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A B S T R A C T

The purpose of this thesis was to create an automated procedure for
estimating financial risk using extreme value theory (EVT).

The "peaks over threshold" (POT) result from EVT was chosen for
modelling the tails of the distribution of financial returns. The main
difficulty with POT is choosing a convergence threshold above which
the data points are regarded as extreme events and modelled using a
limit distribution. It was investigated how risk measures are affected
by variations in this threshold and it was deemed that fixed-threshold
models are inadequate in the context of few relevant data points, as is
often the case in EVT applications. A model for automatic threshold
weighting was proposed and shows promise.

Moreover, the choice of Bayesian vs frequentist inference, with focus
on Markov chain Monte Carlo (MCMC) vs maximum likelihood esti-
mation (MLE), was investigated with regards to EVT applications, fa-
voring Bayesian inference and MCMC. Two MCMC algorithms, inde-
pendence Metropolis (IM) and automated factor slice sampler (AFSS),
were analyzed and improved in order to increase performance of the
final procedure.

Lastly, the effects of a reference prior and a prior based on expert
opinion were compared and exemplified for practical applications in
finance.
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S A M M A N FAT T N I N G

Syftet med detta examensarbete var att utveckla en automatisk pro-
cess för uppskattning av finansiell risk med hjälp av extremvärdeste-
ori.

"Peaks over threshold" (POT) valdes som metod för att modellera ex-
trempunkter i avkastningsdata. Den stora svårigheten med POT är
att välja ett tröskelvärde för konvergens, över vilket alla datapunkter
betraktas som extrema och modelleras med en gränsvärdesdistribu-
tion. Detta tröskelvärdes påverkan på olika riskmått undersöktes,
med slutsatsen att modeller med fast tröskelvärde är olämpliga om
datamängden är liten, vilket ofta är fallet i tillämpade extremvärdesme-
toder. En modell för viktning av tröskelvärden presenterades och
uppvisade lovande resultat.

Därtill undersöktes valet mellan Bayesiansk och frekventisk inferens,
med fokus på skillnaden mellan Markov chain Monte Carlo (MCMC)
och maximum likelihood estimation (MLE), när det kommer till ap-
plicerad extremvärdesteori. Bayesiansk inferens och MCMC bedömdes
vara bättre, och två MCMC-algoritmer; independence Metropolis (IM)
och automated factor slice sampler (AFSS), analyserades och förbät-
trades för använding i den automatiska processen.

Avslutningsvis jämfördes effekterna av olika apriori sannolikhetsfördel-
ningar (priors) på processens slutresultat. En svagt informativ referens-
prior jämfördes med en starkt informativ prior baserad på expertut-
låtanden.
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The Reader may here observe the Force of
Numbers, which can be successfully applied,

even to those things, which one would imagine
are subject to no Rules. There are very few

things which we know, which are not capable of
being reduc’d to a Mathematical Reasoning;

and when they cannot it’s a sign our
knowledge of them is very small and confus’d;

and when a Mathematical Reasoning can be
had it’s as great a folly to make use of any other,

as to grope for a thing in the dark, when you
have a Candle standing by you.

— John Arbuthnot
Of the Laws of Chance (1692)
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1

I N T R O D U C T I O N

1.1 background

In the aftermath of the last financial crisis culminating in 2008, finan-
cial institutions face an increasing level of regulation on how they
should measure and manage their exposure to risk. Banks are now
required to hold more capital, covering risk at more extreme levels
such as the 99% or 99.9% quantiles of their estimated loss distribu-
tion.

Previously, financial returns were often modelled using distributions
such as the normal. Many of them are unable to properly describe
the tails at these extreme levels. As a result, extreme value theory
(EVT), containing results about limiting distributions of extreme val-
ues, has seen an increase in popularity as a template for statistical
modelling.

However, there is an inherent difficulty with extreme risk, which is
the scarcity of data, leading to substantial uncertainty when estimat-
ing parameters. Therefore, it is attractive to use some method that
takes this uncertainty into account.

There are countless situations where investigating the behaviour of
the tails of a distribution might be useful though this thesis focuses
on, albeit is not limited to, financial applications.

1.2 previous work

The "peaks over threshold" (POT) result from EVT requires selection
of a threshold above which all data points are regarded as extreme
events. The standard procedure is to choose this threshold graphi-
cally, by looking at a plot, see [15], or simply setting it to some high
percentile of the data, see [14].

After selecting the threshold, it is assumed to be known and the other
parameters are estimated. However, there is a lot of uncertainty about
the selection of the threshold and previous works agree that it has
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introduction

a significant effect on parameter estimates, see [44], [12], [11], and
[17].

Many approaches have been suggested to improve on this, such as:

• selecting an optimal threshold by minimizing bias-variance, see
[3].

• having a dynamic mixture model where one term was general-
ized Pareto (GP) and the other was a light-tailed density func-
tion as in [17], though they do not explicitly consider threshold
selection.

• performing maximum likelihood estimation (MLE) on a mix-
ture model where tails are GP and the center was normally dis-
tributed, see [34].

• choosing the number of upper order statistics and calculating
a weighted average over several thresholds, as demonstrated in
[5].

• having a model with Gamma as the center and GP as the tail
where the threshold was simply considered another model pa-
rameter, see [2].

An another topic, to be able to use Markov chain Monte Carlo (MCMC),
it is necessary to specify prior distributions for parameters. There
have been many previous works on priors of different levels of sub-
jectivity. Some aim to minimize the the subjective content and let the
data speak for itself, see [4], while others attempt to augment the data
with the help of subjective information from an expert, see [12].

1.3 purpose

The purpose of this thesis was to develop an automatic procedure for
estimating extreme risk from financial returns using EVT. Issues that
were encountered and investigated include:

• Selecting an EVT limit result, i.e. block maxima (BM) vs "peaks
over threshold" (POT).

• Threshold sensitivity and automatic threshold selection, eventu-
ally becoming automatic threshold weighting.

• Bayesian vs frequentist inference, with extra focus on Markov
chain Monte Carlo (MCMC) vs maximum likelihood estimation
(MLE) for EVT applications. This led to including a framework
that allows financial experts to input their expertise into prior
distributions.
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1.4 delimitations

The choices during development and the performance of the final
procedure were evaluated.

1.4 delimitations

In real world applications, risk analysis is often done on portfolios
and it is well known that there often exist some inter-dependencies
between financial instruments. This has been deemed outside the
scope of this thesis but could very well be a future extension.

Due to the nature of EVT, there is often very little data available and,
as such, standard back testing is virtually useless. Instead, simula-
tions were used to get an idea for the effectiveness of the models.
Along the same lines, the more extreme the risk, the fewer data points
are available and the more uncertainty is incurred. At some point, with

fewer and fewer
relevant samples, the
estimates approach
educated guesses.

The described transformation of real data is only provided as a stan-
dard example and there might be better ways to do it, which would
yield better results.

Due to consensus in literature that financial data is heavy-tailed, see
[15, p.38], and that there is not really any need for EVT otherwise, the
tests and models focus on heavy-tailed data.

1.5 thesis outline

The mathematical background theory necessary for understanding
the models and methods used in this thesis is presented in Chapter
2. The reader is introduced to the core concepts of EVT, Bayesian
inference (BI), MCMC, and certain finance-specific theory, such as
volatility adjustment and risk measures.

Chapter 3 describes the complete process from financial data to risk
measures and the decisions involved in arriving at said process. This
entails data transformation, automatic threshold selection for POT,
improvements on specific MCMC algorithms, and the use of different
prior distributions in BI.

Chapter 4 presents the results, consisting of tables and plots high-
lighting different aspects of the process. This includes sensitivity of
the risk measures to threshold choice, parameter estimation stability
(for both MLE and MCMC), the effect of informative priors, and cred-
ible intervals or confidence intervals depending on the method and
sample size. Moreover, an overview of the chosen data sets is given,
both simulated and real-world.
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The results are summarized and discussed in Chapter 5 and the thesis
is concluded by Chapter 6, which briefly discusses ideas for future
work.
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2

B A C K G R O U N D T H E O RY

This chapter will present the mathematical background of the prob-
lem. An outline of the presented theory can be found in Section
1.5.

2.1 extreme value theory (evt)

Two important results from EVT are the limit distributions of a series
of (properly centered and normalized) block maxima (BM) and of ex-
cesses over a threshold, called "peaks over threshold" (POT), given
that the distributions are non-degenerate and the sample is indepen-
dent and identically distributed (i.i.d.).

As a note of caution, it should be underlined that the exis-
tence of a non-degenerate limit distribution . . . is a rather
strong requirement. — [33, Sornette p.47]

Nonetheless, these results are commonly used as templates for sta-
tistical modelling and have displayed effectiveness in many applica-
tions.

2.1.1 Block Maxima (BM)

Consider a sample of N i.i.d. realizations X1, . . . , XN of a random
variable, for example the daily returns of an index for one month. Let
MN denote the maximum of this sample, e.g. the monthly maximum
of the returns:

MN = max{X1, . . . , XN}. (1)

Then, the Fisher–Tippett–Gnedenko theorem states that, if there exist
sequences of normalizing constants {aN > 0} and {bN};

M∗N =
MN − bN

aN
, (2)

such that the distribution of M∗N (e.g. the distribution of monthly
maxima) converges to a non-degenerate distribution as N goes to

5
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infinity, this limit distribution is then necessarily the generalized ex-
treme value (GEV) distribution, see [10, p.46].

The main difficulty in using this result is often determining the op-
timal subsample size N, which comes down to a trade-off between
bias and variance. For example, if one has 1000 data points, choosing
N = 10 leads to many maxima, but each maximum is only informed
by 10 data points, which leads to estimation bias, since approxima-
tion by the limit distribution (GEV) is likely poor. Choosing N = 100
leads to the opposite scenario: better convergence but few maxima
and high variance.

2.1.1.1 Generalized Extreme Value (GEV) Distribution

The cumulative distribution function (CDF) of the GEV distribution
is given by:

V(x) = exp

{
−
[

1 + ξ

(
x− µ

σ

)]−1/ξ}
ξ 6= 0 (3)

V(x) = exp

{
− exp

[
−
(

x− µ

σ

)]}
ξ = 0 (4)

with support x ∈ {x : 1 + ξ(x − µ)/σ > 0} when ξ 6= 0 and x ∈
R when ξ = 0. The three parameters are location µ, scale σ > 0
and shape ξ. The sign of the shape parameter determines the tail
behaviour of the distribution. As x → ∞ the probability density
function (PDF) decays exponentially for ξ > 0, polynomially for ξ =

0, and is bounded above by µ− σ/ξ for ξ < 0, see [10, p.47].

2.1.2 Peaks Over Threshold (POT)

POT originates in the Pickands–Balkema–de Haan theorem, which
continues from the earlier result from BM, see Section 2.1.1. Suppose
the Fisher–Tippett–Gnedenko theorem from BM is satisfied, so that
for large sample sizes N;

Pr{MN ≤ x} ≈ V(x), (5)

where V(x) is the GEV CDF. Let X be any term in the Xi sequence.
Then, for a large enough threshold u, X− u | X > u, i.e. the threshold
excesses, is approximately generalized Pareto (GP) distributed, see
[10, p.75].

6



2.1 extreme value theory (evt)

−4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x σ

P
ro

ba
bi

lit
y 

D
en

si
ty

ξ < 0
ξ = 0  
ξ > 0

Figure 1: GEV PDF v(x) for different values of shape parameter ξ, all with
(µ, σ) = (0, 1).

2.1.2.1 Generalized Pareto (GP) Distribution

The GP distribution has CDF

P(x) = 1−
(

1 +
ξ(x− u)

σ

)−1/ξ

ξ 6= 0 (6)

P(x) = 1− exp

(
− x− u

σ

)
ξ = 0 (7)

with support x ≥ u when ξ ≥ 0, and u ≤ x ≤ u− σ/ξ when ξ < 0.
The three parameters are location u, scale σ > 0 and shape ξ. The
shape parameter ξ plays the exact same role as for the GEV distri-
bution, see Section 2.1.1.1, determining the tail behaviour as x → ∞,
refer to [10, p.75] for more details.

