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Abstract

The thesis investigates the potential to recover the real world
probabilities of an underlying asset from derivative prices by using
the recovery approach developed in (Carr & Yu, 2012) and (Ross,
2011). For this purpose the VIX Index and US Treasury bills are used
to recover the VIX dynamics and the short rate dynamics under the
real world probability measure. The approach implies that VIX and
its derivatives has a risk premium equal to zero contradicting em-
pirical evidence of a substantial negative risk premium. In fact, we
show that for any asset unrelated to the short rate its risk premium
is zero. In the case of recovering the short rate, the CIR model is cal-
ibrated to the US zero coupon Treasury yield curve. The predictions
of the recovered CIR process is benchmarked against the risk neutral
CIR process and a naive predictor. The recovered process is found
to outperform the risk neutral process suggesting that the recovery
step was successful. However, it underperforms the naive process in
its predictions.
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Derivatprisers antydan om tillgångars
riskpremier

Sammanfattning

Uppsatsen undersöker möjligheten att utvinna den naturliga san-
nolikhetsfördelningen tillhörande en underliggande tillgång från dess
derivatmarknad. Genom att använda tillvägagångsättet som utveck-
lats av (Carr & Yu, 2012) och (Ross, 2011) undersöks VIX och amerikan-
ska statsskuldsväxlar för att om möjligt utvinna dynamiken på VIX
och den korta räntan under det naturliga sannolikhetsmåttet. Meto-
den antyder att VIX och derivat på VIX har en risk premie som
är noll, vilket motsäger empirisk bevisning att risk premien är sig-
nifikant negativ. I uppsatsen visar vi även att i alla fall då den un-
derliggande tillgången är oberoende av den korta räntan blir risk
premien noll på den underliggande tillgången och dess derivat. I
appliceringen av tillvägagångsättet på den korta räntan så kalibrerar
vi CIR modellen till amerikanska statsskuldväxlar. Efter att hänsyn
tagits till risk premien görs prognoser över framtida förändringar i
nollkupongsräntan på växeln med 1 månads löptid. Dessa jämförs
med prognoser från CIR modellen med risk neutrala parameterar
och en naiv modell vars prognoser över framtida förändringar är
noll. Det visar sig att prognoserna från CIR modellen med naturliga
parametrar är signifikant bättre än prognoserna från modellen med
risk neutrala parametrar. Dock, är prognoserna sämre än för den
naiva modellen.
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Chapter 1

Introduction

A fundamental tenet of finance is the notion of compensation for bear-
ing risk. However, not all risks are compensated. This is illustrated in
the classical capital asset pricing model (CAPM). The main result states
that the expected excess return of an asset is proportional to the markets
excess return. In other words only the market risk or systematic risk is
compensated. The economic intuition for this fact is that in the situation
of negative market returns, positive cash flows are scarce and thus assets
providing such cash flows are priced relatively higher than assets provid-
ing positive cash flows when they are abundant.

In asset pricing models, such as CAPM, the stochastic discount factor
(SDF) play a central role. The SDF is defined as the stochastic process, M
such that the following equation holds true,

Π(t;X) = E[MTXT |Ft]. (1.1)

For now we leave the technicalities aside and just note that Π is the
price of some payoff XT and the expectation is taken under the real world
probability measure conditioned on a set of information. Today’s price of
the payoff, given by Eq. 1.1, will depend on the time value of money and
the market’s attitude towards risk associated with XT , and these factors are
what the SDF captures. To compute prices of assets the modus operandi is
to decide on the functional form of the SDF and the independent variables
upon which it depends. This will give rise to a model implied risk pre-
mium i.e. compensation for bearing risk. In order to measure this model
implied risk premium, the parameters showing up in the expression of the
SDF have to be estimated on historical time series data. Using historical
time series data for estimation could be problematic if the data fail to fulfil
vital assumptions needed for the estimation method. One such violation
could be that of non-stationarity. This is a common characteristic in many
financial time series.
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Another common way to express Eq. 1.1 in the literature is as follows,

Π(t;X) = EQ[e−
∫T
t rsdsXT |Ft], (1.2)

where rs is the risk free rate of interest. The risk aversion is now encoded
in the probability measure which the expectation is taken with respect to,
denoted Q, while the discounting due to time value of money is given
by the term, e−

∫T
t rsds. An alternative way of modelling the risk premium

associated with XT is to take it as the difference or ratio between the ex-
pectation of the payoff with respect to the real world probability measure
and the expectation of the payoff with respect to the risk neutral proba-
bility measure, Q. Traditionally, an approach like this would necessitate a
model of the time series dynamics of the payoff, XT , in order to estimate
the real world probability measure which is unobservable. In addition, a
risk neutral model of the payoff would also have to be assumed, although
the parameters in this model does not have to be estimated on historical
data since they can be backed out from the derivatives market provided it
exists.

