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Abstract

In non-life insurance, almost every tariff analysis involves continuous rating vari-
ables, such as the age of the policyholder or the weight of the insured vehicle.
In the generalized linear model, continuous rating variables are categorized into
intervals and all values within an interval are treated as identical. By using
the generalized additive model, the categorization part of the generalized linear
model can be avoided. This thesis will treat different methods for finding the
optimal smoothing parameter within the generalized additive model. While the
method of cross validation is commonly used for this purpose, a more uncommon
method, the L-curve method, is investigated for its performance in comparison
to the method of cross validation. Numerical computations on test data show
that the L-curve method is significantly faster than the method of cross valida-
tion, but suffers from heavy under-smoothing and is thus not a suitable method
for estimating the optimal smoothing parameter.
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Chapter 1

Introduction

In non-life insurance, almost every tariff analysis involves continuous rating vari-
ables, such as the age of the policyholder or the weight of the insured vehicle. In
the generalized linear model (GLM), continuous rating variables are categorized
into intervals and all values within an interval are treated as identical.

Tariff cell Age (years) Weight (kg) Premium

1 18− 30 0− 1 500 P1

2 18− 30 1 500− 2 500 P2

3 18− 30 2 500− 3 500 P3

4 30− 99 0− 1 500 P4

5 30− 99 1 500− 2 500 P5

6 30− 99 2 500− 3 500 P6

Table 1.1: Illustration of a simple tariff with two categorized rating variables.

This method is simple and often works well enough. However, a disadvantage
of categorizing a rating variable is that two policies with different but close
values for the rating variable may get significantly different premiums if the
values happen to belong to different intervals. Also, finding a good subdivision
into intervals can be time consuming and tedious. The intervals must be large
enough to achieve good precision of the price relativities, but at the same time
they have to be small if the effect of the rating variable varies much. Sometimes
it is difficult to fulfill both these requirements.

With this in mind, an alternative modelling approach can be used. By using
the generalized additive model (GAM), the categorization part of the GLM can
be avoided. This thesis will treat different methods for finding the optimal
smoothing parameter within the GAM. While the method of cross validation
is commonly used for this purpose, a more uncommon method, the L-curve
method, is investigated for its performance in comparison to the method of
cross validation.
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Chapter 2

Insurance

An insurance policy is a contract between an insurer, e.g. an insurance com-
pany, and a policyholder, e.g. a consumer or a company. An insurance policy
can be considered as a promise made by the insurer to cover certain unexpected
losses that the policyholder may encounter. The policyholder pays the insurer a
fee for this contract, called the premium. An event reported by the policyholder
where he or she demands economic compensation is called a claim.

Insurance policies are commonly categorized into life and non-life insurance. A
life insurance policy covers future financial losses and the insurer pays a sum
of money to a designated recipient, called the beneficiary. A non-life insurance
policy covers damage incurred to the policyholder’s possesion or property, and
the policyholder receives compensation so that the property can be recovered to
the previous physical condition. However, there are counterexamples, such as
business interruption policies (non-life insurance), where the policyholder (usu-
ally a company) is being covered for future financial losses.

The strategic business idea of an insurer has its origin in ancient history where
the community supported individual losses [13]. Back then, the premiums were
distributed uniformly, but as time has passed, the realization of a modern insur-
ance company’s success is through risk differentiation. Statistics and probability
theory can be used to estimate the risk an insurer is exposed to and the main
theorem which is the cornerstone of insurance mathematics is the Law of Large
Numbers [3]. The theorem states that the expected value µ of a sequence of in-
dependent and identically distributed random variables Yi can be approximated
by the sample average of {Y1, . . . , Yn}. Applied to insurance mathematics, this
means that the total loss for a large set of customers should be close to its
expected value and the premium for a policy should be based on the expected
average loss that is transferred from the policyholder to the insurer [12, §1]. In
this thesis we will omit non-risk related costs, such as administration costs, and
only discuss the part of the premium that is directly connected to the losses.
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2.1 Tariff analysis

A tariff is a formula, by which the premium for any policy can be computed.
The underlying work for designing a tariff is in the insurance business known
as a tariff analysis. The data material for a tariff analysis is historical data
with information about policies and claims. We limit the definition of a tariff
to explain the expected average loss, which will hereafter be referred to as the
pure premium. The pure premium can be expressed as the product of the claim
frequency (how often a claim occurs) and the claim severity (how much a claim
will cost on average) [12, §1.1], such that

Pure premium = Claim frequency× Claim severity. (2.1)

An analysis can be performed on the pure premium directly, but there are ad-
vantages in splitting the model to the product above, generating two sets of
analyzes. First, the claim frequency and the claim severity may have different
dependencies on different variables. Second, the amount of data is sometimes
low and might give inconclusive statistical results, whereas the model split real-
izes the weak link. The weak link in the split model is almost always the claim
severity analysis due to the fact that the only relevant data for this analysis
are policies where a claim has occured and that is merely a subset of all the
available data.

2.2 Rating variables

The claim frequency and the claim severity varies between policies and can be
estimated based on a set of parameters, called the rating variables. A rating
variable usually describes an attribute of either the policyholder or the insured
object. The age of the policyholder, the weight of the insured vehicle and the
value of the insured property are a few examples of rating variables.

A rating variable can be either continuous or categorical. In a tariff analysis, it
is common to categorize continuous rating variables into intervals and to treat
them as categorical rating variables [12, §1.1]. This is done to improve the
significance of the statistical results. Policies within the same interval for each
rating variable are said to belong to the same tariff cell and share the same
premium.

Tariff cell Age (years) Weight (kg) Premium

1 18− 30 0− 1 500 P1

2 18− 30 1 500− 2 500 P2

3 18− 30 2 500− 3 500 P3

4 30− 99 0− 1 500 P4

5 30− 99 1 500− 2 500 P5

6 30− 99 2 500− 3 500 P6

Table 2.1: Illustration of a simple tariff with two categorized rating variables.
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2.3 The multiplicative model

There are basically two ways the elements of a tariff could operate when com-
puting the premium. The model can be additive or multiplicative, whereas the
latter model is nowadays considered as standard for insurance pricing [11]. In
order to describe the multiplicative model we need some preliminaries. Let M
be the number of rating variables, let mk be the number of intervals for rating
variable k and let ik denote the interval of rating variable k.

Tariff cell Age (years) Weight (kg) i1 i2

1 18− 30 0− 1 500 1 1
2 18− 30 1 500− 2 500 1 2
3 18− 30 2 500− 3 500 1 3
4 30− 99 0− 1 500 2 1
5 30− 99 1 500− 2 500 2 2
6 30− 99 2 500− 3 500 2 3

Table 2.2: An illustrative example with M = 2, m1 = 2 and m2 = 3.

Let µ be the mean of a key ratio Y , where the key ratio can be either the claim
frequency, the claim severity or the pure premium. The mean µ for a policy
with rating variables pertaining to the intervals i1, i2, . . . , iM is then given by

µi1,i2,...,iM = γ0

M∏
k=1

γk,ik , (2.2)

where γ0 is the base value and {γk,ik , ik = 1, 2, . . . ,mk} are the price relativities
for rating variable k [12, §1.3].

The model is over-parameterized since if we multiply all γ1,i1 with any number α
and divide all γ2,i2 with the same α we get the same µ’s as before. To make the
price relativities unique we specify a base cell {i1 = b1, i2 = b2, . . . , iM = bM}
and set {γk,bk = 1, k = 1, 2, . . . ,M}. The base value γ0 can now be interpreted
as the mean in the base cell and the price relativities measure the relative
difference in relation to the base cell. In Chapter 3 we will get back to the
multiplicative model and show how to determine the base value and the price
relativities.

