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Abstract

This thesis empirically evaluates a geometric Brownian motion and a stochas-
tic volatility model for modeling futures prices and hedging Asian call options
on the electricity spot price. Estimation of parameters for the models is done
based on historical futures prices of futures contracts with a one month deliv-
ery period using nonlinear regression and Maximum Likelihood techniques.
The models are tested on 2014 data and tracking error for each model is
presented. The tracking error is investigated through the median value, the
spread between minimum and maximum value along with value at risk at a
95% level.

In addition, a third model for modeling spot and futures prices is pre-
sented theoretically. It is an exponential additive model with the advantage
that it models the future price process from the spot price, instead of mod-
eling the future price process immediately. This bypasses the issue of no
information about the future price process during the delivery period, when
there is no prices of the futures contracts.

The aim of this thesis is to compare the simpler geometric Brownian
motion to the more complex stochastic volatility model. It is found that
the stochastic volatility model performs better when tested on out-of-sample
data. The geometric Brownian motion tends to underestimate the electricity
prices, despite that 2014 had low pricest compared to the other years in the
data sample. In addition, the approximation of the distribution of the future
price process under the geometric Brownian motion model gave a bad fit and
led to difficulties when estimating the parameters. The stochastic volatility
model produced more stable results and gave a better fit for the distribution.
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Chapter 1

Introduction

The Asian style option was formerly traded at Nord Pool, but is now only
provided OTC (over the counter) by financial institutions. The Asian option
is a useful hedging instrument for industries when hedging the exposure to
electricity in their production.

1.1 Dynamics of electricity spot price

Hedging options is closely related to pricing options and the behavior of
the spot price. The behavior of the electricity spot price has several dis-
tinct characteristics that distinguish it from that of both stocks and other
commodities. The spot electricity market is a day-ahead market, since the
system operator must be able to check before the delivery if the required
amount lies within transmission constraints (Weron, 2008). Typically the
electricity spot price is an hourly contract with physical delivery (Weron
et al., 2004).

Non-storability of electricity makes the electricity market different from
other commodity markets. Shortages in electricity production or sudden
increases in electricity demands result in peaks and jumps in the electricity
spot price. The non-storability of electricity, not even for short periods of
time, forces electricity to be generated and consumed instantaneously. Cash
flows from generation and consumption might be linked to the spot price,
but there is no possibility to own electricity spot as an asset (Vehvilainen,
2002). Thus, short-term supply and demand equilibrium determines the spot
prices, which leads to that the current spot price does not automatically have
anything to do with some future spot price (Weron, 2008).

Furthermore, the demand for electricity shows strong seasonality, mean-
reverting behavior, high volatility and a right-skewness in the electricity
spot price. The latter generates higher futures prices than the expected spot
prices in the coming six months, i.e. contango (Bierbrauer et al., 2007).
Weron (2008) claims that spot electricity prices are the best example of all
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financial time series of anti-persistent data, i.e. mean reverting. Only on a
daily level there is persistence in electricity spot price.

The unregulated electricity market opened in Norway in 1991 and became
Nord Pool in 1993, Sweden joined in 1996, Finland in 1998 and Denmark
became a part of it in 1999 (Weron et al., 2004). Despite that the Nordic
countries have a well connected power grid there are still local differences
in price due to transportation constraints of electricity. This in turn is the
reason that Nord Pool is divided into a number of pricing areas, e.g. Sweden
has four pricing areas where the prices in the north typically are lower than
in the south due to greater supply combined with lower demand. There is a
theoretical electricity spot price for the entire Nordic area called the system
price. To smooth the differences in supply and demand for the different areas
there are ongoing projects to connect the German, Baltic, Polish and even
the British market further. The composition of electricity production also
influences the spot price, i.e. how much hydro, nuclear, coal, wind power
there is, respectively. For example, the increased amount of wind power has
caused the spot price to sometimes become negative since it is sanctioned
by the government and might thus be profitable to produce electricity even
with negative a spot price (NordPool, 2015).

1.1.1 Seasonality

The seasonality effect on the electricity spot price is mainly due to the cyclical
demand pattern, where the the demand is bigger for electricity during the
winter because of lower temperature and less hours of daylight (Bierbrauer
et al., 2007). Also the supply side might be influenced by the climate, mainly
hydro power that is dependent on precipitation and snow melting, which have
seasonal variations (Weron et al., 2004). Weron (2008) suggests that spot
prices at Nord Pool have a sinusoid annual cycle and a linear trend, this is
not as evident in other electricity markets, e.g. the German.

1.1.2 High volatility

The electricity spot price has a higher volatility than any other commodity,
or other financial asset; there can be annualized volatilities of 1000% on
hourly spot prices. In addition, it is not uncommon that electricity spot
prices can have a daily standard deviation of 40%, compared to the stock
market that has 1-2% (Bierbrauer et al., 2007).

1.1.3 Jumps and spikes

Price jumps occur because of sudden failure in the power grid that largely
increases the prices in a very short amount of time. Spikes on the other
hand occur due to a sudden increase in demand or when demand reaches
the limit of the current capacity in the power grid. The spikes and jumps
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can be explained by the highly non-linear supply-demand curve and the
non-storability of electricity (Bierbrauer et al., 2007). After a jump, the
electricity spot price generally reverts rapidly to a normal level and the high
price does not last more than a day (Weron et al., 2004).

1.2 Dynamics of electricity derivatives

1.2.1 Forwards and futures

Electricity derivative contracts always imply delivery over a specified time
period, unlike derivatives with stocks as the underlying asset, which are sold
at a single point in time (Hepperger, 2012). Electricity forwards and futures
are more like interest rate swaps than traditional forwards and futures. The
underlying asset is the average spot price during a specified time period (Ve-
hvilainen, 2002). The non-storability of electricity makes electricity futures
contracts, with non-overlapping delivery intervals, seem to have different
underlying assets/commodities. Unlike for most commodities there is no
possibility to transfer one asset into the other, making hedging by commod-
ity storage impossible (Hinz et al., 2005). Similarly as for the relationship
between the current and a future spot price, no explicit connections exist for
futures with different maturities (Weron, 2008).

Electricity futures display the Samuelson hypothesis1, the volatility in-
creases as the time to maturity decreases. When the delivery date ap-
proaches, the amount of information that affects the balance between supply
and demand increases and thus makes the futures price more volatile (Goutte
et al., 2014).

There are two main approaches to model electricity derivatives. The first
one is to model the futures curve and from that deduce the spot price as fu-
tures with immediate delivery. However, this approach does not capture the
right dependencies between fuels and electricity prices. The second approach
computes the futures price as the expectation of the spot price under a risk
neutral probability, i.e. starts with the spot price. This approach generates
a consistent framework for all possible derivatives, but it leads to complex
computations (Aïd et al., 2013). Note that there is no replicating portfolio
for physical spot electricity (Vehvilainen, 2002).

While the electricity spot market in the Nordic countries is provided by
Nord Pool, the derivatives on electricity are provided by Nasdaq OMX. There
are yearly, quarterly, monthly, weekly and daily futures contracts. Each
contract size is 1MWh, but depending on the maturity, the contracts have
different number of delivery hours. For example, the yearly futures contract
has 8760 delivery hours (8784 hours in case of a leap year) (NASDAQOMX,
2015).

1see Samuelson (1965).
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Derivatives can be written on either peak load or base load prices. For
base load, there are prices for 24 hours 7 days a week, while for peak load
there are prices from 8 a.m. to 8 p.m. Monday to Friday. There are also off-
peak prices, which simply are the prices for the non-peak hours. At Nasdaq
OMX, both futures contracts on base load and on peak load are provided.
However, the base load contracts are more liquid for the Nordic market,
contrary to the German market where the peak load contracts are the most
traded. The differences can be explained by the larger portion of hydro power
in the Nordic market, which decreases the differences during peak and non-
peak hours (NordPool, 2015). A large issue when trading with electricity
derivatives is the liquidity. In the futures contracts 90% of the liquidity is
in a few contracts. The most liquid contracts typically are the front month,
the front quarter and the front year contracts. The front month contract
refers to the futures contract with delivery period during the coming month,
e.g. the front month contract in April is the May contract, and similarly for
the front quarter and front year contract, respectively. The illiquidity leads
to large spreads between the bid and ask price and to increased costs when
trading these contracts (Forsell, 2015).

1.2.2 Options

There are two common options on electricity; European options written on
the futures price and Asian options written on the spot price. The former
is provided by Nasdaq OMX, the latter was previously provided by Nasdaq
OMX, but has now been removed. Asian options written on electricity are
settled against the arithmetic average hourly spot price during the delivery
period, typically one month. The delivery period starts when the option
expires, this makes Asian options on electricity differ from other financial
Asian options, which are settled against the average price during the trading
period of the option. The delivery period corresponds to the "underlying"
futures contract. Settlement takes place the day after the delivery period
has ended (Weron, 2008).

Asian options were more frequently traded before 2006 when the Nordic
market changed and became more volatile. Now, Asian options, mostly calls,
are issued by producers to hedge their own production. The seasonality of
the spot electricity prices has effects on the risk when issuing Asian options
as well, e.g. it is more risky to issue an Asian call option in the winter than
in the summer. This is because of the large spikes that are more common
during the winter (Forsell, 2015).

Weron (2008) presents a jump-diffusion model for modeling electricity
spot price at Nord Pool. The model captures typical characteristics of the
spot price such as seasonality, jumps and mean reversion. Further, he derives
a pricing formula for Asian options written on the electricity spot price by
calibrating the market price of risk.
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1.2.3 Hedging Asian electricity options

Trading of the future is only possible up to the delivery period. When the
delivery period has started, the positions in the hedge are fixed and cannot
be adjusted anymore until maturity (Benth and Detering, 2014). Recall
that there is no relationship between neither futures contracts with different
maturities, nor spot prices at different times (Weron, 2008). This makes it
hard to use other futures contracts to hedge the position during the delivery
period of the option, when the corresponding futures contract is not possible
to trade. For example, if the Asian option has a one month delivery period,
the future with corresponding delivery month might be used for hedging.
During the delivery period that future is not tradable, but there are weekly
and daily futures for that period available. However, because there is no
clear relationship between the contracts, it is theoretically difficult to use
them as hedging instruments.