2.1.2.2 Selecting Threshold

Much like determining subsample size of BM, the biggest issue with
using POT may be determining when the data has converged well
enough and setting a corresponding threshold.

. . . determination of the optimal threshold . . . is in fact
related to the optimal determination of the subsamples
size — [33, Sornette p.48]
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Figure 2: GP PDF p(x) for different values of shape parameter ξ, all with
(u, σ) = (0, 1).

The standard method for determining the threshold is the mean resid-
ual life (MRL) plot, described below, together with two alternative
methods.

Mean Residual Life (MRL) Plot

The mean of a GP(u = 0, σ, ξ) distributed variable X is

E[X] =
σ

1− ξ
ξ < 1. (8)

When ξ ≥ 1 the mean is infinite. Suppose this GP distribution is used
to model excesses over a threshold u0, then

E[X− u0 | X > u0] =
σu0

1− ξ
, (9)

where σu0 is the scale parameter corresponding to excesses of the
threshold u0. But if the GP is valid for threshold u0 it is also viable
for all thresholds u > u0, only with a different σ given by

σu = σu0 + ξu (10)

as explained in [10, p.75]. So, for u > u0

E[X− u | X > u] =
σu

1− ξ

=
σu0 + ξu

1− ξ

(11)

8



2.2 risk measures from pot

i.e. E[X − u | X > u], which is the mean of the excesses, changes
linearly with u if the GP model is appropriate. This means that the
scatter plot of the points

{(
u,

1
Nu

Nu

∑
i=1

(x(i) − u)

)
: u < xmax

}
, (12)

where x(1) . . . x(Nu) are the Nu excesses, should be linear in u. This
plot is called the mean residual life (MRL) plot or the mean excess
plot and is commonly used to determine an appropriate threshold
for GP. However, it is very hard to read and doesn’t give a definite
answer, as shown in Section 3.3.2 and described in [10, p.78].

Fixed

In some papers, especially when focus is not on threshold selection,
it is set to a high percentile as suggested by DuMouchel, see [14]. The
95th percentile is a common choice, see for example [26, p.312].

Stability of Parameters

Another technique is to fit the generalized Pareto distribution at a
range of thresholds and look for stability in the parameter estimates,
as described in [15, p.36].

Above a level u0 at which the asymptotic motivation for
the generalized Pareto distribution is valid, estimates of
the shape parameter ξ should be approximately constant,
while estimates of σ should be linear in [threshold] u . . .
— [10, Coles p.83]

As with the MRL plot, deciding upon where the parameters are sta-
ble can be quite hard, especially as with higher thresholds, there are
fewer and fewer data points which leads to decreasing accuracy and
thus increasing changes in the parameter estimates.

2.2 risk measures from pot

2.2.1 Value at Risk (VaR)

VaR is a standard risk measure in finance that describes the worst
loss over a horizon that will not be exceeded with a given level of
confidence, see Figure 3.

9
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Figure 3: Example distribution of losses. The dashed line is the value at risk
(VaR) at some level and the expected value of the filled area is the
expected shortfall (ES) at the same level.

VaR at the confidence level α for a distribution X of losses is defined
as:

VaRα(X) = F−1(1− α) (13)

where F is the CDF of X, see [29, p.90].

Assuming that the data is in the form of losses, i.e. negative (log)
returns, and that these losses, above some threshold u, are modeled
by a GP distribution, the CDF for the full tail loss distribution is then

T(y) = B(u) + P(x)
[
1− B(u)

]
y = x + u x > 0, (14)

where P(x) is the GP CDF and B(x) is the CDF of the body distri-
bution. The CDF value at the threshold, B(u), can be approximated
empirically. Let N be the total number of data points and Nu the num-
ber of data points exceeding the threshold. The standard method is
to use the empirical CDF to approximate B(u):In the models

presented later we
use a body

distribution to
estimate B(u)
(instead of the

empirical factor in
Equation (15)).

B(u) ≈ N − Nu

N
, (15)

which together with the expression for P(x) from (6) and Equation
(14) yields

T(y) ≈ 1− Nu

N

[
1 +

ξ(y− u)
σ

]−1/ξ

. (16)

10



2.3 volatility adjustment

Solving for y gives an estimate of the 1− p quantile, which is the VaR
at level p, see [47, p.26],

VaRp ≈ u− σ

ξ

{
1−

[
N
Nu
· p
]−ξ}

. (17)

This expression for the VaR is only valid at quantiles above the thresh-
old, i.e. in the area modelled by the GP distribution (small upper tail
probability p).

2.2.2 Expected Shortfall (ES)

Also known as "average value at risk" or "conditional value at risk",
ES is commonly used in financial literature and is very relevant for
heavy tailed data. The ES at a certain level is the expected value of the
loss, given that the loss exceeds the corresponding VaR, see Figure 3

and [29, p.91],

ESp = E[X | X > VaRp] = VaRp + E[X−VaRp | X > VaRp]. (18)

Using the properties of the GP distribution, it can be shown that

E[X−VaRp | X > VaRp] =
σ + ξ(VaRp − u)

1− ξ
(19)

for 0 < ξ < 1, see [47, p.27]. Equation (18) then becomes

ESp =
VaRp + σ− ξu

1− ξ
. (20)

2.3 volatility adjustment

Market circumstances may change significantly over time and, conse-
quently, the historical returns from a period of a certain volatility (a
volatility regime) may not be representative of the current market sit-
uation. For instance, if the market is currently very volatile and one
tries to estimate today’s 1-day VaR from historical returns from the
last 3 years of low volatility, one will underestimate the risk.

Moreover, there is a known characteristic of financial time series,
called volatility shocks. It is a tendency in the market for volatil-
ity to cluster. For example, large changes are often followed by large
changes.

One way of trying to account for this is to model a time series of
the historical volatility and adjust all the returns to today’s estimated
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volatility. This is done by dividing each return at time t by the esti-
mated volatility at time t, and then multiplying it by today’s volatility
(time T). The standard method and a specialization for financial ap-
plications for modelling the volatility are presented below.

2.3.1 Generalized Autoregressive Conditional
Heteroskedasticity (GARCH)

The standard GARCH model assumes that the dynamic behaviour of
the conditional variance is given by

σ2
t = ω + αε2

t−1 + βσ2
t−1 εt|It−1 ∼ N(0, σ2

t ) (21)

where σ2
t is the conditional variance, ω is the intercept, and εt (called

the market shock or unexpected return) is the mean deviation (rt −
r̄) from the sample mean, i.e. the error term from ordinary linear
regression, see [1, p.4].

The parameters are often estimated with maximum likelihood esti-
mation (MLE). The model can be further improved by letting the εt

terms be drawn from a distribution other than the normal and can
thereby allow for non-zero skewness and excess kurtosis.

2.3.2 Glosten-Jagannathan-Runkle GARCH
(GJR-GARCH)

Previous works suggest asymmetric GARCH models are often better
when working with daily financial data. This is because of the so
called leverage effect; that market volatility increases are larger fol-
lowing a large negative return than following a large positive return
of equal size, see [6].

The GJR-GARCH model introduces a leverage parameter λ to model
the asymmetric response from negative market shocks;

σ2
t = ω + αε2

t−1 + λI{εt−1<0}ε
2
t−1 + βσ2

t−1. (22)

This time series of volatility estimates {σ̂t}T
t=1 can then be used on

historical returns {rt}T
t=1 to produce the volatility adjusted returns,

as described in [6],

r̃t,T =

(
σ̂T

σ̂t

)
rt, (23)

where T is the time at the end of the sample, e.g. today.
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2.4 bayesian inference (bi)

Statistical inference can be divided into two broad categories: Bayesian
inference (BI) and frequentist inference. In a way, these two paradigms
disagree on the fundamental nature of probability. The frequentist in-
terpretation is that any given experiment can be considered as one of
an infinite sequence of possible repetitions of the same experiment,
each capable of producing statistically independent results. So the
probability of an event is the limit of that event’s relative frequency
in an infinite number of trials. Many standard methods in statistics,
such as statistical hypothesis testing and p-value confidence intervals
are based on the frequentist framework.

BI, on the other hand, can assign probabilities to any statement, even
in the absence of randomness, and updates knowledge about un-
knowns with information from data. In this framework, probability
is a quantity representing a state of knowledge, or a state of belief.
Merriam-Webster defines "Bayesian" as follows

Bayesian: being, relating to, or involving statistical meth-
ods that assign probabilities or distributions to events (as
rain tomorrow) or parameters (as a population mean) based
on experience or best guesses before experimentation and
data collection and that apply Bayes’ theorem to revise the
probabilities and distributions after obtaining experimen-
tal data.

There are also differing interpretations within BI, mainly objective
vs subjective BI. As the names suggest, they differ in the degree that
subjective information, as opposed to data, is allowed to influence the
end result. Generally, objective Bayesians favor uninformative priors,
while subjective Bayesians favor informative priors , see Section 2.4.2.
For a more in-depth and formal overview, the reader is referred to
[38].

2.4.1 Bayes’ Theorem

The centerpiece of Bayesian inference (BI) is Bayes’ theorem, which
gives an expression for the conditional probability, or posterior prob-
ability, of an event A after the event B is observed, Pr(A|B). In other
words, it gives an expression for the updated probability of A, updated
with the information that B occurred. Hence the word posterior prob-
ability, as opposed to prior probability Pr(A).

From the formula for conditional probability;

Pr(A|B) = Pr(A
⋂

B)
Pr(B)

, (24)
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and simply A
⋂

B = B
⋂

A, Bayes’ theorem follows:

Pr(A|B) = Pr(B|A)Pr(A)

Pr(B)
. (25)

From Bayes’ theorem, replacing probabilities Pr with densities p, A
with a parameter set θ and B with a data set X, we have the relation

p(θ|X) =
p(X|θ)p(θ)

p(X)
=

p(X|θ)p(θ)∫
p(X|θ)p(θ)dθ

, (26)

where p(θ) is the prior distribution (of the parameter set), p(X|θ) is
the sampling distribution (the likelihood of the data X under some
model) and p(X) is the marginal likelihood, or the prior predictive
distribution of X, which indicates what X should look like, given the
model, before it has been observed, see [27].

The result, p(θ|X), is called the joint posterior distribution of the pa-
rameter set θ. It expresses the updated beliefs about θ after taking
both prior and data into account. Due to the integral in the denomi-
nator of (26), it is rarely possible to calculate p(θ|X) directly. Instead,
Markov chain Monte Carlo (MCMC) is often used to simulate sam-
ples from it.

The prior predictive distribution
∫

p(X|θ)p(θ)dθ normalizes the joint
posterior distribution p(θ|X). Removing it from Equation (26) yields

p(θ|X) ∝ p(X|θ)p(θ), (27)

i.e. that the unnormalized joint posterior is proportional to the likeli-
hood times the prior. There are many methods that make use of this
result.

The value of interest is often a function f of the parameter set θ.

E[ f (θ)|X] =

∫
f (θ)p(X|θ)p(θ)dθ∫

p(X|θ)p(θ)dθ
=

∫
f (θ)π(θ)dθ∫

π(θ)dθ
, (28)

where π(·) is the posterior distribution of θ. For example, let f be
value at risk at some confidence level and θ be the parameters of a
GP distribution, then, if MCMC was used to produce the posterior,
calculation of Equation (28) is as simple as taking the mean of the
thinned posterior samples, after discarding the burn-in samples, see
Section 2.7.2.

2.4.2 Priors

A prior probability distribution, often shortened to prior, is a prob-
ability distribution that expresses prior beliefs about a parameter θ

before the data is taken into account. The prior is an integral part of
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Bayes’ theorem, see Equation (26), and can greatly affect the posterior
distribution. One should make sure that the prior is proper, i.e. that∫

p(θ)dθ 6= ∞. (29)

An improper prior can lead to an improper posterior distribution,
which makes inferences invalid. In order for the joint posterior distri-
bution to be proper, the marginal likelihood, i.e. the denominator in
the last expression in Equation (26), must be finite for all X.

The two main approaches to choosing a prior, informative versus un-
informative, are outlined below. Priors can also be

useful for attaining
numerical stability
or handling
parameter bounds.