Tariff cell Age (years) Weight (kg) i1 i2 Base cell µi1.i2

1 18− 30 0− 1 500 1 1 x γ0
2 18− 30 1 500− 2 500 1 2 γ0γ2,2
3 18− 30 2 500− 3 500 1 3 γ0γ2,3
4 30− 99 0− 1 500 2 1 γ0γ1,2
5 30− 99 1 500− 2 500 2 2 γ0γ1,2γ2,2
6 30− 99 2 500− 3 500 2 3 γ0γ1,2γ2,3

Table 2.3: A multiplicative model with b1 = b2 = 1 and γ1,1 = γ2,1 = 1.
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Chapter 3

Non-life insurance pricing
using the GLM

As discussed in the previous chapter, the main goal of a tariff analysis is to
determine how a key ratio Y varies with a number of rating variables. As men-
tioned, the key ratio can be either the claim frequency, the claim severity or the
pure premium.

The linear model (LM) is not suitable for insurance pricing due to;

i) Poor distribution approximation

In the LM the response variable Y follows a normal distribution, whereas
in insurance, the number of claims follows a discrete probability distribu-
tion on the non-negative integers. Furthermore, the distribution of the
claim cost is non-negative and often skewed to the right [12, §2].

ii) Non-reasonable mean modeling

In the LM the mean µ is a linear function of the covariates, whereas
multiplicative models are usually more reasonable for insurance pricing.

The GLM [10] generalizes the LM in two different ways and is more suitable for
insurance pricing due to;

i) Good distribution approximation

In the GLM the response variable Y can follow any distribution that be-
longs to the class of the exponential dispersion models (EDMs). The
normal, Poisson and gamma distributions are all members of this class.

ii) Reasonable mean modeling

In the GLM some monotone transformation of the mean g(µ) is a linear
function of the covariates, with the linear and multiplicative models as
special cases [12, §2].

These generalizations are discussed in detail in Sections 3.1 and 3.2, respectively.
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3.1 Exponential dispersion models

In the GLM the response variable Y can follow any distribution that belongs to
the class of the EDMs [8]. The probability distribution of an EDM is given by
the frequency function

fYi(yi, θi, φ) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
, (3.1)

where yi is a possible outcome of the response variable Yi, θi is a parameter
that may depend on i, φ is called the dispersion parameter and b is called the
cumulant function. The function c is not of interest in GLM theory. We will
now show that the normal, Poisson and gamma distributions all are members
of the EDM class.

3.1.1 Normal distribution

Let us first show that the normal distribution used in the LM is a member of
the EDM class. Let Yi ∼ N

(
µi, σ

2
)
. The frequency function is then given by

fYi(yi) =

√
1

2πσ2
e−(yi−µi)

2/2σ2

= exp

{
log

√
1

2πσ2
− 1

2σ2

(
y2i − 2yiµi + µ2

i

)}

= exp

{
yiµi − µ2

i /2

σ2
− 1

2

(
y2i
σ2

+ log
(
2πσ2

))}
.

(3.2)

The normal distribution is thus an EDM with θi = µi, φ = σ2, b(θi) = θ2i /2 and

c(yi, φ) = −1

2

(
y2i
φ

+ log(2πφ)

)
. (3.3)

3.1.2 Poisson distribution

Let us also show that the Poisson distribution is a member of the EDM class.
Let Yi ∼ Po(µi). The frequency function is then given by

fYi(yi) =
µyii
yi!

e−µi

= exp{yi logµi − µi − log(yi!)}.
(3.4)

The Poisson distribution is thus an EDM with θi = logµi, φ = 1, b(θi)=eθi and

c(yi, φ) = − log(yi!). (3.5)
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3.1.3 Gamma distribution

Let us finally show that the gamma distribution also is a member of the EDM
class. Let Yi ∼ G(α, βi). The frequency function is then given by

fYi(yi) =
βαi

Γ(α)
yα−1i e−βiyi

= exp
{

log(βαi ) + log
(
yα−1i

)
− log Γ(α)− βiyi

}
.

(3.6)

Before transforming this expression to EDM form we need to re-parameterize it
through µi = α/βi and φ = 1/α. The frequency function is then given by

fYi(yi) = exp

{
log

((
1

µiφ

)1/φ
)

+ log
(
y
1/φ−1
i

)
− log Γ(1/φ)− yi

µiφ

}

= exp

{
1

φ
log

1

µiφ
+ (1/φ− 1) log yi − log Γ(1/φ)− yi

µiφ

}
= exp

{
−yi/µi − logµi

φ
+

log(yi/φ)

φ
− log yi − log Γ(1/φ)

}
.

(3.7)

The gamma distribution is thus an EDM with θi = −1/µi = −βi/α, φ = 1/α,
b(θi) = − log(−θi) and

c(yi, φ) =
log(yi/φ)

φ
− log yi − log Γ(1/φ). (3.8)
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3.2 The link function

In the previous section we described how an EDM generalizes the normal dis-
tribution used in the LM, and we now turn to the other generalization, which
concerns the linear structure of the mean. Let us start by looking at a simple
example, in which we only have two rating variables, one with two intervals and
one with three intervals. Using the multiplicative model, the mean is given by

µi1,i2 = γ0γ1,i1γ2,i2 . (3.9)

By taking logarithms we can transform the above model to linear form

logµi1,i2 = log γ0 + log γ1,i1 + log γ2,i2 . (3.10)

We recall from Section 2.3 that the model is over-parameterized so we choose
a base cell, b1 = b2 = 1 and set γ1,1 = γ2,1 = 1. We realize that µ1,1 = γ0 and
that the price relativities measure the relative difference in relation to the base
cell.

Tariff cell i1 i2 Base cell log µi1,i2

1 1 1 x log γ0
2 1 2 log γ0 + log γ2,2
3 1 3 log γ0 + log γ2,3
4 2 1 log γ0 + log γ1,2
5 2 2 log γ0 + log γ1,2 + log γ2,2
6 2 3 log γ0 + log γ1,2 + log γ2,3

Table 3.1: A simple example with b1 = b2 = 1 and γ1,1 = γ2,1 = 1.

To simplify the notation, we change the index of the mean so it represents the
tariff cell instead of the interval for each rating variable. We also introduce the
regression parameters β0 = log γ0, β1 = log γ1,2, β2 = log γ2,2 and β3 = log γ2,3.

Tariff cell (i) i1 i2 Base cell logµi

1 1 1 x β0
2 1 2 β0 +β2
3 1 3 β0 +β3
4 2 1 β0 +β1
5 2 2 β0 +β1 +β2
6 2 3 β0 +β1 +β3

Table 3.2: Parameterization of a two-way multiplicative model.

Next, we introduce the dummy variables x′ij through the relation

x′ij =

{
1, if βj is included in logµi,

0, otherwise.
(3.11)
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Tariff cell (i) i1 i2 Base cell x′i0 x′i1 x′i2 x′i3

1 1 1 x 1 0 0 0
2 1 2 1 0 1 0
3 1 3 1 0 0 1
4 2 1 1 1 0 0
5 2 2 1 1 1 0
6 2 3 1 1 0 1

Table 3.3: Dummy variables in a two-way multiplicative model.