Several authors have written about the struggles of hedging electricity
derivatives in general. The challenge is to hedge an option that depends on
the infinite-dimensional futures curve, with a small number of contracts. For
example, hedging an option with one year delivery period with weekly futures
contracts. Taking this into account, Hepperger (2012) presents quadratic
hedging strategies for European options on electricity swaps by modeling the
futures curve with an exponential jump-diffusion process. Further, Vehvi-
lainen (2002) states that it is impossible to perfectly hedge an Asian option
using only the spot price and a bank account, or using electricity futures.
This is because the electricity futures contract is only tradable up to the
delivery period of the corresponding Asian option, but the payoff of the op-
tion depends on the events during delivery period. Dynamic adjustments of
the hedging portfolio are not possible either (Vehvilainen, 2002). However,
Benth and Detering (2014) present three different models for hedging Asian
options on electricity with the trading restriction of the futures contracts
taken into consideration.

1.3 Lévy processes

To model electricity prices Goutte et al. (2014), Benth and Detering (2014)
and Barndorff-Nielsen and Shephard (2001), among others, suggest the use
of Lévy processes. Their basic properties are presented here.

Suppose that we have a process Yt where the distribution of Y1 is D. If we
divide the time into n equal time intervals and assume that the increments
are independent and from a common distribution D(n), we can write Yt as

Y
(n)
t =

[tn]∑
j=1

C
(n)
j
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where C(n)
j

i.i.d∼ D(n). The sum will have distribution D when t = 1. The
distribution D(n) depends on n, but the distribution of the sum (construction
D) does not. This is possible for processes where D is infinitely divisible
and the resulting process is called a Lévy process (Barndorff-Nielsen and
Shephard, 2012).

The definition of a Lévy process is that a càdlàg stochastic process Yt
with zero initial value is a Lévy process if and only if it has independent and
strictly stationary increments. This means that the distribution of Yt+s−Yt
may depend on s but not on t (the stationarity assumption). It also implies
that the shocks to the process are independent over time. The stationarity
and independent increments imply that the cumulant function of Yt is only
governed by the distribution of Y1:

κYt(θ) = log E[eθYt ]

= t log E[eθY1 ]

= t κY1(θ).

A process is said to be càdlàg if the process is right continuous, with proba-
bility one,

lim
s↓t

Ys = Yt

and has limits from the left

Yt− = lim
s↑t

Ys.

The jump at time t can then be written as

4Yt = Yt − Yt−.

This means that a Lévy process allows jumps, contrary to stochastic pro-
cesses that have continuous sample paths with probability one. These char-
acteristics make a Lévy process a flexible framework when modeling asset
returns. However, the returns will be independent and identically distributed
when measured over a fixed time length, i.e. it ignores serial dependencies
such as volatility clustering (Barndorff-Nielsen and Shephard, 2012).

Examples of Lévy processes are the Poisson, Gamma, Inverse Gaussian
(IG), Wiener process, Normal Inverse Gaussian (NIG) and skewed Student’s
t process. The first three processes are non-negative Lévy processes, sub-
ordinators, which have non-negative increments. In this thesis the NIG
distribution is used, some characteristics of it are presented below.
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1.3.1 The NIG distribution

The normal inverse Gaussian distribution with tail-heaviness α, skewness β,
location µ and scale δ is denoted NIG(α, β, µ, δ). The NIG distribution can
model both asymmetric and symmetric distributions as well as long tails in
both directions. Because of this, it is suitable for modeling various types of
log returns in finance. The tails of the NIG distribution is considered semi-
heavy. They are definitely heavier than the tails of a Gaussian distribution,
but not as heavy as for a Pareto distribution. The density function of the
NIG distribution is

f(x;α, β, µ, δ) = a(α, β, µ, δ)q
(x− µ

δ

)−1
K1

(
δαq

(x− µ
δ

))
eβx

with q(x) =
√

1 + x2, a(α, β, µ, δ) = π−1αeδ
√
α2−β2−βµ and with K1 is the

modified Bessel function of the third order and index 1 (Barndorff-Nielsen,
1997).

1.4 Problem formulation

There is a demand for Asian electricity options from the industry. The
characteristics of the electricity spot price, the non-storability of electricity
in particular, make it difficult for the issuer to hedge the market risk when
issuing Asian options. To cover for the uncertainty of the hedge the issuer
needs to add a fee, which increases the price of the option and thus decreases
the demand for the option. It is therefore of interest to evaluate hedging
strategies for Asian options. A better model for the hedging strategy would
reduce the risk for the issuer and decrease the price of the option for the
buyer.

This is an empirical analysis based on the system spot prices from Nord
Pool between 2006 and 2014 as well as futures contract prices between 2010
and 2014. The evaluation of hedging strategies is made by comparing the
tracking nad hedging error for a simple quadratic hedging strategy (in many
ways similar to a delta hedge) with a more complex quadratic hedging strat-
egy. The aim is to minimize the tracking error. To get a more nuanced
picture of the distribution of the tracking error, value at risk of the tracking
error is presented. In addition, a third model is presented that accounts for
several of the spot price’s characteristics. This model is evaluated in Benth
and Detering (2014) but not included in the empirical evaluation in this
thesis. The thesis focuses on evaluation of hedging strategies for Asian call
options.
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Hedging strategies:

1. Quadratic hedge using the Black-Scholes framework with the future
price process modeled as a geometric Brownian motion.

2. Quadratic hedge with the future price process modeled with stochastic
volatility.

3. Quadratic hedge with the future price process modeled as an exponen-
tial additive process.

Evaluation criteria:

• Minimize the tracking error.

• Investigate tracking error by empirical VaR, minimum and maximum
of tracking error.

The thesis is based on Benth and Detering (2014)’s paper, but with more
focus on comparing the first two models through empirically investigating
the tracking error. This thesis uses base load prices instead of peak load
prices as Benth and Detering (2014) used. The parameters are estimated
through historical data and the evaluation of the models is based on out-of-
sample data, i.e. the evaluation of models is not based on the same historical
data as the parameters are estimated on.

The Chapter 2 presents three different ways to model electricity futures
prices and corresponding hedging strategies for Asian options on electricity
spot price. It starts with a rather simple geometric Brownian motion and
the Black-Scholes framework, but includes the trading restrictions of the
futures contract. A process with stochastic volatility follows, where the
hedging positions are derived from Laplace transforms. The third model is
an exponential additive process which accounts for seasonality and jumps in
the spot price. In Chapter 3 data analysis of the historical spot and futures
prices are provided along with methods for estimating the parameters for the
two first models. In Chapter 4 there is the result of the tracking and hedging
error from hedging an Asian option, when the futures price is simulated by
a geometric Brownian motion and a stochastic volatility model, respectively.
Finally, Chapter 5 contains conclusions drawn from the results in Chapter 3
and Chapter 4.
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Chapter 2

Theory

Here three models for hedging Asian options written on the electricity spot
price are presented. Firstly, the future price process is modeled as a geomet-
ric Brownian motion with time dependent volatility. Secondly, the future
price process is modeled by a stochastic volatility process. Finally, an ex-
ponential additive process is presented for modeling the spot price process
as well as the futures price process. Explicit expressions for the price of
the Asian option and corresponding hedging positions are presented for each
model.

2.1 Assumptions and definitions

Let us start with defining the underlying process, the payoff function of
an Asian option and the hedging portfolio. Throughout this thesis, interest
rates are assumed to be zero. It is also assumed that the underlying contract
is impossible to trade during the delivery period, i.e. after time T1.

The futures contracts are defined as the arithmetic average of the spot
price over a specified time period called the delivery period. The future price
process is defined as follows.

Definition 2.1 Future price process
Let the adaptive process (Xt)0≤t≤T2 represent the future price process of a
futures contract with the payout at time T2

XT2 =
1

T2 − T1

∫ T2

T1

Sr dr

where (St)0≤t≤T2 is the spot electricity price. The futures contract has deliv-
ery period [T1, T2] and is only possible to trade up to time T1.

The aim of this thesis is to evaluate hedging strategies for Asian options, in
order to do that we need to be able to price the options. However, pricing
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formulas for Asian options are in general complex. Given the futures price
process in Definition 2.1 we can rewrite an Asian option written on the spot
price as a European option written on the futures price, which gives more
straight-forward pricing formulas.

Definition 2.2 Asian option
Let C(XT2) := (XT2 −K)+ be the payoff of a European call option written
on the future price process Xt. The payoff of an Asian call option written
on the electricity spot price is(

1

T2 − T1

∫ T2

T1

Sr dr −K
)+

.

Note that C(XT2) has the same payoff as the Asian call option, C(XT2)
can thus be regarded as an Asian call option on the spot price. Similarly,
let P (XT2) be the payoff of a European put option written on the futures
price, which will have the same payoff as an Asian put option on the spot.
Further, let C(t, T1, T2) and P (t, T1, T2)denote the price of the call option and
put option, respectively, at time t. If we assume no arbitrage, two different
claims with the same payoff must have the same price1. In this way, we can
focus on pricing the simpler European option on the futures contract, instead
of the Asian option on the spot price.

The hedging constraint of the futures contract, that it is only possible to
trade up to the delivery period, affects the hedging strategy. The constraint
leads to that the last position entered in the hedging portfolio must take the
expectation of the entire delivery period into consideration. The hedging
portfolio consists therefore of the initial capital, the continuous hedging po-
sitions that can be taken before the delivery period (i.e. before time T1), and
the hedging position taken at time T1 that should cover the entire delivery
period. This type of hedging constraint is considered in Benth and Detering
(2014) and they derive a solution to the quadratic hedging problem.