2.4.2.1 Uninformative Priors

The purpose of an uninformative prior is to minimize the subjective
information content and instead let the data speak for itself. How-
ever, truly uninformative priors do not exist, as discussed in [25,
p.159-189], and all priors are informative in some way. One instead
speaks of weakly informative priors (WIP) and least informative pri-
ors (LIP).

Reference Prior for GP

A commonly used subcategory of least informative priors (LIP) is the
reference prior, which is designed to let the data dominate the prior
and posterior. The idea is to maximize the expected intrinsic discrep-
ancy between the posterior distribution and prior distribution. This,
in turn, also maximizes the expected posterior information about X,
see [4, p.905] for details. The reference priors for the GP parameters
are

pσ(σ, ξ) ∝
1

σ
√

1 + ξ
√

1 + 2ξ
(30)

pξ(σ, ξ) ∝
1

σ(1 + ξ)
√

1 + 2ξ
(31)

from [30, p.1525] and [31, p.174], which include proofs of propriety.
See Figure 17 for a visualization of these priors.

2.4.2.2 Informative Priors

Informative priors are based on the idea that when prior information As mentioned earlier,
this can be helpful in
extreme value theory
applications because
data is often scarce.

is available about a parameter θ, that information should be used.
One example of this is to use the knowledge of an expert to create
a prior distribution. The knowledge contained in the elicited prior
will then help supplement the data. There is a multitude of methods
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for converting expert knowledge into actual parameters for the prior
distribution and the one used in this thesis is described in detail in
Section 3.5.3.

2.5 laplace approximation (la)

LA is a method of approximating integrals. Under the assumption
that f (x) both has a unique maxima f (x0) such that f ′′(x0) < 0 and
is a twice differentiable function on [a, b], thenThis is a minor part

of the method but is
nonetheless useful

for initial
exploration of the

parameter space and
expected value.

∫ b

a
eM f (x)dx ≈

√
2π

M| f ′′(x0)|
as M→ ∞. (32)

2.6 markov chains

A Markov chain is a memoryless random process in the sense that
the next state only depends on the current state. If the sequence of
random variables X1, X2 . . . is a Markov chain, then

Pr(Xn+1 = x | X1 = x1, . . . , Xn = xn) = Pr(Xn+1 = x | Xn = xn),
(33)

assuming that the conditional probabilities are well defined, i.e. that

Pr(X1 = x1, . . . , Xn = xn) > 0. (34)

The possible values of Xi form the state space of the Markov chain.
Under certain regularity conditions, the chain will converge to a unique
stationary distribution, independent of the starting point X1, see [18,
p.113].

An important part of the theory of Markov processes is the Markov
kernel K(a, b). It is a function describing the transition probability of
the chain from state a to state b.

2.7 markov chain monte carlo (mcmc)

MCMC methods are a type of sampling algorithms that construct a
Markov chain θn with a desired equilibrium distribution (θ is a pa-
rameter set). They focus on obtaining a sequence of random samples
from a probability distribution for which direct sampling is difficult.
This is often the case with the posterior distribution in Bayesian Infer-
ence (BI), see Equation (26).

The first few sections introduce important theorems and concepts that
are needed to understand MCMC. This is followed by a few specific
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2.7 markov chain monte carlo (mcmc)

algorithms. For a deeper discussion of these concepts, the interested
reader is referred to [18].

2.7.1 Existence of a Stationary Distribution

Known as the detailed balance equation or the reversibility condition;
This is an important
condition that will
be revisited when
analyzing specific
algorithms later.

π(θ)K(θ, θ∗) = π(θ∗)K(θ∗, θ) ∀(θ, θ∗), (35)

where K is the Markov kernel (see Section 2.6 for an explanation and
Section 2.7.7 for an example), is a sufficient condition for the target
distribution π to be the equilibrium or stationary distribution of the
chain, see [28, p.21].

2.7.2 Ergodic Average

The ergodic average is very important for output analysis and tells us
that

E[ f (θ)] ≈ 1
N − s

N

∑
i=s+1

f (θi) (36)

where stationarity was reached at s iterations and N is sufficiently
large, see [28, p.23]. This is how the risk measures or other func-
tions of the parameter set θ are calculated from the posterior sam-
ples.

2.7.3 Markov Chain Standard Error (MCSE)

MCSE is the standard deviation around the mean of the samples,
due to the uncertainty from using an MCMC algorithm. As the num-
ber of independent posterior samples tends to infinity, it approaches
zero.

The initial monotone positive sequence (IMPS) estimator is used to
estimate MCSE. It is a variance estimator that is more specialized for
MCMC. It is valid for Markov chains that are stationary, irreducible,
and reversible. It relies on the property that even-lag autocovariances
are nonnegative, let:

Γm = γ2m + γ2m+1, (37)

where γt is the autocovariance with lag t, is a strictly positive and
strictly decreasing function of m.
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Firstly, the so called initial positive sequence estimator, is

σ̂2
pos = γ̂0 + 2

2m+1

∑
i=1

γ̂i = −γ̂0 + 2
m

∑
i=1

Γ̂i, (38)

where γ̂t and Γ̂t are estimates of their respective quantities, and m is
chosen to be the largest integer such that

Γ̂i > 0 i = 1, 2, ..., m. (39)

Secondly, this estimator was improved on by eliminating some noise
by forcing the sequence to be monotone. This is done by replacing Γ̂t

above with
min{Γ̂1, Γ̂2, ..., Γ̂t} (40)

It can be shown that, as the sample size tends to infinity, the true
variance will be smaller than or equal to the estimated variance, see
[9, p.72-73].

2.7.4 Burn-in

This is widely discussed in MCMC literature and is the number of
iterations that should be discarded before calculating the ergodic av-
erage. It is directly related to determining if the Markov chain has
converged to the target distribution, which is a difficult problem.
Suggestions for determining convergence include running multiple
chains and, when they converge, only one continues running while
burn-in is set to that point. There have been arguments against this
method saying that convergence is better based on estimating if sta-
tionarity has been reached. For details, see [18, p.159,166-167] and
[21, p.13-15].

2.7.5 Stopping time

There has also been much debate regarding stopping time as it is diffi-
cult to determine and, as with burn-in, there have been suggestions of
simply using multiple chains and letting them converge sufficiently.
However, effort has been put into making statistical estimates and one
such is to look at the Markov chain standard error (MCSE), ensuring
that it is small enough before stopping, see [21, p.15] and [45].

2.7.6 Effective Sample Size (ESS)

ESS is the sample size after the autocorrelation of the posterior sam-
ples has been taken into account. The correlated samples are thinned
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(only every x:th sample is kept) by a factor determined by the auto
correlation function and the size of the resulting sample is the ESS.
This is done so that the final samples will be approximately indepen-
dent. The standard estimator for effective sample size is given by

ESS =
N

1 + 2 ∑∞
i=1 ρi

(41)

where ρi is the auto correlation function at lag i and N is the sample
size.

2.7.7 Metropolis-Hastings (MH)

The MH algorithm is very general and there are many algorithms
that fall into this category. It works as follows:

Set initial parameter value θ0, then repeat;

1. Draw candidate θ∗n from the proposal density q( · | θn−1).

2. Accept candidate as θn with probability α(θn−1, θ∗n) or, if re-
jected, use θn−1 instead,

until convergence with satisfactory accuracy, see [39, p.171]. The
steps described above constitute the Markov kernel K, also called
transition kernel.

Algorithms with acceptance probability α(θ, θ∗) and Markov kernel
K based on the following satisfy the detailed balance condition stated
in Section 2.7.1 and are referred to as MH algorithms.

2.7.7.1 Acceptance Probability α

α(θ, θ∗) = min

{
1,

π(θ∗)q(θ|θ∗)
π(θ)q(θ∗|θ)

}
. (42)

where π(·) is the target distribution, i.e. the prior times the likelihood,
and q(·|·) is the proposal density.

2.7.7.2 Proposal Density q and Markov Kernel K

The proposal density q is used to generate new candidate parameter
sets and can be fairly arbitrary but should satisfy:

If θ 6= θ∗, then This is the
mathematical
version of the
description of the
MH algorithm
earlier in Section
2.7.7.

K(θ, θ∗) = q(θ∗|θ)α(θ, θ∗), (43)

otherwise
K(θ, θ) = 1−

∫
q(θ|θ∗)α(θ, θ∗)dθ∗, (44)
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where α is the acceptance probability, and K is the Markov kernel.

2.7.8 Independence Metropolis (IM)

The IM algorithm is a special case of MH and generates candidates in-
dependently of the chain, i.e. the proposal density q does not depend
on the current state θ:

q(θ∗|θ) = q(θ∗). (45)

As a result of this simplification, IM generates samples quickly and
is used effectively once stationarity has been reached.

Many techniques are used when sampling in the multivariate case. In
theory, any sampling distribution with sufficient support works but
often the multivariate normal (MVN) distribution is used to sample
all parameters simultaneously.

2.7.9 Slice Sampler (SS)

The slice sampler tries to sample inside the function graph by the
use of, so called, slices and has an acceptance probability of 1. How-
ever, it doesn’t work well with multimodal distributions due to the
problematic nature of determining the horizontal slice, described be-
low.

It behaves much like the MH algorithm with K(θ, θ∗) = q(θ∗|θ) andAs a side note, SS
does satisfy the

Metropolis-
Hastings-Green

generalization but so
does every sound

MCMC algorithm,
see [7, p.4,35].

α(θ, θ∗) = 1, if θ∗ is in the support of q(θ∗|θ), but doesn’t always
fulfill the MH requirements.

As mentioned above, the Markov kernel K and the sampling distribu-
tion q are one and the same and works as follows, refer to Figure 4

for ease of understanding and [13, p.3-5] for more details:

1. Sample y uniformly from the vertical slice [0, f (θ)].

2. Sample θ∗ uniformly from the horizontal slice f−1[y,+∞).Keep in mind that
θ∗ is always

accepted. The horizontal slice is often difficult to determine. Slice samplers of-
ten use a user-defined step size ω and some variation of the following
method:

1. An initial interval of size ω (called the step size) is placed ran-
domly such that it contains θ.

2. (Expansion) Increment n± ∈N in the following fashionThe keywords in
parentheses will be

referred to later. a) Step out left until f (θ − (a + n−)ω) < y

b) Step out right until f (θ + (b + n+)ω) < y
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Figure 4: Example sampling for the slice sampler (SS).

where a ∈ [0, 1], and a + b = 1 from step 1.

3. (Rejection sampling) Sample θ∗ from the horizontal slice until
f (θ∗) ≥ y. (Contraction) Decrease the size of the slice with each
failed sampling (keeping θ within).

In the multivariate case, sampling often occurs with one parameter at
a time which slows down convergence significantly in higher dimen-
sions compared to some multivariate samplers.

2.7.10 Automated Factor Slice Sampler (AFSS)

AFSS is an extension of the slice sampler (SS), developed by Tibbits
et al, see [46], that attempts to improve the rate of convergence in the
multivariate case by reducing linear dependencies in sampling and
tuning the step size ω sequentially. With diminishing tuning or if
tuning is stopped, it can be used as a final algorithm for sampling
from the posterior.

2.7.10.1 Tuning Step Size

The algorithm behaves exactly like SS but gathers information about
how many expansions and rejections occur in each iteration. A Robbins-
Monroe recursion is then used to tune the step size ω at certain in-
tervals, aiming for a statistically and intuitively motivated target ra-
tio.

The gathered statistics are used to tune ω for the i:th time at iteration
2(i−1) after factors are recalculated. Tuning stops after a user-defined
number of iterations A.
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We define κ as the ratio of the number expansions to the total number
of expansions and contractions.

κ =
X

X + C
(46)

where X is the number of expansions and C is the number of con-
tractions. The expected value of κ is estimated using the information
gathered during the run and a target ratio α = 0.5 is sought as moti-
vated by Tibbits et al. [46].

The target ratio is achieved by setting the step size ω according to

ωi+1 = ωi
E[κ]

α
(47)

Note that with an increased number of expansions the precision of
the slice is likely to increase and fewer contractions occur. Vice versa,
if there are many contractions, then the slice was likely imprecise orig-
inally as a result of few expansions. The interested reader is referred
to the original article [46], which provides a more detailed explana-
tion of the choices presented here.