Using the dummy variables x′ij and the regression parameters βj that we have
introduced, we finally obtain the following useful equation for the logarithm of
the mean

logµi =

3∑
j=0

x′ijβj , i = 1, 2, . . . , 6. (3.12)

We now leave our simple example behind and look at the general problem of
how a key ratio Y is affected by M rating variables. We let mk be the number
of intervals for rating variable k and introduce

ηi =

r∑
j=0

x′ijβj , i = 1, 2, . . . , n, (3.13)

where x′ij and βj are defined similarly as in the simple example, r is the total
number of regression parameters (the base value parameter β0 not included)
and n is the total number of tariff cells. The values r and n are given by

r =

M∑
j=1

mj −M, n =

M∏
j=1

mj . (3.14)

In the LM, µi = ηi, but in the GLM it can be any arbitrary function g(µi) = ηi
as long as it is monotone and differentiable [12, §2.2]. The function g is called
the link function [10], since it links the mean to the linear structure through

g(µi) = ηi =

r∑
j=0

x′ijβj . (3.15)

Since we are solely working with multiplicative models we will only be using a
logarithmic link function from now on

g(µi) = logµi. (3.16)
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3.3 Price relativities

So far we have only discussed some properties of the GLM, but now it is time
for the most important step, the estimation of the base value and the price
relativities. We will treat two different cases. For the claim frequency we will
assume a Poisson distribution and for the claim severity we will assume a gamma
distribution. These assumptions are reasonable and considered as standard for
insurance pricing [1, 2].

3.3.1 The claim frequency

For the number of claims of an individual policy during any period of time
we assume a Poisson distribution. Furthermore, we assume that policies are
independent and we use the fact that the sum of independent Poisson distributed
random variables is also Poisson distributed [4]. We therefore get a Poisson
distribution also at the aggregate level of the total number of claims in a tariff
cell. Let Xi be the number of claims in a tariff cell with duration wi and let
µi denote the expected value of Xi when wi = 1. Then E(Xi) = wiµi and Xi

follows a Poisson distribution with frequency function

fXi(xi, µi) =
(wiµi)

xi

xi!
e−wiµi , xi = 0, 1, 2 . . . . (3.17)

As discussed earlier, we want to model the claim frequency Yi = Xi/wi, and it
follows that the frequency function of the claim frequency is given by

fYi(yi, µi) =
(wiµi)

wiyi

(wiyi)!
e−wiµi , wiyi = 0, 1, 2 . . . . (3.18)

We are now ready to use maximum likelihood estimation (MLE) [10] to esti-
mate the regression parameters βj . Since we have assumed that all policies are
independent it follows that the log-likelihood of the whole sample is the sum of
the log-likelihoods in all the tariff cells [12, §2.3.1]

`(yi, µi) =

n∑
i=1

wi(yi logµi − µi + yi logwi)− log(wiyi!). (3.19)

From Equation 3.15 and 3.16 we deduce that

µi = exp

{
r∑
j=0

x′ijβj

}
, (3.20)

which inserted to Equation 3.19 gives

` =

n∑
i=1

wi

(
yi

r∑
j=0

x′ijβj − exp

{
r∑
j=0

x′ijβj

}
+ yi logwi

)
− log(wiyi!). (3.21)
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We then differentiate the log-likelihood with respect to every βj to find the
regression parameters that maximize the expression. The partial derivatives
are given by

∂`

∂βj
=

n∑
i=1

wi

(
yi − exp

{
r∑
j=0

x′ijβj

})
x′ij

=

n∑
i=1

wi(yi − µi)x′ij .

(3.22)

By setting all these r+ 1 partial derivatives equal to zero we find the stationary
point, and the maximum likelihood (ML) equations can be expressed as

n∑
i=1

wi(yi − µi)x′ij = 0, j = 0, 1, . . . , r. (3.23)

The ML equations must almost always be solved numerically. Newton-Raphson’s
method and Fisher’s scoring method are two well-known methods for solving
the ML equations [12, §3.2.3]. When the ML equations have been solved we
obtain the base value and the price relativities by using the fact that

γj = eβj , j = 0, 1, . . . , r. (3.24)

3.3.2 The claim severity

For the cost of an individual claim we assume a gamma distribution and we
use the fact that the sum of independent gamma distributed random variables
is also gamma distributed [4]. We therefore get a gamma distribution also at
the aggregate level of the total claim cost in a tariff cell. Let Xi be the claim
cost in a tariff cell with duration wi and let µi denote the expected value of Xi

when wi = 1. Then E(Xi) = wiµi and Xi follows a gamma distribution with
frequency function

fXi(xi) =
βwiαi

Γ(wiα)
xwiα−1i e−βixi , xi > 0. (3.25)

As discussed earlier, we want to model the claim severity Yi = Xi/wi, and it
follows that the frequency function of the claim severity is given by

fYi(yi) =
(wiβi)

wiα

Γ(wiα)
ywiα−1i e−wiβiyi , yi > 0. (3.26)

We re-parameterize this expression through µi = α/βi and φ = 1/α, and obtain

fYi(yi, µi) =
1

Γ(wi/φ)

(
wi
µiφ

)wi/φ
y
wi/φ−1
i e−wiyi/(µiφ), yi > 0. (3.27)
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We are now ready to use MLE to estimate the regression parameters βj . Since we
have assumed that all policies are independent it follows that the log-likelihood
of the whole sample is the sum of the log-likelihoods in all the tariff cells

` =
1

φ

n∑
i=1

wi

(
log

1

µi
− yi
µi

+ log
wiyi
φ
− φ

wi

(
log yi + log Γ

(
wi
φ

)))
. (3.28)

We replace µi with the expression from Equation 3.20, and the log-likelihood
can be rewritten as

` =
1

φ

n∑
i=1

wi

(
−

r∑
j=0

x′ijβj − yi/ exp

{
r∑
j=0

x′ijβj

}
+ log

wiyi
φ

− φ

wi

(
log yi + log Γ

(
wi
φ

)))
.

(3.29)

We then differentiate the log-likelihood with respect to every βj to find the
regression parameters that maximize the expression. The partial derivatives
are given by

∂`

∂βj
=

1

φ

n∑
i=1

wi

(
yi/ exp

{
r∑
j=0

x′ijβj

}
− 1

)
x′ij

=
1

φ

n∑
i=1

wi

(
yi
µi
− 1

)
x′ij .

(3.30)

By setting all the partial derivatives equal to zero and multiplying by φ, we get
the ML equations

n∑
i=1

wi

(
yi
µi
− 1

)
x′ij = 0, j = 0, 1, . . . , r. (3.31)

As mentioned before, the ML equations must almost always be solved numeri-
cally. When the ML equations have been solved we obtain the base value and
the price relativities by using the fact that

γj = eβj , j = 0, 1, . . . , r. (3.32)
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Chapter 4

Non-life insurance pricing
using the GAM

In the 1980’s Hastie and Tibshirani analyzed the effect of continuous variables
and introduced the GAM [6]. There are several possible approaches when using
the GAM. In this thesis we will only be using smoothing splines [14].