Definition 2.3 Hedging portfolio
We assume that trading is continuously possible when t ∈ [0, T1] but that the
hedging positions are constant when t ∈ [T1, T2]. Let the hedging portfolio Vt
at time t be

Vt = V0 +

∫ T1∧t

0
ψs dXs + 1t>T1ψT1(Xt −XT1)

where ψt denotes the continuous hedge position up to time T1 and ψT1 is the
hedge position taken just before the delivery period of the underlying asset (in
this case a futures contract). We want to find a portfolio Vt that minimizes

1Otherwise it would always be possible to buy the cheaper claim and sell the more
expensive, gaining the difference in the present with no risk for loss in the future.
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E
[(
H − VT2

)2]
where H is the claim at time T2, e.g. C(XT2).

Benth and Detering (2014) show that the continuous hedging positions up to
time T1 are the same as for the hedging portfolio with no constraint. Further,
they derive the hedging position at time T1, which is specified below.

Proposition 2.4 Let H be an FT2-measurable payoff with E[H2] <∞ and
VT1 the value of the portfolio at time T1. Also, let M be a martingale. Then
the hedging position ψT1 that minimizes E[(H − VT1 − ζ(MT2 −MT1))] with
respect to ζ, is given by

ψT1 =
E[(H)(MT2 −MT1)|FT1−]

E[(MT2 −MT1)2|FT1−]
.

Note that ψT1 does not depend on the portfolio value at time T1.
Further, the optimal hedging position ψt at time t < T1 is given by the

optimal hedging position without the hedging restrictions. V0 is the initial
capital and is equal to the price of the claim at time 0

V0 = E[H].

Proof. See Proposition 2.4 and 2.7 in Benth and Detering (2014). �

The general expressions for the future price process and the hedging port-
folio, respectively, are specified in the following three models. Also, explicit
formulas for pricing Asian options on electricity spot price are presented.

2.2 Geometric Brownian motion

First of the three models presented in this thesis is a geometric Brownian
motion with time dependent volatility. Here it is possible to use the classic
Black-Scholes framework for option pricing and delta hedging. Also, proofs
are presented for a better understanding of the model and the hedging strat-
egy. The geometric Brownian motion model is simpler than the following
two models, which makes it more transparent and requires less running time.
The geometric Brownian motion with time dependent volatility is suggested
for modeling electricity by Benth and Detering (2014) as well as Lucia and
Schwartz (2002).
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2.2.1 Modeling futures prices

The future price process (Xt)0≤t≤T2 in Definition 2.1 is here a geometric
Brownian motion and given by the SDE

dXt = σ(t)XtdWt (2.1)

where Wt is a Wiener process. The volatility is expressed as a deterministic
function of time σ(t) = σ̂exp{−α(T2− t)}, where σ̂ and α are constants and
T2 is the maturity of the future. This was suggested by Lucia and Schwartz
(2002) for electricity futures and is consistent with the Samuelson effect. The
process Xt is given by

Xt = Xsexp

{∫ t

s
σ(u) dWu −

1

2

∫ t

s
σ2(u) du

}
. (2.2)

Let σ̃2
s,t =

∫ t
s σ

2(u) du, then we have that the log return is normally dis-
tributed log(Xt/Xs) ∼ N

(
− 1

2 σ̃
2
s,t, σ̃

2
s,t

)
, where σ̃2

s,t is the variance (Jean-
Peirre et al., 2000). Note that

σ̃2
s,t =

∫ t

s
σ̂2e−2α(T2−u) du

=
σ̂2

2α

(
e−2α(T2−t) − e−2α(T2−s)

)
.

(2.3)

2.2.2 Option pricing

SinceXt is a geometric Brownian motion we can use the classic Black-Scholes
framework for option pricing.

Proposition 2.5 The price of a call and a put option will just be given by
the Black-Scholes formula for European options, with volatility parameter√
σ̃2
t,T2

/(T2 − t),

C(t, T1, T2) = E
[(
XT2 −K

)+∣∣Ft] = XtΦ(d1)−KΦ(d2)

P (t, T1, T2) = E
[(
K −XT2

)+∣∣Ft] = KΦ(−d2)−XtΦ(−d1)

with

d1 =
log(Xt/K) + 1

2 σ̃
2
t,T2

σ̃t,T2

d2 = d1 − σ̃t,T2
where Φ(x) denotes the cumulative standard normal distribution function, K
denotes the strike price and σ̃2

t,T2
is defined as in Equation (2.3).
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Remark 2.6 Recall that a European option on the future price process Xt

will have the same payoff as an Asian option on the spot price St. Due to
the no arbitrage assumption, two different options with the same payoff must
have same price. See Definition 2.2.

2.2.3 Hedging positions

We want to get explicit formulas for the three hedging positions in Defini-
tion 2.3. The three positions are the initial capital, the continuous hedging
position and the position at time T1. The initial capital is simply the price
of the option at time 0, where the option price is given by Proposition 2.5.
The positions for the hedging portfolio Vt up to time T1, i.e. the continuous
hedging positions, are given by the usual Black-Scholes delta,

ψcallt = Φ(d1)

ψputt = 1− Φ(d1)

where d1 is defined as in Proposition 2.5. The hedging position at time T1

is given by the following Proposition, the formula is derived by Benth and
Detering (2014).

Proposition 2.7 The hedging position at time t = T1 for a call option with
payoff C(XT2) is given by

ψcallT1 =
XT1e

σ̃2
T1,T2 (2σ̃T1,T2 − K̃)− (K +XT1)Φ(σ̃T1,T2 − K̃) +KΦ(−K̃)

XT1(e
σ̃2
T1,T2 − 1)

where

K̃ =
log(K/XT1) + 1

2 σ̃
2
T1,T2

σ̃T1,T2

and σ̃2
T1,T2

is defined as in Equation (2.3). The corresponding hedge position
for a put option is ψputT1

= ψcallT1
− 1.

Proof. We know from Proposition 2.4 that the hedge position at time T1

is given by E[C(XT2)(XT2 −XT1)|FT1−]/E[(XT2 −XT1)2|FT1−]. Note that
since we have a continuous future price process Xt the filtration FT1 will be
the same as the filtration FT1−. Let us start with computing the numerator.
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E[C(XT2)(XT2 −XT1)|FT1 ]

=

∫ ∞
−∞

C(XT1e
−σ̃2T1,T2

2
+σ̃T1,T2y)(XT1e

−σ̃2T1,T2
2

+σ̃T1,T2y −XT1)
1√
2π
e

−y2
2 dy

=

∫ ∞
K̃

C(XT1e
−σ̃2T1,T2

2
+σ̃T1,T2y)(XT1e

−σ̃2T1,T2
2

+σ̃T1,T2y −XT1)
1√
2π
e

−y2
2 dy

(2.4)

since the integrand is zero for y < K̃. Let us begin with computing the first
summand of the integral to avoid too long expressions.

∫ ∞
K̃

(XT1e
−σ̃2T1,T2

2
+σ̃T1,T2y −K)XT1e

−σ̃2T1,T2
2

+σ̃T1,T2y
1√
2π
e

−y2
2 dy

=X2
T1e

σ̃2
T1,T2

∫ ∞
K̃

e−
1
2

(y−2σ̃T1,T2 )2 1√
2π

dy −KXT1

∫ ∞
K̃

e−
1
2

(y−σ̃T1,T2 )2 1√
2π

dy

=X2
T1e

σ̃2
T1,T2

∫ ∞
K̃−2σ̃T1,T2

e−
1
2
x2 1√

2π
dx−KXT1

∫ ∞
K̃−σ̃T1,T2

e−
1
2
x2 1√

2π
dx

(2.5)

recall that Φ(x) = 1− Φ(−x), Equation (2.5) can then be written as

X2
T1e

σ̃2
T1,T2Φ(2σ̃T1,T2 − K̃)−KXT1Φ(σ̃T1,T2 − K̃).

Similarly, the second summand in (2.4) becomes

−X2
T1Φ(σ̃T1,T2 − K̃) +KXT1Φ(−K̃).

Finally,

E[(XT2 −XT1)2|FT1 ] = X2
T1

(
e
σ̃2
T1,T2 − 1

)
gives Proposition 2.7. �

2.3 Stochastic volatility

In the second model, the future price process is just like the geometric Brow-
nian motion driven by a Wiener process, but it has stochastic volatility. The
model has been proposed in Benth and Detering (2014) and for gas prices in
Benth (2011). Originally, Barndorff-Nielsen and Shephard (2001) presented
this model, but with an application for the currency market. Explicit for-
mulas for option pricing and hedging positions are presented using inverse
Laplace transforms. Here some proofs are presented for better understand-
ing of the model, but details of the derivation of the Laplace transforms are
left out.
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2.3.1 Modeling spot and futures prices

The futures price process (Xt)0≤t≤T2 in Definition 2.1 is here given by the
SDE

dXt = XtσtdBt (2.6)

where Bt is a Wiener process and with the stochastic volatility σt. Let
Yt = σ2

t be given by

dYt = −λtYtdt+ dLt (2.7)

where λt is assumed to be deterministic and positive, and Lt is a finite
subordinator process2 without deterministic drift. That is, Yt will be positive
and σt will be well defined for all Yt. Since Lt is a pure jump Lévy process
it will be independent of Bt, and therefore also the stochastic volatility σt
will be independent of Bt. The process Yt is an Ornstein-Uhlenbeck process
and Equation (2.7) has thus the solution

Yu = Yte
−

∫ u
t λr dr +

∫ u

t
e−

∫ u
s λr dr dLs. (2.8)

The solution to Equation (2.6) is

Xt = Xs exp

{
− 1

2

∫ t

s
σ2
u du+

∫ t

s
σu dBu

}
. (2.9)

We would like to have an easier expression for the integrated variance in
Equation (2.9). If we integrate Equation (2.8) over [t, T ] we get∫ T

t
σ2
u du = Yt

∫ T

t
e−

∫ u
t λr dr du+

∫ T

t

∫ u

t
e−

∫ u
s λr dr dLsdu.

