not usable from a marketing
perspective [1, p. 82]. A lift chart can not evaluate the usefulness of the
model by itself, but it is useful for comparing different models to each other
[1, p. 83]. The captured response curve is perhaps more useful and most
importantly easy to understand and interpretate, since it is easy to for ex-
ample see how many of the positive examples you reach out to if you only
contact 50% of the total population.

Figure 5: Left: Captured response plot, the blue line represents the perfor-
mance of the model and the dotted grey line represents a random classifier.
Right: The lift chart given by the captured response curve to the left.

4.4 k-Fold Cross-Validation

Cross-validation can be used for testing the performance of most statistical
learning methods and is as such often used in machine learning. In k-fold
cross-validation the dataset is randomly divided, with the help of stratified
sampling, into k roughly equal groups or folds and then the first fold is put
away as a validation set and the rest of the folds, k − 1 of them, are used
for training. This is repeated k times in total, such that each fold is left out
once, and for each iteration the evaluations methods discussed above can be
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4.4 k-Fold Cross-Validation

used [10, p. 181].

k-fold cross-validation introduces a balance between bias and variance, it
has smaller bias than using a separate validation set, but a smaller variance
than for Leave-One-Out Cross-Validation, LOOCV, which is the same as
k-fold cross-validation when k = N [10, pp. 181–183]. This usually makes
k-fold cross-validation balanced between too high bias and too high variance
[10, p. 184]. It is also computationally efficient compared to LOOCV [10, p.
181], since usually k is chosen around 10, which makes the number of rep-
etitions considerably smaller than for LOOCV, especially in this particular
case where N � 10.
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5 Experimental Study

In this section the data used for the analysis is described, section 5.1, and
then the performance of the different methods is presented under the results
section 5.2.

5.1 Data

The data was selected as described in the methodology section, 2, and re-
sulted in one dataset from a time frame which we can call the “present” and
denote it D1 and another dataset from another time frame, called the “fu-
ture”, let us denote this dataset D2. Each observation represents a prospect,
or an email and a user. The positive class represents that the email was
opened and the negative class represents that the email was not opened.

Dataset N NP NN NP /NN p

D1 194493 22619 171874 0.132 113

Ds
1 142 17 125 0.136 113

D2 183597 18666 164931 0.113 113

Table 1: Properties of the data, where N is the number of observations,
NP is the number of observations belonging to the positive class, NP is the
number of observations belonging to the negative class and p the number of
features.

D1 acts as a training set, but some analysis is performed on this dataset
in order to check the validity of the models. As seen in Table 1 D1 con-
tains N = 194493 observations with NP = 22619 positive examples and
NN = 171874 negative examples. The number of features was equal to
p = 113.

D2 acts as a test set and the models performances will mainly be assessed
by their results on this dataset. D2 contains N = 183597 observations
with NP = 18666 positive examples, NN = 164931 negative examples and
p = 113 features.

The datasets have been chosen in such a way that it will reflect reality,
where the “present”, dataset D1, is known and it is desirable to target users
in the “future”, dataset D2. Since the training will be performed with data
from D1 and in D1 N is very large compared to p we consider the D1 as a
population and not as a sample. Instead of training on the whole population
training will be performed on a sample of initially 142 observations, since
then the number of training points is similar to the number of features
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when preforming 5-fold cross validation, this dataset is denoted Ds
1 and was

sampled from D1 with the help of stratified sampling as described in 2.6.7.

5.2 Results

Below the results are presented without discussion. The logistic regression
models and random forest were trained on data from D1 and the perfor-
mance was evaluated with the help of k-fold cross validation, ROC-curves
and lift charts. The analysis was performed on both data from D1 and D2.

In some scenarios it can be interesting to send emails to a small sample of
the population before sending it to a larger targeted part of the population.
It is also more efficient to use a smaller training set, especially if no signif-
icant improvement in the performance can be gained. Therefore a smaller
subset of data where N ≈ p was considered first, namely the dataset Ds

1.
We call this setting high dimensional case or HDC. For comparison we also
interest ourselves in the case where N � p, denoted LSS or large sample
scenario.