The goal of this thesis is, in contrast, to obtain the risk premium with
the latter approach described above using derivative prices only and side
step the need for historical time series data in the estimation. This requires
the ability to infer the real world probability measure from the knowledge
of the risk neutral measure. It has been thought amongst scholars that this
has been impossible. The logic can be seen from Eq. 1.1. A change in the
left hand side of the equation obviously has to be matched by a change in
the right hand side for the equality to hold. This change can be caused by
either a change in the real world probability measure or a change in the
risk aversion channelled through MT . However, since (Ross, 2011) suffi-
cient conditions for making this inference are known. I will here use the
approach developed by (Ross, 2011), known as Ross recovery, or rather of
it developed in (Carr & Yu, 2012) to study the risk premia of assets. (Carr
& Yu, 2012) reformulates the theory in the framework of continuous dif-
fusion processes instead of discrete state markov chains as in (Ross, 2011).
Furthermore, (Carr & Yu, 2012) use the notion of numeraire portfolio to
avoid the use of a representative agent which is claimed to clear the way
for analysing assets that are not closely approximated by the the market
portfolio. Or in the words of (Carr & Yu, 2012),

"...we will focus on a more flexible theory [relative to (Ross, 2011)] in which
the role of X [the underlying driver or asset] can be defined according to the
derivative security prices one has on hand.".

In this study the underlying drivers will be concentrated to the Volatil-
ity Index (VIX) calculated by Chicago Board of Options Exchange (CBOE)
and the short rate of interest respectively. This would at least in theory
enable us to obtain the premium embedded in VIX futures, compensa-
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tion related to stock market volatility risk, and the term premium on US
Treasury securities, compensation related to interest rate risk.

The contribution of the thesis is twofold. Firstly, I illustrate the conse-
quence, for recovery of the real world probability measure, when assum-
ing that the underlying driver, for example VIX, is unrelated to the short
rate. We will subsequently see that one assumption made in recovering
the real world measure is that the risk free rate is given as a function of
the driver of the market. In order to impose independence in this situation
I assume that the short rate is constant. This assumption is standard in fi-
nance. A study that makes this assumption in a similar context is (Eraker
& Wu, 2014). Secondly, I show an application of the theory in a fixed in-
come setting where the underlying is the short rate of interest and this is
tested on empirical data. Any empirical tests of the theory with continu-
ous state space has to the best of my knowledge not been published. More
specifically, the theory will be evaluated in its prediction power of the 1

month US Treasury bill rate, which is considered a proxy for the short
rate.

The thesis is disposed as follows. First, previous research on the risk
premium related to stock market volatility is reviewed. This is relevant be-
cause in this study the potential of the recovery approach in retrieving this
risk premium is studied. Secondly, studies on cross-sectional calibration
of the classical one factor CIR model, (Cox, Ingersoll, & Ross, 1985), will
be reviewed since this is a major step in applying the present approach
in a fixed income setting. Then literature on interest rate prediction will
be reviewed since that is how the recovery will be empirically evaluated
in this study. Subsequently, the recovery approach with continuous state
spaces will be presented with some preliminary theory. Then the data and
methodology is described. After that the empirical results will be shown
and lastly I conclude.
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Chapter 2

Literature review

2.1 Risk premia embedded in VIX futures

In a stochastic volatility framework the prices of stocks are not solely
driven by one risk factor but the diffusion coefficient is random as well.
Formally this could be expressed as follows,

dSt = µ(St,σt, t)dt+ θ(St,σt, t)dWt, (2.1)
dσt = γ(σt, t)dt+ϕ(σt, t)dBt, (2.2)

where Bt and Wt are two possibly correlated Brownian motions. Accord-
ing to economic intuition exposure to risk should be compensated. The
compensation of volatility risk, dBt above, has been termed volatility risk
premium in the literature. There is a fair amount of literature investigating
if this risk is compensated and to what degree.