To obtain the integrated variance we use the Fubini theorem, as in Benth
and Detering (2014), and get∫ T

t
σ2
u du = σ2

t ε(t, T ) +

∫ T

t
ε(u, T ) dLu, (2.10)

with continuous function

ε(t, T ) =

∫ T

t
e−

∫ u
t λr dr du. (2.11)

Note that if λt = λ is a constant for all t we get ε(t, T ) = λ−1
(
1− e−λ(T−t)).

The constant λ will be used for empirically evaluate the stochastic volatility
2An increasing Lévy process with non negative increments (see Barndorff-Nielsen and

Shephard (2012)).
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model in Chapter 3 and Chapter 4. Further, let Zt denote the log price
process of Xt

Zt := log Xt = log X0 −
1

2

∫ t

0
σ2
s ds+

∫ t

0
σs dBs. (2.12)

This allows us to derive the Laplace transform of the distribution of Zt,
and using that we can price derivatives on Xt. First, we need the cumulant
function of the Lévy process Lt. Let the Lévy measure w(x) of Lt be such
that the cumulant function κ(θ) = log E[eθL1 ] exists for θ ∈ (−b, b)

κ(θ) =

∫ ∞
0

(eθx − 1)w(x) dx. (2.13)

The lemma below is proved in Nicolato and Venardos (2003) for a constant
λ and derived for a deterministic time dependent function λt by Benth and
Detering (2014).

Lemma 2.8 The Laplace transform φ(t, T, z, σt) = E[exp{z(ZT − Zt)}|σt]
is given by

φ(t, T, z, σt) = exp

{
1

2
(z2 − z)σ2

t ε(t, T ) +

∫ T

t
κ(f(s, z)) ds

}
with f(s, z) := 1

2(z2 − z)ε(s, T ), κ(θ) and ε(t, T ) defined as in Equation
(2.13) and (2.11), respectively. The transform is well defined in the stripe
S = {<(z) ∈ (θ−, θ+)} with

θ+ =
1

2
+

√
1

4
+ 2bε(t, T )−1,

θ− = −1

2
−
√

1

4
+ 2bε(t, T )−1.

To be able to price calls and puts we need the (bilateral) Laplace transform
for the payoff functions of call and put options. The Laplace transform is
defined by

L{f(y)}(z) =

∫ ∞
−∞

f(t)e−zt dt.

The subsequent lemma is proved in Benth and Detering (2014) and gives
the Laplace transforms for the payoff and modified payoff functions for call
and put options, respectively. The payoff functions are needed for the option
prices and the continuous hedging positions. The modified payoff functions
are needed for the hedging position at time T1.
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Lemma 2.9 Let

L1(z) = Xz
t

K1−z

z(z − 1)

L2(z) = −
X2
T1

2− z

(
K

XT1

)2−z
+
KXT1 +X2

T1

1− z

(
K

XT1

)1−z
+
KXT1

z

(
K

XT1

)−z
and

c1(y) =
(
Xte

y −K
)+

p1(y) =
(
K −Xte

y
)+

c2(y) =
(
XT1e

y −K
)+(

XT1e
y −XT1

)
p2(y) =

(
K −XT1e

y
)+(

XT1e
y −XT1

)
Then

L1(z) =

{
L{c1(y)}(z) for z with <(z) > 1

L{p1(y)}(z) for z with <(z) < 0

L2(z) =

{
L{c2(y)}(z) for z with <(z) > 2

L{p2(y)}(z) for z with <(z) < −2.

Benth and Detering (2014) suggest to model daily log returns of electric-
ity futures with a NIG distribution. The NIG distribution is also used by
Benth (2011) for the squared stochastic volatility of gas spot prices in the
UK. This indicates that the NIG distribution might be useful when mod-
eling the squared stochastic volatility for the electricity future price process
Xt. Barndorff-Nielsen and Shephard (2001) show that if the subordinator
process Lt, which drives Yt, has IG distributed marginals, Yt will be NIG
distributed. In this case we can derive explicit formulas for Equation (2.13)
and φ(t, T, z, σt) in Lemma 2.8. If we let Lt ∼ IG(δ, γ), κ(θ) in Equation
(2.13) becomes

κ(θ) = δγ − δ(γ2 − 2θ)1/2. (2.14)

Further, Nicolato and Venardos (2003) presents a closed form solution for
the integral in Lemma 2.8 for a constant λt = λ

∫ T

t
κ(f(s, z)) ds =

δ

λ

(√
γ2 − 2f1 − γ

)
+

2δf2

λ
√

2f2 − γ2

×

(
arctan

(
γ√

2f2 − γ2

)
− arctan

(√
γ2 − 2f1

2f2 − γ2

))
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with f1 = 1
2(z2 − z)(1 − e−λ(T−t)) and f2 = 1

2(z2 − z). We can then write
φ(t, T, z, σt) as

φ(t, T, z, σt) =exp

{
1

2
(z2 − z)σ2

t λ
−1(1− e−λ(T−t))

+
δ

λ

(√
γ2 − 2f1 − γ

)
+

2δf2

λ
√

2f2 − γ2

×

(
arctan

(
γ√

2f2 − γ2

)
− arctan

(√
γ2 − 2f1

2f2 − γ2

))}
.

This is used in Chapter 3 and 4 when empirically evaluating the hedging
strategy based on the stochastic volatility model.

2.3.2 Option pricing

To derive an integral representation of the price for put and call options under
the process (2.6), we use the Laplace transform of the options’s payoffs L1(z)
in Lemma 2.9 and the Laplace transform of the incremental log price density
in Lemma 2.8.

Proposition 2.10 The price of a call and a put option, respectively, at time
t is

C(t, T1, T2) =
1

2πi

∫ c+i∞

c−i∞
Xz
t

K1−z

z(z − 1)
φ(t, T2, z, σt) dz, c > 1

P (t, T1, T2) =
1

2πi

∫ c+i∞

c−i∞
Xz
t

K1−z

z(z − 1)
φ(t, T2, z, σt) dz, c < 0

with φ(t, T2, z, σt) defined as in Lemma 2.8.

Proof. This proof is presented in Benth and Detering (2014) and shows how
the inverse of a Laplace transformation can be used for pricing options. Let
us consider the call option. We want to compute

E
[(
XT2 −K

)+∣∣Ft] = E
[
c1

(
ZT2 − Zt

)∣∣Ft] (2.15)

with c1(y) as in Lemma 2.9. Since c1(y) is of bounded variation on compacts
and L{c1(y)}(z) is well defined for <(z) = c we can use the Laplace inversion
theorem

g(y) =
1

2πi

∫ c+i∞

c−i∞
L{g(y)}(z)ezy dz.

Using this we can compute (2.15) by changing the order of integration and
noting that the line of integration lies within the set S defined in Lemma 2.8
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E
[
c1

(
ZT2 − Zt

)∣∣Ft] =
1

2πi
E

[ ∫ c+i∞

c−i∞
L{c1(y)}(z)ez(ZT2−Zt) dz

∣∣Ft]
=

1

2πi

∫ c+i∞

c−i∞
L{c1(y)}(z)E

[
ez(ZT2−Zt)

∣∣Ft] dz

=
1

2πi

∫ c+i∞

c−i∞
L{c1(y)}(z)φ(t, T2, z, σt) dz

where φ(t, T2, z, σt) is the Laplace transform of the incremental log price
density derived in Lemma 2.8. �

Remark 2.11 Recall that a European option on the future price process Xt

will have the same payoff as an Asian option on the spot price St. Due to
the no arbitrage assumption, two different options with the same payoff must
have same price. See Definition 2.2.

2.3.3 Quadratic hedge

We want to determine the initial capital, the continuous hedging position
and the hedging position at time T1 for the hedging portfolio Vt in Definition
2.3. The initial capital V0 is the initial value of the option and is computed
according to Proposition 2.10. Benth and Detering (2014) show that the
continuous hedging position is given by the derivative of the option with
respect to the underlying price process. Just as when pricing the options in
Proposition 2.10, the Laplace transforms of the payoff of the options as well
as the incremental log price density are used when deriving a formula for the
continuous hedging position.

Proposition 2.12 The continuous hedge position for call and put payoffs
for time (t, T1) is given by

ψcallt =
∂C(t, T1, T2)

∂Xt
=

1

2πi

∫ c+i∞

c−i∞

1

z − 1

(
K

Xt

)1−z
φ(t, T2, z, σt) dz, c > 1

ψputt =
∂P (t, T1, T2)

∂Xt
=

1

2πi

∫ c+i∞

c−i∞

1

z − 1

(
K

Xt

)1−z
φ(t, T2, z, σt) dz, c < 0.

Proof. See Benth and Detering (2014) Proposition 3.6 and Corollary 3.7. �

The hedging position at time T1 is computed in a similar way as the option
price and continuous hedging positions.
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Proposition 2.13 The hedging position for time t = T1 is

ψT1 =
1

2πi

∫ c+i∞
c−i∞ L{g(y)}(z)φ(T1, T2, z, σt) dz

E[(XT2 −XT1)2|FT1 ]
(2.16)

where g(y) := f(XT1e
y)(XT1e

y − XT1), and f(XT1e
y) is a payoff function

such that the Laplace transform of g(y) is well defined in the stripe R :=
{b1 ≤ <(z) ≤ b2}, S ∩ R 6= ∅, with S defined as in Lemma 2.8. The
denominator of Equation (2.16) is

E[(XT2 −XT1)2|FT1 ] = X2
T1

(
e
σ2
T1
ε(T1,T2)+

∫ T2
T1

κ(ε(s,T2)) ds − 1
)

(2.17)

where κ(θ) and ε(t, T ) are defined as in Equation (2.13) and (2.11), respec-
tively. For a call option g(y) = c2(y) and for a put option g(y) = p2(y), with
their Laplace transforms defined in Lemma 2.9.

Proof. This proof is presented in Benth and Detering (2014). We know from
Proposition 2.4 that ψT1 =

E[H(XT2−XT1 )|FT1−]

E[(XT2−XT1 )2|FT1−]
. The proof for the numerator

is similar to the proof for Proposition 2.10. To calculate the denominator,
i.e. Equation (2.17), we need to introduce the filtration Gt := σt{σ2

t , 0 ≤
s ≤ T2} ∨ Ft. Recall that σ2

t is independent of Bt. Due to the martingale
property of Xt we obtain

E[(XT2 −XT1)2|FT1−] = E[X2
T2 |FT1−]−X2

T1 .