2.7.10.2 Factor Slice Sampling

The covariance matrix of the parameters is estimated from the pos-
terior samples. Its eigenvectors Γj are then used as a basis for con-
structing linearly independent updates. Where normally one would
sample one parameter at a time, AFSS shifts all parameters according
to the factors, sampling in one basis vector Γj at a time.

θ∗ = θ + ujΓj (48)

where uj is treated as the parameter that we are sampling, i.e. we
need to find the vertical and horizontal slice w.r.t. uj. Note that θ and
θ∗ are parameter sets.

It should also be noted that the factor sampling method will only
lessen the impact of linear dependence among the parameters and
will not help in the case of non-linear dependence.

2.8 generalized hyperbolic (gh) distribution

The GH distribution is a normal variance-mean mixture with the mix-
ture distribution set to the generalized inverse Gaussian (GIG). GH
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2.9 confidence intervals and credible intervals for var and es

is very general and is a superclass of the Student’s t, Laplace, hy-
perbolic, normal-inverse Gaussian and the variance-gamma distribu-
tions. It possesses semi-heavy tails and has been claimed to model
financial returns well, see [35].

With parameters µ = location, δ = peakness, α = tail, β = skewness
and λ = shape, its PDF is

h(x) =
(γ/δ)λ

√
2π Kλ(δγ)

eβ(x−µ) Kλ−1/2(α
√

δ2 + (x− µ)2)

(
√

δ2 + (x− µ)2/α)1/2−λ
(49)

where Kλ(·) denotes the modified Bessel function of the second kind
and γ =

√
α2 − β2. It is defined for all x ∈ R. See Figure 5 for a

visualization.
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Figure 5: GH PDF h(x) with typical parameter values for modelling financial
returns.

2.9 confidence intervals and credible intervals for var

and es

Several different methods are used in this thesis, each with its own
procedure for computing intervals. The frequentist confidence inter-
val and the Bayesian analogue, credible interval, are sometimes sim-
ply referred to as intervals. This section describes how to compute the
95% intervals for each method with the goal of being able to compare
results from the different methods.
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background theory

2.9.1 Markov Chain Monte Carlo (MCMC)

Since MCMC produces posterior samples for each parameter, VaR
and ES can be calculated for each sample and the credible interval is
simply the interval in which 95% of the samples fall, called the high-
est posterior density region. See Figure 6 for an illustration.
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Figure 6: Posterior distribution of VaR (6250 posterior samples after thin-
ning). The dashed lines mark the 95% credible interval.

2.9.2 Historical

Since VaR can be seen as a quantile of the empirical CDF, it is possible
to compute confidence intervals for it. However, it is not possible for
any desired confidence level. The procedure, described in [24, p.215],
is based on the fact that the number of sample points exceeding VaRp

is Bin(n, 1− p) distributed, where n is the sample size. One then
tries to find i > j and the smallest q′ ≥ q such that

Pr(Xi,n < VaRp < Xj,n) = q′ (50)

Pr(Xi,n ≥ VaRp) ≤ (1− q)/2 (51)

Pr(Xj,n ≤ VaRp) ≤ (1− q)/2 (52)

where X1,n . . . Xn,n is the ordered sample. To be able to hit close to
2.5% probability in each direction, i.e. q = 0.05, there has to exist
a fair amount of data points on either side of the target value. For
instance, if the data set contains only 1000 points, it would not be
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2.9 confidence intervals and credible intervals for var and es

possible to compute a confidence interval for the historical VaR0.1%.
The procedure is not applicable to ES, as it is not a quantile.

2.9.3 Maximum Likelihood Estimation (MLE)

The confidence intervals for MLE were calculated using the relative
profile log-likelihood method described in [22, p.13]. If the parameter
or function of interest is M (for example M = VaR1%), the profile log-
likelihood function is defined as

L∗(M) = max
ξ

L(σ(M), ξ) (53)

where L is the regular log-likelihood function for GP and σ(M) means
that σ is determined by the given M, so the maximization is only
with respect to ξ. The relative profile log-likelihood function is then
defined as

L∗(M)− L(ξ̂, σ̂) (54)

where ξ̂ and σ̂ are the estimated parameters from MLE. So L(ξ̂, σ̂) is
just the maximum log-likelihood. The sought confidence interval is
given by all values of M satisfying

L∗(M)− L(ξ̂, σ̂) > −1
2

χ2
α,1 (55)

where χ2
α,1 is the (1− α) quantile of the χ2 distribution with 1 degree

of freedom (α = 0.05 if a 95% confidence interval is wanted). As can
be seen in Figure 7, the interval is asymmetric, since there are less
observations for the higher quantiles.

These intervals, unlike those based on standard errors, do not rely on
asymptotic theory results and should therefore perform better with
the small sample sizes in the tail, see [22, p.11]. Additionally, this
method of calculating confidence intervals for a risk measure M di-
rectly (instead of for σ and ξ separately) captures the correlation be-
tween σ and ξ.
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Figure 7: Relative profile log-likelihood for VaR1%. The dashed horizontal
line is at − 1

2 χ2
0.05,1 = −1.92 and the dotted vertical lines mark the

calculated 95% confidence interval.
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3

D E V E L O P M E N T

This chapter will focus on some decisions that were made in the pro-
cess of constructing an automatic process that takes in transformed
data and returns risk measures. Each section discusses one or two
such crossroads. Results and discussions of discarded side-tracks are
included so as to lend insight and possibly let others avoid these in
the future.

3.1 sample independence

A common assumption in the underlying theory is sample indepen-
dence, yet it can be difficult to accomplish. The issue of independence
becomes even more prominent if we want to take longer time-spans
into account, which is very attractive in order to increase the small
amount of data that is inherently available in extreme value theory
(EVT) applications. There have been many theses on this issue alone
and thus here we will focus on some standard methods that are ap-
plied in finance. Plots from this process are shown in Figure 8.

3.1.1 Return Transformation

The natural and standardized way is to transform the financial data
into (log) returns1, see Figure 8. This will make the time series approx-
imately stationary. Additional modelling is rarely applied although
more could possibly be done. For example, there could at times ex-
ist volatility regimes, see Section 2.3, where the instrument performs
better or worse.

1 The mean of the time series should remain in the data and not be arbitrarily removed
unless you have supporting information. You could, however, apply suitable addi-
tional modelling, such as some ARMA-model, on the realizations in order to remove
some dependence between data points and then displace the remaining time series
to a predicted expected value.
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Figure 8: Data transformation and volatility filtering of the Bank of America
data set.

3.1.2 Volatility Filtering

A well known characteristic of financial data are volatility shocks,
which appear as volatility clusters, and its effects on EVT have been
studied.

. . . results indicate that the dependence of the data does
not constitute a major problem in the limit of large sam-
ples, so that volatility clustering of financial data does not
prevent the reliability of EVT, we shall see that it can sig-
nificantly bias standard statistical tools for samples of size
commonly used in extreme tails studies — [33, Sornette
p.44]

A standard method in finance for filtering and normalizing w.r.t. volatil-
ity is using an asymmetric GARCH model. For the real world data
set, we use the GJR-GARCH procedure described in Section 2.3.2 and
depicted in Figure 8, with the additional enhancement of letting the
error terms be drawn from the generalized hyperbolic (GH) distri-
bution instead of the normal distribution. This should affect the
tails less, since GH can model semi-heavy tails. There is, however,
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3.2 block maxima (bm) vs peaks over threshold (pot)

a flaw with this sequential modelling where, when filtering, it is as-
sumed that the data is GH distributed. For future work it would
be interesting to include modelling of volatility clusters in the main
model.

On the subject of increasing reliability, it is attractive to look far back
in time in order to increase the number of data points. However, the
dangers of this should be carefully considered. For example, when
doing this it is highly recommended to look for different volatility
regimes. There is a myriad of techniques available related to this but
they are outside the scope of this thesis.

3.1.3 Further Modelling

There is an infinite space of possible modelling solutions for data
dependence available to us. Many depend heavily on the application
at hand. The ones already presented are most common but there
exists another, relevant only for POT, called peak declustering. It will
not be covered here as a result of it being very subjective as it, much
like the mean residual life (MRL) plot method, relies on interpreting
graphs to decide upon a declustering threshold.

3.2 block maxima (bm) vs peaks over threshold (pot)

This section will discuss the choice of BM vs POT for our problem for-
mulation. The two major limit results of extreme value theory (EVT)
both have their perks and the suitability of each for our problem for-
mulation was investigated. Being able to automatize the process is
one such criteria. However, the standard methods of both results is
to graphically choose a block size or threshold.

There are some factors in favor of POT:

. . . modeling only block maxima is a wasteful approach
to extreme value analysis if other data on extremes are
available. — [10, Coles p. 74]

Moreover, related to the discussion of independence, there have been
studies comparing the two:

. . . the standard generalized extreme value (GEV) esti-
mators can be quite inefficient due to the possibly slow
convergence toward the asymptotic theoretical distribu-
tion and the existence of biases in the presence of depen-
dence between data. Thus, one cannot reliably distinguish
between rapidly and regularly varying classes of distribu-
tions. The generalized Pareto distribution (GPD) estima-
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tors work better, but still lack power in the presence of
strong dependence. — [33, Sornette p.44]

POT has been used extensively in financial applications. It has the
same weakness as BM where a threshold is selected quite arbitrar-
ily and the uncertainty in the selection process is not accounted for.
However, a model presented by Gamerman, see [2], allows for au-
tomatic threshold selection and takes this uncertainty into account.
Automatic threshold selection is one of the main issues considered
in this thesis. Attempts were made to resolve the issues with the
original model and improve performance.

In regards to BM, although it was ultimately discarded here in favor
of POT, it does have its advantages yet has seen comparatively little
research, at least within financial applications. See [16, p.1-3] for a
more complete discussion.

3.3 threshold selection

The problem of threshold selection is inherent in POT and, although
a variation of Gamerman’s model was finally chosen as aforemen-
tioned, all three methods discussed in the background theory, see
Section 2.1.2.2, were investigated during the development process so
as to provide a comparison and improve understanding. Lastly, im-
proved models for threshold selection were iteratively developed.

3.3.1 Fixed Threshold

The fixed-threshold generalized Pareto (GP) model with a threshold
corresponding to the 95th percentile of the data is illustrated in Figure
9. The model was evaluated for different thresholds, sample sizes,
and using both MLE2 and MCMC for comparison.

3.3.2 Mean Residual Life (MRL) Plot

Choosing threshold graphically from the MRL plot is highly subjec-
tive, exemplified in Figure 10 for the Bank of America data set. The
plot should be approximately linear in u at values where the data
is GP distributed. Determining at what threshold the plot becomes
linear is obviously tricky. Arguments can be made for choosing u as
low as 0.02 or perhaps as high as 0.045. This uncertainty makes a big

2 The Nelder-Mead algorithm performed well and was used for all MLE calculations.
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Figure 9: Plot of the fixed-threshold GP model fitted to example data.

difference since choosing u = 0.02 corresponds to modelling 12.4% of
the data, while only 2.5% of the data is greater than u = 0.045.

3.3.3 Stability of Parameters

The effectiveness of using the stability of estimated parameters as a
method for selecting threshold was investigated.

First, the effect of moving the threshold was analyzed analytically, re-
fer to Section 2.1.2.1 for notation, by looking at the following equation:

pu=0(x) = (1− Pu=0(a)) · pu=a(x), (56)

where pu=0 is the original GP, pu=a is the GP with threshold u = a,
and the factor 1− Pu=0(a) is an adjustment such that the area of the
two distributions below the graph from a to ∞ is equal.

This led to the result, also seen in Equation 10,

σ(u) = σ(0) + ξu (57)

ξ(u) = const, (58)

which is in accordance with theory. Note this linear
dependence, it could
be part of the reason
why the AFSS
algorithm behaved
well.

