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Abstract

In recent years, the question of whether Expected Shortfall is possible to
backtest has been a hot topic after the findings of Gneiting in 2011 that Ex-
pected Shortfall lacks a mathematical property called elicitability. However,
new research has indicated that backtesting of Expected Shortfall is in fact
possible and that it does not have to be very difficult. The purpose of this
thesis is to show that Expected Shortfall is in fact backtestable by providing
six different examples of how a backtest could be designed without exploit-
ing the property of elicitability. The different approaches are tested and
their performances are compared against each other. The material can be
seen as guidance on how to think in the initial steps of the implementation
of an Expected Shortfall backtest in practice.
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Chapter 1

Introduction

Following recent financial crises and the increased complexity of financial
markets, quantifying risk has become a more important matter. Supervi-
sors increase the control of banks to make sure they have enough capital to
survive in bad markets. While risk is associated with probabilities about
the future, one usually uses risk measures to estimate the total risk expo-
sure. A risk measure summarises the total risk of an entity into one single
number. While this is beneficial in many respects, it opens up a debate
regarding what risk measures that are appropriate to use and how one can
test their performance. Risk measures are used for internal control as well as
in the supervision of banks by the Basel Committee of Banking Supervision.

Value-at-Risk (VaR) is the most frequently used risk measure. VaR mea-
sures a threshold loss over a time period that will not be exceeded with a
given level of confidence. If we estimate the 99 % 1-day VaR of a bank to be
10 million then we can say that we are 99 % confident that within the next
day, the bank will not lose more than 10 millions. One of the main reasons
for its popularity as a risk measure is that the concept is easy to understand
without having any deeper knowledge about risk. Furthermore, VaR is very
easy to validate or backtest in the sense that after having experienced a
number of losses, it is possible to go back and compare the predicted risk
with the actual risk. If we claim that a bank has a 99 % 1-day VaR of 10
million then we can expect that one day out of 100, the bank will have losses
exceeding this value. If we find that in the past 100 days, the bank has had
20 losses exceeding 10 million then something is most likely wrong with the
VaR estimation.

In the current regulatory framework by the Basel Committee, banks are
required to report its 99 % VaR on a daily basis. The VaR numbers re-
ported specifies the amount of capital required to maintain this level of risk
in the bank, also called the capital charge. To ensure that VaR estimates
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made by banks are reported correctly, the numbers are backtested against
the realised losses counting the number of exceedances, that is the number
of days a bank’s losses exceeded VaR during the past year. If the number
of exceedances are too many then the bank will be punished with higher
capital charge.

The main criticism of VaR has been that it fails to capture tail risk. This
means that VaR specifies the value that the loss will be exceeding in a bad
day, but it does not specify by how much the loss will be exceeding VaR. In
other words, the measure does not take into account what happens beyond
the threshold level. Figure 1.1 shows two different distributions with the
same 95 % VaR that can illustrate this issue. The two probability distri-
butions have the same 95 % VaR of 1.65 but should not be seen as equally
risky since the losses, defined by the left tail of the distribution, are different
for the two different distributions.

Figure 1.1: Shows two return distributions with the same 95 % VaR of 1.65.
We see that even though VaR is the same, the right plot is more risky.

Furthermore, VaR lacks a mathematical property called subadditivity.
In short, this means that VaR for two combined portfolios can be larger
than VaR for the sum of the two portfolios independently. This implies that
diversification could increase risk, a contradiction to standard beliefs in fi-
nance. Therefore, it is not a desired property for a risk measure. The failure
to capture tail risk and the lack of subadditivity has lead to the increased
adoption of another risk measure called Expected Shortfall. The risk mea-
sure was presented as a response to the criticism of VaR. In short, Expected
Shortfall measures the expected loss in the tail of the distribution. That
is, the expected loss on the days when the loss exceeds VaR. Since the risk
measure takes into account what happens in the tail of the distribution, it
captures tail risk well. Furthermore, Expected Shortfall is subadditive solv-
ing also this issue associated with VaR. In figure 1.1, the left graph would
have an Expected Shortfall of 2.1 while the right graph would have an Ex-
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pected Shortfall of 4.7. Hence, in contrary to VaR, this risk measure would
capture the fact that the right scenario is much more risky.

While VaR is still the most important risk measure today, a change is
expected. Following the criticism of VaR, supervisors have proposed to re-
place the 99 % VaR with a 97.5 % Expected Shortfall as the official risk
measure in the calculations of capital requirements. The purpose behind
this is that tail risk matters and should therefore be accounted for. The dis-
cussion around this can be found in the Fundamental Review of the Trading
Book by The Basel Committee (2013).

While Expected Shortfall solves some of the issues related to VaR, there
is one drawback that prevents a full transition from VaR to Expected Short-
fall. As explained above, it is very straightforward to backtest VaR by
counting the number of exceedances. However, when it comes to Expected
Shortfall, there are several questions outstanding on how the risk measure
should be backtested. In 2011, Gneiting published a paper showing that
Expected Shortfall lacked a mathematical property called elicitability that
VaR had and that this could be necessary for the backtestability of the risk
measure. Following his findings, many people were convinced that it was not
possible to backtest Expected Shortfall at all. If so, this would imply that if
supervisors change their main risk measure from VaR to Expected Shortfall
then they lose the possibility to evaluate the risk reported and punish banks
that report too low risk. When The Basel Committee (2013) proposed to
replace VaR with Expected Shortfall they concluded that backtesting would
still have to be done on VaR even though the capital would be based on Ex-
pected Shortfall estimates. After this proposal from the Basel Committee,
new research has indicated that backtesting Expected Shortfall may in fact
be possible and that it does not have to be very difficult.

The purpose of this thesis will be to show that it is possible to backtest
Expected Shortfall and describe in detail how this can be done. We will do
this by presenting six methods that can be used for backtesting Expected
Shortfall that do not exploit the property of elicitability. We will show that
the methods work in practice by doing controlled simulations from known
distributions and investigate in what scenarios the methods accept true Ex-
pected Shortfall predictions and when they reject false predictions. We will
show that all methods can be used as a backtest of Expected Shortfall but
that some methods perform better than others. We will also advise on which
methods that are appropriate to implement in a bank both in terms of per-
formance and complexity.

The material presented here can be seen as guidance on how to think in
the initial process of the implementation of an Expected Shortfall backtest.
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If the proposed transition from VaR to Expected Shortfall will take place
within the next years then all banks will be faced with a situation where
backtesting Expected Shortfall will be necessary for internal validation and
perhaps eventually also for regulatory control. The question of how a back-
test of Expected Shortfall can be designed is therefore of great interest.

We will start the next chapter by proper definitions of risk measures,
their properties and how backtests of VaR are done today before we move
on to the next chapters where we go into the potential methods and their
performance.
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Chapter 2

Background

This chapter will give an overview of the mathematical properties of risk
measures, give formal definitions of VaR and Expected Shortfall as well as
discuss their mathematical properties. Furthermore, the concept of elic-
itability will be explained in detail and we will describe how the backtesting
of VaR is done today.

2.1 The mathematical properties of risk measures
There are many ways in which one could define risk in just one number.
Standard deviation is perhaps the most fundamental measure that could
be used for quantifying risk. However, risk is mainly concerned with losses
and standard deviation measures deviations both up and down. There are
several properties we wish to have in a good risk measure. One fundamental
criterion is that we want to be able to interpret the risk measure as the
buffer capital needed to maintain that level of risk. Hence, risk should be
denominated in a monetary unit. Following will be a short description of
the six fundamental properties that we look for in a good risk measure. The
properties are important for understanding the academic debate about the
differences between VaR and Expected Shortfall. The properties are cited
from Hult et al. (2012). We let X be a portfolio value today, R0 be the
risk-free return and ρ(X) be our risk measure of portfolio X. Furthermore
we let c be an amount held in cash.

- Translation invariance.

ρ(X + cR0) = ρ(X)− c

This means that having cash reduces risk by the same amount. This
follows automatically from our definition of a risk measure as the buffer
capital needed to maintain a certain level of risk. Having cash equal to
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the risk held in a portfolio c = ρ(X) means that the total risk equals
zero.

- Monotonicity.

X2 ≤ X1, implies that ρ(X1) ≤ ρ(X2)

This means that if we know that the value of one portfolio will always
be larger than the value of another portfolio, then the portfolio with
higher guaranteed value will always be less risky.

- Convexity.

ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2)

In essence, this means that diversification and investing in different
assets should never increase the risk but it may decrease it.

- Normalization. This means that having no position imposes no risk.
Hence, we have that ρ(0) = 0.

- Positive homogeneity.

ρ(λX) = λρ(X) for all λ ≥ 0

In other words, to double the capital means to double the risk.

- Subadditivity.

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2)

Two combined portfolios should never be more risky than the sum of
the risk of the two portfolios separately.

When a risk measure satisfy the properties of translation invariance,
monotonicity, positive homogeneity and subadditivity it is called a coherent
measure of risk. Normalization is usually not a problem when defining a risk
measure. Furthermore, convexity and positive homogeneity together imply
subadditivity.
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2.2 Value-at-Risk
We are now going to give a formal definition of VaR. We let V0 be a portfolio
value today and V1 be the portfolio value one day from now. Furthermore,
we let R0 be the percentage return on a risk-free asset. When people talk
about VaR, the most frequent use is that of a 99 % VaR in the sense that
it is the loss that will not be exceeded with 99 % confidence. However, in
mathematical terms we deal with the loss in a small part of the distribution.
Hence, in mathematical terms a 99 % VaR is referred to as the 1 % worst
loss of the return distribution. We will therefore denote a 99 % VaR with
VaR1% and say that a 99 % VaR has α = 0.01. We define VaR for a portfolio
with net gain X = V1 − V0R0 at a level α as

VaRα(X) = min{m : P (L ≤ m) ≥ 1− α}, (2.1)

where L is the discounted portfolio loss L = −X/R0. We assume a future
profit-and-loss (P&L) distribution function P . If P is continuous and strictly
increasing, we can also define VaR as

VaRα(X) = −P−1(α). (2.2)

While VaR satisfy the properties of translation invariance, monotonicity and
positive homogeneity, it is not subadditive. Hence, VaR is not a coherent
measure of risk. It is straightforward to show that VaR is not subadditive
by Example 2.1, taken from Acerbi et al. (2001).

Example 2.1 We assume that we have two bonds X1 and X2. The bonds
have default probability 3 % with recovery rate 70 % and default probability
2 % with a recovery rate of 90 %. The bonds cannot both default. This could
be the case if they are corporate bonds competing in the same market so one
will benefit from the other’s default. The numbers are shown in table 2.1.

Probability X1 X2 X1 +X2
3 % 70 100 170
3 % 100 70 170
2 % 90 100 190
2 % 100 90 190
90 % 100 100 200

Table 2.1: The table illustrates an example showing that VaR is not subad-
ditive.

We can calculate the initial value of each bond as 98.9 and the value of
the bonds together as 197.8. We calculate the 95 % VaR for each bond by
ordering the returns and take a look at the one with a cumulative probability

7



of 5 % (in this case 90). Hence, for each bond the 95 % VaR is 8.9. The
95 % VaR for the two bonds together is 27.8. Hence, VaR for the two bonds
together is larger than VaR of the sum of the two bonds independently. This
shows that VaR is not subadditive.

2.3 Expected Shortfall
The idea of Expected Shortfall was first introduced in Rappoport (1993).
Artzner et al. (1997, 1999) formally developed the concept. We define Ex-
pected Shortfall as

ESα(X) = 1
α

∫ α

0
VaRu(X)du. (2.3)

Expected Shortfall inherits the properties of translation invariance, mono-
tonicity and positive homogeneity from VaR. Furthermore, is it also subad-
ditive. Hence, Expected Shortfall is a coherent measure of risk.

2.4 Parametric values of VaR and Expected Short-
fall

We will now show how VaR and Expected Shortfall can be calculated for
some standard distributions. We will do this for the normal distribution
with mean 0 and standard deviation σ and the location-scale Student’s t
distribution with degrees of freedom ν, location parameter 0 and scale pa-
rameter σ. We start by proper definitions of the distributions before we
show how the risk measures can be calculated.

2.4.1 The normal distribution

We start by defining a random variable X that follows a normal distribution
with mean 0 and standard deviation σ. We can write this as

X = σY (2.4)

where Y is a standard normal variable. We can write this directly as
Y ∼ N(0, 1) and X ∼ N(0, σ).

2.4.2 Student’s t distribution

We now assume that X follows a location-scale Student’s t distribution.
This means that we can write the random variable X as a function of a
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random variable T that follows a standard Student’s t distribution with ν
degrees of freedom.

X = µ+ σT.

We say that the distribution has location parameter µ and scale parameter
σ. σ does not denote the standard deviation of X but is called the scaling.
Instead, we have that

E(X) = µ for ν > 1,

Var(X) = ν

ν − 2σ
2 for ν > 2.

We will write this as X ∼ tν(µ, σ). In the analysis we will always assume
that µ = 0. This means that we get

X = σT. (2.5)

The probability density of X is given by

gν(x) =
Γ(ν+1

2 )
Γ(ν/2)

√
πνσ2

(
1 + x2

νσ2

)− ν+1
2

2.4.3 VaR

We now want to find the analytical expression of VaR and Expected Short-
fall for the distributions given above. Since both the normal distribution
and the Student’s t distribution have continuous and increasing probability
functions, we have by definition (2.2) that VaR is

VaRα(X) = −F−1(α). (2.6)

We start by assuming that X follows a standard normal distribution accord-
ing to equation (2.4). We can then calculate VaR as

VaRα(X) = −σΦ−1(α) = σΦ−1(1− α), (2.7)

where Φ(x) is the standard normal cumulative probability function.

We now assume that X is Student’s t distributed with parameters ν and
σ according to equation (2.5). We can then write VaR as

VaRα(X) = −σt−1
ν (α) = σt−1

ν (1− α), (2.8)

where tν(x) is the standard Student’s t cumulative probability function.
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2.4.4 Expected Shortfall

We now move on to Expected Shortfall. By definition (2.3) we have that

ESα(X) = 1
α

∫ α

0
VaRu(X)du (2.9)

We start by assuming that X is a standard normal variable according to
equation (2.4). This means that we know VaRα(X) = σΦ−1(1−α). We can
write this as

ESα(X) = σ

α

∫ α

0
Φ−1(1− u)du

= σ

α

∫ 1

1−α
Φ−1(u)du

We do a change of variables and set q = Φ−1(u). We get

ESα(X) = σ

α

∫ ∞
Φ−1(1−α)

qφ(q)dq

= σ

α

∫ ∞
Φ−1(1−α)

q
1√
2π

exp−q2/2 dq

= −σ
α

[ 1√
2π

exp−q2/2
]∞

Φ−1(1−α)

= −σ
α

[ 1√
2π

exp−q2/2
]∞

Φ−1(1−α)

= σ
φ(Φ−1(1− α))

α
,

where, as above, φ(x) is the standard normal density function and Φ(x) is
the standard normal cumulative distribution function. We can do the same
calculation assuming X follows a Student’s t distribution with parameters ν
and σ according to equation (2.5). The calculations can be found in McNeil
et al. (2015). Expected Shortfall can be written as

ESα(X) = σ
gν(t−1

ν (1− α))
α

ν + (t−1
ν (α))2

ν − 1 , (2.10)

where tν(x) is the cumulative probability function of the standard Stu-
dent’s t distribution and gν(x) is the probability density function of the same
distribution.