4.1 Penalized deviances

Let us once again look at the general problem of how a key ratio Y is affected
by M rating variables. In Section 3.2 we introduced the mean

ηi =

r∑
j=0

x′ijβj , i = 1, 2, . . . , n. (4.1)

Hastie and Tibshirani introduced the GAM where instead of Equation 4.1 they
assumed that

ηi = β0 +

M∑
j=1

fj(xij), i = 1, 2, . . . , n, (4.2)

for some functions fj . Here, xij is the value of rating variable j for observation
i and should not be mixed up with the dummy variable x′ij . Also, n is the total
number of observations, not the total number of tariff cells. This model is more
general since the mean depends more freely on the value of each rating variable.
Let us consider a simple example where we model all the rating variables, except
one, in the usual way. The mean is then given by

ηi =

r∑
j=0

x′ijβj + f(xi1), i = 1, 2, . . . , n. (4.3)

Our goal is now to find the function f that describes the effect of rating variable
xi1 in the best way. We want the function to have a good fit to the data but
we also want it to be smooth and not to vary wildly.
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4.1.1 The deviance

To measure the goodness of fit of some estimated means µ̂ = exp{f(x)} to the
data y, we use the deviance D(y, µ̂) [12, §3.1], which is defined as

D(y, µ̂) = 2φ

n∑
i=1

(`(yi, yi)− `(yi, µ̂)), (4.4)

where φ is the dispersion parameter introduced in Equation 3.1. The deviance
may be interpreted as the weighted sums of distances of the estimated means µ̂
from the data y. For the Poisson and gamma distributions, we get

D(y, exp{f(x)}) = 2

n∑
i=1

wi

(
yi log yi − yif(xi)− yi + ef(xi)

)
, (4.5)

D(y, exp{f(x)}) = 2

n∑
i=1

wi

(
yi/e

f(xi) − 1− log yi + f(xi)
)
. (4.6)

4.1.2 The regularization

As a measure of the variability of the function f , we use the regularization
R(f(x)) [12, §5.1], which is defined as

R(f(x)) =

∫ b

a

(f ′′(x))
2
dx, (4.7)

where a is a value lower than the lowest possible value of x and b is a value
higher than the highest possible value of x. For a function that varies wildly
the regularization will be high, whereas for a function with little variation the
regularization will be low.

4.1.3 The smoothing parameter

Now when the deviance and the regularization have been defined, we are looking
for the function f that minimizes the penalized deviance

∆(f(x)) = D(y, exp{f(x)}) + λR(f(x)), (4.8)

where λ is called the smoothing parameter. The smoothing parameter creates
a trade-off between good fit to the data and low variability of the function f .
A small value of λ would increase the weight put on data, letting the function
f vary freely (Figure 4.1), whereas a large value of λ would decrease the weight
put on data, forcing the integrated squared second derivative of the function f
to be small (Figure 4.2). In Chapter 5 we will compare two different methods
for finding the optimal smoothing parameter.
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Figure 4.1: A small value of λ would
increase the weight put on data, letting
the function f vary freely.
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Figure 4.2: A large value of λ would
decrease the weight put on data, forcing
the integrated squared second derivative
of the function f to be small.

4.2 Smoothing splines

Smoothing splines have important properties in connection to penalized de-
viances and it can be shown that among all twice continuously differentiable
functions, the natural cubic spline minimizes the integrated squared second
derivative [12, Appendix B.1]. This important feature is contained in the fol-
lowing theorem:

Theorem 4.1 For any points u1 < · · · < um and real numbers y1, . . . , ym,
there exists a unique natural cubic spline s, such that s(uk) = yk, k = 1, . . . ,m.
Furthermore, if f is any twice continuously differentiable function such that
f(uk) = yk, k = 1, . . . ,m, then for any a ≤ u1 and b ≥ um,

∫ b

a

(s′′(x))
2
dx ≤

∫ b

a

(f ′′(x))
2
dx. (4.9)

By Theorem 4.1 there exists a unique natural cubic spline s, such that
{s(uk) = f(uk), k = 1, . . . ,m}, and since D(y, exp{s(x)}) = D(y, exp{f(x)}) it
follows that

∆(s(x)) ≤ ∆(f(x)). (4.10)

This means that when looking for the twice continuously differentiable function
f that minimizes Equation 4.8 we only need to consider the set of natural cubic
splines. Since any spline function of given degree can be expressed as a linear
combination of B-splines of that degree [12, Appendix B.2], we are going to use
B-splines to parameterize the set of natural cubic splines. Let B3k(x) be the
k:th B-spline of order 3. The following useful theorem will be used extensively
throughout the rest of this paper.
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Theorem 4.2 For a given set of m knots, a cubic spline s may be written as

s(x) =

m+2∑
k=1

βkB3k(x), (4.11)

for unique constants β1, . . . , βm+2.

Here, β1, . . . , βm+2 are constants which decide the weight of each B-spline and
should not be mixed up with the regression parameters defined in Section 3.2.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Figure 4.3: B-splines of order 3. The three internal knots are marked with black
diamonds and the two boundary knots are marked with white diamonds.

4.3 Price relativities - one rating variable

It is now time to estimate the price relativities by finding the natural cubic
spline s that minimizes the penalized deviance

∆(s(x)) = D(y, exp{s(x)}) + λR(s(x)). (4.12)

We will start by considering one rating variable and we will treat two different
cases, one for the claim frequency and one for the claim severity.

4.3.1 The claim frequency

Let us assume that we have one continuous rating variable, and that the ob-
servations of the key ratio Y are Poisson distributed. When storing insurance
data, continuous rating variables are usually rounded, so instead of assuming
millions of different values, they usually assume a much smaller number of dif-
ferent values. For instance, the age of the policyholder is usually stored in years
and rounded down to the nearest integer, so less than a hundred different values
occur.
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Let xi be the value of the rating variable for observation i and let z1, . . . , zm
denote the possible values of xi, in ascending order. For the Poisson distribution,
the deviance is given by

D(y, exp{s(x)}) = 2

n∑
i=1

wi

(
yi log yi − yis(xi)− yi + es(xi)

)
. (4.13)

Since a ≤ z1 and b ≥ zm the regularization can be expressed as

R(s(x)) =

∫ z1

a

(s′′(x))
2
dx+

∫ zm

z1

(s′′(x))
2
dx+

∫ b

zm

(s′′(x))
2
dx. (4.14)

The natural cubic spline is linear outside [z1, zm] so the first and third term of
Equation 4.14 equals zero and the regularization can be simplified to

R(s(x)) =

∫ zm

z1

(s′′(x))
2
dx. (4.15)

The penalized deviance can now be expressed as

∆(s(x)) = 2

n∑
i=1

wi

(
yi log yi − yis(xi)− yi + es(xi)

)
+ λ

∫ zm

z1

(s′′(x))
2
dx.

(4.16)

It is time to use the fact that the natural cubic spline s can be expressed as a
sum of B-splines (Theorem 4.2), such that

s(x) =

m+2∑
j=1

βjBj(x), (4.17)

where β1, . . . , βm+2 are unique parameters and B1(x), . . . , Bm+2(x) are the cu-
bic B-splines with knots z1, . . . , zm. The penalized deviance can then be ex-
pressed as a function of the parameters β = [β1, . . . , βm+2] and is given by

∆(β) = 2

n∑
i=1

wi

(
yi log yi − yi

m+2∑
j=1

βjBj(xi)− yi

+ exp

{
m+2∑
j=1

βjBj(xi)

})
+ λ

m+2∑
j=1

m+2∑
k=1

βjβkΩjk,

(4.18)

where

Ωjk =

∫ zm

z1

B′′j (x)B′′k (x) dx. (4.19)
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The numbers Ωjk can be computed using the basic properties of B-splines [12,
Appendix B.2]. We are now ready to use partial derivatives to find the mini-
mizing parameters β1, . . . , βm+2. The partial derivatives are given by

∂∆

∂β`
= 2

n∑
i=1

wi

(
−yiB`(xi) + exp

{
m+2∑
j=1

βjBj(xi)

}
B`(xi)