(Bakshi & Kapadia, 2003) constructs delta-hedged S&P-500 index-option
portfolios (long call-option, short stock). The portfolios are exposed to
volatility risk and the delta hedge removes the portfolios exposure to dWt-
risk. The portfolios statistical properties are then measured over a sample
period ranging from 1988 to 1995. The portfolios average returns signif-
icantly underperforms zero (across most strike and maturity categories).
The author’s attributes this as evidence in support of a negative variance
risk premia.

(Carr & Wu, 2009) synthesizes variance swap rates by a portfolio of
options and define the variance risk premium as the difference between
the realized variance and this synthetic variance swap rate. Taking the
mean of the difference and multiply by 100 yields the average dollar profit
and loss for each 100$ notional investment in the variance swap contract.
This average and other summary statistics are computed for a universe
of 40 stock indices (S&P, Dow Jones, NASDAQ) and stocks traded in the
US between 1996 and 2003. They find that the averages are significantly
negative for the stock indices and most of the individual stocks.
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More in tune with the intent in this thesis, the variance risk premium
can be gauged by using derivatives on VIX. (Eraker & Wu, 2014) document
substantial negative return premium for both VIX futures and structured
products based on VIX futures called ETNs. A 1-month constant maturity
portfolio of VIX futures has a negative return of 30% per year over a sam-
ple period ranging from 2006 to 2013. They propose an equilibrium model
that explains the negative returns of buying VIX futures. As in this thesis
they assume a constant risk free rate, based on the observation that the
risk free rate itself has no particular importance in valuing short term eq-
uity derivatives such as VIX futures. They formulate the expected return
of holding VIX futures in a similar way as in this thesis as the quotient
between the expectation of VIX at a future date with respect to the real
world probability measure and the expectation of VIX with respect to the
risk neutral measure.

(Johnson, 2015) studies the shape of the VIX term structure. The VIX
term structure is composed both of conditional volatility expectations and
a risk premium and the goal of the study is to determine to what de-
gree variations in the shape reflects the changing risk premium and the
changing volatility expectations respectively. The author applies principal
component analysis to the term structure. The first three components are
interpreted as the Level, Slope and Curvature of the term structure. The
Slope component manages to summarize all information in predicting the
excess returns of S&P-500 variance swaps, VIX futures and S&P-500 strad-
dles which are all positions with increasing values in S&P-500 implied
volatility.

2.2 Cross-sectional calibration of CIR model

A critical step in making the coming theory operational in an interest rate
setting is the ability to cross-sectionally calibrate short rate models to the
yield curve. In the present study the CIR model will be used so only the
relevant literature is reviewed. The first extensive empirical study in this
field is (S. J. Brown & Dybvig, 1986). They use monthly data on nomi-
nal US Treasury securities (14 maturities) over the period 1952 to 1983 to
fit the CIR model. They do a least squares fit of the model to 14 bonds
in the cross-section. In addition to the CIR parameters the short rate are
included among the optimization variables. They focus on analysing the
implied short rate and implied variance of the process. They conclude that
both of these quantities are estimable. The time series estimates seems
to correspond quite well with the implied variance from the cross sec-
tion. The model appears to fit Treasury bills better than other issues. The
same approach is taken by both (Barone, Domenico, & Emerico, 1991) and
(Moriconi, 1995) but for Italian bonds between 1983 to 1990 and 1990 to
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1992.
In (R. H. Brown & Schaefer, 1994) a similar study is made but for index-

linked (real) UK Government bonds from 1984 to 1989. They also find that
the yield curve is very well fitted by the CIR model within each cross sec-
tion and that the objective function to minimize is flat in certain directions
in parameter space. The parameter trajectories show a considerable insta-
bility from day to day. Many of the same conclusions are arrived at in (de
Munnik & Schotman, 1994) but for Dutch government bonds from 1989 to
1990. In (Carriere, 1999) US Treasury strip data is used. Here again the fit
is concluded to be good.

In (Rogers & Stummer, 2000) compares the fit of a regular least squares
when all CIR parameters act as variables on each single day with the fit
when all CIR parameters are kept constant and the short rate is the only
optimization variable remaining. They find the fit is worsened but it is
still not essentially worse.