Table 2.2 shows Expected Shortfall and VaR for different levels using
different parametric assumptions. All estimates are with σ = 1.
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VaR Expected Shortfall
95 % 97.5 % 99% 95 % 97.5 % 99%

t3(0, 1) 2.35 3.18 4.54 3.87 5.04 7.00
t6(0, 1) 1.94 2.45 3.14 2.71 3.26 4.03
t9(0, 1) 1.83 2.26 2.82 2.45 2.88 3.46
t12(0, 1) 1.78 2.18 2.68 2.34 2.73 3.22
t15(0, 1) 1.75 2.13 2.60 2.28 2.64 3.10
N(0, 1) 1.64 1.96 2.33 2.06 2.34 2.67

Table 2.2: The table shows some values of VaR and Expected Shortfall for
some underlying distributions where N(0, 1) denotes the standard normal
distribution and tν(0, 1) denotes the Student’s t distribution with degrees of
freedom ν, µ = 0 and σ = 1.

Table 2.2 gives some guidance on how Expected Shortfall and VaR corre-
spond to each other for different distributional assumptions. It is interesting
to note that for the normal distribution, 99 % VaR and 97.5 % Expected
Shortfall are almost the same. This means that if returns are normally dis-
tributed then a transition from a 99 % VaR to a 97.5 % Expected Shortfall
would not increase capital charges. However, if returns are Student’s t dis-
tributed then the proposed transition would increase capital requirements.

2.5 Elicitability
The concept of elicitability was introduced by Osband (1985) and further
developed by Lambert et al. (2008). This mathematical property is im-
portant for the evaluation of forecasting performance. In general, a law
invariant risk measure takes a probability distribution and transforms it
into a single-valued point forecast. Hence, backtesting a risk measure is the
same as evaluating forecasting performance. This means that in order to
backtest a risk measure we must also look at mathematical properties that
are important for evaluating forecasts. In 2011, Gneiting showed that Ex-
pected Shortfall lacks the mathematical property called elicitability. This
section will define elicitabiliy and explain why it is a problem that Expected
Shortfall is not elicitable.

2.5.1 Definition

In the evaluation of forecasts we want to compare forecasted estimates with
observed data. We say that we have forecasts that we call x and verifying
observations that we call y. We now want to compare the forecasts to the
verifying observations to see if the forecasts were any good. To do this, we
introduce a scoring function S(x, y) that we want to use to evaluate the
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performance of x given some values on y. Examples of scoring functions are
squared errors where S(x, y) = (x− y)2 and absolute errors where S(x, y) =
|x− y|. Depending on the type of forecast made, different scoring functions
should be used in the evaluation. For example, when forecasting the mean,
squared errors is the most natural scoring function to use. This can be seen
from the fact that we can define the mean in terms of that particular scoring
function. We can show that

E[Y ] = argmin
x
E[(x− Y )2]. (2.11)

To prove (2.11), we want to minimise the expected value E[(x − Y )2] with
respect to x. We start by writing

E[(x− Y )2] = E[x2 − 2xY + Y 2]
= x2 − 2xE[Y ] +E[Y 2]

We minimise this with respect to x by taking the first derivative equal to
zero and solving for x. We get that

d

dx
(E[Y 2]− 2xE[Y ] + x2) = −2E[Y ] + 2x

We set this equal to zero and get

−2E[Y ] + 2x = 0,

which can be rewritten as

x = E[Y ].

For example, take Y to be equally distributed on the set (y1, y2, .., yN ). Then

E[Y ] = ȳ = 1
N

N∑
i=1

yi,

which is the sample mean.

A forecasting statistic, such as the mean, that can be expressed in terms
of a mimised value of a scoring function is said to have the mathematical
property called elicitability. We say that ψ is elicitable if it is the minimised
value of some scoring function S(x, y) according to

ψ = argmin
x
E[S(x, Y )], (2.12)

where Y is the distribution representing verified observations. The distribu-
tion can be empirical, parametric or simulated. Furthermore, for elicitability
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to hold, the scoring function has to be strictly consistent. The scoring func-
tion is defined by Gneiting as a mapping S : I x I→ [0,∞) where I = (0,∞).
A functional is defined as a mapping F → T(F ) ⊆ I. Consistency implies
that

E[S(t, Y )] ≤ E[S(x, Y )], (2.13)

for all F , all t ∈ T (F ) and all x ∈ I. Strict consistency implies consistency
and that equality in (2.13) means that x ∈ T(F ).

Intuitively we can say that elicitability is a property such that the func-
tional can be estimated with a generalised regression. Furthermore, as men-
tioned above, the scoring function is appropriate to evaluate the performance
of some prediction.

2.5.2 The elicitability of VaR

We can show that VaRα(Y ) is elicitable through the scoring function

S(x, y) = (1(x≥y) − α)(x− y). (2.14)

According to (2.12) this is true if we can show that

VaRα(Y ) = argmin
x
E[(1(x≥Y ) − α)(x− Y )]. (2.15)

Hence, if we minimise E[(1(x≥Y )−α)(x−Y )] and show that we get VaRα(Y )
as the minimiser, this proves that VaR is elicitable through its scoring func-
tion (2.14). We use 1(x≥y) = θ(x − y) where θ(x) is the Heaviside step
function equal to one when x ≥ 0 and zero otherwise. We can write (2.14)
as

S(x, y) = (θ(x− y)− α)(x− y).

From this we get

E[S(x, Y )] = E[(θ(x− Y )− α)(x− Y )].

We can write this as

E[(θ(x− Y )− α)(x− Y )] =
∫

(θ(x− y)− α)(x− y)fY (y)dy

= (1− α)
∫ x

−∞
(x− y)fY (y)dy − α

∫ ∞
x

(x− y)fY (y)dy.

We now want to take the first derivative of E[S(x, Y )], set it equal to 0 and
solve for x. We want to calculate

d

dx

(
(1− α)

∫ x

−∞
(x− y)fY (y)dy − α

∫ ∞
x

(x− y)fY (y)dy
)

(2.16)
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We take the derivative of the two terms in (2.16) independently. From the
first term, by using Leibniz’s rule, we get that

d

dx

(
(1− α)

∫ x

−∞
(x− y)fY (y)dy

)
=(1− α)

( ∫ x

−∞
fY (y)dy + (x− x)fY (y)− 0fY (−∞)(x+∞)

)
=(1− α)

∫ x

−∞
fY (y)dy

Similarly for the second term, we get

d

dx

(
− α

∫ ∞
x

(x− y)fY (y)dy
)

=− α
∫ ∞
x

fY (y)dy

We can now add the two terms together and get

d

dx
E[S(x, Y )] = (1− α)

∫ x

−∞
fY (y)dy − α

∫ ∞
x

fY (y)dy

=
∫ x

−∞
fY (y)dy − α

We set this equal to zero and find

α =
∫ x

−∞
fY (y)dy

x = F−1
Y (α),

which defines VaRα(Y ). Thus, we have proved that VaRα(Y ) is elicitable
through its scoring function (2.14).

2.5.3 The lack of elicitability and backtestability

Gneiting (2011) contributed to the academic debate by showing that Ex-
pected Shortfall is not elicitable. This means that it is not possible to find a
scoring function S(x, y) such that Expected Shortfall is defined as the fore-
cast x given a distribution Y that minimises the scoring function S(x, y). A
scoring function is a natural tool in evaluating forecasts. Assume you wanted
to evaluate the temperature forecasts for the coming week from three dif-
ferent weather institutes in a particular city. You noted the temperature
of each day from the three institutes and then you take notes of the actual
temperature. How do you then evaluate the three institutes? Most likely
you take the error of each day, square it and sum it up over all days. The
institute with the lowest sum of squared errors is the best at forecasting
the temperature. In mathematical terms, you have minimised the scoring
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function of the temperature predictions. What Gneiting showed was that
this was not possible to do for Expected Shortfall since the scoring function
does not exist. Following his findings, many others have interpreted this as
evidence that it is not possible to backtest Expected Shortfall at all. This
can be seen in for example Carver (2013). The paper by Gneiting changed
the discussion of Expected Shortfall from how it could be backtested to a
question of whether it was even possible to do so.

Not all people have interpreted Gneiting’s findings as evidence that Ex-
pected Shortfall is not backtestable. One of the outstanding issues after his
findings was that successful attempts of backtesting Expected Shortfall had
been made before 2011. For example, Kerkhof and Melenberg (2004) found
methods that performed better than comparable VaR backtests. Following
Gneiting’s findings, Emmer et al. (2013), showed that Expected Shortfall
is in fact conditionally elicitable, consisting of two elicitable components.
Backtesting can then be done by testing the two components separately.
We let Y denote a random variable with a parametric or empirical distribu-
tion from which the estimates are drawn. They proposed using the following
algorithm:

• Calculate the quantile as

VaRα(Y ) = argmin
x
E[(1(x≥Y ) − α)(x− Y )].

• Calculate ESα(Y ) = E[L|L ≥ VaRα], where L = −Y is the loss, using
the scoring function EP [(x−Y )2], with probabilities P (A) = P (A|L ≥
VaRα(Y )). This gives

ESα(Y ) = argmin
x
EP [(x− Y )2)].

We know that VaR is elicitable. If we first confirm this, then what is left
is simply a conditional expectation and expectations are always elicitable.
In the same paper, Emmer et al. (2013) made a careful comparison of dif-
ferent measures and their mathematical properties. They concluded that
Expected Shortfall is the most appropriate risk measure even though it is
not elicitable. A similar discussion of the implications of different risk mea-
sures and its effect on regulation can be found in Chen (2014).

Acerbi and Szekely (2014) argued in a recent article that even without
the conditional elicitability, Expected Shortfall is still backtestable. Elic-
itability is mainly a way to rank the forecasting performance of different
models. While VaR is elicitable, this property is not exploited in a normal
VaR backtest. This means that Expected Shortfall cannot be backtested
through any scoring function but there is no reason why this could not be
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done using another method. This means that if we can find a backtest that
does not exploit the property of elicitability, there is no reason why that
backtest would not work.

Much evidence in the last few years shows that it is possible to backtest
Expected Shortfall. The literature presents a variety of methods that can
be used. Some of them will be presented in the next chapter.

2.6 Backtesting VaR
We will now describe the mathematics behind a backtest of VaR. Backtesting
VaR is straightforward by counting the number of exceedances. That is,
counting the number of realised losses that exceeded the predicted VaR
level. We define a potential exceedance in time t as

et = 1(Lt≥VaRα(X)), (2.17)

where Lt = −Xt is defined as the realised loss in a period t. et = 1 implies
an exceedance in period t while et = 0 means no exceedance in time period
t. Each potential exceedance is a Bernoulli distributed random variable
with probability α. We let e1, e2, ... , eT be all potential exceedances in a
period of T days. We assume the random variables to be independent and
identically distributed with a Bernoulli distribution. We will always assume
that T = 250 since backtests are normally done with one year’s data at hand.
We let Y be the sum of the exceedances, that is the sum of T independent
and identically distributed Bernoulli random variables with probability α.
Since Y is the sum of independent Bernoulli random variables with the same
probability, Y will follow a binomial distribution with parameters n = T and
probability p = α. We get that

Y =
T∑
t=1

et ∼ Bin(T, α).

This means that the total number of exceedances in a given year is a bino-
mial random variable with expected value given by the binomial distribution
as Tα. A 99 % VaR has an α of 0.01. Since we have assumed T = 250, the
expected number of exceedances in one year is 2.5.

With the knowledge that the series of exceedances follows a binomial
distribution, it is possible to determine not only the expected value from
one year’s realised returns but also the probability of a particular number
of exceedances. We can define the cumulative distribution function of a
binomial variable as

F (k;n, p) = P (X ≤ k) =
k∑
i=0

(
n

i

)
pi(1− p)n−i. (2.18)
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The cumulative probability is simply the probability that the number of
exceedances is fewer or equal to the realised number of exceedances for a
correct model. This can be used to calculate the confidence when rejecting
VaR estimates with too many exceedances. We can explain this using an
example of coin flips. We know that the probability of heads or tails is 0.5
for a fair coin. However, after a few flips it seems evident that this coin only
shows heads. What is the probability that the coin is not fair after each time
it has shown heads? After the first toss, the probability of heads given a fair
coin is 0.5. After the second time it is 0.25. After the third, fourth and fifth
time it is 0.125, 0.063 and 0.031 respectively. The cumulative probability is
the probability that the number of heads in a row is this or fewer. That is,
we take one minus the given probabilities. For three, four and five heads in
a row it is 0.875, 0.938 and 0.969. This means that after five heads in a row
we can say with 96.9 % confidence that the coin is not fair. We can apply
the same reasoning to the number of VaR exceedances in a given year if we
know the cumulative probability from (2.18). The cumulative probabilities
are shown in table 2.3.

Number of exceedances Cumulative probability
0 8.11
1 28.58
2 54.32
3 75.81
4 89.22
5 95.88
6 98.63
7 99.60
8 99.89
9 99.97
10 99.99

Table 2.3: The table shows the cumulative probabililities of a particular
number of exceedances for a 99 % VaR using 250 days returns. In other
words, the probability that the number of exceedances is equal to or lower
than the number of exceedances given in the first column. The numbers are
calculated from (2.18).

We see from table 2.3 that for more than four exceedances we can say
with 95 % confidence that there is something wrong with the model since
the probability that the number of exceedances is five or fewer is 95.88 %.
If we want a confidence level of 99 % then VaR estimates with more than
six exceedances should be rejected since the probability of seven or less
exceedances is 99.60 %.
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2.6.1 The Basel rules on backtesting VaR

We will continue by explaining the Basel rules on backtesting of VaR that
apply to all banks. VaR estimates from the calculation of a 99 % VaR
have to be reported on a daily basis for supervisors to be able to control
that banks have the capital necessary to maintain a certain level of risk.
The Basel Committee also requires that the number of VaR exceedances
during the last 250 days is reported. Since it is expensive for banks to hold
a large amount of capital, they would have an incentive to report too low
risk estimates. Hence, the supervisors need some mechanism to increase the
capital charge when there is suspicion that the risk estimates reported are
too low. This issue is solved by applying an additional capital charge when
the number of VaR exceedances during the last year are too many. In this
setting, the cumulative probabilities from table 2.3 are of great help.

Zone Number of exceedances Factor Cumulative probability
Green 0 0.00 8.11

1 0.00 28.58
2 0.00 54.32
3 0.00 75.81
4 0.00 89.22

Yellow 5 0.40 95.88
6 0.50 98.63
7 0.65 99.60
8 0.75 99.89
9 0.85 99.97

Red 10+ 1.00 99.99

Table 2.4: Shows the zones from the Basel rules on backtesting of 99 %
VaR. The number of VaR exceedances during the last 250 days determines
if the VaR model is in the green, yellow or red zone. The yellow and red
zone result in higher capital charge according to equation (2.19) with the
additional factor m given in the table.