)
+ 2λ

m+2∑
j=1

βjΩj`

= {Letting Ik denote the set of i for which xi = zk}

= 2

m∑
k=1

∑
i∈Ik

wi

(
−yiB`(zk) + exp

{
m+2∑
j=1

βjBj(zk)

}
B`(zk)

)
+ 2λ

m+2∑
j=1

βjΩj`

= 2

m∑
k=1

w̃k

(
−ỹk + exp

{
m+2∑
j=1

βjBj(zk)

})
B`(zk) + 2λ

m+2∑
j=1

βjΩj`,

(4.20)

where

w̃k =
∑
i∈Ik

wi, ỹk =
1

w̃k

∑
i∈Ik

wiyi. (4.21)

In the next step, we set the partial derivatives equal to zero

∂∆

∂β`
= 2

m∑
k=1

w̃k

(
−ỹk + exp

{
m+2∑
j=1

βjBj(zk)

})
B`(zk)

+2λ

m+2∑
j=1

βjΩj` = 0, ` = 1, 2, . . . ,m+ 2,

(4.22)

and obtain the equations

m∑
k=1

w̃k exp

{
m+2∑
j=1

βjBj(zk)

}
B`(zk)−

m∑
k=1

w̃kỹkB`(zk)

+λ

m+2∑
j=1

βjΩj` = 0, ` = 1, 2, . . . ,m+ 2.

(4.23)

Since the first term in Equation 4.23 depends in a non-linear way on β1, . . . , βm+2,
we will use Newton-Raphson’s method [9] to solve the equation system. We be-
gin by defining h`(β1, . . . , βm+2), such that

h`(β1, . . . , βm+2) =

m∑
k=1

w̃k exp

{
m+2∑
j=1

βjBj(zk)

}
B`(zk)

−
m∑
k=1

w̃kỹkB`(zk) + λ

m+2∑
j=1

βjΩj`, ` = 1, 2, . . . ,m+ 2.

(4.24)
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To solve the equations h`(β1, . . . , βm+2) = 0 we proceed by iteratively solving

the linear equation systems for the unknowns β
(n+1)
1 , . . . , β

(n+1)
m+2

h`

(
β
(n)
1 , . . . , β

(n)
m+2

)
+

m+2∑
j=1

(
β
(n+1)
j − β(n)

j

)∂h`
∂βj

(
β
(n)
1 , . . . , β

(n)
m+2

)
= 0,

` = 1, 2, . . . ,m+ 2,

(4.25)

where

∂h`
∂βj

=

m∑
k=1

w̃k exp

{
m+2∑
j=1

βjBj(zk)

}
Bj(zk)B`(zk) + λΩj`. (4.26)

To make the notation a bit easier, we define

γ
(n)
k = exp

{
m+2∑
j=1

β
(n)
j Bj(zk)

}
. (4.27)

Using the properties of Equations 4.24, 4.26 and 4.27, Equation 4.25 can be
simplified to

m∑
k=1

w̃kγ
(n)
k B`(zk)−

m∑
k=1

w̃kỹkB`(zk) + λ

m+2∑
j=1

β
(n)
j Ωj`

+

m+2∑
j=1

(
β
(n+1)
j − β(n)

j

)( m∑
k=1

w̃kγ
(n)
k Bj(zk)B`(zk) + λΩj`

)
= 0,

` = 1, 2, . . . ,m+ 2.

(4.28)

Collecting β
(n+1)
j on one side of the equality and β

(n)
j on the other side, we get

m+2∑
j=1

m∑
k=1

w̃kγ
(n)
k Bj(zk)B`(zk)β

(n+1)
j + λ

m+2∑
j=1

β
(n+1)
j Ωj`

=

m∑
k=1

w̃kγ
(n)
k

(
ỹk/γ

(n)
k − 1 +

m+2∑
j=1

β
(n)
j Bj(zk)

)
B`(zk),

` = 1, 2, . . . ,m+ 2.

(4.29)

Let us now introduce the m× (m+ 2) matrix B by

B =


B1(z1) B2(z1) · · · Bm+2(z1)
B1(z2) B2(z2) · · · Bm+2(z2)

...
...

. . .
...

B1(zm) B2(zm) · · · Bm+2(zm)

, (4.30)
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and the m×m diagonal matrix W(n) by

W(n) =


w̃1γ

(n)
1 0 · · · 0

0 w̃2γ
(n)
2 · · · 0

...
...

. . .
...

0 0 · · · w̃mγ
(n)
m

. (4.31)

Furthermore, let Ω denote the symmetric (m+ 2) × (m+ 2) matrix with ele-

ments Ωjk. Also, let β(n) denote the vector with elements β
(n)
j and y(n) the

vector with elements ỹk/γ
(n)
k − 1 +

∑m+2
j=1 β

(n)
j Bj(zk). The system of linear

equations may now be written on matrix form as(
B′W(n)B + λΩ

)
β(n+1) = B′W(n)y(n), (4.32)

and the equation system can be solved using Newton-Raphson’s method to
obtain β. The natural cubic spline s(x) can then be calculated using Equation
4.17 and the price relativities are given by es(z1), . . . , es(zm).

4.3.2 The claim severity

Let us again assume that we have one continuous rating variable, but this time
we assume that the observations of the key ratio Y are gamma distributed. For
the gamma distribution, the deviance is given by

D(y, exp{s(x)}) = 2

n∑
i=1

wi

(
yi/e

s(xi) − 1− log yi + s(xi)
)
. (4.33)

If we combine the expression above with the conclusion from Equation 4.15 we
can express the penalized deviance as

∆(s(x)) = 2

n∑
i=1

wi

(
yi/e

s(xi) − 1− log yi + s(xi)
)

+ λ

∫ zm

z1

(s′′(x))
2
dx. (4.34)

It is once again time to use the fact that the natural cubic spline s can be
expressed as a sum of B-splines. The penalized deviance can then be expressed
as a function of the parameters β1, . . . , βm+2 and is given by

∆(β) = 2

n∑
i=1

wi

(
yi/ exp

{
m+2∑
j=1

βjBj(xi)

}
− 1− log yi

+

m+2∑
j=1

βjBj(xi)

)
+ λ

m+2∑
j=1

m+2∑
k=1

βjβkΩjk.

(4.35)
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We are now ready to use partial derivatives to find the minimizing parameters
β1, . . . , βm+2. The partial derivatives are given by

∂∆

∂β`
= 2

n∑
i=1

wi

(
−yi/ exp

{
m+2∑
j=1

βjBj(xi)

}
B`(xi) +B`(xi)

)
+ 2λ

m+2∑
j=1

βjΩj`

= 2

m∑
k=1

∑
i∈Ik

wi

(
−yi/ exp

{
m+2∑
j=1

βjBj(zk)

}
B`(zk) +B`(zk)

)
+ 2λ

m+2∑
j=1

βjΩj`

= 2

m∑
k=1

w̃k

(
−ỹk/ exp

{
m+2∑
j=1

βjBj(zk)

}
+ 1

)
B`(zk) + 2λ

m+2∑
j=1

βjΩj`.

(4.36)

In the next step, we set the partial derivatives equal to zero

∂∆

∂β`
= 2

m∑
k=1

w̃k

(
−ỹk/ exp

{
m+2∑
j=1

βjBj(zk)

}
+ 1

)
B`(zk)

+2λ

m+2∑
j=1

βjΩj` = 0, ` = 1, 2, . . . ,m+ 2,

(4.37)

and obtain the equations

−
m∑
k=1

w̃kỹkB`(zk)/ exp

{
m+2∑
j=1

βjBj(zk)

}
+

m∑
k=1

w̃kB`(zk)

+λ

m+2∑
j=1

βjΩj` = 0, ` = 1, 2, . . . ,m+ 2.