We have X2
T2

= X2
T1
e
−

∫ T2
T1

σ2
s ds+

∫ T2
T1

2σs dBs and thus

E[X2
T2 |FT1−] = X2

T1E[e
−

∫ T2
T1

σ2
s ds+

∫ T2
T1

2σs dBs |FT1−]

= X2
T1E[e

−
∫ T2
T1

σ2
s ds

E[e
∫ T2
T1

2σs dBs |GT1 |FT1−]

= X2
T1E[e

∫ T2
T1

σ2
s ds|FT1−]

= X2
T1e

σ2
T1
ε(T1,T2)

E[e
∫ T2
T1

ε(s,T2) dLs |FT1−]

= X2
T1e

σ2
T1
ε(T1,T2)+

∫ T2
T1

κ(ε(s,T2)) dLs

where Equation (2.10) gives the second last equality. The last equality fol-
lows from Lemma 3.1 in Eberlein and Raible (1999) and since ε(s, T ) is con-
tinuous in s and bounded. κ(θ) and ε(t, T ) are defined in Equation (2.13)
and (2.11), respectively. �
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2.4 Exponential additive process

In the third model both the spot price and the future price process are
modeled as exponential additive processes. The model starts with the spot
price and from that deduces the future price process, unlike the two previous
models that model the future price process immediately. A disadvantage
with the first two models is that there is no data during the delivery period
of the futures contracts, i.e. it is not possible to know how the future price
process behave during the delivery period. When starting with the spot
price, it is possible to get data for the entire period and thus bypassing
the issue with lack of information during the delivery period for the future
price process. This model was proposed and empirically tested by Benth and
Detering (2014). It is not empirically tested in this thesis, but is included
in the theory section as an example of a different approach of how to model
the future price process.

2.4.1 Modeling spot and futures prices

Let us start with defining an additive stochastic process. An additive process
is similar to a Lévy process, but the condition of stationarity of increments
is relaxed. It is defined as

Definition 2.14 A stochastic process Zt is additive if it has the properties
below

1. P(Z0 = 0) = 1

2. Independent increments, i.e. Zti − Zti−1, Ztj − Ztj−1 are independent
for any i 6= j

3. Stochastic continuity, i.e. ∀ ε > 0, limh→0P(|Zt+h − Zt| ≥ ε) = 0

4. A càdlàg version.

The future price process (Xt)0≤t≤T2 in Definition 2.1 is here on the form

Xt = eZt (2.18)

where Zt is an additive process, see Definition 2.14, such that Xt is a square
integrable martingale. Let the spot price be modeled by

logSt = Λt +Ot + Yt

where Λt is a deterministic seasonality function, Ot is an Ornstein-Uhlenbeck
process dOt = λOtdt + dL1

t and dYt = dL2
t . Set L = (L1, L2) to be a

two dimensional Lévy process and let L1 and L2 be independent on the
probability space (Ω,P, (Ft)0≤t≤T ). Further, let Ψi be the cumulant function
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for Li, i ∈ {1, 2} such that E
[
e〈z,L1〉

]
= eΨ(z) for z = (z1, z2) ∈ R2, |z| ≤ C.

The independence of L1 and L2 gives Ψ(z) = Ψ1(z1) + Ψ2(z2).
Benth and Detering (2014) present the Radon-Nokodym derivative:

dQ

dP

∣∣∣∣
Ft

= exp{θTLt − tΨ(θ)}.

The cumulant function under the risk neutral measure Q is Ψθ(z) = Ψ(z +
θ) − Ψ(θ).Under Q the futures contract with delivery time between T1 and
T2 is

F (t, T1, T2) = EQ
[

1

T2 − T1

∫ T2

T1

Sr dr|Ft
]

Let F (t, T ) be the artificial futures price for delivery at a single point in
time, i.e. F (t, T ) = E[ST |Ft]. We then have

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

F (t, T ) dT. (2.19)

Proposition 2.15 The artificial future price process F(t,T) follows an ex-
ponential additive model under Q given by

F (t, T ) = h̃1(T )h̃2(T − t)exp
{
L̃2
t + e−λT

∫ t

0
eλu dL̃1

u

}
, t ≤ T

where

h̃1(T ) = exp
{

ΛT +O0e
−λT + Y0 +

∂
∂zΨθ

1(0)

λ

(
1− e−λT

)
+

∂

∂z
Ψθ

2(0)T
}

h̃2(τ) = exp
{
τΨ̃θ

2(1) +

∫ τ

0
Ψ̃θ

1(e−λu) du
}

and L̃i is defined by L̃it := Lit − ∂
∂zΨθ

i (0)t and Ψ̃θ
i (z) := Ψθ

i (z)− ∂
∂zΨθ

i (0)z.

Proof. See Proposition 5.1 in Benth and Detering (2014). �

We are however not interested in F (t, T ) but in F (t, T1, T2). Using Propo-
sition 2.15 and Equation (2.19) we get

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

h1(T )h2(T − t)exp
{
L2
t + e−λT

∫ t

0
eλu dL1

u

}
dT

for t < T1 where h̃1 and h̃2 have been replaced by the deterministic h1 and
h2, defined as h̃i but with L̃i and Ψ̃θ

i replaced by Li and Ψθ
i , respectively,

and ∂
∂zΨθ

i (0) = 0 for i ∈ {1, 2}, i.e.
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h1(T ) = exp
{

ΛT +O0e
−λT + Y0

}
,

h2(τ) = exp
{
τΨθ

2(1) +

∫ τ

0
Ψθ

2(e−λu) du
}
.

However, the process F (t, T1, T2) is not exponential additive due to T -dependency
in the scaling of the L1 integral. Because of that we want to find scaling
terms ΣT1,T2(t) = (Σ1(t),Σ2(t)) such that

F (t, T1, T2)

≈F (0, T1, T2) exp
{
−
∫ t

0
Ψθ
(
(Σ1(s),Σ2(s))

)
ds +

∫ t

0
ΣT1,T2(s) dLs

}
.

(2.20)

Let F̂ (t, T1, T2) be the approximation of Equation (2.20). We have

F̂ (0, T1, T2) =
1

T2 − T1

∫ T2

T1

h1(T )h2(T ) dT.

To obtain ΣT1,T2(t) we start with calculating the second moment of F (t, T1, T2).

EQ

[
1

(T2 − T1)2

(∫ T2

T1

F (t, T ) dT

)2
]

=
2

(T2 − T1)2

∫ T2

T1

∫ u

T1

EQ[F (t, u)F (t, T )] dTdu

=
2

(T2 − T1)2

∫ T2

T1

∫ u

T1

S2
0h1(u)h1(T )eh(t,u,T ) dTdu

(2.21)

where h(t, u, T ) is

h(t, u, T ) =

∫ t

0
Ψθ(eλ(s−u)+eλ(s−T ), 2) ds+

∫ u

t
Ψθ(eλ(s−u), 1) ds+

∫ T

t
Ψθ(eλ(s−T ), 1) ds.

Then, we calculate the second moment of F̂ (t, T1, T2)

EQ[F̂ (t, T1, T2)2] = F̂ (0, T1T2)2e−2
∫ t
0 Ψθ(ΣT1,T2 (s)) ds+

∫ t
0 Ψθ(2ΣT1,T2 (s)) ds.

(2.22)
Finally, to get an expression for ΣT1,T2(t) set Equation (2.21) equal to Equa-
tion (2.22). If we take the logarithm and differentiating with respect to t we
get
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−2Ψθ(ΣT1,T2(t)) + Ψθ(2ΣT1,T2(t)) =
g
(
t, ∂h(t,u,T )

∂t

)
g(t, 1)

with g(t, γ(t, u, T )) defined as

g(t, γ(t, u, T )) :=
2

(T2 − T1)2

∫ T2

T1

∫ u

T1

S2
0h1(u)h1(T )eh(t,u,T )γ(t, u, T ) dTdu.

Let us choose Σ2(t) = 1 (Benth and Detering, 2014), we will then get

−2Ψθ
1(Σ1(t)) + Ψθ

1(2Σ1(t)) =
g
(
t, ∂h1(t,u,T )

∂t

)
g(t, 1)

(2.23)

where both sides should be positive and with

∂h1(t, u, T )

∂t
:= Ψθ

1

(
eλ(t−u) + eλ(t−T )

)
−Ψθ

1

(
eλ(t−u)

)
−Ψθ

1

(
eλ(t−T )

)
.

Benth and Detering (2014) suggest that a suitable approximation of the
distribution of the Lévy processes Li is Normal Inverse Gaussian (NIG) dis-
tribution. The cumulative transform for the NIG distribution is given by

ΨNIG(z) = δ
(√

α2 − β2 −
√
α2 − (β + z)2

)
+ µz.

We have that ΨNIG(z) is strictly super additive, i.e. ΨNIG(x+y) > ΨNIG(x)+
ΨNIG(y) for x, y ∈ R, x+y ≤ α−β and that ΨNIG(2z)−2ΨNIG(z) is strictly
increasing for z ∈ R, z ≤ (α − β)/2, see Benth and Detering (2014). This
gives a unique choice of Σ1(t) satisfying Equation (2.23).

Weron (2008) suggests that the spot price has a annual sinusoid cycle with
a linear trend and Benth and Detering (2014) propose that the seasonality
function can be estimated by

Λt = b1 + b2sin[2π(t/365− b3)] + b4t.

2.4.2 Option pricing

To derive an integral representation of the prices of call and put options
under the process (2.18) we use L1(z) in Lemma 2.9.