Table 2.4 shows the framework for backtesting VaR. The starting point is
that the number of exceedances in the last 250 days are counted. The num-
ber of exceedances in the backtest divides the bank into three zones accord-
ing to the cumulative probabilities from table 2.3. The bank is considered
to be in the green zone if the number of exceedances cannot reject the VaR
model with less than 95 % confidence. Hence, from the cumulative proba-
bilities, this implies that the green zone includes up to four exceedances in a
year. The yellow zone is defined as the zone where a bank has exceedances
so that the model can be rejected with 95 % confidence but not rejected
with 99.99 % confidence. We see from the cumulative probabilities in table
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2.3 that this implies that between five and nine exceedances forces a bank
into the yellow zone. The red zone is defined for the number of exceedances
that implies that the VaR model can be rejected with 99.99 % confidence.
By the cumulative probabilities this implies at least ten exceedances. The
column that is called factor in table 2.4 determines how much the bank will
be punished for having too many exceedances. Simplified, we can say that
the capital charge is calculated as in (2.19) where m is the factor from table
2.4 and MRCt is the market risk capital charge in time period t.

MRCt = (3 +m)VaRt−1 (2.19)

From table 2.4 we see that this implies that banks that are in the yellow
or red zone will be punished with higher capital charge than banks that
are in the green zone. The number of exceedances determines how much
extra capital that is needed. By the cumulative probabilities, we see that
the Basel Committee adds extra capital when the cumulative probability is
higher than 95 %.

Example 2.2 Assume that a bank has reported a 99 % VaR of 10 million
during the last 250 days but has had seven losses larger than 10 million in
the last year. According to table 2.4, the probability of six or less exceedances
is 98.63 %. This means that the probability that the bank’s VaR model is
correct is only 1.37 % given the seven exceedances. The bank is in the
yellow zone and will be punished for this with a higher capital charge. The
additional factor corresponding to seven exceedances is 0.65 according to
table 2.4. If the bank would have been in the green zone then the factor m in
(2.19) had been 0 and the total capital charge would have been 3 × VaR1%,
that is 30 million. However, since the bank is in the yellow zone with seven
exceedances and m = 0.65, the capital charge is now equal to 3.65×VaR1%,
amounting to 36.5 million. Hence, the bank is punished with 6.5 million
extra in capital requirements for having too many VaR exceedances during
the last year.

2.7 Conclusion
Expected Shortfall solves two of the main issues related to VaR. The risk
measure is subadditive and captures tail risk. While we have shown that
backtesting VaR is very straightforward and simple to implement in a regu-
latory framework, this is not the case for Expected Shortfall. After Gneiting
(2011) showed that Expected Shortfall lacked the mathematical property of
elicitability, the backtestability of Expected Shortfall has been questioned.
However, following the findings of Emmer et al. (2013) and Acerbi and
Szekely (2014), it seems like backtesting of Expected Shortfall can be done
as long as the method does not exploit the property of elicitabilty.
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The next chapter will introduce several methods that can be used in
backtesting Expected Shortfall that do not exploit the property of elicitabil-
ity. The methods take different approaches to solving the problem but all
have in common that they do not rely on the use a scoring function.
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Chapter 3

The design of different
Expected Shortfall backtests

This chapter will describe different approaches to backtesting Expected
Shortfall that have been presented in previous literature. The approaches
will be explained in detail together with the underlying mechanisms. In
total, we will examine the methods from four different papers published
between 2008 and 2014 that all take different approaches to solving the
problem. Since Expected Shortfall deals with losses in extreme situations,
the number of observations that are present at the time of a backtest are
usually only a few. The four methods that will be presented here all have a
solution to this small sample problem that is associated with the backtesting
of Expected Shortfall.

Parametric assumption

Yes No

Si
m
ul
at
io
ns Yes Righi and Ceretta Acerbi and Szekely

No Wong Emmer, Kratz, and Tasche

Table 3.1: Shows the fundamental properties of each method introduced in
the chapter.

The four methods can be divided into two different category types. They
are parametric or non-parametric and they either require simulations or not.
These properties are fundamental if the methods are to be implemented in
practice. The properties of each model are shown in table 3.1. The methods
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are presented in chronological order by publication date. The chapter in-
tends to give an intuition behind the methods and the important steps used
to derive the methods rather than to give full proofs.

Before we go deeper into the four approaches, we should note that it is
also possible to find several early proposals in the literature of methods to
backtest Expected Shortfall. These methods have played an important role
in the discussion of Expected Shortfall and its backtestability and should
not be disregarded even though they will not be presented here. Some ex-
amples are McNeil and Frey (2000) who suggested what they call a residual
approach, Berkowitz (2001) who proposed a method that is referred to as
the Gaussian approach and there is also what is called the functional delta
method proposed by Kerkhof and Melenberg (2004). According to the au-
thors of the papers, all these methods are able to backtest Expected Shortfall
under the right circumstances. However, the methods suffer from two draw-
backs. They require parametric assumptions and they need large samples.
The need for parametric assumption does not have to be an issue if VaR is
calculated using a parametric distribution. However, it is important to be
able to distinguish a bad model from a bad parametric assumption. The
major drawback of the methods is the need for large samples, an unrealistic
assumption in the backtesting of Expected Shortfall since the number of
losses at hand are always just a few.

3.1 Wong’s saddlepoint technique
Wong (2008) proposed the use of a parametric method to backtest Expected
Shortfall. The goal of the method is to find the probability density function
of Expected Shortfall in the sense that the sample Expected Shortfall is
defined as the mean of a number of independent and identically distributed
random variables representing the tail distribution. The density function
is found by using an inversion formula on the moment generating function
and approximate the integral by a saddlepoint technique based on the work
of Lugannani and Rice (1980). The probability density function can then
be used to determine the cumulative probability function and from there it
is straightforward to use any outcome of Expected Shortfall to determine a
significance level compared to the estimated value. This section will present
the intuition behind the method, how it should be applied and present an
example where the method is used. In the end, the method is just about
applying a formula. However, there are two steps that need to be understood
to get a sense of how the model works. The first step is how to arrive at
the inversion formula to calculate the density of Expected Shortfall. The
second step is the use of a saddlepoint technique to approximate the integral.
Following will be an explanation of the two steps.
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3.1.1 Finding the Inversion Integral

The sample Expected Shortfall can be seen as the mean of a number of
independent and identically distributed random variables representing the
losses larger than VaR. We let ESN denote the sample Expected Shortfall
from N exceedances. We can write this as

ESN = −X̄ = − 1
N

N∑
i=1

Xi, (3.1)

where Xi is returns exceeding VaR. Say that we know that returns are nor-
mally distributed. This means that everyXi in (3.1) is distributed as the left
tail of a normal distribution. In other words, we know the probability density
exactly. We assume that we have had in total four VaR exceedances during
the last year. We can then assume that the observed Expected Shortfall
is an equally weighted sum of four independent and identically distributed
random variables. By finding the probability density function of this mean
of random variables, it is possible to evaluate each realised Expected Short-
fall outcome and its confidence level against the density function. This can
be done by assuming that returns follow some known distribution.

We assume a known characteristic function of some random variable
X, we call it ϕX(t). The characteristic function of the random variable
X is defined as ϕX(t) = E[eitX ]. The probability density function can be
calculated from the characteristic function by using the inversion formula
given as

fX(x) = 1
2π

∫ ∞
−∞

e−itxϕX(t)dt. (3.2)

We now define a new random variable as the mean of the random variable
X. We set

X̄ = 1
N

N∑
i=1

Xi. (3.3)

We want to find the characteristic function of X̄ given that we know the
characteristic function of X. We have that

ϕX̄(t) = E[eitX̄ ]

= E[e
1
N

∑N

i=1 Xi ]

= E[e
1
N
X1e

1
N
X2 · · · e

1
N
XN ]

= E[e
1
N
X1 ]E[e

1
N
X2 ] · · ·E[e

1
N
XN ]

= (ϕX( t
N

))N . (3.4)
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So by knowing the characteristic function of X we also know the character-
istic function of X̄. We can now use this in equation (3.2) and find

fX̄(x̄) = 1
2π

∫ ∞
−∞

e−itx̄(ϕX( t
N

))Ndt.

By doing a change of variables we get that

fX̄(x̄) = N

2π

∫ ∞
−∞

e−itNx̄(ϕX(t))Ndt. (3.5)

We set ϕX(t) = MX(it) where M is the moment generating function de-
fined as MX(t) = E[etX ]. Furthermore, we define the cumulant generating
function as KX(t) = lnMX(t). This means we can write the integral (3.5)
as

fX̄(x̄) = N

2π

∫ ∞
−∞

e−itNx̄(MX(it))Ndt

= N

2π

∫ ∞
−∞

e−itNx̄eNK(it)dt

= N

2π

∫ ∞
−∞

eN [K(it)−itx̄]dt. (3.6)

By knowing the distribution and characteristic function of some random
variable X we can use the inversion formula given by (3.6) to calculate the
probability density function of the mean.

We now define returns R1, R2, ..., RT that are assumed to be independent
and identically distributed from a continuous distribution F (x) with density
f(x). Wong makes the assumption that the returns are Gaussian and we will
follow by his example. It would be convenient to do the exercise assuming
a Student’s t distribution but then we face the problem that the moment
generating function is not defined for this distribution. We then define a
new return series consisting only of returns when the VaR level is exceeded.
We call them X1, X2, ..., XN where N is the number of VaR exceedances in
the return series. We start by defining the sample Expected Shortfall from
the returns using the N VaR exceedances as

ESN = −X̄ = − 1
N

N∑
t=1

Xt. (3.7)

We assume the random variable R to be standard normally distributed.
What we are really interested in is the distribution of X, that is, the tail
of the distribution of R. This probability density function of X is simply a
scaled version of the density function for R with a smaller interval. We have
that

fX(x) = α−1φ(x)1(x≤−VaRα(R)), (3.8)
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where φ(x) is the standard normal density function. We now want to look
for the moment generating function of the random variable X with the
probability density function given by (3.8). For the random variable X we
get that

MX(t) =
∫ q

−∞
etXα−1φ(x)dx, (3.9)

where q = −VaRα(R) = Φ−1(α). We can calculate this integral (3.9) as

M(t) = α−1
∫ q

−∞
etX

1√
2π
ex

2/2dx

= α−1et
2/2
∫ q

−∞

1√
2π
e(x−t)2/2dx

= α−1et
2/2 × Φ(q − t). (3.10)

In the approximation of the integral (3.6) we will also need the derivatives
of the moment generating function. It is straightforward to show that

M(t) = α−1 exp(t2/2)× Φ(q − t)
M ′(t) = t×M(t)− exp(qt)× α−1φ(q)
M ′′(t) = t×M ′(t) +M(t)− exp(qt)× qα−1φ(q)

M (m)(t) = t×M(t)(m−1)(t) + (m− 1)M(t)(m−2)(t)− exp(qt)qm−1 × α−1φ(q)

This means that if we are able to calculate the integral (3.6) with the moment
generating function given by (3.10), we have found the probability density
function of the mean of the tail. In order to do this we need to approximate
the integral. This can be done using a saddlepoint technique that will be
explained in the next section.

3.1.2 The saddlepoint technique

We are now going to illustrate how to use the saddlepoint technique in the
approximation of integrals. We assume that we want to calculate an integral
of the function f(x). We assume that this function f(x) is the exponential
of some other function h(x). This means that we have that f(x) = exph(x).
We now use Taylor expansion to approximate h(x). We get that

h(x) ≈ h(x0) + (x− x0)h′(x) + (x− x0)2

2 h′′(x).

This means that we can write

f(x) ≈ exp(h(x0) + (x− x0)h′(x) + (x− x0)2

2 h′′(x)).
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We now choose x0 to be a local maximum. Hence, we set x0 = x̂ defined by
h′(x̂) = 0 and h′′(x) ≤ 0. We get that

f(x) ≈ exp(h(x̂) + (x− x̂)2

2 h′′(x̂)).

We now want to find the integral of f(x). We set∫ ∞
−∞

f(x)dx ≈
∫ ∞
−∞

exp(h(x̂) + (x− x̂)2

2 h′′(x̂)).

We can write the right hand side as∫ ∞
−∞

exp(h(x̂) + (x− x̂)2

2 h′′(x̂)) = exp(h(x̂))
∫ ∞
−∞

exp((x− x̂)2

2 h′′(x̂)).

The integral is the same integral as a normal density with variance −h′′(x̂)
and mean x̂. Hence we can calculate this integral as∫ ∞

−∞
f(x)dx ≈ exp(h(x̂))

√
− 2π
h′′(x) = f(x̂)

√
− 2π
h′′(x̂) .

3.1.3 Wong’s method

The intuition behind Wong’s method is to use the saddlepoint technique to
approximate the integral (3.6) and in that way find the probability density
of X̄. We start by looking for the saddlepoint of the integral (3.6). Using the
notation above, we have that f(x) = eN [K(it)−itx̄]. Hence, h(x) = N [K(it)−
itx̄]. It is then straightforward to find the saddlepoint where h′(x) = 0 as

K ′(ω̄) = x̄. (3.11)

Using the inversion formula and the saddlepoint technique, Lugannani and
Rice (1980) showed that if we have the saddlepoint ω̄ we can define

η = ω̄
√
NK ′′(ω̄), (3.12)

ς = sgn(ω̄)
√

2N(ω̄x̄−K(ω̄)), (3.13)

and from this calculate the probability

P (X̄ ≤ x̄) =
{

Φ(ς)− φ(ς)( 1
η −

1
ς +O(N−3/2)), for x̄ < q

1, for x̄ ≥ q
(3.14)

where Φ(x) is the standard normal cumulative probability function and φ(x)
is the standard normal density function. The proof is extensive and can be
found in Daniels (1987). The null hypothesis is given by

H0 : ESN = ESα(R),
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where ESN denotes the sample Expected Shortfall and ESα(R) denotes the
Expected Shortfall predicted from the normal distribution. The null is tested
against the alternative

H1 : ESN > ESα(R).

With the moment generating function defined above in equation (3.10), we
can get the saddlepoint by solving for t in the following expression

K ′(t) = M ′(t)
M(t) = t− exp(qt− t2/2) φ(q)

Φ(q − t) = x̄. (3.15)

We can then use the saddlepoint ω̄ to calculate η and ς and obtain the p-
value stating the probability that the predicted Expected Shortfall is correct
given the realised value on Expected Shortfall.