(4.38)

Since the first term in Equation 4.38 depends in a non-linear way on β1, . . . , βm+2,
we will once again use Newton-Raphson’s method to solve the equation system.
We begin by defining h`(β1, . . . , βm+2), such that

h`(β1, . . . , βm+2) = −
m∑
k=1

w̃kỹkB`(zk)/ exp

{
m+2∑
j=1

βjBj(zk)

}

+

m∑
k=1

w̃kB`(zk) + λ

m+2∑
j=1

βjΩj`, ` = 1, 2, . . . ,m+ 2.

(4.39)

To solve the equations h`(β1, . . . , βm+2) = 0 we proceed by iteratively solving

the linear equation systems for the unknowns β
(n+1)
1 , . . . , β

(n+1)
m+2

h`

(
β
(n)
1 , . . . , β

(n)
m+2

)
+

m+2∑
j=1

(
β
(n+1)
j − β(n)

j

)∂h`
∂βj

(
β
(n)
1 , . . . , β

(n)
m+2

)
= 0,

` = 1, 2, . . . ,m+ 2,

(4.40)
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where

∂h`
∂βj

=

m∑
k=1

w̃kỹkBj(zk)B`(zk)/ exp

{
m+2∑
j=1

βjBj(zk)

}
+ λΩj`. (4.41)

Using the properties of Equations 4.27, 4.39 and 4.41, Equation 4.40 can be
simplified to

−
m∑
k=1

w̃kỹkB`(zk)/γ
(n)
k +

m∑
k=1

w̃kB`(zk) + λ

m+2∑
j=1

β
(n)
j Ωj`

+

m+2∑
j=1

(
β
(n+1)
j − β(n)

j

)( m∑
k=1

w̃kỹkBj(zk)B`(zk)/γ
(n)
k + λΩj`

)
= 0,

` = 1, 2, . . . ,m+ 2.

(4.42)

Collecting β
(n+1)
j on one side of the equality and β

(n)
j on the other side, we get

m+2∑
j=1

m∑
k=1

w̃kỹk

γ
(n)
k

Bj(zk)B`(zk)β
(n+1)
j + λ

m+2∑
j=1

β
(n+1)
j Ωj`

=

m∑
k=1

w̃kỹk

γ
(n)
k

(
1−

γ
(n)
k

ỹk
+

m+2∑
j=1

β
(n)
j Bj(zk)

)
B`(zk),

` = 1, 2, . . . ,m+ 2.

(4.43)

Let us now introduce the m×m diagonal matrix W(n) by

W(n) =


w̃1ỹ1/γ

(n)
1 0 · · · 0

0 w̃2ỹ2/γ
(n)
2 · · · 0

...
...

. . .
...

0 0 · · · w̃mỹm/γ
(n)
m

. (4.44)

Furthermore, let β(n) denote the vector with elements β
(n)
j and y(n) the vector

with elements 1− γ(n)k /ỹk +
∑m+2
j=1 β

(n)
j Bj(zk). The system of linear equations

may now be written on matrix form as(
B′W(n)B + λΩ

)
β(n+1) = B′W(n)y(n), (4.45)

and the equation system can be solved using Newton-Raphson’s method to
obtain β. The natural cubic spline s(x) can then be calculated using Equation
4.17 and the price relativities are given by es(z1), . . . , es(zm).
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4.4 Price relativities - several rating variables

We will now continue by considering several rating variables. The backfitting
algorithm is an iterative procedure used for estimation of the price relativities
within the GAM [7]. The idea behind the backfitting algorithm is to reduce
the estimation problem to a one dimensional problem and only consider one
continuous rating variable at a time. Let us assume that we have a large number
of categorical rating variables together with two continuous rating variables.
The generalization to the case with an arbitrary number of continuous rating
variables is completely straightforward. We let x1i and x2i be the values of
observation i for the first and second continuous rating variable, respectively.
We also let z11, . . . , z1m1

and z21, . . . , z2m2
denote the possible values for the

continuous rating variables. The mean for this model can then be expressed as

ηi =

r∑
j=0

x′ijβj +

m1+2∑
k=1

β1kB1k(x1i) +

m2+2∑
`=1

β2`B2`(x2i), i = 1, 2, . . . , n. (4.46)

We will once again treat two different cases, one for the claim frequency and
one for the claim severity.

4.4.1 The claim frequency

Let us first assume that the observations of the key ratio Y are Poisson dis-
tributed. The penalized deviance can then be expressed as

∆(β1, β2) = 2

n∑
i=1

wi(yi log yi − yiηi − yi + eηi)

+λ1

m1+2∑
j=1

m1+2∑
k=1

β1jβ1kΩ
(1)
jk + λ2

m2+2∑
j=1

m2+2∑
k=1

β2jβ2kΩ
(2)
jk ,

(4.47)

where λ1 and λ2 are the smoothing parameters for the first and second contin-
uous rating variable, respectively. Let us also introduce the notation

ν0i = exp

{
r∑
j=0

x′ijβj

}
, (4.48)

ν1i = exp

{
m1+2∑
j=1

β1jB1j(x1i)

}
, (4.49)

ν2i = exp

{
m2+2∑
j=1

β2jB2j(x2i)

}
. (4.50)
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The deviance can then be written as

D = 2

n∑
i=1

wi(yi log yi − yiηi − yi + eηi)

= 2

n∑
i=1

wi(yi log yi − yi logµi − yi + µi)

= 2

n∑
i=1

wi(yi log yi − yi log(ν0iν1iν2i)− yi + ν0iν1iν2i)

= 2

n∑
i=1

wiν1iν2i

(
yi

ν1iν2i
log

yi
ν1iν2i

− yi
ν1iν2i

log ν0i −
yi

ν1iν2i
+ ν0i

)

= 2

n∑
i=1

wiν0iν2i

(
yi

ν0iν2i
log

yi
ν0iν2i

− yi
ν0iν2i

log ν1i −
yi

ν0iν2i
+ ν1i

)

= 2

n∑
i=1

wiν0iν1i

(
yi

ν0iν1i
log

yi
ν0iν1i

− yi
ν0iν1i

log ν2i −
yi

ν0iν1i
+ ν2i

)
.

(4.51)

If β11, . . . , β1,m1+2 and β21, . . . , β2,m2+2 were known, the problem of estimating
β0, . . . , βr would be identical to the problem with only categorical rating vari-
ables (the regularization terms in Equation 4.47 are only constants in this case),
but with observations yi/(ν1iν2i) and weights wiν1iν2i as can be seen in Equa-
tion 4.51. Similarly, if β0, . . . , βr and β21, . . . , β2,m2+2 were known, the problem
of estimating β11, . . . , β1,m1+2 is precisely the one treated in Section 4.3.1, with
the observations yi/(ν0iν2i) and the weights wiν0iν2i. The corresponding state-
ment of course holds for the second continuous rating variable as well.