Proposition 2.16 The prices of call and put option at time t with payoff
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C(XT2) = (XT2 −K)+ and P (XT2) = (K −XT2)+, respectively, are

C(t, T1, T2) := E
[(
XT2 −K

)+∣∣Ft] =
1

2πi

∫ c+i∞

c−i∞
e
∫ T2
t Ψs(z) dsXz

t

K1−z

z(z − 1)
dz

for <(c) > 1, c ∈ D

P (t, T1, T2) := E
[(
K −XT2

)+∣∣Ft] =
1

2πi

∫ c+i∞

c−i∞
e
∫ T2
t Ψs(z) dsXz

t

K1−z

z(z − 1)
dz

for <(c) < 0, c ∈ D
(2.24)

where Ψt(z) is defined according to Definition 2.18 below, dρt := dΨt(2), D
is the set z ∈ S such that

∫ T
0

∣∣dΨu(z)
dρu

∣∣dρu <∞ and assume that the interval
z ∈ C,−2 < <(z) < 2 is included in D.

Proof. See Benth and Detering (2014) Section 3.3 and Goutte et al. (2014)
Theorem 4.1. �

Remark 2.17 Recall that a European option on the future price process Xt

will have the same payoff as an Asian option on the spot price St. Due to
the no arbitrage assumption, two different options with the same payoff must
have same price. See Definition 2.2.

Definition 2.18 Let Zt be an additive process according to Definition 2.14.
The characteristic function φ(z) = E[ezZt ] for z = ix, x ∈ R is

φ(z) = E[ezZt ] = eΨt(z)

Ψt(z) =
1

2
z2At + zΓt +

∫
[0,1]×R

(ezx − 1− zx1|x|≤1)µ(ds, dx)

for z with <(z) ∈ S := {c ∈ R|
∫

[0,T ]×{|x|>1} e
cxµ(dt,dx) <∞} where At and

Γt are constants and µ(t, B) is given by the unique measure integrating 1∧|x|2
of the Lévy-Khinchin representation for the infinitely divisible distribution of
Zt.

2.4.3 Quadratic hedge

We want to determine the initial capital, the continuous hedging positions
and the hedging position at time T1 for the hedging portfolio Vt in Definition
2.3. The initial capital V0 is given by the price of the option at time 0. The
continuous hedging positions are given by the Proposition below.

Proposition 2.19 The positions for the hedging portfolio Vt at time t < T1

for a call and put option, respectively, are given by
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ψcallt =
1

2πi

∫ c+i∞

c−i∞

dρt(z, 1)

dρt
e
∫ T2
t Ψs(z) dsXz−1

t−
K1−z

z(z − 1)
dz

for <(c) > 1, c ∈ D

ψputt =
1

2πi

∫ c+i∞

c−i∞

dρt(z, 1)

dρt
e
∫ T2
t Ψs(z) dsXz−1

t−
K1−z

z(z − 1)
dz

for <(c) < 0, c ∈ D

(2.25)

with dρt(z, y) := d
(
Ψt(z + y)−Ψt(z)−Ψt(y)

)
.

Proof. See Benth and Detering (2014) Section 3.3. �

The hedging position at time T1 is given by the Proposition below.

Proposition 2.20 The hedging position ψT1 for the portfolio Vt is given by

ψT1 =
1

2πi

∫ c+i∞
c−i∞ L{g(y)}(z)eΨT2 (z)−ΨT1 (z) dz

X2
T1

(eΨT2 (2)−ΨT1 (2) − 1)
(2.26)

If we let f(XT1e
y) be the payoff of a call or a put option, according to Lemma

2.9 we have

L{g(y)}(z) = −
X2
T1

2− z

(
K

XT1

)2−z
+
KXT1 +X2

T1

1− z

(
K

XT1

)1−z
+
KXT1

z

(
K

XT1

)−z
for z with <(z) > 2 for call options and <(z) < −2 for put options .

Proof. See Benth and Detering (2014) Section 3.3. �

2.5 Evaluation of models

To evaluate the hedging strategies we investigate the tracking error and the
hedging error of the models. Both the tracking error and the hedging error
are defined as the difference of the hedging portfolio and the payoff of the
option at time T2

VT2 −
(

1

T2 − T1

∫ T2

T1

Sr dr −K
)+

(2.27)

where
(

1
T2−T1

∫ T2
T1
Sr dr −K

)+ is the payoff of the Asian call option at time
T2 and VT2 is the hedging portfolio at time T2. The difference between the
tracking error and the hedging error is that the tracking error bases the
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payoff of the option on historical data and shows thus how the hedge would
have performed historically if used. The hedging error simulates the entire
price process, including the final payoff of the option. The advantage is that
it is possible to investigate more outcomes for the payoff of the option than
when investigating the tracking error. However, the result from the hedging
error will only be relevant if the future price process Xt follows the actual
future price process correctly.
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Chapter 3

Simulation of electricity futures
prices

The two first models in the theory section, the geometric Brownian mo-
tion model and the stochastic volatility model, are tested empirically. This
chapter presents methods for estimating the parameters for each of the two
models along with simulation techniques. Furthermore, the chapter begins
with a data analysis of the spot prices and futures contracts in the data
sample.

3.1 Data analysis

In Figure 3.1 and 3.2 we can see the daily average of spot base load electricity
prices between 2006 and 2014 and the daily average of futures prices for a
one month contract1 on base load electricity prices between 2010 and 2014,
respectively. The spot price data is collected from Nord Pool and the futures
price data is collected from Bloomberg. Because of the change in composition
in 2006 of hydro, nuclear, wind and water power, leading to higher volatility,
the data from before 2006 is not relevant for the current spot price. In total,
there are 3217 observations of the spot price and 3643 observations of the
futures prices. All prices are denoted in EUR per MWh. There are prices
for three months for each futures contract, i.e. around 60 data points for
each contract. The delivery period is the month after the last trading day, or
more precisely, the May contract’s delivery period is May but its last trading
day is the last of April (or the last trading day in April).

From a visual inspection we can see in Figure 3.1 and 3.2 that the spot
price is more volatile than the futures price, as expected. The spot price
shows both seasonality and spiky behavior. The futures price appears to
show some seasonality as well, but it is not as evident as the for spot price.

1A one month futures contract means that its delivery period is one month.
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The futures prices have some spikes during the first two years, but after 2012
the prices are less spiky and have lower values. The spot prices also have
more spikes during 2010-2012.
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Daily system prices from Nord Pool

Figure 3.1: Daily spot prices of system prices from Nord Pool
2006-02-01 - 2014-10-22

Table 3.1 shows the average, minimum, maximum and standard deviation
for futures prices. To detect seasonal differences, there are also the same
statistics month-wise. Note that the volatility is annualized by multiplying
the daily standard deviation by

√
250, since 250 is the average number of

trading days per year. In the sample, April has the highest volatility and
November the lowest. The highest values of the futures contracts can be
found in January to Mars and the lowest in July and August. The standard
deviation is the highest in the beginning of the year and the lowest in the
end. Note that the volatilities for 2010-2012 are approximately the same but
that it drops significantly in 2013 and 2014. We can see that the prices are
lower during the last two years as well.

3.2 Geometric Brownian motion

3.2.1 Estimation of α and σ̂

Recall that log(Xt/Xs) ∼ N(−1
2 σ̃

2
s,t, σ̃

2
s,t), we can then use Maximum Like-

lihood estimation to fit the empirical log returns to that normal distribu-
tion with time dependent parameters. The probability density function of
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Figure 3.2: Futures contracts with one month delivery. 3 months data for
each contract. Data from Bloomberg

2010-02-01 - 2014-11-28

log(Xt+1/Xt)) is given by

f(x) =
1√

2πσ̃t,t+1

exp

{
−

(x+ 1
2 σ̃

2
t,t+1)2

2σ̃2
t,t+1

}
(3.1)

where σ̃2
t,t+1 is as in Equation (2.3) and x = log(Xt+1/Xt). Matlab’s func-

tion mle is used with (3.1) and empirical data. Since the volatility depends
on time to maturity, contract-wise estimation of the parameters is done. The
futures contracts seem to be showing some seasonality, see Figure 3.2 and
Table 3.1, therefore the estimation of parameters for the 2014 futures con-
tracts is done on data for the equivalent month in 2013. There are three
months data for each contract, i.e. around 60 data points per contract. The
estimations along with a 95% confidence interval are presented in Table 3.2.
The last row is for all front month contracts 2010-2013, 989 data points, as
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Mean Min Max St. dev. # Obs Volatility # Obs
Total 41.06 16.25 90.77 10.82 3702 23.72% 3643

January 47.38 33.70 90.77 11.11 252 21.66% 248
February 47.69 31.75 83.10 11.31 275 29.20% 270

Mars 45.52 27.60 83.95 13.63 289 27.73% 284
April 42.97 25.25 73.70 13.09 316 32.16% 311
May 38.36 27.70 60.95 10.19 309 23.14% 304
June 37.97 23.00 58.50 10.69 309 18.56% 304
July 35.38 19.90 56.00 11.26 304 21.50% 299

August 36.75 16.25 57.85 10.16 320 27.86% 315
September 38.45 24.35 56.30 8.28 330 23.13% 325

October 39.43 29.10 52.60 7.14 334 24.00% 329
November 42.00 27.50 52.50 6.12 334 13.96% 329
December 43.02 30.75 68.33 6.80 330 16.78% 325

2010 51.10 38.75 90.77 9.06 765 27.89% 761
2011 50.61 32.00 77.00 7.61 759 26.08% 757
2012 33.96 16.25 48.50 6.52 753 27.44% 751
2013 37.75 26.50 47.40 3.33 747 16.63% 754
2014 30.54 19.90 37.55 4.21 750 16.45% 629

Table 3.1: Statistics of the futures contracts with one month delivery
2010-2014. 3702 observations in total. Note that the volatility corresponds
to the annualized standard deviation of the log-return. The number of

observations for the log-return is 3643.

comparison. Figure 3.3 shows the empirical distribution density along with
the estimated time dependent normal density for log returns of the JUL 13
contract.