Example 3.1 We assume that a bank has predicted that its P&L distribu-
tion follows a standard normal distribution. The bank is required to report
its 97.5 % Expected Shortfall on a daily basis. We can easily determine
VaR and hence the threshold value for calculating Expected Shortfall from
the standard normal distribution. By (2.2) we have that VaR2.5% is given by

VaR2.5%(X) = −Φ−1(0.025) = 1.96. (3.16)

Furthermore, we can calculate Expected Shortfall as

ES2.5%(X) = φ(−1.96)
0.025 = 2.34. (3.17)

Based on the last years realised returns, the bank is now going to backtest its
Expected Shortfall prediction of 2.34. We assume that during the last year,
VaR was exceeded five times with returns equal to (X1, X2, X3, X4, X5)=(-
2.39, -2.60, -1.99, -2.75, -2.48). Hence, the observed Expected Shortfall is
2.44 and X̄ =-2.44.

We now want to find the saddlepoint ω̄ such that (3.11) is fulfilled. If we
solve equation (3.15) we get a saddlepoint ω̄ equal to -0.7286. We now need
to find η and ς to calculate (3.12) and (3.13). For that purpose we first need
to define K(ω̄) and K ′′(ω̄). By using K(ω̄) = lnM(ω̄), with M(ω̄) from
(3.10), we get K(ω̄) =16 543. Furthermore, we can find K ′′(t) by taking the
second derivative of K(t) as

K ′(t) = d

dt
lnM(t) = M ′(t)

M(t)

K ′′(t) = d

dt

M ′(t)
M(t) = M ′′(t)M(t)− (M ′(t))2

(M(t))2 (3.18)
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In our example we find that K ′′(ω̄) = 0.1741. We can now take the numbers
and plug them into (3.14). We find that our p-value is P (X̄ ≤ x̄) = 0.2653.
For us to be able to reject Expected Shortfall as incorrect with 95 % signifi-
cance we would have needed a p-value of at most 0.05. This means that the
bank’s predicted Expected Shortfall of 2.34 will pass the backtest.

3.2 Righi and Ceretta’s truncated distribution
Righi and Ceretta (2013) proposed a way to backtest Expected Shortfall that
relies on the use of a truncated distribution. A truncated distribution is a
conditional distribution, for example the conditional normal distribution,
that exists only above or below a certain value. In this case, the truncated
distribution is the distribution that only exists below the negative VaR level.
The core of the method is that by using the truncated distribution it is pos-
sible to predict Expected Shortfall as the expected value of the truncated
distribution and find the variance of the expected value of the truncated dis-
tribution. The variance can then define a dispersion value around Expected
Shortfall. With the use of an expected value and a dispersion measure it is
easy to define a standard test statistic according to

ts = r − µ
σ

(3.19)

where ts denotes the test statistic, r the observed value, µ the expected value
and σ the dispersion measure. However, standard test statistics usually
need larger samples for convergence. To solve this issue, Righi and Ceretta
proposed the use of Monte Carlo simulations. However, since the model is
parametric, critical levels can be defined in advance by simulating from the
predictive distribution. We will now describe how the method works and
how to determine the critical levels in advance.

3.2.1 The Method

Log-returns can be modelled as a GARCH(p, q)-model

rt = µt + εt, εt = σtzt, (3.20)

σ2
t = ω +

P∑
p=1

apε
2
t−p +

Q∑
q=1

bqσ
2
t−q, (3.21)

where rt is the log-return in time t from the random variable R. µt is the
conditional mean, εt is the shock in return in day t, σ2

t is the conditional
variance and zt is white noise. ω, ap and bp are parameters that can be
estimated from data. From this we can derive the expression of VaR and
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Expected Shortfall as

VaRα(R) =µ+ σF−1(α) (3.22)
ESα(R) =µ+ σE[zt+1|zt+1 < F−1(α)] (3.23)

where F (z) is the distribution of z. Note here that VaR is a negative value
compared to our previous definition. Furthermore, they propose a new mea-
sure that they call dispersion of Shortfall (SD) which is to be seen as a
dispersion around the mean of the tail distribution. In other words, the
dispersion of Expected Shortfall. This is defined as

SDα(R) = (σ2Var[zt+1|zt+1 < F−1(α)])1/2. (3.24)

By knowing the mean value of the truncated distribution and a dispersion
of the mean, it is possible to define a standard test statistic

BTt+1 = rt+1 − ESα(R)
SDα(R) . (3.25)

This value can be estimated directly from observed data if ESα(R) and
SDα(R) are known. This means that it will be easy to backtest Expected
Shortfall as long as the dispersion is predicted together with Expected Short-
fall. The dispersion can be determined by using the truncated distribution
of the underlying parametric distribution of the returns.

To test for significance, Righi and Ceretta proposed simulations to de-
termine a critical value. To make the simulations independent of the mean
in (3.20) they replaced rt+1 in (3.25) with its GARCH-representation (3.20)
and this becomes

BT = zt+1 −Et+1[zt+1|zt+1 < F−1(α)]
(Vart+1[zt+1|zt+1 < F−1(α)])1/2 . (3.26)

By assuming that z follows a particular distribution it is possible to use a
large number of simulations to determine a critical value. Since z is assumed
to follow a given distribution, the critical value can be determined in ad-
vance. Righi and Ceretta proposed to simulate a critical value using (3.26)
in the following steps

• Simulate N times M random variables uij from the distribution of zt,
where i = 1, 2, ....,M and j = 1, 2, ...., N .

• For every uij < VaRα(R), calculate Bij = uij−E[uij |uij<VaRα(R)]
(Var[uij |uij<VaRα(R)])1/2

• Choose a significance level and and determine the critical value from
the median of all Bij critical values.
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Example 3.2 We assume that a bank uses a standard normal distribution
to calculate risk. This means that the bank has a 97.5 % Expected Shortfall
of 2.34 and VaR2.5% of 1.96. The bank has now been forced to backtest the
predicted Expected Shortfall. The bank has had six losses exceeding 1.96 in
the last 250 days. The losses are (2.00, 2.54, 3.00, 2.41, 1.98). The ob-
served Expected Shortfall from the five observations is therefore 2.39.

In order to do the backtesting we first need to find the dispersion measure
(3.24) and calculate the critical value needed to determine if we will accept or
reject the Expected Shortfall prediction of 2.34. The variance of a truncated
normal distribution below a value Q is given by

Var[X|X < Q] = [1−Qφ(Q)
Φ(Q) − (φ(Q)

Φ(Q))2] (3.27)

In our case we have that Q = −VaRα = Φ−1(α). Hence we get that

Var[X|X < Φ−1(α)] = [1− Φ−1(α) φ(Q)
Φ(Φ−1(α)) − (φ(Φ−1(α))

Φ(Φ−1(α)))2]

= [1− Φ−1(α)φ(Φ−1(α)
α

− (φ(Φ−1(α)
α

)2] (3.28)

Plugging in α = 0.025 and calculating the dispersion measure from (3.24) we
get that SD = 0.3416. We can now easily calculate the test statistic (3.25)
as

BT = −2.39− (−2.34)
0.3416 = −0.146

We need to do simulations of the test statistic (3.26) using the algorithm
described above. Since we assume returns to be normally distributed we
let zt be standard normally distributed and simulate 107 times from this
distribution. However, we only calculate BTt+1 for zt+1 ≤ −1.96. Using
a 95 % confidence level, the critical value becomes -2.60. Since the test
statistic is -0.146 and higher than the critical value of -2.60, we cannot
reject the model and have to accept the predicted Expected Shortfall. The
bank’s Expected Shortfall prediction will pass the backtest.

3.3 Emmer, Kratz and Tasche’s quantile approxi-
mation

The method presented by Emmer et al. (2013) provides a simple way to back-
test Expected Shortfall based on the approximation of several VaR levels.
This method is a rough approximation compared to the other models but
is by far the less complex one and the most likely model to be implemented
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in practice due to its simplicity. The starting point of the method is that
Expected Shortfall can be approximated with several VaR levels according
to

ESα(X) = 1
α

∫ α

0
VaRu(X)du ≈

1
4[VaR0.25α+0.0075(X) + VaR0.5α+0.005(X) + VaR0.75α+0.0025(X) + VaRα(X)].

Hence, if we assume that α = 0.05 then

ES5%(X) ≈
1
4[VaR1.25%(X) + VaR2.5%(X) + VaR3.75%(X) + VaR5%(X)]

That is, VaR 95 %, 96.25 %, 97.5 % and 98.75 % should be backtested
jointly in order to backtest Expected Shortfall. If all these levels of VaR
are successfully backtested then Expected Shortfall can be considered to be
accurate as well. Emmer, Kratz, and Tasche do not specify why four levels
of VaR should be used. Since we normally deal with a 97.5 % Expected
Shortfall it would be more convenient to use five levels of VaR to get better
quantiles. Hence, we can write

ES2.5%(X) ≈ (3.29)
1
5[VaR2.5%(X) + VaR2.0%(X) + VaR1.5%(X) + VaR1.0%(X) + VaR0.5%(X)]

In the Fundamental Review of the Trading Book by The Basel Com-
mittee (2013), supervisors propose that both the 99 % VaR and the 97.5
% should be backtested in the new framework. In some sense, this is an
attempt to backtest Expected Shortfall in the same way as Emmer, Kratz,
and Tasche propose. However, using just two levels of VaR may be consid-
ered too few to call it a backtest of Expected Shortfall.

The method allows for different interpretations since there is no guidance
on how the different backtests should be added together. The starting point
would be to assume that each VaR level is backtested in the same manner as
the Basel backtest in table 2.4, counting the number of exceedances, assum-
ing that we want to be 95 % sure when we reject a model. We approximate
a 97.5 % Expected Shortfall as the sum of five different VaR levels as in
equation (3.29). Hence, this method would allow us to backtest Expected
Shortfall by making sure that VaR at 97.5 %, 98.0 %, 98.5 %, 99.0 % and
99.5 % all pass a backtest. We start by calculating the cumulative probabil-
ities for a different number of VaR exceedances for the different VaR levels
using the same methodology as in table 2.3 but for different VaR levels. As
above, we assume 250 days in the backtesting which gives T = 250. The
results can be seen in table 3.2.
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Cumulative Probability - VaR levels
Number of exceedances 97.5 % 98.0 % 98.5 % 99.0 % 99.5 %

0 0.18 0.64 2.29 8.11 28.56
1 1.32 3.91 10.99 28.58 64.44
2 4.97 12.21 27.49 54.32 86.89
3 12.70 26.22 48.26 75.81 96.21
4 24.95 43.87 67.79 89.22 99.11
5 40.40 61.60 82.43 95.88 99.82
6 56.57 76.37 91.53 98.63 99.97
7 71.03 86.87 96.36 99.60 100.00
8 82.29 93.39 98.59 99.89 100.00
9 90.05 96.96 99.51 99.97 100.00
10 94.85 98.72 99.84 99.99 100.00
11 97.53 99.50 99.95 100.00 100.00
12 98.90 99.82 99.99 100.00 100.00

Table 3.2: Shows the cumulative probability for different number of ex-
ceedances for different VaR levels. The probabilities are calculated from
equation (2.18) with T = 250, assuming 250 returns and probabilities given
by the different VaRα(X) levels.

We reject a VaR prediction if the cumulative probability is higher than
95 %. We take the 98.5 % VaR as an example. We see that for seven
exceedances, the cumulative probability is 96.36 %. This means that if
the 98.5 % VaR level is exceeded seven times in the last year then we can
reject the VaR prediction with 96.36 % confidence. In other words, we allow
maximum six exceedances not to reject the VaR prediction. From table 3.2
we see that in order to have 95 % probability for each VaR level we should
not accept more than ten exceedances for VaR 97.5 %, eight for VaR 98.0 %,
six for VaR 98.5 %, four for VaR 99.0 % and two for VaR 99.5 %. If any of
these backtests fail then Expected Shortfall can be rejected. The maximum
number of exceedances at each VaR level can be seen in table 3.3.

α Maximum number of exceedances
0.025 10
0.020 8
0.015 6
0.010 4
0.005 2

Table 3.3: The table shows the maximum number of exceedances allowed
in a backtest of different VaRα(X) to be able to reject the VaR prediction
with 95 % confidence assuming 250 returns.
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Example 3.3 We assume a bank that knows its VaR 97.5 % to be 1.96 and
estimates that its Expected Shortfall at the same level is 2.34. Both estimates
are from the standard normal distribution. This means that the bank also
has a VaR 98 % of 2.05, VaR 98.5 % of 2.17, VaR 99 % of 2.33 and VaR
99.5 % of 2.58. At the time of backtesting, the bank has had seven losses
exceeding VaR 97.5 %. The losses are (2.91, 1.98, 2.34, 2.50, 2.02, 2.39,
2.52). This means a realised Expected Shortfall of 2.38. Each VaR level
should be backtested according to the Basel backtest and rejected at the 95 %
confidence level. The maximum number of exceedances are those given by
table 3.3. We compare the VaR levels to the losses and sum up the number
of exceedances for each level in table 3.4.

Losses exceeding VaRα(X) Total
Loss 2.91 1.98 2.34 2.50 2.02 2.39 2.52
VaR2.5% at 1.96 x x x x x x x 7
VaR2.0% at 2.05 x - x x - x x 5
VaR1.5% at 2.17 x - x x - x x 5
VaR1.0% at 2.33 x - x x - x x 5
VaR0.5% at 2.58 x - - - - - - 1

Table 3.4: The table illustrates the numbers in Example 3.3. For each loss,
x marks that the loss exceeds the given VaRα(X) and - means that it does
not exceed the given VaRα(X).

We see that VaR1.0%(X) has five exceedances while according to table
3.3 only four exceedances are allowed not to reject the VaR prediction at
this level. Hence, Expected Shortfall can be rejected since one of the VaR
levels fails the backtest. The bank does not pass the backtest of Expected
Shortfall.

3.4 Acerbi and Szekely’s unparametric models
Acerbi and Szekely (2014) have proposed three different methods to backtest
Expected Shortfall. The methods are all non-parametric but similar to Righi
and Ceretta’s methods in the sense that they define a test statistic and
try for significance using simulations. However, the advantage with these
methods is that no parametric assumption is needed. We will explain the
intuition behind the three methods and give the definition of the different
test statistics.
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3.4.1 The first method

The first method exploits Expected Shortfall conditional on VaR. Expected
Shortfall can be written as

ESα(X) = −E
[
X|X + VaRα < 0

]
, (3.30)

where X is the random variable representing returns. We can rewrite (3.30)
as

E

[ X

ESα(X) + 1|X + VaRα(X) < 0
]

= 0. (3.31)

We define an indicator function It = 1(Xt<−VaRα(X)) that indicates a back-
testing exceedance of VaR for a realised return Xt in period t. We set
NT =

∑T
t=1 It as the number of exceedances. The test statistic based on

(3.31) can then be written as

Z1(X) =
∑T
t=1(XtIt/ESα,t)

NT
+ 1, (3.32)

where X denotes the vector of realised returns (X1, X2, ..., XT ). We call the
realised distribution of returns Ft and the predicted distribution of returns
Pt. We write P [α]

t for the conditonal distribution tail of the distribution of
Pt below the quantile α. We can write this as P [α]

t (x) = min(1, Pt(x)/α).
From this we can define a null hypothesis

H0 : P
[α]
t = F

[α]
t ∀t,

against the alternatives

H1 : ÊSα,t(X) ≥ ESα,t(X), for all t and > for some t
V̂aRα,t(X) = VaRα,t(X), for all t,

where ÊSα,t(X) and V̂aRα,t(X) denotes the sample VaR and Expected
Shortfall from the realised returns. Under the null the realised tail is as-
sumed to be the same as the predicted tail of the return distribution. The
alternative hypothesis rejects Expected Shortfall without rejecting VaR.