5.2.1 Parameter Study

First a parameter study was carried out for the high dimensional case with
the dataset Ds

1 and 5-fold cross validation, where the AUC was used as the
measure of performance. The classes were weighted by their relative fre-
quency, because of the skewness between the classes in the data. Figure
6 shows how AUC varies with C for regularized logistic regression. Max-
imum AUC seems to be achieved for low C, as such C = 1 for both L1-
regularization and L2-regularization was chosen for the rest of the analysis.
For random forest Gini index and cross-entropy as splitting criterion were
compared, while varying the max depth on each tree, figure 7, and the num-
ber of trees, figure 8. For the rest of the analysis no max depth will be
applied, n = 100 and Gini index as the splitting criterion was chosen.

5.2.2 ROC Curves

Secondly the ROC curves were created with the help of k-fold cross-validation,
where k = 5. Figures 9–11 display the ROC curves for logistic regression,
with and without regularization, performed on each fold and the average
ROC curves over all folds. Similarly figure 12 shows the ROC curves for
random forest. The mean ROC curves are compared in figure 13.

Another test was how well the methods preformed on the complete training
dataset, D1, when scaled down to a sample size similar to the number of
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Figure 6: HDC: The mean AUC, over 5-fold cross validation, for LR with reg-
ularization as a function of the penalty parameter C, when N ≈ p, dataset
Ds

1. LR without regularization is not dependent on C, but included as a
reference.

Figure 7: HDC: The mean AUC, over 5-fold cross validation, for RF as a
function of the max depth d, when N ≈ p, dataset Ds

1. For each d the mean
AUC over the cross validation was averaged over 10 different initial random
seeds. The number of trees n was set to 100.

features, as such a stratified sample of N = 114 observations was used for
training and then it was tested on the remaining dataset. This was repeated
100 times and the average result can be found in figure 14.
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Figure 8: HDC: The mean AUC, over 5-fold cross validation, for RF as a
function of the number of trees n, when N ≈ p, dataset Ds

1. For each n the
mean AUC over the cross validation was averaged over 10 different initial
random seeds. No max depth was applied.

Figure 9: HDC: ROC curves for each fold over 5-fold cross validation using
LR without regularization, when N ≈ p, dataset Ds

1. The AUC is given in
the legend.
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Figure 10: HDC: ROC curves for each fold over 5-fold cross validation using
LR with L1-regularization and C = 1, when N ≈ p, dataset Ds

1.

Figure 11: HDC: ROC curves for each fold over 5-fold cross validation using
LR with L2-regularization and C = 1, when N ≈ p, dataset Ds

1.
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Figure 12: HDC: ROC curves for each fold over 5-fold cross validation using
random forest with Gini index as splitting criterion, n = 100 trees and no
max depth, when N ≈ p, dataset Ds

1.

Figure 13: HDC: The mean ROC curves, over 5-fold cross validation, for the
models as seen in figures 9-12.
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Figure 14: HDC: The mean ROC curves, over 100 repetitions, for the different
models trained on a sampled dataset from D1 of size 114 and tested on the
remaining 194379 observations in D1.

Then a test was preformed with training on a sampled dataset of size 114
and then tested on the test set D2, for 100 different samples, see figure 15.
For comparison figure 16 displays the resulting ROC curves when training
on the whole training set D1 and testing on the test set D2.
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Figure 15: HDC: The mean ROC curves, over 100 repetitions, for the different
models trained on a sampled dataset from D1 of size 114 and tested on the
test set D2.

Figure 16: LSS: The ROC curves for the different models trained on the
training data D1 and tested on the test set D2.
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5.2.3 Cumulative Captured Response and Lift

In figure 17 the mean captured response and lift for the models are found,
performed with 5-fold cross validation on Ds

1.

Figure 17: HDC: Left: Captured response in average over k-fold cross val-
idation, with k = 5, for the different models and a random classifier, when
N ≈ p, dataset Ds

1. Right: The lift charts given by the captured response
curves to the left.

Figure 18 displays the mean captured response and lift when trained on a
sampled dataset from D1 of size 114 and tested on the test set D2, averaged
over 100 repetitions. For comparison the captured response and lift when
trained on the whole training set D1 and tested on the test set D2 is shown
in figure 19.
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Figure 18: HDC: Left: The average captured response when trained on a
sampled dataset from D1 of size 114 and tested on the test set D2, repeated
100 times. Right: The lift charts given by the captured response curves to
the left.