With this result in mind, a fixed-threshold GP model was run while
varying threshold using both MLE and MCMC on a simulated GP-
distributed sample of size 10,000.
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Figure 10: MRL plot for the Bank of America data set. The dashed vertical
lines mark our lowest and highest estimate of the appropriate
threshold.
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Figure 11: MRL plots for the simulated GHGP data with N =
(10000, 4000, 1000) (top, middle, bottom). The dashed line marks
95% of the data.
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Figure 12: MRL plots for the simulated GL data with N =
(10000, 4000, 1000) (top, middle, bottom). The dashed line
marks 95% of the data.
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3.3 threshold selection

The MLE estimator for varying fixed thresholds on GP distributed
data and σ behaved close to as predicted. However, ξ was not esti-
mated to be constant at all, see Figure 21. Moreover, a large relative
difference of as much as 15% was seen for VaR1% when the threshold
increased.

The test was repeated for MCMC with more stable results, see Figure
22. The changing threshold has much less effect on the quantiles
compared to when using MLE though they are also not behaving
optimally, compare with Equations (57) and (58). Although "stability

of threshold" was
discarded, the
results were useful
for comparing MLE
vs MCMC and were
thus moved to the
Results, see Figures
21 and 22.

Using stability of parameters to select threshold seems a difficult
prospect, regardless of whether MLE or MCMC is used, even in the
context of massive amounts of data. As a result, this method for
threshold selection was discarded.

3.3.4 Body-tail Models

From the investigations into threshold selection techniques and the ef-
fect of choosing threshold, see Section 5.5, it became clear that thresh-
old selection is quite arbitrary and fixed-threshold GP models are
inadequate, at least when there are few relevant data points.

Figure 13: Gamerman’s original model, from [2].

The model presented by Gamerman [2] used a Gamma distribution An information
criterion for
choosing threshold is
difficult to create,
although, in essence,
the body-tail models
are heuristic
attempts at this.

as the body and GP as the tail, shortened to Gamma-GP and illus-
trated in Figure 13. It was an attempt to both automatize thresh-
old selection and take the threshold uncertainty into account. The
transition between the distributions was very ill-fitted and may very
well be the reason why the method hasn’t readily reappeared. At-
tempts were made to resolve three serious problems with the original
model:
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a. Threshold selection will depend on how well the body distribu-
tion models the data. The worse it models the data, the more
data will fall to GP, and vice versa. Since Gamma was not able
to model the data very well, the chosen threshold was much
lower than expected from looking at an MRL plot. From the
perspective of EVT it is better to have a threshold that is too
high rather than the other way around, since convergence will
be better.

b. Discrepancies in the data will affect the placement of the thresh-
old greatly. Due to the lack of data in the tails there is often
some "hole" in the histogram (great distance between closest ob-
served variates) which might cause the body distribution to fall
near zero at this point, and then the GP distribution takes over
at a higher density where data is once again present.

c. The discontinuities of the original Gamma-GP disqualify many
algorithms.

3.3.4.1 GH-GP

The first idea was to just replace the body distribution with GH which
is very general and has been shown to accurately model the returns
of many financial instruments, see [35, p.12].

The first attempt was using fixed GH parameters that were estimated
at the start. This significantly improved threshold estimation to levels
more in line with theoretical expectations. This was done in conjunc-
tion with a threshold relaxation which allowed the threshold param-
eter to be sampled as if continuous and then moved to a data point
so as to avoid unnecessary multimodality.3

Seeing the seriousness of problem b stated above and since GH mod-
els the tail quite well on its own, it was used to, in a sense, smooth
the discrete data set. This was done by making the two distribu-
tions match at the threshold and completely relaxing the threshold
parameter. Note that this puts much more emphasis, compared to
Gamerman’s original model, on that the body distribution models
the data quite well at least in the tails or, more accurately, the thresh-
old parameter space. As a result, the model was changed to let the
GH parameters vary as part of the MCMC process.

3 Changing the body distribution introduced another problem, namely, the threshold
could, albeit rarely, exceed the quantile we were interested in. A boundary condition
was placed upon the threshold so as to lie within (90%, min(99%, quantile)). This lim-
itation applies to any application of POT. For larger quantiles (≈ 5%) an approach
such as historical risk should be sufficient.
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3.3 threshold selection
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Figure 14: Plot of the GH-GP model fitted to example data.

The PDF m(x) of the final model looks like this:

m(x) =

h(x), if x ≤ u
p(x)

1−H(u) , otherwise
(59)

σ =
1− H(u)

h(u)
(60)

where H and h are the CDF and PDF of GH while p is the PDF of GP
with parameter σ described by Equation (60). Note that

calculating the PDF
of GH is quite
computationally
expensive and the
CDF doesn’t have a
closed form,
meaning that
numerical
integration has to be
used. For these
reasons we used an
implementation of
the PDF written in
C.

If the body distribution doesn’t fit the data well enough then the sec-
ond improvement is not justified. In that case, the factor 1− H(u)
mentioned above is best replaced by factors based upon sample es-
timates. For example, weighting each distribution by the number of
points it models as in Equation (15).

For financial returns, the second improvement also lead to approxi-
mately continuous first and second order derivatives over the thresh-
old. This opens up a larger solution space and could also lead to
faster convergence.

3.3.4.2 GP-GP Distribution

With the GH-GP model we experienced two problems:

37



development

a. GH can model the tails of financial data quite well but has a
tendency to estimate the threshold over-confidently and very
highly with consequently few data points above it. The latter is
a classic case of bias vs variance. While GH has the advantage
of ensuring better convergence, it may sometimes be better to
include more data points in the tail.

b. Heavy computations.

a) GH has a complex form and there is no analytical solution
to its CDF so numerical methods have to be used. This can
also lead to inaccuracy when normalizing the GP-tail.

b) We are arguably modelling a much larger part of the sam-
ple than is needed or we are interested in. This also syner-
gizes badly with the computation time per data point.

To resolve these issues, GP was used as a body distribution starting
at 85%, letting the GP-tail take over when the data has converged
sufficiently, see Section 2.1.2. This reduced the computation time im-
mensely and it also estimated a wider range of thresholds with a
lower mean which increased the average number of data points above
the threshold.
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Figure 15: Plot of the GP-GP model fitted to example data.

3.4 bayesian vs frequentist inference

Ignoring priors for a moment, then this is a comparison between tak-
ing the expected value (mean) vs. the most likely value (mode). The
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3.4 bayesian vs frequentist inference

value that we are interested in is the expected value but sometimes
the mode is very close to the mean, which makes the frequentist ap-
proach interesting because it is often both easier to use and faster.
However, if the distribution is, for example, multimodal or too asym-
metric then the frequentist approach isn’t viable, as illustrated in Fig-
ure 16.
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Figure 16: Example PDFs for a bimodal and an asymmetric distribution.

Additionally, calculating the expected value is not that simple. The
two main drawbacks of Bayesian inference (BI) is the need to solve an
integral and specify prior distributions for the parameters. In other
words, prior (and often subjective) information modelled in a distri-
bution which affects the end results. The integral causes BI to be
much slower than the frequentist approach and the priors make the
method harder to use, especially for non-experts.

In the case of EVT, very little data is available due to the very na-
ture of the topic and, in such a context, using priors based on expert
opinion could be powerful. For example, they can be used to avoid
problems with model identification in complex models. We will com-
pare a reference prior with an expert prior specialized for financial
applications and see how much they influence our results.

A philosophical difference, which in our opinion favors BI, is that BI
considers the data to be fixed and estimates the parameters while
the frequentist approach considers the unknown parameters to be
fixed, estimating based on the data at hand plus hypothetical re-
peated sampling in the future with similar data. Simplified, BI re-
gards p(hypothesis|data) while the frequentist approach looks at
p(data|hypothesis), see [41, p.15].
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Moreover, unlike the frequentist approach, which only estimates the
mode, BI estimates the full probability model. A confidence interval
can still be calculated with the frequentist approach but previous re-
sults also indicate that MCMC provides smaller analogous intervals,
see [45, p.25].

Another strong argument for BI, in the context of our problem set,
is that via MCMC it is unbiased with respect to sample size unlike
the frequentist approach which becomes more biased with smaller
sample sizes. The effect of this in the context of heavy-tailed data
was investigated, see Section 5.2.1.

A comparison of the MLE and MCMC estimators on large amounts
of GP distributed heavy-tailed data was done, see Section 5.2, which
favored MCMC.

In conclusion, BI and, more specifically, MCMC was chosen.

A more complete but slightly biased summary of the arguments for
and against, non-specific to our purposes, can be found in [45, p.24-
26] and an interesting related discussion can be found in [37]. More-
over, a deeper investigation into the effects for our problem set is
provided in Section 5.2.

3.5 priors

Priors are a necessary component of Bayesian inference about which
there have been much debate over the years. This section will cover
priors with different grades of information, from reference and weakly
informative priors to expert priors. Priors have the possibility of be-
ing especially useful in EVT applications as they can be used to add
information to the often meager data sets.

3.5.1 Weakly Informative Prior for GH

The priors for the GH parameters were all set to fairly flat distribu-
tions centered around the initial value for each parameter. For exam-
ple, a normal distribution with very high variance. This allows the
priors to have very little impact on the end result (compared to the
data), while still being able to help numerical algorithms escape areas
of flat density.

Less time has been spent on priors for the GH distribution, for two
main reasons:
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• There is a lot more data for the GH part of the distribution,
usually around 95% of the total data. Unless overly informed,
this reduces the impact of the priors massively.

• The impact of GH on the end result is quite small, rather it is
mainly a tool to decide where the GP modeling should start and
therefore generally less important.

3.5.2 Reference Prior for GP

In order to compare with frequentist inference, as uninformative pri-
ors as possible were used. These are the reference priors described in
Section 2.4.2

pσ(σ, ξ) ∝
1

σ
√

1 + ξ
√

1 + 2ξ
(61)

pξ(σ, ξ) ∝
1

σ(1 + ξ)
√

1 + 2ξ
(62)

These are used for all results, except for when specifically testing the
informative priors. See Figure 17 for a visualization.

sig
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LP

Figure 17: Log-probability surface of the combined reference prior from
Equations (61) and (62) for σ ∈ [0.001, 0.1] and ξ ∈ [0.01, 1]. Same
view as for the informed prior in Figure 18.
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3.5.3 Prior Elicitation from Expert Opinion

The goal here is to supplement the data with prior knowledge from
an expert in the field. This so-called elicitation procedure is based on
[12, p.467] but modified for our particular application. The idea is to
ask the expert for estimates of VaR, which he or she is presumably
very familiar with, and then convert these into a prior distribution for
the GP parameters σ and ξ. Recall from Equation (17) that the VaR
for a small tail probability p is given by

VaRp = u− σ

ξ

{
1−

[
N
Nu
· p
]−ξ}

(63)

The elicitation is done in terms of

d1 = VaR1% (64)

d2 = VaR0.1% −VaR1% (65)

and the expert is asked for the median and 90% quantile for d1 and
d2. We then take marginal priors of the form

d1 ∼ Gamma(a1, b1) (66)

d2 ∼ Gamma(a2, b2) (67)

and calculate the hyperparameters a1, b1, a2, b2 from the information
received from the expert. The joint prior is then

f (d1, d2) ∝ d a1−1
1 exp(−b1d1) d a2−1

2 exp(−b2d2) (68)

Substitution of the expression for VaR from Equation (63) and mul-
tiplication by the Jacobian of the transformation (VaR1%, VaR0.1%) →
θ = (σ, ξ) leads to the following prior for the GP parameters

pσ,ξ(σ, ξ) ∝

[
u∗ − σ

ξ
(1− p−ξ

1 )

]a1−1

exp

[
− b1

{
u∗ − σ

ξ
(1− p−ξ

1 )

}]

×
[

σ

ξ
(p−ξ

2 − p−ξ
1 )

]a2−1

exp

[
− b2

{
σ

ξ
(p−ξ

2 − p−ξ
1 )

}]

×
∣∣∣∣∣− σ

ξ2

[
(p1 p2)

−ξ(log p2 − log p1)− p−ξ
2 log p2 + p−ξ

1 log p1

]∣∣∣∣∣
(69)

where p1 = 0.01 · N/Nu, p2 = 0.001 · N/Nu and u∗ is the prior mean
of the threshold (should in theory be the actual current threshold
value, but we don’t want the prior to change during runtime). See
Figure 18 for a visualization.
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sig
m

a
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(a) Same view as the reference prior in Figure 17.

sigma

xi

LP

(b) Rotated and zoomed in on smaller σ. The peak is at σ = 0.004673469 and ξ =
0.3268.