3.4.2 The second method

We can write Expected Shortfall as an unconditional expectation

ESα(X) = −E
[XtIt
α

]
. (3.33)
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From (3.33), Acerbi and Szekely propose the test statistic

Z2(X) =
T∑
t=1

XtIt
TαESα,t(X) + 1, (3.34)

with the following null hypothesis

H0 : P
[α]
t = F

[α]
t ∀t

against the alternative

H1 : ÊSα,t(X) ≥ ESα,t(X), for all t and > for some t (3.35)
V̂aRα,t(X) ≥ VaRα,t(X), for all t. (3.36)

The second model tests Expected Shortfall directly without first backtesting
VaR as can be seen from the alternative hypothesis. It jointly rejects VaR
and Expected Shortfall.

3.4.3 The third method

The third method presented by Acerbi and Szekely was inspired by an ar-
ticle published by Berkowitz (2001). The idea is that you test the entire
return distribution and not just Expected Shortfall. As above, we assume a
predictive distribution function Pt. Here, we need the assumption that Pt
is continuous. Now we want to do a probability transformation and test if
the observed ranks Ut = Pt(Xt) are independent and uniformly distributed
U(0,1). Say that we have predicted that the return distribution is normally
distributed. This means that Pt is a standard normal distribution function.
We then observe 250 realised returns Xt. If we take Pt(Xt) = Φ(Xt) then we
expect to get 250 random variables uniformly distributed between 0 and 1.
If we get many values close to zero then we suspect that the returns are not
normally distributed. Acerbi and Szekely proposed that Expected Shortfall
was estimated as

ÊSNα (Y ) = − 1
[Nα]

[Nα]∑
i

Yi:N , (3.37)

where N is the number of observed returns and Yi:N is ordered returns.
Hence, Expected Shortfall is estimated by the average of the Nα worst
outcomes, rounded to the nearest lower integer. This is the same as in
the definition of Expected Shortfall from an empirical distribution. The
proposed test statistic to use is

Z3(X) = − 1
T

T∑
t=1

ÊS(T )
α (P−1

t (U))
EV [ES(T )

α (P−1
t (V ))]

+ 1, (3.38)
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where the denominator can be computer directly as

EV [ES(T )
α (P−1

t (V ))] = − T

[Tα]

∫ 1

0
I1−p(T − [Tα], [Tα])P−1

t (p)dp. (3.39)

Ix(a, b) is a regularized incomplete beta function. In this case the entire
distribution is tested under the null

H0 : Pt = Ft ∀t

against the alternative

H1 : Pt < Ft ∀t

where < denotes weak stochastic dominance. Also in this case, Expected
Shortfall is not backtested independently but jointly with other quantiles of
the distribution.

3.4.4 Finding the significance

To test for significance in the three methods above, Acerbi and Szekely
proposed simulations from the distribution under H0. They proposed the
following steps

• Simulate Xi
t from Pt for all t and i = 1, 2, .....,M

• For every i, compute Zi = Z(Xi). That is, compute the value of Z1, Z2
or Z3 depending to the type of method applied, using the simulations
from the previous step.

• Estimate the p-value as p =
∑M
i=1(Zi < Z(x))/M . Where Z(x) de-

notes the observed value on Z1, Z2 or Z3.

This can be done using for example 5000 simulations for each of the
methods.

Example 3.4 We illustrate an example of Acerbi and Szekely’s first method.
We assume that a bank predicts that their return distribution follows a stan-
dard normal distribution. Hence, the predicted VaR at 97.5 % is 1.96 and
the predicted Expected Shortfall at the same level is 2.34. Last year’s returns
resulted in five losses exceeding VaR at (2.01, 2.90, 2.78, 2.41, 2.44) which
gives a realised Expected Shortfall of 2.51. We have (X1, X2, X3, X4, X5)=(-
2.01, -2.90, -2.78, -2.41, -2.44) We now want to calculate the test statistic
(3.32) with our values. We have that

Z1(X) =
∑T
t=1(XtIt/ESα,t)

NT
+ 1 = −2.51

2.34 + 1 = 0.01

To find the significance or the p-value we need to use simulations. Using
5000 simulations, we get a p-value of 0.13. Hence, we cannot reject the
predicted Expected Shortfall of 2.34 and the bank will pass the backtest.
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3.5 Conclusion
In this chapter, we have presented four different approaches that can be
taken in the backtesting of Expected Shortfall. In all of the methods, the
lack of elicitability is not a problem since the backtests do not rely on the use
of a scoring function. The approximative method proposed by Emmer et al.
(2013) relies on a generalisation of a standard VaR test and does therefore
not suffer from the fact that the number of Expected Shortfall observations
usually are few. The other three methods, Wong (2008), Righi and Ceretta
(2013) and Acerbi and Szekely (2014), solve the problem of small samples
by using two different approaches. They either use Monte Carlo simulations
to determine the confidence level of the backtest or they use a paramet-
ric assumption to determine some kind of probability density of Expected
Shortfall. The use of simulations to determine the significance in the back-
tests could be generealised to other types of backtests, for example one of
the early Expected Shortfall backtests proposed by McNeil and Frey (2000),
Berkowitz (2001) or Kerkhof and Melenberg (2004). Acerbi and Szekely’s
third method is an example of such a generalisation of the work of Berkowitz
(2001).

From this chapter we can conclude that there are several methods in
which Expected Shortfall can be backtested. However, we have yet not es-
tablished whether the methods work. In the next three chapters we will test
the properties of each method. The purpose of this is to try to answer some
of the questions outstanding on the backtestability of Expected Shortfall.
We would like to know if there is any method that can backtest Expected
Shortfall accurately. We will do this by investigating three issues related to
the backtesting methods; the ability to accept true predictions, the ability
to reject false predictions and implementation. We will devote one chapter
to the acceptance, one chapter to the rejection and one chapter to the im-
plementation of the methods. We will start each chapter by stating some
questions that will help us with the analysis.
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Chapter 4

The ability to accept true
Expected Shortfall
predictions

One of the most important aspects of a backtest is that when a predicted
Expected Shortfall is correct, the backtest should not reject this estimate.
That is, if we predict Expected Shortfall from a certain distribution and
then simulate exceedances from the tail of the same distribution we want
the backtest to accept that prediction with high confidence. We now want
to investigate if the methods defined in the previous chapter are able to do
this. We will investigate this through answering two questions related to
this issue:

• Which method gives the highest confidence in accepting true Expected
Shortfall estimates?

• Does the acceptance performance depend on the number of VaR ex-
ceedances?

We will begin the next section by presenting the methodology that will
be used before we move on to the results. The answers to the questions can
be found in the final section of the chapter.

4.1 Methodology
If we believe that a bank has a 97.5 % Expected Shortfall of 2.34 and that
its returns follow a standard normal distribution, 250 simulations drawn
from the standard normal distribution should accept the Expected Shortfall
estimate with high confidence. This is very straightforward to test. We
want to simulate realised values on Expected Shortfall from the standard
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normal distribution. We do this in two different ways to answer each of the
two questions stated in the previous section.

4.1.1 Simulating a random number of exceedances

We start by simulating randomly 250 returns from a standard normal distri-
bution and calculate the number of exceedances and the realised Expected
Shortfall. This means that we compare every loss to our VaR and then
calculate the number of exceedances and the realised Expected Shortfall as
the mean of all the losses that exceed VaR. We do 105 simulations for each
method to determine the acceptance rate, that is the proportion of times
the Expected Shortfall prediction is accepted.

4.1.2 Simulating a fixed number of exceedances

In a second approach we want to see how the acceptance rate varies with
the number of exceedances. This means that we determine how many ex-
ceedances we want and simulate them directly from the tail of the standard
normal distribution. Let us assume that we want to investigate the be-
haviour for six exceedances. In this case we simulate uniformly six values
of α ∈ (0, 0.025) and find the corresponding value for the standard normal
distribution. We do this using 5000 simulations. Since we are more inter-
ested in the relative performance for different number of exceedances rather
than the actual numbers, 5000 simulations is enough. By doing simulations
were we control the number of exceedances we can see if the rate at which
the method manages to accept a true model varies with the number of ex-
ceedances. We let N be the number of exceedances assumed. For each value
on N = 1, 2, ..., 10 we do 5000 simulations where each simulation represents
N draws from the standard normal tail below the value -1.96. Every back-
test uses a confidence of 95 % meaning that a p-value below 0.05 implies a
rejected Expected Shortfall prediction.

4.2 Results
We will now present the results of the simulations. We will to this first
for the simulations with a random number of exceedances and then for the
simulations with a fixed number of exceedances.

4.2.1 A random number of exceedances

We start by looking at the rate at which a true prediction is accepted for a
random number of exceedances. The results are shown in table 4.1.
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Method Acceptance rate
Wong 0.9482
Righi and Ceretta 0.9995
Emmer, Kratz, and Tasche 0.7793
Acerbi and Szekely’s first method 0.9423
Acerbi and Szekely’s second method 0.9562
Acerbi and Szekely’s third method 0.9528

Table 4.1: The table shows the outcome of 105 simulated backtests where the
predicted 97.5 % Expected Shortfall is from the standard normal distribution
and the simulated values are 250 returns from the same distribution. The
acceptance rate defines the proportion of the simulations that accepted the
true Expected Shortfall prediction.

We see that the method that accepts a true Expected Shortfall prediction
with the highest confidence is Righi and Ceretta’s method. It has close to
perfect acceptance rate of 0.9995. The approximative method by Emmer,
Kratz, and Tasche has the lowest acceptance rate of only 0.7793. The other
four methods have acceptance rates around 0.95.

4.2.2 A fixed number of exceedances

We now take a look at the results were the acceptance rate can be found
as a function of the number of exceedances. Figure 4.1 shows the outcome.
The figure confirms that Righi and Ceretta’s method has a high acceptance
rate. Acerbi and Szekely’s second and third methods have perfect accep-
tance up to nine exceedances but then it starts to decrease. On the other
hand, Acerbi and Szekely’s first method has an increasing rate of acceptance
as the number of exceedances increase.

The only odd behaviour among the methods in that the method by
Emmer, Kratz, and Tasche has a decreasing acceptance rate as the number
of exceedances increase. This explains why the acceptance rate of Emmer,
Kratz, and Tasche’s method is so low in table 4.1. The reason for this may
be that since the method is built on counting the number of exceedances,
more exceedances at the primary VaR level increases the probability of many
exceedances at a VaR level with lower α. We see that for seven exceedances,
which is close to the expected number of exceedances of 6.25, the acceptance
rate is below 0.8.
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Figure 4.1: The figure shows how often the 97.5 % Expected Shortfall pre-
diction of 2.34 from a standard normal distribution is accepted based on
simulations of a particular number of exceedances from the same distribu-
tion. In total, 5000 simulations were used to determine the significance.
Significance of 1 implies that all 5000 simulations accepted the prediction
and 0 means that the Expected Shortfall prediction was never accepted. We
can interpret this as the probability that a true Expected Shortfall prediction
will be accepted.

42



4.3 Conclusion
Overall, the methods accept true Expected Shortfall predictions with high
confidence meaning that in the sense of accepting true estimates all the
backtests seem to work well. The method that has the highest confidence in
accepting true Expected Shortfall predictions is Righi and Ceretta’s method
which accept almost 100 % of the simulations for all number of exceedances.
Second up are Acerbi and Szekely’s second and third method which have
100 % acceptance rate as long as the number of exceedances are below ten
but overall has the same performance as Acerbi and Szekely’s first method
and Wong’s method.

All methods except Wong and Righi and Ceretta show that the perfor-
mance depends on the number of exceedances. Acerbi and Szekely’s first
method shows a higher rate of acceptance as the number of exceedances
increase. In contrary, Emmer, Kratz, and Tasche and Acerbi and Szekely’s
second and third method show decreasing acceptance as the number of ex-
ceedances increase.

The method with the lowest acceptance rate and the only concern is
Emmer, Kratz, and Tasche’s approximative approach that shows that the
acceptance rate decreases quickly as the number of exceedances increases.
This affects the overall performance of the method in terms of the confidence
in accepting true predictions.
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Chapter 5

The ability to reject false
Expected Shortfall
predictions

We are now going to investigate the next important property of a backtest;
each method’s ability to reject wrong Expected Shortfall predictions. The
purpose of this will be to see if the methods are able to reject too small
predictions of Expected Shortfall if we observe that the realised Expected
Shortfall is large compared to the prediction. If we have predicted an Ex-
pected Shortfall of 2 and then observe that the realised Expected Shortfall
from 250 days data is 10, it is obvious that we want the backtest to reject
the prediction. To investigate each method’s ability to reject we will try to
answer two questions related to this:

• Which method gives the highest confidence in rejecting false Expected
Shortfall estimates?

• Does the rejection performance depend on the number of VaR ex-
ceedances?

In the next section we will explain the methodology that will be used to
investigate each method’s ability to reject wrong Expected Shortfall predic-
tions. We will then devote one section to each of the questions above. The
answers to each question can be found at the end of each section as well as
in the conclusions in the last section of the chapter.
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5.1 Methodology
We will now define the framework that will be used to investigate when the
different methods reject wrong Expected Shortfall predictions. This is more
complicated than finding the acceptance rate since it is not as straightfor-
ward to define an incorrect prediction as it is to define a correct prediction.
As above, we will assume a bank that uses a standard normal distribution to
calculate its risk measures. This means that we can use VaR and Expected
Shortfall of the standard normal distribution from table 2.2. We assume
here that the relevant risk measure for reporting and backtesting is the 97.5
% Expected Shortfall. Hence, the bank’s capital requirement is based on
the 97.5 % Expected Shortfall of 2.34. We will always assume that the
predicted Expected Shortfall is 2.34 and change the underlying distribution
from which we will simulate 250 realised returns.

5.1.1 Simulating realised returns

We simulate 250 returns from a given distribution that represents last year’s
realised returns. The distribution from which we simulate the returns will
be the Student’s t distribution. By varying the degrees of freedom it will
be possible to change the tail of the distribution. For small values on the
degrees of freedom, the realised Expected Shortfall from the 250 returns
will get large. If we simulate returns from a Student’s t distribution with
three degrees of freedom then we expect an Expected Shortfall of 5.04 as
can be seen from table 2.2. In this case, the predicted Expected Shortfall
of 2.34 will be small in comparison to the simulated Expected Shortfall and
we want the method to reject the bank’s Expected Shortfall prediction. For
large values on the degrees of freedom, the Student’s t distribution converges
to a normal distribution. Hence, for many degrees of freedom, we want
the underlying Expected Shortfall to be accepted since the realised returns
will be simulated from the same distribution as we calculated the predicted
Expected Shortfall from. Furthermore, we can add another parameter to
the simulations. By changing the standard deviation of the realised returns
we get another dimension in which we can increase or decrease the simulated
observed value on Expected Shortfall and see how far we can go before we
find that the predicted Expected Shortfall is rejected.