Figure 19: LSS: Left: The captured response when trained on the training
set D1 and tested on the test set D2. Right: The lift charts given by the
captured response curves to the left.
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5.2.4 Varying the Amount of Training Data

The effects on the AUC of varying the size of the sample of the training data
to train the model on is displayed in figure 20. 5-fold cross validation was
used on D1 and then the training points were sampled from the non-test
folds with the help of stratified sampling and tested on the remaining test
fold. This was repeated 10 times and the average AUC was calculated.

Figure 20: The mean AUC, over 10 repetitions, for the different models
when a specific number of the training points were used. For each number
of training points 5-fold cross validation was used on D1 and then the train-
ing points were sampled from the non-test folds with the help of stratified
sampling and tested on the remaining test fold.

Similarly the effects of varying the number of training points on the perfor-
mance on the test set D2 was evaluated and can be found in figure 21. For
each number of training points the AUC was averaged over the result for
100 different samples from the training set D1.
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Figure 21: The mean AUC, over 100 repetitions, for the different models
when a specific number of the training points were used. The training points
were sampled from D1 with stratified sampling and then the models were
tested on the test set D2.

5.2.5 Precision and Recall

The precision and recall of the models are presented in pair of tables, where
the first table displays the result of training on a sampled dataset from D1

of size 114, the high dimensional case, and testing on the test set D2, aver-
aged over 100 repetitions. The second table displays the result of training
on the whole dataset D1 and testing on the test set D2, the large sample
scenario. For logistic regression without regularization see table 2 and 3.
For logistic regression with L1-regularization see table 4 and 5. For logistic
regression with L2-regularization see table 6 and 7. For random forest see
table 8 and 9. The classification threshold t was chosen independently for
each repetition and trial as the t that gives the optimal accuracy according
to the ROC curve.
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Class Precision Recall Support

0 0.93 0.98 164931

1 0.62 0.32 18666

Avg/Total: 0.90 0.91 183597

Table 2: HDC: Table displaying the average precision and recall, over 100
repetitions, for LR, without regularization, trained on a subset of D1 of
size 114 and tested on the test set D2. The different classes were weighted
accordingly to their support. Support represents the number of occurrences
of the specific class in the dataset. The average was weighted with the
classes’ respective support.

Class Precision Recall Support

0 0.95 0.98 164931

1 0.72 0.51 18666

Avg/Total: 0.92 0.93 183597

Table 3: LSS: Table displaying the precision and the recall for LR, without
regularization, trained on the whole training set D1 and tested on the test
set D2. The different classes were weighted accordingly to their support.
Support represents the number of occurrences of the specific class in the
dataset. The average was weighted with the classes’ respective support.

Class Precision Recall Support

0 0.94 0.97 164931

1 0.67 0.49 18666

Avg/Total: 0.92 0.92 183597

Table 4: HDC: Table displaying the average precision and recall, over 100
repetitions, for LR, with L1-regularization, trained on a subset of D1 of
size 114 and tested on the test set D2. The different classes were weighted
accordingly to their support. Support represents the number of occurrences
of the specific class in the dataset. The average was weighted with the
classes’ respective support.

Class Precision Recall Support

0 0.95 0.98 164931

1 0.73 0.51 18666

Avg/Total: 0.92 0.93 183597

Table 5: LSS: Table displaying the precision and the recall for LR, with L1-
regularization, trained on the whole training set D1 and tested on the test
set D2. The different classes were weighted accordingly to their support.
Support represents the number of occurrences of the specific class in the
dataset. The average was weighted with the classes’ respective support.
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Class Precision Recall Support

0 0.93 0.98 164931

1 0.63 0.32 18666

Avg/Total: 0.90 0.91 183597

Table 6: HDC: Table displaying the average precision and recall, over 100
repetitions, for LR, with L2-regularization, trained on a subset of D1 of
size 114 and tested on the test set D2. The different classes were weighted
accordingly to their support. Support represents the number of occurrences
of the specific class in the dataset. The average was weighted with the
classes’ respective support.

Class Precision Recall Support

0 0.95 0.98 164931

1 0.73 0.50 18666

Avg/Total: 0.92 0.93 183597

Table 7: LSS: Table displaying the precision and the recall for LR, with L2-
regularization, trained on the whole training set D1 and tested on the test
set D2. The different classes were weighted accordingly to their support.
Support represents the number of occurrences of the specific class in the
dataset. The average was weighted with the classes’ respective support.