Figure 18: Log-probability-surface of the informed prior from Equation (69)
with the expert’s opinion equal to historical VaR. The upper plot
has parameters σ ∈ [0.001, 0.1] and ξ ∈ [0.01, 1], and the lower
plot has σ ∈ [0.001, 0.01] with the same ξ.
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3.6 bayesian methods

There are many methods available, including iterative quadrature,
variational Bayesian methods, Laplace approximation (LA), and
MCMC. Iterative quadrature tries to solve the integral by numerical
methods, both Laplace approximation and variational Bayesian meth-
ods are deterministic approximations, and MCMC is a stochastic sam-
pler that is very general with many algorithms to choose from.

Initially, MCMC was chosen because it is unbiased for smaller sample
sizes, see Section 3.4, and supports discrete parameters well but as
this latter restriction was lifted, Laplace approximation (equivalent to
MLE with priors for this purpose) was used to attain better starting
parameters. Finally, iterative quadrature was tried but was found to
be too computationally heavy.

3.7 mcmc algorithms

Two out of many MCMC algorithms were selected after showing
good performance on the problem set. This section will discuss
their uses and some improvements that were made to them in order
to improve performance or to satisfy underlying theoretical condi-
tions.

3.7.1 Independence Metropolis (IM)

The independence Metropolis (IM) sampler, see Section 2.7.8, is very
useful for sampling quickly if the proposal distribution isn’t misin-
formed. A useful technique is therefore to use a more advanced algo-
rithm first and then switch to IM in order to get more samples and
decrease the Markov chain standard error (MCSE) to an acceptable
level.

Another use, for example if the Hessian estimation of the covariance
fails, is to sample during a short run after the Laplace approximation
(LA) and use these samples to estimate the covariance instead, see
Section 3.8.

As long as the support of the proposal distribution is large enough
then IM will behave very well, even in the context of multimodal
distributions. As a result, the covariance supplied to IM is multiplied
by 1.1 as recommended by [45].

For our purposes the proposal distribution will most often be mul-
tivariate normal (MVN) but for some cases the multivariate Cauchy
(MVC) distribution may appear.
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3.7 mcmc algorithms

3.7.1.1 Handling Bounds

There are often parameter bounds that must be satisfied, e.g. σ ∈
(0, ∞), and the two most intuitive ways of handling this is to set the
likelihood outside the bounds to zero, with the help of priors, or use
a proposal distribution with support equal to the bounds.

The former is an easy solution but, with difficult bounds, it can cause
low acceptance rates and high correlation between posterior samples.
The latter is better but can be a hard task to achieve at times. We will
discuss some alternatives. It will be seen that it is very important to
consider the effects of the method you use to handle bounds as it can
easily affect the entire procedure.

The ideas presented here are true in general but choices w.r.t. opti-
mization are made with MVN in mind, as proposal distribution.

Interval

The idea of interval is to mirror proposals that fall outside against the
bounds until they are inside. If the bounds are semi-infinite then this
is accomplished by a single mirroring but if the bounds are finite it
may take many.

This method, recommended by [45], ensures that only one sample has
to be generated, which may be very useful for some algorithms.

Looking back at the definition of the acceptance probability, see Equa-
tion (42), it is seen that is must be possible to both sample from q and
calculate the density. As a result of the interval method there are
many ways of ending up at a specific value x when sampling from
a distribution q∗. For instance, assume a univariate case with a semi-
infinite bound (0, ∞) then

q(x) = q∗(x) + q∗(−x) (70)

where q∗ is the proposal distribution used to generate the sample but
q is the real distribution after passing the interval function.

This was implemented and tried using recursion to calculate the pos-
sible combinations resulting in a value x and stopping once a certain
tolerance is reached. The number of calculations increase heavily
with the number of bounded parameters but can still be counted as
viable. However, the main strength of IM is the ability to sample very
quickly and therefore another method was sought.
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Bijections

Another technique that was tried was using bijections. However, this
enlarged the parameter space greatly, and as a result, using a normal
distribution to sample was out of the question. Moreover, a very
non-linear relation between the parameters was created. Hence, the
bijection technique was rejected.

Resampling
This resampling

improvement has
been added to the

LaplacesDemon
package [45] under
algorithms IM and

CIM (the latter
having MVC

proposal distribution
instead of MVN).

Under the assumption that the main part of the proposal distribution
q is within the bounds, then resampling is an alternative. However,
at face value, this would require an integration of the proposal distri-
bution in order to normalize the distribution, setting the probability
inside the bounds to one. For the univariate case it becomes:

q(x) =
q∗(x)∫ b

a q∗(y)dy
(71)

where a and b are the lower and upper bounds. Note that in the mul-
tivariate case they are allowed to depend on the parameters.

However, the integral factor is constant under IM since q is indepen-
dent of the last parameter, see Equation (45), unlike for e.g. the pop-
ular algorithm "random walk Metropolis". As a result, the factor
cancels out when calculating the acceptance probability and does not
have to be calculated. The resampling method is therefore very well
suited for IM but would require heavy calculations for most other
common algorithms.

3.7.2 Automated Factor Slice Sampler (AFSS)

The automated factor slice sampler (AFSS), see Section 2.7.10, is a
powerful general-purpose sampler that performs well in many cases.
It is suitable for an automatic process because it requires hardly any
manual tuning if provided with good enough initial values and co-
variance estimates.

In an attempt to keep the notation of the original article intact and not
cause confusion, X is still defined as the number of expansions not
including the initial randomly placed interval but X∗ does include
it. Moreover, the number of contractions C has a parallel S, which
is the number of samplings and includes both rejections and accep-
tances.

Also note that although everything is multivariate in practice, it will
not be explicitly stated but should be quite easily understood nonethe-
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3.7 mcmc algorithms

less. For example, ω is a vector, since the step size is different for each
parameter.

3.7.2.1 Handling Bounds

The interval method discussed earlier in Section 3.7.1.1 is not appli-
cable to AFSS although it has seen use. The reason for this is that
we get a malformed sampling probability that is no longer uniform.
This goes to further show that seemingly small changes may affect
the internal workings differently depending on the algorithm.

Using bijections to solve the issue is also a bad idea since they are of-
ten very far from linear, which makes the algorithm behave badly.

The simple and intuitive way, to set the probability of the parameter
to occurring outside the bounds to zero is equivalent to resampling
and works well.

3.7.2.2 Improvements to the Original Algorithm

A few problems were discovered when the original algorithm was in-
spected and used. The following sections seek to discuss and remedy
these issues.

Normalized Factors

The initial configuration of the step size vector ω, see Sections 2.7.9
and 2.7.10.1, held virtually no meaning in the original algorithm and
issues between early tunings could occur as ω did not relate to the
parameter space in any way.

A change was made so that each factor Γj (eigenvector of the covari-
ance matrix of the parameters, see Section 2.7.10.2), is normalized
with respect to its j:th element (the j:th element becomes 1). This re-
sults in the vector ω relating directly to the parameter space, which
makes ω easier to understand and initialize, as well as making ω rel-
evant between tuning regimes in the early stages of the run when the
covariance estimate can shift a lot. These improvements

have been added to
the LaplacesDemon
package [45] under
the algorithm AFSS.

Starting Expansion Heuristic

Implementations of AFSS normally have a user-defined maximum
number of expansions before they give up on finding the horizontal
slice. This isn’t a problem in the long run as the problem often re-
solves itself as tuning takes place. However, in some cases it can take
a long time for this to occur and, of course, the obtained samples are

47



development

erroneous. An alternative approach to abandoning ship is to tune the
step size ω at this user-defined maximum m.4

If it is the first sampling since tuning reset, then every time the slice is
expanded a multiple of m times, ω is doubled and X∗ is halved.

The intuitive motivation for this is that if ω is doubled, then, with
slightly improper notation,

E[X∗|2ω] ≥ X∗/2 (72)

and if m is large enough, then they are approximately equal. It should
be noted that doubling ω is a very modest increase when considering
large values of m.If we wanted to rid

the implementation
of this limitation

then we would have
to analyze how the

total number of
samplings S is
affected by the

change in ω.

That it is only done at the first sampling isn’t a real limitation be-
cause if the step size ω is badly chosen then problems will manifest
immediately.

Starting Sampling Heuristic

The other side of the coin is when the step size ω is much too large
and expansion stops immediately. This results in many contractions
of the horizontal slice before finding an acceptable slice. The idea
here is to let these contractions also apply to ω under certain condi-
tions.

If it is the first sampling since tuning reset and X∗ = 1, then every
time we contract a multiple of m times we set ω to be length of the
current horizontal slice and reset the total number of samplings S to
zero.

Expansion-Sampling Ratio

The original AFSS algorithm used κ defined in Equation (46) but this
technique has a problem. It works well for when the number of con-
tractions grow large but fails to tune sufficiently when the number
of expansions grow. If C grows then κ → 0 but as X becomes very
large then κ → 1. This means that with a target ratio α = 0.5, ω is
multiplied by a factor κ

α ∈ [0, 2]. We would like the upper bound to
be significantly greater than 2.

Therefore, the following ratio is instead proposed;

κ∗ =
X∗

S
, (73)

4 The results were created using m = 50.
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3.8 initial values and covariance

with the target ratio α∗ = 1, equivalent of the old α = 0.5 in accor-
dance with the results in [46].

The effect is a ratio that can tune quickly in both directions, see Figure
19. Additionally, by counting all samplings and including the initial
expansion, we get a better statistic, as a good sample run, such as
1-expansion-1-sampling, will be counted. Lastly, the step size ω is
never set to zero.
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Figure 19: Comparison of old and new AFSS ratios while varying X with
X + C = 10.

Note that with this improvement, the rough starting heuristics men-
tioned above become less important but can still be useful so as to
always get proper samples, which is important since they are used to
estimate the factors.

3.8 initial values and covariance

The first step is to generate initial values based on prior knowledge
about financial data. If many acceptable values are generated then
the set of parameters which result in the best log-likelihood is cho-
sen.

From here on there is a multitude of ways to explore the parameter Note that the
Hessian estimation
should be multiplied
by 2.382

L , where L is
the number of
parameters, before
being supplied to
MCMC, see [40,
p.113].

space (to calculate the covariance) such as variational Bayesian meth-
ods, MCMC, or even iterative quadrature. However, a quite strong
and fast initial method is Laplace approximation (LA) and a Hessian
estimate of the covariance. In the automatic procedure much of the
information provided by LA was ignored and it basically just finds
the parameters that maximize the joint posterior distribution.

49



development

3.8.1 Contingent Covariance Sampling

If the Hessian cannot be inverted, then the process reverts to IM with
an educated guess for the proposal covariance and the generated start
values as mean. The obtained samples are then used to estimate the
covariance matrix.The contingent

covariance sampling
is not expected to be

stationary and is
just a method for

exploring the
parameter space so

as to allow AFSS to
work better.

3.9 stationarity

AFSS is a powerful algorithm that converges quickly when applied to
many problems. It is therefore run first, for 1,000 iterations, in order
to achieve stationarity and find good parameter values for future IM
runs. If stationary was not reached, then it continues for another
5,000 iterations.

Many other algorithms were tried as well but AFSS performed bet-
ter than most with less configuration, especially after the improve-
ments in Section 3.7.2.2. However, it is likely that there are other
algorithms that could be configured to perform better given the task
at hand.

3.10 acceptance rate

Previous research has shown that the theoretical ideal acceptance rate
should be approximately in the range (0.15, 0.5), recommended by
[45], dependent on the target distribution. For example, it has been
shown that the univariate normal target distribution has an ideal ac-
ceptance rate of 50% while for MVN it was approximately 23%, see
[40].