5.1.2 Simulating a tail

There is one problem with the methodology described above. If we simulate
250 returns from a Student’s t distribution with three degrees of freedom
and count the number of losses larger than VaR then we expect to get a
large number of exceedances. For a standard normal distribution the 97.5
% VaR is 1.96. The cumulative probability of -1.96 for a Student’s t dis-
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tribution with three degrees of freedom is 0.072. This means that the ex-
pected number of exceedances in this case is 250 × 0.072 ≈ 18 compared
to the expected number of exceedances when the VaR estimate is correct
of 250 × 0.025 = 6.25. This means that as we increase the degrees of free-
dom we will also increase the number of exceedances. We will reach some
point where we would easily be able to reject the model using a simple VaR
backtest. However, we want to try the backtests for situations similar to
those in figure 1.1, when VaR is correct but Expected Shortfall has been
underestimated. To solve this issue we can simulate quantiles rather than
returns. If we simulate 250 values on α, we can choose every α ≤ 0.025 and
find the corresponding value from the chosen underlying distribution. Since
we are only concerned about what happens in the tail of the distribution, we
can assume that the right part of the the distribution, defined above VaR,
is the same for all distributions. It only differs for α ≤ 0.025, the part of
the distribution that defines Expected Shortfall. This will allow us to get
the right number of exceedances and the same VaR while varying the risk
in the tail of the distribution. This works because there are just two inputs
needed in the methods above, the observed Expected Shortfall, defined as
the mean of the losses exceeding VaR, and the number of exceedances. The
value of α ≤ 0.025 is always larger in absolute terms for the Student’s t
distribution than for the normal distribution, which means that for σ ≥ 1,
the losses drawn from the tail will always be larger than VaR. However, as
we decrease σ, we may have exceedances that do not exceed our VaR of 1.96
with this methodology. Such exceedances are removed from the analysis.
Table 5.1 illustrates possible realised values on Expected Shortfall from dif-
ferent underlying distributions. They are based on 104 simulations of 250
returns.

Empirical Expected Shortfall
Distribution Minimum Maximum Average
t3(0, 1) 3.18 10.09 4.61
t5(0, 1) 2.57 5.79 3.35
t10(0, 1) 2.23 4.14 2.74
t30(0, 1) 2.04 3.38 2.43
t60(0, 1) 2.00 3.22 2.36

Table 5.1: The table shows the outcome of 104 simulations of 250 returns.
The tail of the distribution from which the exceedances are simulated from
is given by the table.

5.1.3 Implementing the methodology

We will now give an example explaining how the analysis will be carried out.
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Example 5.1 A bank uses a standard normal distribution to predict its
97.5 % VaR and Expected Shortfall. By table 2.2 this means that the bank
has predicted that its VaR 97.5 % is 1.96 and Expected Shortfall 97.5 % is
2.34. The bank knows that the backtesting of Expected Shortfall will be done
according to Wong’s method and want to investigate what will happen in
the backtesting depending on the realised returns during the next 250 days.
The bank will fail the Expected Shortfall backtest if Wong’s model can reject
the bank’s Expected Shortfall estimate with 95 % confidence. After many
years of risk management, the bank is sure that they report accurate VaR
numbers. However, they are afraid that the tail risk is larger than what
they predict. Therefore, they will simulate realised returns from the tail of
a distribution and change some parameters to see how this would affect the
backtest. They try three different tail distributions that represent potential
losses exceeding VaR in the next year. They use the Student’s t distribution
with degrees of freedom ν = 3 and σ = 1, which we call distribution 1. The
Student’s t distribution with ν = 10 and σ = 0.9 which we call distribution 2
and the Student’s t distribution with ν = 55 and σ = 1, called distribution 3.

For distribution 1 they simulate 250 quantiles between 0 and 1. The
simulation gives seven quantiles less than or equal to α = 0.025. They are
(0.021, 0.024, 0.022, 0.016, 0.002, 0.010, 0.025). The corresponding values
for a Student’s t distribution with ν = 3 and σ = 1 is (-3.437, -3.227, -3.381,
-3.770, -8.047, -4.574, -3.189). This means that if this distribution repre-
sents the losses during the next year, the bank would have a realised Expected
Shortfall of 4.232. Using Wong’s methodology we have that X̄=-4.232 as in
equation (3.3). With X̄=-4.232 and N=7, Wong’s method gives a p-value
of 0.000. The Expected Shortfall prediction is rejected and the bank would
not pass the backtest.

For distribution 2 we also simulate 250 quantiles between 0 and 1. The
simulation gives four quantiles less than or equal to α = 0.025. They are
(0.007, 0.011, 0.006, 0.005). The corresponding values for a Student’s t
distribution with ν = 10 and σ = 0.9 is (-2.693, -2.453, -2.785, -2.863).
This means that from this simulation we get a realised Expected Shortfall
of 2.699. Using Wong’s methodology we have that X̄=-2.699 as in equation
(3.3). With X̄=-2.699 and N=4, Wong’s method gives a p-value of 0.033.
Since the p-value is smaller than 0.05, we reject the Expected Shortfall pre-
diction and the bank would fail the backtest.

For distribution 3 we repeat the same procedure as above. The simulation
gives five quantiles less than or equal to our α = 0.025. They are (0.005,
0.006, 0.010, 0.002, 0.023). The corresponding values for a Student’s t dis-
tribution with ν = 55 and σ = 1 is (-2.679, -2.693, -2.453, -2.785, -2.863).
This means that from this simulation we get a realised Expected Shortfall
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of 2.548. Using Wong’s methodology we have that X̄=-2.548 as in equation
(3.3). With X̄=-2.548 and N=5, Wong’s method gives a p-value of 0.0957.
In this case, Expected Shortfall is not rejected and the bank would pass the
backtest.

We illustrate the results in figure 5.1.
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Figure 5.1: The figure illustrates the outcome of the three backtests sim-
ulated in Example 5.1. 250 realised returns are simulated with the tail
distribution tν(0, σ) with parameters according to the figure. The predicted
VaR and Expected Shortfall are assumed to be N(0, 1). The simulations
give a number of exceedances which can be used to calculate a realised Ex-
pected Shortfall. The realised Expected Shortfall is then backtested using
Wong’s method. A white rectangle represents a rejected backtest while a
black rectangle represents an accepted backtest.

Example 5.1 illustrates the framework that will be used to determine
how each model works in practice. The three distributions described above
will in the full analysis be 27 903 different distributions where σ goes from
0.2 to 2 and ν goes from 2 to 100. This means that we can define regions of
the graph in figure 5.1 that tell us where the prediction is rejected and where
it is accepted based on the parameters of the underlying distribution. We
will now use this framework to analyse the questions stated in the beginning
of the chapter.
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5.2 The overall ability to reject
We will now try to answer the first question stated in the beginning of
this chapter: which method gives the highest confidence in rejecting false
Expected Shortfall estimates? We will do this using the framework defined
in the previous section.

5.2.1 Results

The results of the backtests can be seen in figure 5.2. We see that all
methods have similar performance. It is evident that they are all one-sided
tests rejecting the predicted Expected Shortfall when the observed Expected
Shortfall is too large but never when it is too small. This can be seen from
the fact that when ν is large and σ small, the realised Expected Shortfall
is small and the figures are black in this area, representing sure acceptance
of the prediction. As the realised Expected Shortfall becomes larger, either
by a decrease of ν or an increase in σ, the likelihood of rejection increases
as can be seen from the fact that the area becomes more white as we move
in that direction. This means that the probability of acceptance decreases
as the observed Expected Shortfall becomes large. Overall, we see that all
the methods have high probabilities of accepting a true model and decreas-
ing probability of acceptance as the observed Expected Shortfall gets larger.
This is exactly the behaviour we want to see in a backtest of Expected
Shortfall.

The method that seems to have the highest confidence in rejecting a false
prediction is Acerbi and Szekely’s first method. This can be seen from the
fact that the white area in the graph describing the rejection rate of Acerbi
and Szekely’s first method is much larger than for the other methods. The
white area represents a probability of rejection of at least 95 %. Acerbi and
Szekely’s second and third method do not show as good performance in terms
of rejecting. The large medium grey area for Acerbi and Szekely’s second
and third methods in the graphs in figure 5.2 implies that the acceptance
rate is above 50 % and below 95 % for a large part of the area were we
would like to reject the predicted Expected Shortfall. This means that the
best performance of the two methods is a 50 % chance of rejection.
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Figure 5.2: The figure illustrates the outcome of 27 903 simulated backtests.
The predicted VaR and Expected Shortfall are assumed to be N(0, 1). 250
realised quantiles are then simulated with the tail distribution tν(0, σ) with
parameters according to the figure. The simulations give a number of ex-
ceedances which can be used to calculate a realised Expected Shortfall. The
figure shows in total five different areas where black illustrates a sure accep-
tance of Expected Shortfall in the backtest and white means a sure rejection
of Expected Shortfall. A black area means 100 % acceptance rate. Dark
grey has acceptance rate above 95 % but below 100 %. Medium grey has
an acceptance rate somewhere between 95 % and 50 %. For light grey, the
acceptance rate is lower than 50 % but higher than 5 %. The white area
has an acceptance rate lower than 5 %.
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5.2.2 Conclusion - which method gives the highest rejection
confidence?

The method that has the highest confidence in rejecting false Expected
Shortfall predictions is Acerbi and Szekely’s first method. This can be seen
by looking at figure 5.2. The methods that show the weakest performance
in terms of rejecting are Acerbi and Szekely’s second and third method.

5.3 The ability to reject with a fixed number of
exceedances

We are now going to investigate the second question of the chapter: does
the rejection performance depend on the number of VaR exceedances?

We are going to do the same simulations as above but we are now inter-
ested in the overall ability to reject wrong predictions as a function of the
number of exceedances. We define the rejection rate as the proportion of
the 27 903 backtests made in figure 5.2 that are rejected. A rejection rate
of 1 would mean that the entire window defined in figure 5.2 is white while
a rejection rate of 0 would mean that the entire window would be black and
that none of the 27 903 backtests are rejected.

5.3.1 Results

Figure 5.3 shows the results. We see that Wong, Righi and Ceretta and
Acerbi and Szekely’s first methods all have stable rejection rates which can
be seen from the fact that they are not dependent or shows very little depen-
dence to the number of exceedances. However, the rejection rate of Righi
and Ceretta is lower than for the other two methods. For Emmer, Kratz,
and Tasche and Acerbi and Szekely’s second and third method the rejection
rate depends on the number of exceedances. Overall, the methods converge
to the same rate of rejection as the number of exceedances comes closer to
ten. At ten exceedances, all methods except Righi and Ceretta have a re-
jection rate around 0.6.

Emmer, Kratz, and Tasche’s method has a rejection rate of 0 for less
than two exceedances. This is easy to confirm from the definition of the
method. We backtest VaR at different levels and then count the num-
ber of exceedances. We need at least two exceedances to be able to reject
VaR0.5%(X) according to table 3.3, so for less than two exceedances we can
never reject any prediction and the rejection rate is 0 independent of the
value on the realised Expected Shortfall.
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Figure 5.3: The figure illustrates the outcome of 27 903 simulated backtests.
The predicted VaR and Expected Shortfall are assumed to be N(0, 1). 250
realised quantiles are then simulated with the tail distribution tν(0, σ) with
parameters ν ∈ (2, 60) and σ ∈ (0.2, 2.0). The rejection rate specifies how
many of the 27 903 backtests made in figure 5.2 that rejects the predicted
97.5 % Expected Shortfall as a function of the number of VaR exceedances.
1 means that all 27 903 backtests shows a rejection of the predicted Expected
Shortfall and 0 means that no simulation is a rejected backtest.

For Acerbi and Szekely’s second and third method we see that the perfor-
mance is highly dependent on the number of exceedances. For up to N = 4,
almost all simulations accept the predicted Expected Shortfall. As the num-
ber of exceedances increase, the area of rejection increases and for N = 10,
the method has more or less the same performance as the other methods.
The explanation can be found by looking at the alternative hypothesis in
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Acerbi and Szekely’s second method as in equation (3.35) and (3.36). Ex-
pected Shortfall and VaR are tested jointly and rejected jointly. This means
that the number of exceedances are important in the backtesting of Expected
Shortfall since the backtesting of VaR is done at the same time. When the
number of exceedances are few it is evident that VaR cannot be rejected
and this seems to compensate for the large value on Expected Shortfall. As
an independent Expected Shortfall backtest this method does not work very
well in that sense. The same reasoning holds for Acerbi and Szekely’s third
method. However, instead of testing VaR and Expected Shortfall jointly,
the entire distribution is tested.

5.3.2 Conclusion - does the number of exceedances matter?

We see that for Emmer, Kratz, and Tasche and Acerbi and Szekely’s sec-
ond and third methods, the ability to reject depends on the number of
exceedances. The rejection rate increases with the number of exceedances.
For the other three methods the rejection rate is more or less stable. For ten
exceedances all methods except Righi and Ceretta have the same rejection
rate.

5.4 Conclusion
Overall, we see that all methods are able to reject the predicted Expected
Shortfall when it is small compared to the realised Expected Shortfall.
Acerbi and Szekely’s first method showed the strongest performance in re-
jecting. For a large number of exceedances, all methods have fairly similar
behaviour in their ability to reject. However, the rejection performance
of Emmer, Kratz, and Tasche and Acerbi and Szekely’s second and third
methods depends on the number of exceedances. For all three methods, the
ability to reject increases with the number of exceedances.

There seems to be several models that work well in backtesting Expected
Shortfall. All methods taken from the literature have a high accuracy in ac-
cepting a true Expected Shortfall prediction as was shown in the previous
chapter and decreasing probability of accepting as the prediction becomes
small in comparison to the realised outcome from 250 simulated returns as
was shown in this chapter. This means that we have found four different
approaches that do not exploit the property of elicitability and backtest Ex-
pected Shortfall.

We are now going to look at the complexity of the methods together
with their performance to give some guidance on if and how the methods
can be implemented in practice.
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Chapter 6

Implementing the methods
in practice

This chapter will analyse the methods in terms of their complexity and
performance to see whether it is realistic to implement them in practice.
Until now, we have presented six different methods and established that
they work. However, we have not discussed their complexity or whether
they can be implemented in practice. We can take two different approaches
to this problem. The first is that banks would like to test their Expected
Shortfall predictions internally. This means that the method may be used
in the comparison between different Expected Shortfall predictions or used
to validate risk models. In this case, the choice of method to use may
differ between different banks depending on the type of VaR model that is
applied. The second approach we could take is that of discussing if there
is a backtest that works well independently of the type of VaR model that
a bank uses. That is, is it possible to find a more general way to backtest
Expected Shortfall that would work for example in a regulatory framework.
We will try to answer two different questions:

• Based on the performance and complexity of each method, which
method(s) can be implemented in a bank for internal validation?