Class Precision Recall Support

0 0.92 0.98 164931

1 0.61 0.22 18666

Avg/Total: 0.89 0.91 183597

Table 8: HDC: Table displaying the average precision and recall, over 100
repetitions, for RF, with 100 trees. Trained on a subset of D1 of size 114 and
tested on the test set D2. The different classes were weighted accordingly to
their support. Support represents the number of occurrences of the specific
class in the dataset. The average was weighted with the classes’ respective
support.

Class Precision Recall Support

0 0.95 0.98 164931

1 0.72 0.52 18666

Avg/Total: 0.92 0.93 183597

Table 9: LSS: Table displaying the precision and the recall for RF, with 100
trees. Trained on the whole training set D1 and tested on the test set D2.
The different classes were weighted accordingly to their support. Support
represents the number of occurrences of the specific class in the dataset.
The average was weighted with the classes’ respective support.
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5.2.6 Lasso Based Variable Selection

A further analysis was performed with a subset of features selected with the
help of L1-regularized logistic regression, because of its variable selection
properties. Initially a subset of 114 observations was selected from D1 with
all of its features, 113, and then variable selection was performed by training
the L1-regularized model on the data and keeping the variables with non-
zero coefficients. Then the models were trained on the subset with the
remaining features and tested on the test set D2. This was repeated 100
times and for each repetition around 8 features remained after the variable
selection. The resulting ROC curves can be found in figure 22. A similar
analysis was performed with all of the training data D1, where first variable
selection was performed resulting in 87 informative features and the model
was trained on the training data and tested on the test set D2, see figure 23
for the resulting ROC Curves.

Figure 22: The mean ROC curves for the different models trained on a sam-
pled dataset from D1 of size 114 and tested on the test set D2, repeated 100
times and performed with variable selection by using L1-logistic regression.
On average 8 out of 113 features remained after the selection.
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5.2 Results

Figure 23: The ROC curves for the different models trained on the training
data D1 and tested on the test set D2. Performed with variable selection
with the help of L1-logistic regression. 87 out of 113 features remained after
the selection.
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6 Discussion

This section discusses the results presented in the previous section and tries
to formulate useful insights for future work.

6.1 Parameter Study

The effects of changing the penalty parameter C for regularized logistic,
which are observed in figure 6, are quite expected, since what is seen is
that for C approaching 0 the model is not able to perform well and that is
reasonable because a small C puts more weight on the regularization term
which does not take the data in consideration, as can be seen in equations
(12) and (13). When increasing C the performance improved to an extent,
then no further improvement could be observed. Since the first term in
equations (12) and (13) becomes larger with the number of training points
while there is no change in the second term C was chosen as 1. The effects
of this are mainly questionable when varying the number of training points
as in section 5.2.4 and figure 20, since then the first term increases, but C
stays the same while arguably C should decrease to balance out the increase
in the first term.

For random forest the max depth and the number of trees were varied and for
the high dimensional case there did not seem to be any reason to enforce any
max depth when studying the results under cross-validation. Increasing the
number of trees seemed to have a positive impact on the performance and as
such it was chosen to 100 for performance and computational reasons. Gini
index seemed to perform slightly better than the cross-entropy as splitting
criterion and was chosen for that reason.

6.2 ROC Curves

In the high dimensional case when the ROC curve analysis is performed for
the different models, with 5-fold cross validation on the sampled training set
Ds

1, we see that the logistic regression models seem to perform slightly better
than random forest. This is clearly seen in figure 13 and at the same time
we observe no significant difference between the different logistic regression
models. Instead we seem to observe a difference between the models when
training on a sample from the training set D1 with N ≈ p and testing on the
reaming points in D1, figure 14. Logistic regression with L1-regularization
seems to perform better than all of the other models, which might be reason-
able since the model will discard features that probably are useless for the
classification, while the other models do not perform this variable selection.
Interestingly random forest performs at a similar level as the logistic regres-
sion and logistic regression with L2-regularization even though it seemed to
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6.3 Cumulative Captured Response and Lift

perform worse in the cross-validation setting before, meaning that the ran-
dom forest classifier found a solution that seem to generalize well compared
to its results on the cross-validation task.