The result of a suboptimal acceptance rate is slower convergence to
the target distribution. However, since we already have stationarity
at this point and our target distribution isn’t univariate normal, the
main concern is making sure the support of the proposal distribution
is large enough to cover the entire parameter space properly. With
this in mind we seek an acceptance rate in the range (0.15, 0.4). In
order to achieve this acceptance rate, we use an adaptive version of
IM which estimates covariance from the samples until an acceptable
rate is reached.

Another problem that can occur due to a low acceptance rate can
be more correlation between samples but this is resolved in the next
part.
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3.11 mcse

3.11 mcse

As a final step, in order to lower MCSE to an acceptable level, IM is
run for 50,000 iterations and samples are thinned depending on how
correlated samples were in previous runs, see Section 2.7.6.

Two terms commonly used in literature about MCMC are burn-in
and stopping time which in this process would be, respectively, all it-
erations up until the final sampling run and when MCSE has reached
an acceptable level, with some margin. Posterior predictive

checks were
performed at this
point but with so
little data they were
unable to diagnose if
there were any
problems. Instead
simulations took the
role of scrutinizing
the correctness of the
models.
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4

R E S U LT S

This chapter contains results from the main thread from the devel-
opment and some information on how the results were generated.
Results are from the comparison of Bayesian vs frequentist inference
with focus on MCMC vs MLE, the effect of variations in threshold
selection, model comparisons, and the effect of priors.

In each simulation, a sample of 10,000 data points was generated and
reused in every run. Parts of the sample were used when testing was
performed with smaller data sets.

Moreover, in accordance with our problem formulation, all the data
samples used were heavy-tailed.

The first sample was generated from a GH body distribution merged
with a GP distribution, the threshold at 95%.1

The second simulation was done using the generalized lambda (GL)
distribution which has been shown to be a good alternative for mod-
elling and simulating financial data, see [8].2

The third sample is real data from the stock Bank of America (1258

data points or 5 years) that was transformed and filtered using the
methods described in Section 3.1. Histograms of the data sets de-
scribed above are shown in Figure 20

Although 10,000 data points (≈ 40 years) is rarely realistic, it is useful
for giving a reference point and showing the effect of a decreasing
sample size.

The reference prior described in Section 3.5.2 was used, unless other-
wise stated, in order to have a parameter estimate that was as unbi-
ased as possible to allow for comparisons with MLE.

In the tables, "Avg." corresponds to either the mean or the mode (de-
pending on the algorithm) while LB and UB are the lower and upper

1 The GHGP parameters were µ = 0.002200946, δ = 0.031815232, α = 15.241766213,
β = −12.325859594, λ = −3.336424312, u = 0.022438637, σ = 0.007726189, and
ξ = 0.3.

2 The GL parameters were λ1 = −0.0003, λ2 = −4, λ3 = −0.06, and λ4 = −0.06
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Figure 20: Histograms of the data sets used for testing.
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4.1 bayesian vs frequentist inference

bounds for the 95% confidence interval, or credible interval in the
case of MCMC.

4.1 bayesian vs frequentist inference

A comparison of the MLE and MCMC estimators was performed for
a large amount of GP distributed data, see Figures 21 and 22.3 This
is related to the stability of parameters that was discussed earlier in
Section 3.3.3.
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Figure 21: Effect of threshold on parameters and quantiles using MLE for
10,000 GP data points generated using u = 0, σ = ξ = 0.1.

Theory predicts MCMC is less biased than MLE for smaller sample
sizes. This was investigated in Figure 23.

4.2 effect of threshold

The mean of the GP model (MCMC) was plotted in Figure 24 while
varying the threshold and the posterior samples of GP-GP were plot-
ted in Figure 25 for inference. In the prior case, the GH-GP sample
was chosen in order to have a case where we know where the data
has absolutely converged to GP.

3 The large GP data set was simulated using parameters u = 0 and σ = ξ = 0.1.
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Figure 22: Effect of threshold on parameters and quantiles using MCMC for
10,000 GP data points generated using u = 0, σ = ξ = 0.1.
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Figure 24: Mean of risk measures from the GP model for varying thresholds.
The solid and dotted lines indicate GH-GP samples of size 10,000

and 1,000, respectively.
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Figure 25: Posterior samples from the GP-GP model for 1,000 GH-GP sam-
ples.
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4.3 model comparison

The GH-GP simulation was done so as to show the best-case scenario
for all algorithms with the exception of GP-GP. Note that nothing
should beat the fixed-threshold GP models in this data set, not even
GH-GP. If GH-GP and especially GP-GP can perform nearly as well
then it is very good. This gives us a reference point for comparisons,
see Tables 2, 3, and 4.

Furthermore, results are presented for GL, see Tables 5, 6, and 7, and
a real data set, see Table 8.

Although the models attempt to estimate the analytical value, too
much emphasis shouldn’t be put on it as, especially in the context
of smaller sample sizes, the random variates may indicate something
slightly different.

4.4 priors

The procedure of prior elicitation, see Section 3.5.3, was tested on the
Bank of America data set, using GP-GP as model. Recall that the
expert is asked for the median and 90% quantile of

d1 = VaR1% (74)

d2 = VaR0.1% −VaR1%. (75)

Three different opinions and two different levels of certainty combine
to produce six fictive elicitation scenarios, intended to test the impact
of our informative prior on the end result. The opinions and certainty
levels are described in Table 1.

Table 9 contains the final risk measure results when considering each
of the six scenarios as well as the usual reference prior, for compari-
son. Figure 26 shows the fitted GP-GP model for the scenarios "His-
torical Certain", "Above Certain", and "Spread Certain", as well as for
the reference prior.

58



4.4 priors

Table 1: Explanation of prior elicitation scenarios

Historical (H) The expert’s opinion/estimate of both VaR1% and
VaR0.1% coincide with the historical VaR.

Above (A) Both VaR1% and VaR0.1% is 1.5 times their historical
counterparts, i.e. the expert believes that the actual
risk is substantially higher than the historical data
suggests.

Spread (S) VaR1% is equal to historical but VaR0.1% is twice
its historical value. This would mean that the ex-
pert does not believe that the (extreme) 0.1% risk is
captured in the historical data but rather is much
higher.

Certain (C) When asked for the 90% quantile of a given an-
swer, the value (median) is multiplied by a factor
1.2.

Uncertain (U) When asked for the 90% quantile of a given an-
swer, the value (median) is multiplied by a factor
2.
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Figure 26: GP-GP model fitted to the Bank of America dataset. Informed
priors are used, based on different elicitation scenarios, see table
1.
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5

D I S C U S S I O N & C O N C L U S I O N S

This chapter will discuss the results from the main thread of the de-
velopment process.

5.1 data transformation

Although not part of the process, return transformation and volatility
filtering were attempted in order to test on real data and show an
example procedure, see Section 3.1. This section seeks to discuss the
effectiveness of this procedure.

The assumed heavy-tails of the data weren’t always present after the
financial data had been filtered using the standard example process
presented. Although there is a general consensus that financial data
is heavy-tailed, see [15, p.38], when modelling volatility clusters, even
using a very general distribution such as the generalized hyperbolic
(GH), the tails are sometimes affected to such an extent that they are
no longer heavy-tailed.

This may be due to the limitation that GH is only able to model semi-
heavy-tailed data, adjusting extreme values too harshly, or because
the heavy-tails are related to the volatility clusters as indicated by [32,
p.15-18]. Regardless, although the method can be extended to non-
heavy-tailed data with a minimum of work, for the future it would
be more valid to include modelling of volatility clusters in the main
model. In the context of

non-heavy-tailed
data, using EVT
may be unnecessary
and a simpler
method may be
appropriate.

It should be noted that the rest of the process works independently
of this specific data transformation.

5.2 bayesian vs frequentist inference

This section will compare and contrast Bayesian and frequentist infer-
ence for the different models.
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discussion & conclusions

5.2.1 Fixed-threshold GP Model

In Section 3.3.3 it was calculated how σ and ξ should behave, accord-
ing to theory, as the threshold increased. To remind the reader: σ

should increase linearly with increasing threshold while ξ remains
constant. This is compared with how the MLE and MCMC estima-
tors behaved in Figures 21 and 22. They both behave well to around
threshold u = 0.07, which represents 50% of the data, but then grow
troubled. MLE in particular underestimates the shape parameter ξ

badly. MCMC also underestimates the shape but then stabilizes while
σ is increasingly underestimated.

It isn’t clear at this point if any of the estimators’ behaviours are
better. Therefore, to get a better understanding of the effect on our
risk measures, the quantiles were calculated. In the same figures, it
is seen that MCMC behaves much better when the number of data
points decreases and otherwise they are interchangeable. Moreover,
it should be noted that the expected shortfall is greatly affected by
the shape ξ and this favors MCMC.Note that though

from this it may
appear that just
choosing a low

threshold is good,
the transition to GP

is continuous and
choosing threshold

becomes a
bias-variance

trade-off.

The above observed behaviour of MCMC is in accordance with theory
in that MLE becomes increasingly biased for smaller sample sizes
while MCMC doesn’t. Another experiment was performed with this
in mind, the result can be seen in Figure 23, wherein the gap between
MCMC and MLE grows larger as the number of samples decreases.
All the risk measures showed similar behaviour.

Assuming the weakly informative priors (WIP), see Section 3.5.1, have
little effect on the GP model, as intended, the results of MCMC and
MLE are approximately the mean and mode, respectively. From the
tables in Chapter 4 it is seen that they are quite close together and
most often MLE estimates lower risk. This led us to investigate the
likelihood function from which it was found that it is unimodal and
becomes more asymmetric as uncertainty increases. Despite all the
arguments against MLE, they are mainly significant in the context
of fewer data points, and, from this perspective, MLE could still be
considered a viable option for fixed-threshold GP models on large
amounts of data.

Additionally, in accordance with prior knowledge, from the tables inGreater differences
in estimates of

intervals than these
have been reported

before but were
possibly due to
misuse of large

sample theory. The
confidence intervals

reported here were
instead calculated

with the method
described in 2.9.3.

Chapter 4 it is seen that MLE consistently estimates a larger confi-
dence interval than MCMC’s analogue, credible interval.

In conclusion, MCMC behaves slightly better than MLE when the
number of samples decrease but they are otherwise very similar. On
the other hand, it can be argued that the bias that MLE introduces
becomes less relevant when the sample size decreases because the
uncertainty is so great. Even with extreme amounts of data, both
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5.3 mcmc algorithms

estimators have a tendency to underestimate the heavy-tail and it
could be beneficial to look into other estimators.

5.2.2 Body-tail Models

In Gamerman’s original model, see Figure 13, there were many dis-
continuities which lead to multimodality and, hence, MLE was ill-
suited. The body-tail models try to smooth out these discontinuities
and, as a result, it is possible that MLE could be used. However, we
would then lose the sought averaging effect discussed in Section 5.5
which was, in part, the purpose of the model.

5.3 mcmc algorithms

This section will discuss the final performance of the MCMC algo-
rithms, some summarizing afterthoughts on the problems that were
encountered during the development process, and hints at alternative
solutions and possible improvements.

At a glance, AFSS is nearly automated and thus should require very
little configuration. However, it was found that providing a good esti-
mate of the covariance matrix was very important due to the factoring
explained in Section 2.7.10. The covariance matrix is eventually up-
dated using the obtained samples but this can take a long time. This
was solved using a Hessian estimation of the covariance matrix with
independence Metropolis (IM) sampling as a back-up.

However, the improvements made to AFSS lessened the problem de-
scribed above significantly so that it is much less sensitive. There are
likely further possible improvements to be made with regards to the
timing of tunings and covariance updates which would make AFSS
even more formidable.

The use of IM as a final sampler, once stationarity was reached, was
very successful when using resampling. It samples very quickly
while also having few limitations. The main thing to look out for with
IM is that the support of the proposal distribution is large enough.
Although such problems are forewarned by a very high acceptance The acceptance rate

becomes high when
the support is too
small because, if
stationarity has been
reached, then
proposals are mostly
gathered in a small
range with high
likelihood.

rate, the CIM variation (IM using multivariate Cauchy instead of nor-
mal multivariate normal) was implemented and gave the same re-
sults.