To be able to use the backfitting algorithm we need some initial estimates. A

good initial estimate would be to derive β̂
(0)
0 , . . . , β̂

(0)
r by analyzing the data

with the continuous rating variables excluded and to set all β̂
(0)
11 , . . . , β̂

(0)
1,m1+2

and β̂
(0)
21 , . . . , β̂

(0)
2,m2+2 to zero. Given this set of initial estimates we define

ν̂
(0)
0i = exp

{
r∑
j=0

x′ij β̂
(0)
j

}
, (4.52)

ν̂
(0)
1i = exp

{
m1+2∑
j=1

β̂
(0)
1j B1j(x1i)

}
= 1, (4.53)

ν̂
(0)
2i = exp

{
m2+2∑
j=1

β̂
(0)
2j B2j(x2i)

}
= 1. (4.54)
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We continue by iterating the following three steps until the estimates have con-
verged (we have used the tolerance 1e-10 throughout this paper). For iteration
q we have:

• Step 1

Compute β̂
(q)
11 , . . . , β̂

(q)
1,m1+2 based on the observations yi/

(
ν̂
(q−1)
0i ν̂

(q−1)
2i

)
and the

weights wiν̂
(q−1)
0i ν̂

(q−1)
2i with x1i being the only explanatory rating variable. Cal-

culate ν̂
(q)
1i with the formula ν̂

(q)
1i = exp

{∑m1+2
j=1 β̂

(q)
1j B1j(x1i)

}
.

• Step 2

Compute β̂
(q)
21 , . . . , β̂

(q)
2,m2+2 based on the observations yi/

(
ν̂
(q−1)
0i ν̂

(q)
1i

)
and the

weights wiν̂
(q−1)
0i ν̂

(q)
1i with x2i being the only explanatory rating variable. Cal-

culate ν̂
(q)
2i with the formula ν̂

(q)
2i = exp

{∑m2+2
j=1 β̂

(q)
2j B2j(x2i)

}
.

• Step 3

Compute β̂
(q)
0 , . . . , β̂

(q)
r based on the observations yi/

(
ν̂
(q)
1i ν̂

(q)
2i

)
and the weights

wiν̂
(q)
1i ν̂

(q)
2i using only the categorical rating variables. Calculate ν̂

(q)
0i with the

formula ν̂
(q)
0i = exp

{∑r
j=0 x

′
ij β̂

(q)
j

}
.

When the estimates have converged, we obtain the price relativities for the
categorical rating variables, using the fact that

γj = eβj , j = 0, 1, . . . , r. (4.55)

We obtain the natural cubic splines for the continuous rating variables by

s1(x) =

m1+2∑
j=1

β1jB1j(x), (4.56)

s2(x) =

m2+2∑
j=1

β2jB2j(x), (4.57)

and the price relativities for the continuous rating variables are given by

es1(z11), . . . , es1(z1m1) and es2(z21), . . . , es2(z2m2).
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4.4.2 The claim severity

Let us now instead assume that the observations of the key ratio Y are gamma
distributed. The penalized deviance can then be expressed as

∆(β1, β2) = 2

n∑
i=1

wi(yi/e
ηi − 1− log(yi/e

ηi))

+λ1

m1+2∑
j=1

m1+2∑
k=1

β1jβ1kΩ
(1)
jk + λ2

m2+2∑
j=1

m2+2∑
k=1

β2jβ2kΩ
(2)
jk .

(4.58)

The deviance can be written as

D = 2

n∑
i=1

wi

( yi
eηi
− 1− log

yi
eηi

)

= 2

n∑
i=1

wi

(
yi
µi
− 1− log

yi
µi

)

= 2

n∑
i=1

wi

(
yi

ν0iν1iν2i
− 1− log

yi
ν0iν1iν2i

)

= 2

n∑
i=1

wi

(
yi/ν1iν2i
ν0i

− 1− log
yi/ν1iν2i
ν0i

)

= 2

n∑
i=1

wi

(
yi/ν0iν2i
ν1i

− 1− log
yi/ν0iν2i
ν1i

)

= 2

n∑
i=1

wi

(
yi/ν0iν1i
ν2i

− 1− log
yi/ν0iν1i
ν2i

)
.

(4.59)

If β11, . . . , β1,m1+2 and β21, . . . , β2,m2+2 were known, the problem of estimat-
ing β0, . . . , βr would be identical to the problem with only categorical rating
variables (the regularization terms in Equation 4.58 are only constants in this
case), but with observations yi/(ν1iν2i) as can be seen in Equation 4.59. Simi-
larly, if β0, . . . , βr and β21, . . . , β2,m2+2 were known, the problem of estimating
β11, . . . , β1,m1+2 is precisely the one treated in Section 4.3.2, with the observa-
tions yi/(ν0iν2i). The corresponding statement of course holds for the second
continuous rating variable as well.
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We use the same initial estimates as in the Poisson case and we continue by
iterating the following three steps until the estimates have converged. For iter-
ation q we have:

• Step 1

Compute β̂
(q)
11 , . . . , β̂

(q)
1,m1+2 based on the observations yi/

(
ν̂
(q−1)
0i ν̂

(q−1)
2i

)
with

x1i being the only explanatory rating variable. Calculate ν̂
(q)
1i with the formula

ν̂
(q)
1i = exp

{∑m1+2
j=1 β̂

(q)
1j B1j(x1i)

}
.

• Step 2

Compute β̂
(q)
21 , . . . , β̂

(q)
2,m2+2 based on the observations yi/

(
ν̂
(q−1)
0i ν̂

(q)
1i

)
with x2i

being the only explanatory rating variable. Calculate ν̂
(q)
2i with the formula

ν̂
(q)
2i = exp

{∑m2+2
j=1 β̂

(q)
2j B2j(x2i)

}
.

• Step 3

Compute β̂
(q)
0 , . . . , β̂

(q)
r based on the observations yi/

(
ν̂
(q)
1i ν̂

(q)
2i

)
using only the

categorical rating variables. Calculate ν̂
(q)
0i with the formula

ν̂
(q)
0i = exp

{∑r
j=0 x

′
ij β̂

(q)
j

}
.

When the estimates have converged we obtain the price relativities for the cat-
egorical rating variables by using the fact that

γj = eβj , j = 0, 1, . . . , r. (4.60)

We obtain the natural cubic splines for the continuous rating variables by

s1(x) =

m1+2∑
j=1

β1jB1j(x), (4.61)

s2(x) =

m2+2∑
j=1

β2jB2j(x), (4.62)

and the price relativities for the continuous rating variables are given by

es1(z11), . . . , es1(z1m1) and es2(z21), . . . , es2(z2m2).
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Chapter 5

Optimal choice of the
smoothing parameter

As mentioned in Section 4.1.3, the smoothing parameter creates a trade-off be-
tween good fit to the data and low variability of the function f . A small value
of λ would increase the weight put on data, letting the function f vary freely,
whereas a large value of λ would decrease the weight put on data, forcing the
integrated squared second derivative of the function f to be small (Figure 5.1).

In this chapter we will compare two different methods for finding the optimal
smoothing parameter. While the method of cross validation is commonly used
for this purpose, a more uncommon method, the L-curve method, is investigated
for its performance in comparison to the method of cross validation.
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Figure 5.1: A small value of λ would increase the weight put on data, letting the
function f vary freely (dashed curve), whereas a large value of λ would decrease the
weight put on data, forcing the integrated squared second derivative of the function f
to be small (solid curve).

28



5.1 Cross validation

Cross validation is a way of measuring the predictive performance of a statistical
model. There are plenty of different variations of cross validation but due to its
simple properties we will only be using the variation that goes under the name
of leave-one-out cross validation [7]. When describing the method of cross vali-
dation we will only be considering one continuous rating variable. In the case of
several continuous rating variables, we can just proceed and use the approach
described below every time we update one of the continuous rating variables
in the backfitting algorithm. As the calculations for the Poisson case and the
gamma case are very similar we will only consider the case where the observa-
tions of the key ratio Y are Poisson distributed. For the Poisson distribution,
the fitted natural cubic spline s minimizes the expression

∆(s(x)) = 2

m∑
k=1

w̃k

(
ỹk log ỹk − ỹks

(
zk

)
− ỹk + es(zk)

)
+ λ

∫ zm

z1

(s′′(x))
2
dx.