When training on a small amount of data and testing on the separate test set
D2, figure 15, the result is similar to the one seen in figure 14. L1-regularized
logistic regression performs better than the other models and achieve a very
good result of an AUC around 0.85, which as discussed in section 4.2 can
be interpreted as the probability of the model assigning a higher score to
a random positive example than a random negative example. This means
that the model should be able to perform well in a real world setting where
we train on currently available data to try to predict user behaviour in the
future even though it was only trained on 114 observations! To compare
the analysis was performed by training on all of the available training data
D1, the large sample scenario, and tested on the test set D2, figure 16. In
the figure we see that all the models seem to perform comparably well, with
no model outperforming the others. With an AUC around 0.89 the models
trained on all of the data performs slightly better but the increase is quite
small when regarding that the amount of training data used is over a 1000
times larger!

6.3 Cumulative Captured Response and Lift

As seen in figure 17 the models seem to be able to perform well under cross
validation, with random forest performing slightly worse than the other
models. When tested on the separate test set D2 and trained on a small
amount of data L1-regularized logistic regression preforms a bit better than
the other models, just as could be seen in the ROC curves, figure 15. It seems
possible to capture about 80% of the positive responses by contacting 30%
of the population, when using the L1-regularized logistic regression model.
When training on the whole training data, figure 19, the different models
perform equally well, but if we compare with the case of only training on a
few observations we see that the result only slightly improves, the same as
seen in the ROC curve analysis. Increasing the amount of training data a
1000 times increases the performance of the models marginally.

6.4 Varying Amount of Training Data

Figure 20 displays how the AUC increases when the number of training
points increases and as can be observed in the figure we see that most of the
gain in performance of increasing the number of training points is achieved
when the number of training points is smaller than the number of features
p. The difference for L1-regularized logistic regression is especially clear
where the slope of the curve changes abruptly around the line where the
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number of training points is equal to the number of features. For the other
models the change of the slope is not as rapid by it clearly decreases with
increasing number of training points. This seems to agree with the earlier
analysis that the gain of using larger amounts of data only improves the
results marginally. The results when testing on the separate test set, figure
21, are very similar, with L1 logistic regression performing better than the
other models.

6.5 Precision and Recall

Precision and recall on the test set was studied for the different models and
trained on different sizes of training data. Generally the precision and recall
seem to be lower for the models when trained on small amounts of data
as expected, but especially logistic regression with L1-regularization seem
to perform comparably well when trained on only small amounts of data,
table 4. On the other hand random forest in the high dimensional case,
table 8, has a comparable precision compared to the other models, but a
slightly lower recall. Though the recall could be increased at the expense of
lowering the precision. Even though random forest in the high dimensional
case seems to perform poorly from the perspective of precision and recall it
performs comparably well in the sense of AUC and lift as seen in the figures
15 and 18.

6.6 Effects of Variable Selection

An analysis with variable selection was performed since L1-regularized logis-
tic regression performs well even with small amounts of data. In general the
variable selection resulted in a decrease in the number of features, p, with
more than 90%, when working on a dataset of size 114. The difference in
performance to case with no variable selection is best studied by comparing
figure 15 and 22. As can be seen there is almost no difference and if there is
one then it slightly favours the models trained with variable selection. The
interpretation of this is that there seems to be a few features which are able
to describe the properties of the data especially well, since excluding such a
large portion of the features does not impact the results.

Variable selection was also performed when using all of the training data
and then 87 features were kept. The resulting ROC curve after variable
selection, figure 23, is very similar to the one seen without variable selection,
figure 16. This increases our confidence that some of the features are non-
informative for the classification. Since the difference in performance is small
compared to when trained on a small amount of data and a small amount
of features the thought that some particular features contain most of the
valuable information is strengthened.
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6.7 HDC Compared to LSS

Logistic regression with L1-regularization performs better than the other
models in the high dimensional case and this might be because of its vari-
able selection properties and that it recognises that some of the available
features bring no information of value for the classification, which seem quite
likely. Because what constitutes a user that opens emails is not really clear
and to imagine how for example gender or listening patterns affects the users
likelihood to open an email is not easy. This makes it quite expected that
some features that are given some kind of impact by the other models are
actually only finding noise in the training data and will not generalize as
well as a result.

In the large sample scenario all the models perform equally well, which is
different from the high dimensional case. This is most likely because of
the huge amounts of data that cancels out most of the regularization ef-
fects for logistic regression, but why random forest have the same level of
performance is a bit harder to explain, since some difference is reasonably
expected. Perhaps the large amounts of training data causes the methods
to find approximately the same solutions.