We can see that the empirical distribution has heavier tails and an ex-
pected value closer to zero than the fitted normal distribution. This indicates
that the normal distribution is a bad fit for electricity futures log returns,
despite the adjustment with time dependent volatility. Another indication
of a bad fit of the distribution is the rather large confidence intervals for α
and σ̂ along with the fact that the estimation of α is zero for several months,
and that the confidence interval includes zero in some additional months.
The estimation for the APR 13 contract was not possible to derive. In these
cases, when the estimation of α is inadequate, parameters for a month close
by is used in the simulation of the hedge. Both α and σ̂ varies significantly
between the months, this might be because of the seasonal variations, or just
due to large differences between each contract.
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α σ̂

JAN13 2.062 (0.918, 3.207) 0.034 (0.013, 0.054)
FEB13 4.242 (2.241, 6.063) 0.011 (-0.002, 0.024)
MAR13 0.000 (-2.163, 2.163) 0.099 (0.051, 0.147)
APR13 - -
MAY13 2.849 (1.535, 4.163) 0.027 (0.006, 0.048)
JUN13 0.000 (-1.931, 1.931) 0.100 (0.051, 0.149)
JUL13 1.327 (0.061, 2.593) 0.079 (0.032, 0.126)
AUG13 0.000 (-1.744, 1.744) 0.121 (0.069, 0.173)
SEP13 0.000 (-1.103, 1.103) 0.096 (0.073, 0.119)
OCT13 0.770 (-0.424, 1.963) 0.070 (0.038, 0.102)
NOV13 0.000 (-1.186, 1.186) 0.084 (0.058, 0.109)
DEC13 1.224 (-0.005, 2.453) 0.055 (0.025, 0.085)
FRONT 0.000 (-0.573, 0.573) 0.128 (0.106, 0.149)

Table 3.2: The estimation of σ̂ and α is for futures contracts with one
month delivery. Data used is three month of each 2013 contract and front

month contracts 2010-1013. A 95% confidence interval is provided in
parenthesis.

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35
Empirical density and the fitted normal density

Empirical density
Normal density

Figure 3.3: Empirical probability density and fitted normal density with
time dependent parameters for the log return of JUL13.

3.2.2 Simulation

Wiener process

From the distribution of log(Xt/Xs) we can write
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log Xt+1 = log Xt −
1

2
σ̃2
t,t+1 + σ̃t,t+1Zt

where σ̃2
t,t+1 is defined in (2.3) and Zt is i.i.d. standard normally distributed

random variables. Figure 3.4 presents 10 sample paths of the geometric
Brownian motion Xt with α = 2.062, σ̂ = 0.034 and initial value 39.30
EUR.
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Figure 3.4: 10 sample paths of Xt with α = 2.062, σ̂ = 0.034 and initial
value 39.30 EUR.

Hedging portfolio

The hedge is rebalanced on a daily basis. The integral in Definition 2.3 will
then be estimated by the sum

Vt ≈ V0 +
n∑
k=1

ψt(Xtk −Xtk−1
) + 1t>T1ψT1

with tn = t and tk − tk−1 = 1. The option is issued two months before
delivery on a one month futures contract, i.e. we start at time 0 and T1 = 60
and T2 = 90.
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3.3 Stochastic volatility

3.3.1 Estimation of parameters

The method for estimating the parameters for the stochastic volatility model
is based on the method in Benth (2011), where we start with a linear regres-
sion and fit its residuals to the autocorrelation function of the future price
process. Subsequently, the residuals’ distribution is approximated with a
suitable distribution. Here the data used for estimation of parameters is the
historical prices for the front month futures contract on base load electricity
prices 2010-2013 with 989 observations. The dynamics of the log prices Zt
give

Zt+1 = Zt −
1

2

∫ t+1

t
σ2
s ds+

∫ t+1

t
σs dBs,

i.e. a linear regression of tomorrow’s log prices. Since Zt is a martingale, its
expected value is its previous value and the remaining part of the expres-
sion is its residual. Because of σt the residuals are probably not normally
distributed. Figure 3.5 shows a scatterplot of Zt against Zt+1, which looks
linear. The intercept of the regression is not significantly different from zero,
to reduce it further incorporating a seasonality function in Xt, which then is
subtracted from the data set, might be successful. The slope of the regression
is 0.99, almost 1, with p-value 0, suggesting that the lack of mean reversion
in the model for Xt is a reasonable estimate. The R2 for the regression is
98%.

We now move on to investigate the residuals of the regression. Note
that the residuals correspond to the the log returns of the futures prices
Xt. The mean of the residuals is zero and the standard deviation 0.0162,
which corresponds to a 25.69% yearly volatility (assuming 250 trading days
per year). Barndorff-Nielsen and Shephard (2001) derive the variance and
covariance for the log returns with stochastic volatility on the same form
as in this model. Benth (2011) and Barndorff-Nielsen and Shephard (2001)
suggest theNIG distribution as an approximate distribution of the residuals.
Figure 3.7 shows the empirical density for the residuals, also suggesting that
NIGmight be a good distribution in our case. ForNIG distributed residuals
with var(σ2

t ) = ω2 we have that the covariance for the squared residuals y2
t

is (see Barndorff-Nielsen and Shephard (2001), Section 5), for s > 0

cov(y2
t , yt+s) = cov(σ2

t , σ
2
t+2)

= ω2λ−2(1− exp{−λ})2exp{ −λ(s− 1)},

and the correlation is
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Figure 3.5: Scatterplot of futures log prices Zt against Zt+1 for front month
contracts 2010-2013.

corr(y2
t , yt+s) = corr(σ2

t , σ
2
t+s)

= λ−2(1− exp{−λ})2exp{ −λ(s− 1)}.
(3.2)

This allows us to fit the function in (3.2) to the autocorrelation function of
the squared residuals. Figure 3.6 shows the autocorrelation function for the
residuals together with the autocorrelation for the squared residuals with
the fitted function (3.2). We can see that there is zero correlation since all
of the lags are within the 95% interval around zero for the autocorrelation.
Using nonlinear least squares we get an estimation of λ presented in Table
3.3 with an R2 of 72%.

The empirical density2 of the residuals is plotted in Figure 3.7 along
with the NIG density with the fitted parameters in Table 3.3. Barndorff-
Nielsen and Shephard (2001) showed that if the subordinator process Lt has
IG(α, δ) distributed marginals, then residuals will be NIG(α, 0, 0, δ) dis-
tributed (given that the mean and the skewness of the residuals are zero).
The parameters to the NIG distribution are estimated using Maximum Like-
lihood and presented in Table 3.3. However, the confidence intervals are
rather large, especially for α. Inspection of Figure 3.7 indicates that the
fitted distribution is slightly more peaky but otherwise a good fit.

2using Matlab’s function ksdensity
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Figure 3.6: Autocorrelation of the residuals and the squared
autocorrelation of the residuals together with a fitted curve

λ−2(1− exp{−λ})2exp{ −λ(s− 1)}, λ = 1.335 for the 50 first lags.
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Figure 3.7: Empirical density of the residuals and the NIG density with
parameters α = 41.53, β = 0, µ = 0 and δ = 0.010.

Estimate 95% Confidence interval
α 41.53 (31.00, 52.07)
δ 0.010 (0.0086, 0.0113)
λ 1.335 (1.317, 1.352)

Table 3.3: Parameter estimation for the stochastic volatility model.
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3.3.2 Simulation

Stochastic processes

For the stochastic volatility model there are several stochastic processes to
be simulated; the stochastic volatility driven by a Lévy process and the
future price process driven by a Wiener process. The stochastic processes
that drive the volatility and future price process are on integral form. A
stochastic integral can be estimated by the Riemann sum∫ T

t
f(s) dYs ≈

n∑
k=1

f(tk)(Ytk+1
− Ytk)

with tk = k4t.
If we choose Lt to be an inverse Gaussian process we have that L1 ∼

IG(δ, γ). The cumulant function of the IG process (see Equation (2.14))
implies that Lt ∼ IG(tδ, γ). Since the IG process is a Lévy process it has
independent increment and is stationary. This together with the distribution
of Lt give Lt+s − Lt ∼ IG(sδ, γ) with L0 = 0 and Lt =

∑[t/τ ]
k=1 L̃tk where

L̃tk ∼ IG(τδ, γ) i.i.d. random variables and τ the time interval. In Figure
3.8 we can see one realization of the process Lt. The process displays an
upward trend with some large jumps. Using this, modeling the stochastic
volatility σ2

t (2.8) can be done by

σ2
t

d
≈σ2

se
λ(t−s) +

n∑
k=1

eλ(tk+1−t)(Lk+1 − Lk)

d
=σ2

se
λ(t−s) +

n∑
k=0

eλ(tk+1−t)L̃k

with and L̃tk ∼ IG((tk+1 − tk)δ, γ) i.i.d. random variables. Similarly, the
first part of the log prices (2.12) can be modeled as,

−1

2

∫ t

s
σ2
u du = −1

2

(
σ2
sε(s, t) +

∫ t

s
ε(u, t) dLu

)
d
≈− 1

2

(
σ2
sε(s, t) +

n∑
k=1

ε(tk, t)L̃k

)

with L̃tk ∼ IG((tk − tk−1)δ, γ) i.i.d. random variables.
For a Wiener process Bt with B1 ∼ N(0, 1) we have that marginally

Bt ∼ N(0, t) with independent increments Bt+s − Bt ∼ N(0, s) (Barndorff-
Nielsen and Shephard, 2012).We can therefore simulate the remaining part
of the log return as
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Figure 3.8: Lt as an inverse Gaussian process with parameters δ = 0.010,
γ = 41.53 and time interval 1/2000.

∫ t

s
σu dBu

d
≈

n∑
k=1

σtk(Bk+1 −Bk)
d
=

n∑
k=1

σtk
√
tk+1 − tkZk

with Zk independent standard normally distributed random variables. Fig-
ure 3.9 shows 10 different sample paths of Xt.