(5.1)

Now suppose we remove one particular zk and the corresponding ỹk from the
data. We can then, for any λ, calculate the minimizing natural cubic spline
sλk(x) for this new data set. For a good value of λ, sλk(zk) should be a good
predictor of the deleted data point ỹk. This should be true for any k. The
cross validation score measures the overall ability of predicting all the removed
data points (a smaller value of the cross validation score means better ability
to predict the removed data points) and is defined as

C(λ) = 2

m∑
k=1

w̃k

(
ỹk log ỹk − ỹksλk(zk)− ỹk + es

λ
k(zk)

)
. (5.2)

The idea of cross validation is to choose λ as the value for which the cross
validation score C(λ) is minimized. We compute C(λ) by finding all the mini-
mizing splines sλ1 , . . . s

λ
m. Since this can be very time consuming, approximative

methods have been developed but these will not be used in this thesis [12, §5.5].
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Figure 5.2: The cross validation score
C(λ) for different values of λ.
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Figure 5.3: The natural cubic spline
based on the λ that minimizes the cross
validation score C(λ).
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5.2 The L-curve method

An L-curve is a convenient graphical tool for displaying the size of the regular-
ization versus the size of the deviance, as the smoothing parameter varies. A
standard L-curve is visualized in a log-log plot and has the shape of an ”L”,
but for insurance (noise-free) data it has been shown that the L-curve always
becomes concave [5].
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Figure 5.4: The L-curve becomes concave for insurance data.

The idea of the L-curve method is to find the point on the ”corner” of the L-curve
and to choose the underlying smoothing parameter. The reason behind this
choice is that the corner separates the flat and vertical parts of the curve where
the solution is dominated by the regularization and the deviance, respectively.
For standard L-curves with the shape of an ”L”, this makes perfect sense, but
for concave L-curves it is not clear whether the corner represents a good value
of the smoothing parameter or not. This will be evaluated in Chapter 6. There
are several different ways of defining the corner but we will choose the method
proposed by Hansen and O’Leary [5]. We define h1(λ) = log(∆− λR) and
h2(λ) = log((∆−D)/λ) and we note that both h1 and h2 are twice differentiable
with respect to λ. The corner of the L-curve is then found by minimizing the
curvature κ(λ), where

κ(λ) =
h′1h

′′
2 − h′′1h′2(

(h′1)
2

+ (h′2)
2
)3/2 . (5.3)

Any simple optimizing method will do for finding the minimal κ(λ).
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Figure 5.5: The curvature κ(λ) for different values of λ.

30



Deviance
10-15 10-10 10-5 100 105

R
eg

ul
ar

iz
at

io
n

10-3

10-2

10-1

100

101

102

Figure 5.6: The point on the L-curve with the minimum curvature κ(λ).
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Figure 5.7: The point on the L-curve with the minimum curvature κ(λ) (with axes
range being of equal dimension).
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Figure 5.8: The natural cubic spline based on the λ that minimizes the curvature
κ(λ).
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Chapter 6

Results

In this chapter we present some test results, comparing the method of cross
validation with the L-curve method. The data used for this comparison is
downloaded test data1. The test data has been modified in different ways to
fully analyze and compare the different methods. The calculations have been
carried out in Matlab R2015a.

6.1 Numerical computations

We recall the system of linear equations that needs to be solved in the GAM
to obtain the regression parameters β (Equation 4.32). In the method of cross
validation, the equation system needs to be solved p × m times, where p is
the total number of different values that is tested for the smoothing parameter
and m is the number of possible values for the rating variable. In the L-curve
method the equation system only needs to be solved p times. In Table 6.1 we
present a summary of running times for different choices of p. The number of
possible values for the rating variable is set to m = 12.

Cross validation The L-curve method

p = 1 0.292 0.241

p = 10 0.330 0.245

p = 100 0.647 0.267

p = 1 000 3.81 0.490

p = 10 000 35.7 2.85

p = 100 000 333 23.5

Table 6.1: Running times (in seconds) for different choices of p.

Note that we have only considered one continuous rating variable in the com-
putations above. When considering several continuous rating variables these
running times adds up, every time we update one of the continuous rating vari-
ables in the backfitting algorithm.

1http://staff.math.su.se/esbj/GLMbook/
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6.2 Unmodified test data

In our first graphical example we are going to use the unmodified test data. We
test p = 10 000 different values of the smoothing parameter, both in the method
of cross validation and in the L-curve method. The natural cubic splines based
on the suggested smoothing parameters are shown in Figure 6.1. The program
for the method of cross validation takes about 36 seconds to complete whereas
the program for the L-curve method takes about 2.9 seconds to complete. See
Section 6.1 for a more comprehensive comparison on running times for the dif-
ferent methods.
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Figure 6.1: The natural cubic splines based on the smoothing parameters given by
the method of cross validation (solid curve) and the L-curve method (dashed curve).

6.3 Modified test data

Now we are going to modify our original test data in different ways to be able
to fully analyze and compare the method of cross validation (solid curve) and
the L-curve method (dashed curve). We are going to modify data points with
large duration (wi in Section 3.3) and with small duration both upwards and
downwards to be able to evaluate how the different methods react on data series
with different properties. See Figures 6.2 - 6.7 below.
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Figure 6.2: The claim frequency for an
internal data point with large duration is
multiplied by 2.
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Figure 6.3: The claim frequency for an
internal data point with large duration is
divided by 2.
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Figure 6.4: The claim frequency for an
internal data point with small duration is
multiplied by 5.
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Figure 6.5: The claim frequency for an
internal data point with small duration is
divided by 5.
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Figure 6.6: The claim frequency for a
boundary data point is multiplied by 2.
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Figure 6.7: The claim frequency for a
boundary data point is divided by 2.

We also present a summary of the optimal smoothing parameters, both for the
method of cross validation and for the L-curve method. The optimal smoothing
parameters for the examples in Figures 6.1 - 6.7 are shown in Table 6.2.

Cross validation The L-curve method

Figure 6.1 995 53.2

Figure 6.2 ∞ 999

Figure 6.3 196 000 675

Figure 6.4 16 800 78.0

Figure 6.5 1 090 13.6

Figure 6.6 290 43.7

Figure 6.7 1 190 123

Table 6.2: The optimal smoothing parameters for the examples in Figures 6.1 - 6.7.
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Chapter 7

Summary and conclusion

In this thesis, we have studied two different ways of finding the optimal smooth-
ing parameter within the GAM framework. The method of cross validation
performed well in most situations, but sometimes encountered problems, for
instance when no local minima could be found (see Figure 6.2). The method
is also very computation heavy, especially if the number of possible values for
the rating variable is large. The L-curve method is significantly faster than the
method of cross validation but after visual inspection we can conclude that it
suffers from heavy under-smoothing (see Figures 6.4 - 6.5 where the natural cu-
bic spline adapts too much to internal data points with small duration). This is
a subjective assessment, but it is based on years of experience from the insurance
business. Although the L-curve method is significantly faster than the method
of cross validation, the heavy under-smoothing rejects the L-curve method from
being a suitable method for estimating the optimal smoothing parameter.

If time had permitted, we would have liked to compare the method of leave-
one-out cross validation with other methods within the cross validation family,
but unfortunately, that comparison is beyond the scope of this paper.
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