The performance difference when comparing the different cases are marginal
compared to the massive increase in data available in the large sample sce-
nario. Naturally the performance increases with more data available, but
also the computational time to train the model increases and as seen in
figure 21 the gain in AUC quickly decreases when the number of training
points is increased. These different cases have different applications, while
LSS can be used for trying to gain accuracy in the model and can be used
in special cases when high performance is especially important, HDC on the
other hand shows that perhaps small tests can be performed before sending
emails to a larger amount of users and that a small test size is sufficient.
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7 Conclusions and Future Work

Below conclusion that can be made from the study is presented, section
7.1, and recommendations for both how to use the result and future work,
section 7.2.

7.1 Conclusions

By following the methodology presented by Berry and Linoff, as described
in section 1.2, and avoiding crucial mistakes such as learning things that are
not true or learning thing that are true but not useful it is possible to present
some useful conclusions with confidence. The objective was ultimately to
increase the positive response rate for emails sent by Spotify and there seem
to be great possibilities for such an improvement, by targeting user with the
help of historical data.

A large increase in the positive response rate can be achieved, for exam-
ple by targeting the top 20% of the users ordered by their score. Then as
seen in the lift chart of figure 19 the lift is around 400% or a 300% increase
in the response rate! Converted to specific numbers it means that instead
of sending emails to over 180, 000 and receiving around 18, 500 positive re-
sponses, which gives a response rate around 10%, we can achieve a response
rate around 40% by targeting 36, 000 users, with around 14, 500 positive
responses. Similar results can be achieved even if only a small amount of
training data is used as seen in figure 18. The ROC curves also indicates
that successful targeting can be achieved, with an AUC of around 0.85 on
the test set.

The second question was to investigate how using a small amount of training
data, the high dimensional case, would compare to using large amounts of
data, the large sample scenario. As seen in the results for all of the evalua-
tion methods the gain of increasing the number of observations from close to
the number of features, N ≈ p, to a number more than a factor 1000 more
is quite marginal. The difference is especially small for the L1-regularized
logistic regression method, which performs better than the other methods
in the high dimensional case.

Because Lasso logistic regression performed particularly well and because of
its variable selection properties the effects of Lasso based variable selection
was studied. In the high dimensional case the result was a massive reduction
in the number of features, which was reduced by more than 90%, while the
predictive power was unchanged. Similarly a large reduction in the number
of features was achieved in the large sample scenario, without any loss in
performance. This indicates that most of the predictive power was contained
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in only a few features and that there is a great sparsity in the classification
information.

7.2 Future Work

This thesis only scrapes what we believe to be the surface of possible im-
provements of email communication and there seem to be endless opportu-
nities for further increase in performance.

An initial step could be to include more information about the emails form
and content, especially when trying to improve the click rate, the number of
users that click on the links in the email, and perhaps use more information
about the users specifically.

The analysis could also be extended to include negative responses such as
spam reports or users that unsubscribe, possibly by trying a multi-class
classification model, arguably random forest classifier. It would also be in-
teresting to try other models and methods, even in the original setting.

Performing experiments could tell more about the performance of using tar-
geting and eventually also lead to the deployment of such a targeting system.
Several different types of experiments would be interesting to perform, but
the most urgent one would be a simple test of sending an email to a targeted
group compared to sending it to a randomly selected group. After deploy-
ment it will be interesting to see the long term effects of targeting users,
hopefully it will increase the response rates but perhaps the types of users
that will be targeted will change over time.

Ultimately a company is interested in creating revenue and as such it will
be more interesting to try to determine the effects of email targeting on
the profit made or the amount of premium users in Spotify’s case, instead of
only studying the response rate. This is a very interesting problem, not only
because it is important but also since it is not entirely clear how such a anal-
ysis would be performed, since finding a direct connection between possible
higher email response rates and premium conversion perhaps is not possible.

In the scenario studied in this thesis the contents of the emails have already
been determined and as such users have been targeted from the perspective
of finding users interested in this particular information, but it would per-
haps be possible to turn the tables and find a need for specific information
amongst users. Then instead of asking “which users should we send this
information to?” we ask “what information are each user interested in re-
ceiving?”.
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