The discontinuities of Gamerman’s model didn’t allow the use of
many algorithms expected to have faster convergence, since they of-
ten rely on well defined derivatives.
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However, since the removal of many discontinuities, there is a large
number of algorithms available. This is interesting when using a
body distribution for all the data, such as GH, and the execution
of the model is slower. It can then be useful to look for an algorithm
with faster convergence, e.g. with much weight on gradients. For this
purpose, it is likely that there are better algorithms than AFSS. How-
ever, many algorithms require expertise to configure properly and the
configuration might change from one data set to another.

5.4 priors

In this section, the results from the testing of informative priors based
on expert opinion are discussed and compared to the least informa-
tive reference priors. The Bank of America data set was analyzed
using the GP-GP model and the results can be seen in Table 9.For a reminder of the

scenario definitions,
see Table 1. As one might expect, "Above" increases all risk estimates significantly

while "Spread" increases all risk estimates except VaR1%. They both
push the threshold upwards because as the tail GP tries to conform
to the contradicting information contained in the prior, it fits the data
worse. This results in more of the data being modelled by the body
distribution. Although not shown in Table 9, the converse of "Above"
and "Spread" were also tested (i.e. guessing below historical VaR and
guessing VaR1% and VaR0.1% closer to each other, respectively) and
behaved as expected after seeing these results.

The estimation of the shape parameter ξ varies from 0.1809 to 0.6232

between Historical and Spread, which has a large effect on the risk
measures, especially ES. This is related to the worse fit of the tail GP
mentioned above, pushing the threshold upwards, as seen in Figure
26. An example of the impact: in the, perhaps most extreme, scenario
"Spread Certain", VaR0.1% was estimated by the expert as 12.2% (twice
the historical VaR). The end result was that the VaR0.1% increased
from 6.277% (Reference prior) to 8.536%.

The difference between "Certain" and "Uncertain" is that the former
results in smaller credible intervals, representing the higher stated
certainty. There is also a decrease in credible intervals when compar-
ing the Reference prior to "Historical Certain", the only informative
prior agreeing with the data. This reflects the confidence in the prior
information added by the expert.

In conclusion, the informed priors can have a significant impact on
the end result, and it might therefore be good to always compare
with the reference prior. This is in accordance with theory, saying
that the effect of priors increases with smaller samples and the Bank
of America sample was only 1258 data points. It might also be argued
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5.5 effect of threshold

that the example elicitation scenarios are on the extreme side and that
in reality an expert’s opinion is going to align better with historical
data. However, for the purposes of testing, the impact is easily seen
like this even if it is slightly exaggerated.

5.5 effect of threshold

Even in the unrealistic case with 10,000 data points, it was seen that
the threshold affects the risk measures in two ways, see Figure 24,
which both increase in magnitude as the number of relevant data
points decrease (smaller sample, greater quantile, or higher thresh-
old). This is supported by the findings of most literature that discuss
how the threshold selection influences the parameter estimation, see
[44], [12], [11], and [17].

First is a fluctuation which causes small variations in the threshold to
significantly influence the results, also seen in previous works such
as [43, p.12-15] and [15, p.37]. The second is a slight trend. The equivalent of

Figure 24 was also
tried for MLE and
looked very similar
in this regard

For the fluctuations it makes sense to not just pick a random point
but calculate some average. The trend is more difficult to handle since
it could be converging towards a value at first but then accuracy is
eventually lost as the number of data points decrease. Therefore, it
makes sense to account for the uncertainty caused by this trend.

It could be argued that the problems with using a fixed threshold
become less relevant when the sample size decreases because the
uncertainty is so great. However, if the uncertainty of selecting the
threshold isn’t taken into account then the estimation of intervals may
become unsound.

Finally, it all comes back to the problem of choosing a threshold, but
it has changed slightly to: "how much weight do we put on each
threshold?" The body-tail models present one possible solution where
the body distribution both smooths the discrete data set and decides
the weighting, see Figure 25. At the very least, the results in Figure 24

indicate that, in the context of heavy-tailed and meager data, picking
a single point threshold might be a bad idea.

5.6 model comparison

This section will seek to discuss and compare the effectiveness of the
two body-tail models. Firstly, a more abstract view of the problem of
threshold selection will be presented followed by comparisons based
on gathered data.
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discussion & conclusions

In a sense, the body-tail models seek to establish heuristic informa-
tion criteria (IC) for selecting a threshold. For the sake of being easier
to understand, the IC can be divided into two parts;

IC(u, A) = f (u, A) + g(u, A), (76)

which for GP distributed data should accomplish this;

LL(u, A) + f (u, A) = C(A) = constant w.r.t. u, (77)

where LL is the log-likelihood, A is a set of parameters excluding u,
and g is a function deciding the bias-variance trade-off.
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Figure 27: Comparing log-likelihood of different thresholds using different
models on the GH-GP data set.

Looking at Figure 27, the first plot shows pure GP data to the right
of the dashed line at 95%. The idea is that the function f should
make all the thresholds equally likely for GP distributed data, i.e.
transform the line above 95% into a horizontal line. Then, g decides
the bias-variance trade-off by making modelling more data points
more attractive, i.e. having higher log-likelihood.

From the posterior samples in the latter two plots, in Figure 27, and
Figure 28 we can infer how the two models tackle this problem. The
sample plots give an idea of what the distribution of thresholds looks
like and how they assign higher probabilities to certain thresholds.
The main test case is in Figure 27 where both models assign reason-
able thresholds around what we know is true. The reason that the
threshold isn’t more confidently at 95% might be because the GH
data merges very well into GP and it is possible that the sample can
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5.6 model comparison
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Figure 28: Comparing log-likelihood of different thresholds using the GH-
GP model (top) and GP-GP model (bottom) on the Bank of Amer-
ica data set.

be modelled well with GP at a lower threshold than the 95th per-
centile.

Starting to compare the models, in Figure 27 the GH-GP model is
very sure while GP-GP prefers a lower threshold on average and is
uncertain. This behaviour makes sense for the GH-GP data but the
GH-GP model shows very similar behaviour in Figure 28 and for the
GL data set as seen in Table 5. It seems GH-GP models a lot of the
data better than GP up to a point where it suddenly is much worse.
This would explain why GH-GP is so certain of the threshold. GP-
GP on the other hand is more easily interpreted and has a wider
averaging effect which is more in line with the uncertainty of the
MRL plots. The threshold is estimated to be higher/lower if the body
distribution fits the data better/worse.

Comparing Figure 27 with the MRL plots in Figure 11 or Figure 28

with the range of estimates in the MRL plot in Figure 10, where
the bounds on the threshold were estimated to be approximately
(88%, 98%), we can see that GP-GP reflects the uncertainty of the
MRL plots better.

All the models behave quite similarly but as discussed in Section 5.5,
slight changes in threshold can have a great effect on the risk mea-
sures in the context of a small samples. This invalidates the use of
the fixed-threshold GP model for our problem set.
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discussion & conclusions

In the tables, the most obvious difference is that GP-GP tends to esti-
mate a lower threshold with more uncertainty than GH-GP. The latter
is unsurprising when GH-GP is modelling GH-GP data but the phe-
nomenon remains in the other data sets. The higher threshold leads
to GH-GP modelling the tail using fewer data points, which causes
increased uncertainty in the risk measures and higher mean because
of the asymmetric nature discussed in Section 5.2.

Since the body-tail models include the uncertainty of the threshold
parameter, it was expected that the credible interval would be larger.
This seems to hold true for the GP-GP model but the GH-GP model
shows inconsistencies, like in Table 5, where it seems overly confident
in its threshold and deviates from the expected value and historically
calculated risk measures. The sought averaging effect, discussed ear-
lier in Section 5.5, is weaker in the GH-GP model.

Excluding the GH-GP data set, on average GP-GP outperforms the
other models, especially in context of smaller sample sizes. Even in
the GH-GP data set it competes well. This is unsurprising consider-
ing the earlier discussion about thresholds, see Section 5.5. However,
there are few competing models and more work in the area of thresh-
old weighting would be highly interesting. Notably, there is at least a
philosophical design flaw in using GP as a body distribution, which
is that it could compete with the tail for the GP data points because
they both model these points well. This is avoided by choosing an
appropriately low body GP threshold1 but is still a concern and there
are most likely more improvements to be made.

Lastly, the GP-GP model is much less computationally expensive
than GH-GP which opens up for further modelling of, for example,
volatility clusters or inter-dependencies between instruments, espe-
cially since many MCMC algorithms scale well with more parame-
ters.

5.7 summary

The objective of the thesis was to develop an automatic procedure
that takes in transformed data and returns risk measures. A few
issues were encountered and worked on during this process, most
notably threshold selection and sensitivity.

Possibly the most important result is that small variations in the cho-
sen threshold have a significant effect on risk measures, at least in the
context of heavy tails and few relevant data points. In this setting,
the fixed-threshold GP model displayed possibly unsound behaviour
in situations such as:

1 The body GP of GP-GP had at threshold at 85%.
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5.7 summary

• Very large sample (10,000), threshold 95%, and estimating ES0.1%

• Small sample (1,000), threshold 95%, and estimating VaR0.1% or
ES1%.

Therefore, taking the uncertainty of the threshold into account and
calculating some average is a given, at least when estimating inter-
vals.

This makes Bayesian inference, especially MCMC since it is unbi-
ased for small sample sizes, and weighted threshold models a natural
choice although MLE could still be argued to perform well enough.
The developed GP-GP model demonstrated both consistency and ef-
fectiveness, showing that, in this regard, body-tail models are a viable
option.

In order to improve performance of the final procedure, the AFSS
and IM algorithms were analyzed and improved on. Notably, AFSS
converges to optimal slice sampling faster and parameter bounds are
handled better in AFSS and IM.

Lastly, the effect of a reference prior versus a prior based on expert
opinion was investigated and exemplified for practical applications
in finance. It was found that the expert prior could have a significant
effect on the results and it is probably best to always compare with
the reference prior.

Although an apparent focus was placed on financial applications, the
method is in no way limited to financial data. Especially the GP-GP
model is very general and, with slight variations, is applicable for any
satisfactorily transformed data.
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6

R E C O M M E N D AT I O N S & F U T U R E W O R K

A minimum of work would be required to extend the algorithm to
allow for non-heavy-tailed data. From there on it would be interest-
ing to continue the investigation into the effect of threshold on risk
measures in a non-heavy-tailed context.

Following such an extension, a comparison with other models, such
as [5], would be interesting.

Moreover, comparing different expert priors for financial applications
could provide useful insight.

Portfolio interdependence was outside the scope of this paper but
with the increased performance of GP-GP there is a possibility of
modelling interdependence in a portfolio, possibly using regular vines.
As a result of this, the data sets might grow very large and an inves-
tigation into using gradient MLE or MCMC could help.

Other possible model improvements include modelling volatility clus-
ters and peak clusters. A deeper investigation into the effect of these
would also be interesting and, if possible, a measure of clustering
would be very insightful.

An alternative to the suggested body-tail composition is to use a con-
volution to fit the distributions together. The possible effects are a lit-
tle unclear and depend on the length of the convolution but it could
be worthwhile (at least using second order derivatives would be more
sound).

Creating another information criterion for changing threshold could
be most useful. For example, it could be heuristically based on sim-
ulated GP data, trying to cancel the effect of letting the threshold
vary. In regards to this, Section 3.3.3 and looking at E[p(X)] =∫ ∞

u p2(x)dx = 1
σ(2+ξ)

or E[p(X)|X > a] may be helpful.

Related to this is to look for a method for estimating convergence rate
to GP.

Additionally, there are further improvements to be made to AFSS
with regards to the timing of tuning and covariance updates.
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recommendations & future work

Alternatives to AFSS could be tried, using a more specialized algo-
rithm and proposal distribution. Making use of derivatives is attrac-
tive and component-wise algorithms could be effective especially if
model complexity increases.

However, it could be better to look for another estimator that is more
suited to heavy-tailed data and doesn’t underestimate the shape pa-
rameter ξ as much. Possibly in combination with a better estimator,
a simpler averaging method might be necessary. The downside will
likely be that there is less rich theory behind it as MCMC is quite well
developed.
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