• Based on the performance and complexity of each method, is there a
method that can be implemented in a general framework for backtest-
ing Expected Shortfall?

The analysis will be based on the findings in the previous chapters. We
will devote one section to each of the questions. The answers can be found
at the end of each section and in the concluding section of the chapter. We
will start by addressing the problem of internal risk validation.

55



6.1 Choosing a model internally
We are now going to investigate the first question of the chapter: based on
the performance and complexity of each method, which method(s) can be
implemented in a bank for internal validation?

6.1.1 Methodology

We will take three different aspects into account. Firstly, we will do the
analysis based on the type of VaR model that a bank applies. From the
definition of VaR in equation (2.1), we have that VaR is taken as a quantile
from a probability distribution function Pt representing the returns. There
are three ways in which the return distribution is normally calculated. The
distribution can be empirical consisting of a number of historical returns,
usually 250 days returns, in which the method is referred to as historical
simulation. The distribution can be parametric assuming that returns fol-
low a known distribution or it can be based on Monte Carlo simulations
where the distribution is determined by simulating a large number of sce-
narios assuming some underlying behaviour of the assets. The way in which
the distribution that defines VaR and Expected Shortfall is calculated is of
great importance in the discussion of the type of backtesting method that
should be used.

The second aspect that we will take into account are the properties of
the backtesting methods. That is, the properties specified in table 3.1. We
have that the methods are parametric or non-parametric and require sim-
ulations or do not require simulations. We will see that these properties
are fundamental when we discuss complexity in relation to the type of risk
model a bank uses.

Finally, we will also take the performance of each method into account to
say something about which methods that are appropriate to implement. We
saw for example that Acerbi and Szekely’s second and third methods showed
weak performance in terms of rejection compared to Acerbi and Szekely’s
first method even though the methods have similar complexity.

6.1.2 Backtesting with Monte Carlo

For a bank that uses Monte Carlo simulations for their VaR and Expected
Shortfall calculations, determining the significance using the same simula-
tion outcomes in the backtesting as in the risk calculations is straightfor-
ward. On the other hand, methods with parametric assumptions will not
work well since the outcome of the entire return distribution rarely follows
one of the standard distributions. This means that it is possible to choose
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from Acerbi and Szekely’s methods or the method by Emmer, Kratz, and
Tasche that does not require simulations at all. Righi and Ceretta’s method
is not appropriate due to the need of a parametric assumption. We saw
that the performance of Acerbi and Szekely’s second and third method was
weak compared to the other methods in terms of the large number of ex-
ceedances needed in the implementation. Furthermore, Acerbi and Szekely’s
first method showed a stronger performance relative to the method by Em-
mer, Kratz, and Tasche. Therefore, banks that use Monte Carlo simula-
tions to calculate their risk measures are recommended to apply Acerbi and
Szekely’s first method in the backtesting of Expected Shortfall.

6.1.3 Backtesting with a parametric method

When a bank uses a parametric model to calculate risk, backtesting should
be done against that same distribution. In this case, all methods are ap-
plicable. A method that requires simulations will add extra complexity
but it is simple to simulate from a known parametric distribution. We
saw that Wong’s method performed well both in terms of accepting true
predictions and rejecting false predictions. Furthermore, by using Wong’s
method, simulations can be avoided. However, the method only works if the
underlying assumption is that of a normal distribution. While Righi and
Ceretta’s method showed stable performance, it has the drawback of need-
ing both a parametric assumption and simulations which makes it the most
complex method to implement in practice. In relation to its complexity,
it does not perform better than any other method. Together with Wong’s
method, Acerbi and Szekely’s first method showed the most stable perfor-
mance. Therefore, a bank that uses a normal distribution in a parametric
method is recommended to apply Wong’s method in backtesting Expected
Shortfall. For other distributional assumptions, Acerbi and Szekely’s first
method can be applied.

6.1.4 Backtesting with historical simulation

The third type of VaR calculation, historical simulation, is perhaps the most
difficult one to give advise on. This is because parametric assumptions are
usually wrong and simulations will be drawn from a distribution consisting
only of 250 returns. This means that it will be difficult to say something
about significance in the tail of the distribution. That means that we are left
with the approximative method presented by Emmer, Kratz, and Tasche.
We saw from the analysis above that the performance of the approximative
method was good in terms of rejections but had some issues with accepting
a true prediction as the number of exceedances became large. However,
the method’s simplicity makes it a good choice. Therefore, banks that use
historical simulation to calculate risk are advised to implement Emmer,
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Kratz, and Tasche’s approximative method in the backtesting of Expected
Shortfall. The next section will elaborate more on this particular method.

6.1.5 Conclusion - internal implementation

Based on the performance and on the complexity of the methods, three
different methods are recommended for implementation in banks. The rec-
ommendations are shown in table 6.1.

Recommended methods
Risk model
Monte Carlo Acerbi and Szekely’s first method
Parametric - normal distribution Wong’s method
Parametric - other distribution Acerbi and Szekely’s first method
Historical simulation Emmer, Kratz, and Tasche’s method

Table 6.1: The table shows the methods that are recommended to use in
practice depending on the type of risk model that a bank applies.

For banks using a Monte Carlo method to calculate risk we propose the
use of Acerbi and Szekely’s first method for backtesting Expected Shortfall.
For a bank using a parametric model to calculate risk we propose the use of
Wong’s method if the parametric assumption is that of a normal distribution
and Acerbi and Szekely’s first method in case of a different distributional
assumption. For banks using historical simulations, that is an empirical
distribution, we could rule out five of the six proposed methods and found
that Emmer, Kratz, and Tasche’s approximative method is the only one
appropriate to use.

6.2 The general method
We are now going to investigate the second question related to the imple-
mentation of a backtest: based on the performance and complexity of each
method, is there a method that can be implemented in a general framework
for backtesting Expected Shortfall?

In the previous section we discussed the potential methods that could
be used for banks with different VaR models in their internal validation of
risk measures. However, we saw that depending on the model, the recom-
mendations changed and the method that is appropriate to use in one case
is not possible to use in another case. Furthermore, compared to a standard
VaR backtest, the methods recommended are quite complicated. The prob-
ability that one of them would be implemented in a regulatory framework is
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therefore not very high. Since backtesting can have huge effects on capital
charges it is important that the backtesting procedure can be understood
by all parts of the organisation that affect the risk. Furthermore, increased
complexity means higher probability that things go wrong in the implemen-
tation.

The only method that is simple enough and that can be applied to all
types of VaR models is the one proposed by Emmer, Kratz, and Tasche. This
section will explain why it is so difficult to find the confidence level of the
test proposed by Emmer, Kratz, and Tasche and the type of improvements
that need to be done in order for the method to have a better performance.

6.2.1 The difficulties in finding a correct confidence level

We saw from our analysis that the approximative method by Emmer, Kratz,
and Tasche had similar performance as the other methods when it came to
rejecting false Expected Shortfall predictions. However, in terms of accept-
ing true Expected Shortfall predictions, the performance was much worse.
The overall probability of accepting a true Expected Shortfall prediction
was just below 78 %.

As above we assume that Expected Shortfall is approximated using five
different VaR levels as

ES2.5%(X) ≈ (6.1)
1
5[VaR2.5%(X) + VaR2.0%(X) + VaR1.5%(X) + VaR1.0%(X) + VaR0.5%(X)].

We let Y1 denote the number of exceedances during the last 250 days for VaR
97.5 %. Y2 denotes the number of exceedances for VaR 98 % and similarly
up to Y5 that denotes the number of exceedances for VaR 99.5 %. We know
the distribution of each of these different random variables. We can write

Y1 ∼ Bin(T, α1)
Y2 ∼ Bin(T, α2)
Y3 ∼ Bin(T, α3)
Y4 ∼ Bin(T, α4)
Y5 ∼ Bin(T, α5)

Where in this case T = 250 and (α1, α2, α3, α4, α5) =(0.025, 0.02, 0.015,
0.01, 0.005). Using table 3.2 above, we designed the Expected Shortfall
backtest of the approximative method so that each VaR backtest was re-
jected with 95 % confidence independently of the outcome of the other VaR
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backtests. However, we saw from our results that the overall confidence was
much lower than this. This is because the random variables (Y1, Y2, ..., Y5)
are not independent. In fact, for Y2, the maximum number of exceedances
are those given by Y1. This means we can write the relationship between
(Y1, Y2, ..., Y5) as

Y1 ∼ Bin(T, α1)

Y2 ∼ Bin(Y1,
α2
α1

)

Y3 ∼ Bin(Y2,
α3
α2

)

Y4 ∼ Bin(Y3,
α4
α3

)

Y5 ∼ Bin(Y4,
α5
α4

)

The implications of this is that if Y1 is high then the probability that Y2
is high has increased as well since the number of trials in the binomial
distribution of Y2 has increased. We can specify the probabilities of Y2 both
in terms of Y1 and independently of Y1. We assume that ten losses exceeded
VaR 97.5 % during the last year, that is Y1 = 10. We are now going to see
how this information affects the probability of Y2. We have that Y1 = 10
and that (α1, α2)=(0.025, 0.02). We write

Y2 ∼ Bin(250,0.02) (6.2)
Ỹ2 ∼ Bin(10,0.8) (6.3)

The cumulative probabilities of Y2 and Ỹ2 are shown in table 6.2. We see
that while we can reject exceedances above eight for Y2 with 95 % confi-
dence, the cumulative probability for nine or more exceedances for Ỹ2 is
only 89.26 %. This means that given Y1 = 10, we should not reject VaR 98
% if we observe that Y2 = 9. However, this is what we do when we design
the backtest of each VaR level independently of each other. This explains
why the acceptance rate gets low when we use the approximative method in
this setting.

In the same manner, if Y2 is high then the probability that Y3 is high
will also increase. This describes why (Y1, Y2, ..., Y5) are not independent
random variables and why this affects the rate of acceptance as we could
see from the analysis above. The best solution to this problem would be
if we could find the distribution of the mean of the random variables of
exceedances (Y1, Y2, ..., Y5) given as

Ȳ = 1
5

5∑
i=1

Yi
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Summing binomial random variables is straightforward if they are indepen-
dent and the probabilities of each binomial is the same. However, when
the probabilities are different and they are not independent, this becomes a
complex statistical problem.

Cumulative probabilities
Number of exceedances Y2 Ỹ2
0 0.0064 0.0000
1 0.0391 0.0000
2 0.1221 0.0001
3 0.2622 0.0009
4 0.4387 0.0064
5 0.6160 0.0328
6 0.7637 0.1209
7 0.8687 0.3222
8 0.9339 0.6242
9 0.9696 0.8926
10 0.9872 1.0000

Table 6.2: The table compares the cumulative probabilities of the two dis-
tributions given by (6.2) and (6.3). The probabilities are calculated from
(2.18).

We will not attempt to give a solution to this problem here. Instead we
will devote the next section to trying to find a confidence level empirically
for the approximative backtest using only two VaR quantiles.

6.2.2 Empirical confidence levels

For simplicity, we assume that Expected Shortfall is approximated using
only two VaR levels. We say that we approximate Expected Shortfall with
the 97.5 % VaR and the 99 % VaR. Hence, we write

ES2.5%(X) ≈ 1
2[VaR2.5%(X) + VaR1.0%(X)] (6.4)

We let Y1 denote the number of exceedances for VaR 97.5 % and Y2 denote
the number of exceedances for VaR 99 % in a backtest with 250 returns.
This means that we can write

Y1 ∼ Bin(250,0.025),
Y2 ∼ Bin(250,0.01).
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or using their dependence as

Y1 ∼ Bin(250,0.025),
Y2 ∼ Bin(Y1,0.40).

We are now going to use the approximative method to see what happens
when the true prediction is rejected. That is, we want to see if we reject at
the VaR 97.5 % level, at the VaR 99 % level or at both levels. We will start
by assuming that Expected Shortfall is approximated by two VaR levels as
above in equation (6.4). We assume that the predicted Expected Shortfall
is from a standard normal distribution with a 97.5 % Expected Shortfall of
2.34. VaR 97.5 % is given by 1.96 and VaR 99 % is given by 2.33. We now
simulate 250 returns representing profits and losses from the last year from
a standard normal distribution. That is, we take the realised distribution
to be the same as the predicted distribution. We do this 100 times and
calculate the number of exceedances for the two VaR levels. We illustrate
each outcome as a dot in figure 6.1.
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Figure 6.1: Shows the outcome of the approximative method using 100
simulations of 250 returns. Both the realised and predictive distribution is a
standard normal distribution. The figure shows the number of exceedances
at each of the two VaR levels given in equation (6.4). The limits for rejection
are also shown in the figure. For VaR 97.5 %, exceedances above 10 are
rejected while for VaR 99 % exceedances above 4 are rejected. The dots
close to each other represent the same outcome but are shifted slightly from
each other in order for us to see if there is one or several dots.

We see that for VaR 97.5 %, five dots are above the ten exceedances
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needed to reject the prediction. For VaR 99 %, ten observations are above
the four exceedances needed to reject the prediction at this level. Two
outcomes are rejected both at the 97.5 % VaR level and at the 99 % VaR
level. From this it seems like rejection happens more often for VaR 99 %
than it does for VaR 97.5 % and not very often for the two levels jointly.
However, 100 simulations are not enough to say something general about
this.
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0.02345

0.028640.0828

0.86511

Figure 6.2: The figure shows the outcome of 105 simulations of 250 returns
from the standard normal distribution, counting the number of exceedances
for VaR 97.5 % and VaR 99 % according to Emmer, Kratz, and Tasche’s
approximative method. More than ten exceedances implies that the backtest
of VaR 97.5 % is rejected and more than four exceedances for VaR 99 %
implies that the predicted Expected Shortfall is rejected. The figure shows
the proportion of all simulations that result in a backtest were VaR 97.5 %
is rejected, VaR 99 % is rejected or both levels are rejected illustrated by
the different areas of the figure.

Instead, we would like to know the overall probability of rejecting Ex-
pected Shortfall based on the fact that VaR 97.5 % is exceeded, that VaR
99 % is exceeded or that both the VaR levels are exceeded. We define four
areas by the rectangles in figure 6.1. The first area is where the predicted
Expected Shortfall is accepted, given for x ≤ 10 and y ≤ 4 in figure 6.1.
The second area is where VaR 97.5 % is rejected but VaR 99 % is accepted,
that is x > 10 and y ≤ 4. The third area is where both VaR predictions are
rejected by x > 10 and y > 4, and the fourth area where only VaR 99 % is
rejected with x ≤ 10 and y > 4. We do 105 simulations and determine the
probability that the outcome ends up in one of the four different areas. We
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illustrate the results in figure 6.2.

From figure 6.2 we see that the confidence level of this test is only 86.6
% as can be seen from the fact that this is the proportion of simulations
that is below the rejection limit for both VaR levels. We also see that
rejection happens more often at the VaR 99 % level than at the VaR 97.5
% level. The probability of rejecting only at the VaR 99 % level is above 8 %.