Hedging portfolio

The hedge is rebalanced on a daily basis. The integral in Definition 2.3 will
then be estimated by the sum

Vt ≈ V0 +
n∑
k=1

ψt(Xtk −Xtk−1
) + 1t>T1ψT1

with tn = t and tk − tk−1 = 1. The option is issued two months before
delivery on a one month futures contract, i.e. we start at time 0 and T1 = 60
and T2 = 90.
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Figure 3.9: 10 sample paths of Xt with X0 = 39.30, σ0 = 0.2569, λ = 1.335,
δ = 0.010 and γ = 41.53.
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Chapter 4

Results

The tracking error (based on historical data) and the hedging error (based
on simulated values), see Equation (2.27), are presented to get a better
view of the models’ performance. While the tracking error shows how the
models actually would have performed if used in 2014 the hedging error
shows the performance for a larger number of outcomes. Given that the
underlying model simulates the electricity futures accurately, the hedging
error shows how the models would perform for more outcomes of the option’s
payoff than 2014 can provide. However, neither of the models are likely to
exactly simulate the behavior of the electricity futures. The primary goal is
though to investigate their performance in comparison to each other; if the
more complex stochastic volatility model outperforms the simpler geometric
Brownian motion. We will consider the tracking and hedging error for a call
option using the geometric Brownian motion (GBM) and stochastic volatility
(SV) model, respectively.

4.1 Hedging error

Figure 4.1 shows the simulated end values of the GBM model and the SV
model, respectively, along with historical front month futures prices. Figure
4.2 presents the hedging error for the GBM and the SV model. The simula-
tion is run 10,000 times with initial futures price 39.30 EUR and the same
value of the strike price. Statistics for the simulations are shown in Table
4.1. The parameters used in the GBM model are those estimated on the
JAN 13 contract.

We can see that the large negative values for the two models seem to be
about the same. However, the SV model tends to overestimate the hedging
portfolio resulting in an average around two instead of zero as in the GBM
model. Table 4.1 shows that the value at risk is greater for the SV model,
the median is however very similar. The spread between the minimum and
maximum value for the GBM model is quite close to that of the SV model,
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Median Min Max V aR0.95 C0

GBM 0.33 -9.02 3.08 2.57 0.16
SV 0.74 -11.40 2.08 3.60 1.82

Table 4.1: Statistics for hedging error for a call option with one month
delivery for the geometric Brownian motion (GBM) model and stochastic
volatility (SV) model, respectively. Strike price equal to the initial futures
value 39.30 EUR and initial call price C0 = C(0, T1, T2). Starting hedge at
time 0, 30 days prior to delivery, i.e. T1 = 30 and T2 = 60. Simulation run

10,000 times.

but slightly more narrow. Note that the SV model prices the option much
higher than the GBM model. From the histograms in Figure 4.1 we can see
that the SV model has heavier tails than the GBM model. Comparing with
the empirical outcome of front month prices 2010-2013 shows even heavier
tails than both the SV and the GBM model. Because of the heavier tails
in the SV model the possible movement in the underlying asset is greater
compared to the GBM model, which increases the hedging error.
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Figure 4.1: Histogram of prices at time T2, initial price 39.30. Simulation
run 10,000 times. The geometric Brownian motion model in the upper left
figure and the stochastic volatility model in the upper right, empirical

values of the front month contracts in the lower.
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Figure 4.2: Histogram of hedging error for a call option with one month
delivery, initial price 39.30 and strike price 39.30. Starting hedge at time 0,
30 days prior to delivery, i.e. T1 = 30 and T2 = 60. Simulation run 10,000

times. The geometric Brownian motion in the upper figure and the
stochastic volatility in the lower.
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4.2 Tracking error

Table 4.2 shows statistics for the tracking error when testing the GBM and
the SV hedge, respectively, on 2014 data. The parameters used are estimated
according to the methods described in Section 3.2 and 3.3. The estimation
of α for the GBM model becomes 0 for some months, for these months the
parameters of a close by contract are used, i.e. parameters from February are
used in Mars, from May in April, from July in June, August and September,
and from December in October and November. For the SV model, initial
value of the volatility is set to be the yearly standard deviation of the resid-
uals of the front month contracts 25.65%. Recall that positive values of the
tracking error indicate that the portfolio value is greater than the claim, and
negative values indicate the opposite. Worth noting is that the call option
is only exercised in May, July, August and September, see the payoffs in the
last column of Table 4.2.

While the values for the SV model are quite stable the result from the
GBM model varies significantly between the months. This is not very sur-
prising considering that the parameters are constant for all months in the
SV model but different depending on month in the GBM model. The GBM
model performs better in February to April in terms of closer spread between
minimum and maximum values as well as smaller value at risk. Note that
none of the options during these months are exercised. In May the option is
exercised and the same parameters as in April are used in the GBM model.
Here we can see that the median value is negative in the GBM model but
positive in the SV model, value at risk is greater for the GBM model (but
very similar to the corresponding SV value), but that spread is somewhat
more narrow in the GBM model. This indicates that the GBM model for
those parameters performs worse than the SV model when the price increases
compared to the initial price. The subsequent months, June to September,
all have the same parameters in the GBM model. Here the spread for the
tracking error is much wider and the value at risk is greater than for the
SV model. However, the median value is slightly better for the GBM model
in July and August, when the price moved more than in the other months.
Note that January is the month where the values in the GBM and SV model
are most similar in terms of spread, value at risk and median value. Also
here, the SV model performs better. In the last three months, when the
parameters for the GBM model is estimated on the December contract, the
SV model performs better as well. The SV model has smaller value at risk,
tighter spreads of minimum and maximum value and smaller median values
for these months.
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2014 Median Min Max V aR0.95 C0 F0 FT2 payoff
Geometric Brownian motion

Jan 1.00 -8.44 20.55 1.58 0.26 39.30 33.60 0.00
Feb 0.12 -1.61 2.95 0.35 0.05 35.30 30.23 0.00
Mar 0.11 -1.42 2.60 0.31 0.05 31.10 26.74 0.00
Apr 0.39 -3.89 8.29 0.77 0.12 27.00 25.52 0.00
May -0.33 -4.39 7.17 1.42 0.11 25.60 26.30 0.70
Jun 2.09 -11.50 64.20 2.74 0.49 26.25 25.19 0.00
Jul -3.78 -15.33 52.39 7.49 0.44 23.48 28.52 5.04
Aug -1.47 -16.62 65.62 6.68 0.53 28.35 32.07 3.72
Sep 1.41 -16.04 81.16 4.78 0.63 33.70 34.97 1.27
Oct 3.09 -20.49 88.58 3.48 0.57 34.33 30.23 0.00
Nov 1.92 -15.05 45.29 2.54 0.35 34.60 30.19 0.00
Dec 1.81 -14.12 42.47 2.38 0.32 32.45 31.48 0.00

Stochastic volatility
Jan 1.84 -7.92 15.60 0.97 1.82 39.30 33.60 0.00
Feb 1.66 -7.12 14.02 0.87 1.64 35.30 30.23 0.00
Mar 1.45 -6.27 12.35 0.77 1.44 31.10 26.74 0.00
Apr 1.27 -5.44 10.72 0.67 1.25 27.00 25.52 0.00
May 0.50 -5.86 9.47 1.33 1.87 25.60 26.30 0.70
Jun 1.23 -5.29 10.42 0.65 1.22 26.25 25.19 0.00
Jul -3.92 -9.77 4.28 5.61 1.09 23.48 28.52 5.04
Aug -2.39 -9.43 7.53 4.42 1.32 28.35 32.07 3.72
Sep 0.31 -8.06 12.11 2.10 1.56 33.70 34.97 1.27
Oct 1.56 -7.11 15.77 1.21 1.59 34.33 30.23 0.00
Nov 1.57 -7.17 15.89 1.22 1.61 34.60 30.19 0.00
Dec 1.47 -6.72 14.01 1.14 1.51 32.45 31.48 0.00

Table 4.2: Statistics for tracking error for a call option with one month
delivery in January to September 2014. Strike price equal to the initial

futures value F0 = F (0, T1, T2), initial call price C0 = C(0, T1, T2) and the
final value of the futures contract FT2 = F (T2, T1, T2). Starting hedge at
time 0, 30 days prior to delivery, i.e. T1 = 30 and T2 = 60. Simulation run

10,000 times.
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Chapter 5

Conclusion

This thesis empirically evaluates a geometric Brownian motion and a stochas-
tic volatility model for modeling futures prices and hedging Asian call options
on the electricity spot price. Estimation of parameters for the model is done
based on historical futures contracts with a one month delivery period using
nonlinear regression and Maximum Likelihood techniques. The models are
tested on 2014 data and the tracking and hedging error for each model are
presented. The tracking error is investigated through the median value, the
spread between minimum and maximum value along with value at risk at a
95% level.

The stochastic volatility model performs better than the geometric Brow-
nian motion, especially during the months where the arithmetic value of the
spot price for the delivery month is higher than the initial futures price, i.e.
when the option is exercised. The estimation of parameters for the geomet-
ric Brownian motion, done contract-wise for the 2013 contracts, produced
several inadequate estimations, where the confidence interval of one the pa-
rameters included zero. This indicates that the log returns of electricity
futures are not normally distributed with time dependent volatility. The
estimation of parameters for the different months produced significantly dif-
ferent tracking errors. Although some seasonality could be detected in the
historical futures prices, the results do not show any benefits from estimating
parameters based on month.

An implication when using historical futures prices for estimation of pa-
rameters is that the prices are not continuous from contract to contract. The
estimation can therefore either be based on data from one contract, which
only provides a very limited amount of data points, or (incorrectly) assume
that the front month contracts are continuous and from the same time series.
The latter approach provides more data points and uses liquid contracts, as
opposed to the former approach where many contracts suffer from illiquidity
before the front month.

The year 2014 had quite low and stable prices compared to earlier years,
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the result would probably have been very different if tested on a more volatile
year. Considering that the worst months for the tracking error are when the
prices moved the most, the models would perform worse for such a year.

The performance might be improved by adding seasonality to the models.
For the stochastic volatility model, the mean reverting factor could be time
dependent or a drift term depending on the season could be added.

In conclusion, the more complex stochastic volatility model performs
better in general compared to the geometric Brownian motion when it comes
to tracking error for 2014 data. In addition, it also provides more satisfactory
estimates of parameters and a better fit of the distributions of log returns.
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