We generalise this assuming that Expected Shortfall is calculated as the
mean of two VaR levels according to

ES2.5%(X) ≈ 1
2[VaR2.5%(X) + VaRα2(X)],

now changing α2. We do the same analysis as above to see where rejection
happens for a true prediction. We show the results in table 6.3.

Probabilities - VaR levels
VaR level 98.0 % 98.5 % 99.0 % 99.5 %
Rejected for VaR 97.5 % 0.0133 0.0183 0.0235 0.0288
Rejected for VaRα2(X) 0.0303 0.0543 0.0828 0.1122
Both levels rejected 0.0401 0.0324 0.0286 0.0233
Accepted 0.9164 0.8950 0.8651 0.8358

Table 6.3: The table shows the outcome of 105 simulations of 250 returns
from the standard normal distribution, counting the number of exceedances
for VaR 97.5 % and a different VaR level given by the table. More than
ten exceedances implies that the backtest of VaR 97.5 % is rejected, more
than eight exceedances means that VaR 98 % is rejected, more than six ex-
ceedances means that VaR 98.5 % is rejected, more than four exceedances
implies that VaR 99 % is rejected and more than two exceedances for VaR
99.5 % implies rejection. The table illustrates the proportion of all simu-
lations that result in a backtest were VaR 97.5 % is rejected, VaR at the
higher level (lower α) is rejected or both levels are rejected as was illustrated
by the different areas in figure 6.2.

We see that if we use two VaR levels to approximate Expected Shortfall,
one of them being VaR 97.5 %, then the probability of acceptance decreases
as we choose the other level further out in the tail. If we approximate VaR
as the mean of VaR 97.5 % and VaR 99.5 % then we can expect that only 83
% of the true predictions will be accepted. On the other hand, if we choose
to approximate Expected Shortfall with VaR 97.5 % and VaR 98 % we get
a confidence level of almost 92 %.
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6.2.3 Conclusion - general method

Due to the complexity of many of the methods presented in this thesis, the
only method that is a candidate for a general backtest of Expected Short-
fall is the approximative method presented by Emmer, Kratz, and Tasche.
However, we saw from the previous chapters that this method fails in ac-
cepting true Expected Shortfall predictions with high confidence. There
are other ways in which the different VaR backtests in the approximative
method could be added together to give higher confidence. However, based
on the dependency of the number of exceedances at each VaR level, we have
seen that it is difficult to determine the confidence level of this method. In
order to find a general method, more work has to be done.

6.3 Conclusion
We have found that many factors matter for the implementation of an Ex-
pected Shortfall backtest. Many of the methods presented in the previous
chapters have high complexity in their need of parametric assumption or
simulations to determine significance. We saw that depending on the type
of model that is used to calculate risk, the parametric assumption or the
need for simulations may not be a problem. We saw that several of the
methods can be implemented in practice in a bank for internal validation
of Expected Shortfall. The methods recommended for implementation were
Wong’s method, Acerbi and Szekely’s first method and Emmer, Kratz, and
Tasche’s method.

We saw that it is difficult to find a general method that works indepen-
dently of the type of risk model that is applied. A general method needs to
be very simple. The approximative method by Emmer, Kratz, and Tasche is
such a candidate due to its simplicity. However, in the way that we designed
the backtesting for the approximative method, the confidence in accepting
true Expected Shortfall predictions was too low. This means that more
work has to be done in order to find the joint confidence of the independent
VaR backtests for this method. If this issue is solved then it may be pos-
sible to find a good framework that backtests Expected Shortfall with high
confidence that can be implemented only by small modifications of a VaR
backtest.
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Chapter 7

Conclusion

Expected Shortfall is a risk measure that is both subadditive and captures
tail risk, solving two of the major issues related to VaR. However, while
it is very easy to backtest VaR, there are still many issues outstanding on
how Expected Shortfall should be backtested. In the Fundamental Review
of the Trading Book, the Basel Committee propose a change in official risk
measure from a 99 % VaR to a 97.5 % Expected Shortfall to take tail risk
into account. However, since backtesting of Expected Shortfall is so diffi-
cult, they say that the official backtesting would still have to be done on
VaR. Ever since Gneiting (2011) showed that Expected Shortfall lacks the
mathematical property of elicitability, there has been a debate of whether
it is possible to backtest Expected Shortfall at all.

The purpose of this thesis was to show that it is possible to backtest
Expected Shortfall. This was done by presenting six methods from four
different papers showing possible ways to design a backtest of Expected
Shortfall without exploiting the property of elicitability. We evaluated the
performance of the methods and could show that it is in fact possible to
find backtests that not only work in theory but also in practice. In a final
analysis, we looked at the properties and the complexity of the different
methods to see whether it would be possible to implement them in a bank.
On a more general level, we discussed the difficulties in finding an Expected
Shortfall backtest with properties similar to a VaR backtest.

We will start by concluding what we discovered about elicitability and
how a backtest can be designed without exploiting this property before we
move on to conclusions of the analysis and the implications of this.
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7.1 Finding methods without elicitability
Elicitability is a property such that a forecasting statistic can be expressed
in terms of a scoring function. The scoring function can then be used to
evaluate the forecasts against verified observations. As an example, we
showed that the mean is elicitable through the scoring function squared
errors S(x, y) = (x− y)2. While VaR is elicitable, Expected Shortfall lacks
this mathematical property. This implies that there is no scoring function
that can be used in the backtesting of Expected Shortfall. However, it does
not imply that Expected Shortfall is not backtestable. As long as it is pos-
sible to find a backtest that does not rely on the use of a scoring function,
the lack of elicitability is irrelevant.

We presented the design of six different Expected Shortfall backtests that
do not exploit the property of elicitability. The most simple example being
the method proposed by Emmer et al. (2013) where Expected Shortfall
is approximated by several VaR levels. We showed that we could write
Expected Shortfall approximately as

ES2.5%(X) ≈ (7.1)
1
5[VaR2.5%(X) + VaR2.0%(X) + VaR1.5%(X) + VaR1.0%(X) + VaR0.5%(X)].

This means that backtesting of Expected Shortfall can be done by backtest-
ing VaR at different levels. If all these VaR levels are found to be correct
then it is possible to conclude that also Expected Shortfall must be correct.

7.2 Performance
We established that the six methods worked well as backtests by doing an
analysis of their performance. We looked at three different aspects of the
backtests. We wanted the backtests to accept true Expected Shortfall pre-
dictions, reject false Expected Shortfall predictions and to be able to do this
using only a few VaR exceedances.

To investigate the behaviour of the methods we predicted a 97.5 % VaR
and Expected Shortfall from a standard normal distribution. We simulated
250 realised returns from a Student’s t distribution varying ν and σ to see
when the Expected Shortfall prediction would be rejected. We illustrated
the results as in figure 7.1. The black area in the figure means sure accep-
tance of the predicted Expected Shortfall while the white area means sure
rejection. We see that when the realised Expected Shortfall comes from
a Student’s t distribution with many degrees of freedom and small σ, the
backtest will surely accept the prediction as illustrated by the black area.
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However, when the realised Expected Shortfall becomes large compared to
the predicted value, either by a decrease in the degrees of freedom or an
increase in σ, the probability that the prediction is accepted becomes small.
This is illustrated by the white area in figure 7.1.

The implications from this is that when the observed Expected Shortfall
from the last 250 days is large compared to the predicted Expected Short-
fall, the backtest will reject the predicted Expected Shortfall with high con-
fidence. However, when the observed Expected Shortfall is smaller than or
of the same magnitude as the predicted Expected Shortfall, the backtest will
accept the prediction.
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Figure 7.1: The figure illustrates the outcome of 27 903 simulated backtests.
The predicted VaR and Expected Shortfall are assumed to be N(0, 1). 250
realised quantiles are then simulated with the tail distribution tν(0, σ) with
parameters according to the figure. The simulations give a number of ex-
ceedances which can be used to calculate a realised Expected Shortfall. The
figure shows in total five different areas where black illustrates a sure accep-
tance of Expected Shortfall in the backtest and white means a sure rejection
of Expected Shortfall. A black area means 100 % acceptance rate. Dark
grey has acceptance rate above 95 % but below 100 %. Medium grey has
an acceptance rate somewhere between 95 % and 50 %. For light grey, the
acceptance rate is lower than 50 % but higher than 5 %. The white area
has an acceptance rate lower than 5 %.

We found that all methods showed this behaviour but that for some of
the methods, the ability to reject was weak if the number of exceedances was
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below nine. In terms of acceptance, we found that one of the methods had
close to 100 % confidence in accepting true Expected Shortfall predictions.
Overall, all methods managed to backtest Expected Shortfall.

We can conclude that it is possible to find several approaches in the
backtesting of Expected Shortfall that all give very similar outcome in the
sense that the backtests accept true Expected Shortfall predictions with high
confidence and reject false Expected Shortfall predictions.

7.3 Implementation
A backtest that only works in theory is useless. Therefore, we also addressed
the issue of implementing the backtests in practice. In this analysis we took
both the performance and the complexity of the methods into account. Some
recommendations were given on the type of backtesting method most appro-
priate to implement in practice. However, the recommendations were based
on the type of risk model that the bank applies. We take Wong’s method
as an example. The method showed a good performance both in terms of
accepting true Expected Shortfall predictions and rejecting false Expected
Shortfall predictions for a small number of exceedances. However, it relies
on the assumption that returns are normally distributed. This means that if
a bank that uses a parametric model with a normal assumption to calculate
risk wants to implement a backtest of Expected Shortfall, Wong’s method
is perfect. However, if the risk model is empirical or based on Monte Carlo
simulations it is very unlikely that returns are normally distributed and
Wong’s method for backtesting Expected Shortfall is useless.

We found that for internal purposes, applying one of the methods pre-
sented in this thesis would be possible. However, the type of method to
apply varied with the type of risk model the bank used. This means that
backtesting Expected Shortfall is possible but there is no simple method
that can always be applied.

7.4 The difficulties in designing a simple backtest
We found that it is difficult to find a general backtest of Expected Shortfall
that is simple and works independently of the type of risk model that is
used. That means that none of the methods presented here are simple and
accurate enough to be implemented in a regulatory framework replacing the
VaR backtest.

As a candidate, we presented the method by Emmer, Kratz, and Tasche
that relies on the backtest of several VaR levels according to (7.1). We
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introduced the random variables (Y1, Y2, ..., Y5) that represent the number
of exceedances of the VaR levels in (7.1), where Y1 denotes the number of
exceedances for VaR 97.5 % and Y5 the number of exceedances for VaR 99.5
%. We showed that we could write the random variables as

Y1 ∼ Bin(T, α1)

Y2 ∼ Bin(Y1,
α2
α1

)

Y3 ∼ Bin(Y2,
α3
α2

)

Y4 ∼ Bin(Y3,
α4
α3

)

Y5 ∼ Bin(Y4,
α5
α4

)

where in our case we would have T = 250 and (α1, α2, α3, α4, α5)=(0.025,
0.02, 0.015, 0.01, 0.005).

This means that if we do a backtest for all VaR levels in (7.1), using the
exceedances (Y1, Y2, ..., Y5), then we must account for their dependence in
the confidence level of the test. We showed that this is a difficult task and
a challenge in finding a general backtest of Expected Shortfall.

We investigated this dependency structure further by doing an analysis
assuming that Expected Shortfall was approximated using only two VaR
levels. That is, we assumed

ES2.5%(X) ≈ 1
2[VaR2.5%(X) + VaRα2(X)].

By using a 95 % confidence level in each of the two VaR backtest indepen-
dently, we found that using smaller values on α2 decreased the total overall
confidence in accepting true predictions. Assuming that Expected Shortfall
is approximated with the mean of VaR 97.5 % and VaR 98 % gives a high
confidence level. However, this is not a good approximation of Expected
Shortfall. On the other hand, if we chose to approximate Expected Short-
fall using the mean of VaR 97.5 % and VaR 99.5 %, then the Expected
Shortfall approximation becomes more accurate but the overall confidence
of the method decreased. We illustrate this in figure 7.2 where we show the
outcome of two Expected Shortfall backtests. The left graph is based on a
backtest of VaR 97.5 % and VaR 98 % while the second is based on a back-
test of VaR 97.5 % and VaR 99.5 %. The backtest is rejected if VaR 97.5
% has more than ten exceedances or in the two different cases if VaR 98 %
has more than eight exceedances or VaR 99.5 % more than two exceedances.
When we use VaR 98 %, nine out of 100 observations are rejected. On the
other hand, when using VaR 99.5 %, 19 observations out of 100 are rejected
and the majority of them at the 99.5 % VaR level.
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Figure 7.2: The figure describes the outcome of 100 backtests of the approxi-
mative method assuming that Expected Shortfall can be approximated with
two different VaR levels. Expected Shortfall is rejected if the number of ex-
ceedances are more than what is given in the figure. That is more than ten
for the 97.5 % VaR, more than eight for the 98 % VaR and more than two
for the 99.5 % VaR.

This implies that for the approximative method there is a trade-off be-
tween approximating Expected Shortfall accurately by accounting for VaR
levels far out in the tail and having high confidence in accepting true pre-
dictions. This is rather unfortunate since the purpose of Expected Shortfall
is to capture tail risk and the approximative backtest only gives a high
confidence when the tail risk is disregarded.

7.5 The backtestability of Expected Shortfall
After having defined the concept of elicitability, established that it is possible
to find backtests that do not rely on the use of a scoring function and veri-
fied their performance we can conclude that it is in fact possible to backtest
Expected Shortfall. We have presented examples of several methods that
all take different approaches to solving the problem. The methods vary in
complexity but nevertheless they all work as backtests of Expected Shortfall.

The implications are several. Firstly, if Expected Shortfall will become
the official risk measure replacing VaR then backtesting of Expected Short-
fall should also be mandatory. With this said, it is not at all an advise to
replace the framework of VaR backtesting. The backtest of VaR is simple,
well motivated by exact confidence levels and intuitive. This is not the case
for many of the backtests presented here. However, for internal validation
of Expected Shortfall the methods will work fine.

During the last years, the academic debate of Expected Shortfall back-
testing has mainly been focused on whether it is possible to backtest Ex-
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pected Shortfall at all. From this study, we would encourage more focus on
providing methods in which backtesting can be done. We have seen that it
is possible to backtest Expected Shortfall without exploiting the property
of elicitability. We have also seen that it can be done in several different
ways. However, we have not been able to provide a way that is accurate and
general enough to be the preferred method in all situations. While we have
concluded that backtesting of Expected Shortfall is possible we have also
seen that many of the methods are much more complex than a normal VaR
backtest. This means that in terms of backtesting, VaR is still the preferred
risk measure. If supervisors want to continue the full transition from VaR to
Expected Shortfall then there will probably be a need to find a framework
that can backtest also Expected Shortfall in a similar manner as the VaR
backtest does today. Based on the findings of this thesis, we believe that
such a framework can be found with a starting point in the approximative
method presented by Emmer, Kratz, and Tasche where Expected Shortfall is
approximated with several VaR levels. Therefore, we encourage more work
on these types of approximative methods.
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