2.3 Interest rate prediction and the term premium

The empirical evaluation of the model in the present thesis will be based
on forecasting the 1 month Treasury bill rate (TBR1) which could be con-
sidered a proxy for the short rate. A study that uses it as a proxy for the
short rate is (Chan, Karolyi, Longstaff, & Sanders, 1992). Other proxies
could be used, such as US Effective Federal Funds Rate or the LIBOR rate.
There is a vast literature on forecasting these short term and longer term
interest rates. Many different methods are used. Some papers that fore-
casts interest rates under the real world measure is (Diebold & Li, 2006),
(Diebold, Li, & Yue, 2008) and (Moench, 2008). There are also studies
where forecasts are made under the risk neutral measure as in (de Munnik
& Schotman, 1994) and (Bams & Schotman, 2003)

In (Fama, 1976) forward rates implicit in US Treasury bills are used as
predictors of the future short rate. Additionally, he estimates the term pre-
mium i.e. the higher expected returns for longer maturity Treasury bills,
by linear regression on historical returns. He finds that the forward rates
performs poorly in predicting future short rates at least beyond horizons
of two years unless the adjustment for the term premium is made. At
which horizon one has to adjust for the term premium is unclear however.
(Longstaff, 2000) finds that the term premium is small in the near term
for tenors up to three months for short-term repurchase rates. (Hin &
Dokuchaev, 2015) has a similar methodology as in this thesis, namely us-
ing the US Treasury yield curve to estimate the CIR model and predict the
the short rate proxy, which in their case is the US Effective Federal Funds
Rate. The predictions are made with the risk neutral parameters and the
forecasting accuracy deteriorates after 6 months. The authors attributes
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this to the neglect of the term premium in their method. Other studies
documenting the improvements when taking the term premium into ac-
count is (Huang & Lin, 1996), (Dai & Singleton, 2002) and (Cochrane & Pi-
azzesi, 2005). In the following chapter the recovery approach is presented.
This enables the separation of the term premium so it can be accounted
for.
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Chapter 3

Background

3.1 Preliminary: Sturm-Liouville theory

In this section the relevant theory of Sturm-Liouville problems will be
presented. For a more complete account see (Edwards & Penney, 2008).
Sturm-Liouville problems naturally occur when solving partial differential
equations with the separation of variables technique. This is in fact the
situation in which the Sturm-Liouville problem occurs in this thesis as
well.

Definition 1. A Sturm-Liouville problem is a differential equation of the follow-
ing form

d

dx

(
p(x)

dy

dx

)
− q(x)y+ λr(x)y = 0, (a < x < b);

α1y(a) −α2y
′(a) = 0,

β1y(b) +β2y
′(b) = 0,

with neither α1 and α2 both zero nor β1 and β1 both zero.

Here λ is a unspecified parameter called an eigenvalue. The func-
tion y(x) is an called eigenfunction. It is sometimes convenient to define

the spectral operator as L(y) ≡ d
dx

(
p(x)dydx

)
− q(x)y, this clarifies that the

problem can be considered a continuous analogue of a discrete eigenvalue
problem. The following theorem will be used in proving that the eigen-
function corresponding to the smallest eigenvalue is constant when r(x) is
constant.

Theorem 1. Suppose p(x),p ′(x),q(x) and r(x) are continuous on [a,b] and sup-
pose p(x) > 0 and r(x) for all x in [a,b]. Then the Sturm-Liouville problem in
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Definition 1 has an increasing sequence of eigenvalues

λ1 < λ2 < λ3 < . . .

such that

lim
n→∞ = +∞

and such that to each λn there is (up to a constant multiple) a single eigenfunction
yn(x). The n:th eigenfunction has exactly n − 1 zeros in (a,b). Moreover, if
q(x) > 0 and α1,α2,β1,β2 > 0 then λn > 0 for all n.

A pair (yi(x), λi) for some i ∈ N+ is called the i:th fundamental or
principal solution to the problem in Definition 1. If the hypotheses of
Theorem 1 are satisfied the Sturm-Liouville problem is said to be regular,
otherwise it is singular. We end this subsection by noting that any second
order differential equation of the form,

A(x)y ′′ +B(x)y ′ +C(x)y+ λD(x)y = 0

can be transformed into the form in Definition 1 by multiplying by a
suitable factor.

3.2 Ross recovery with continuous state spaces

This section follows (Carr & Yu, 2012) to derive the main theoretical result
of this paper. It provides an extension of the finite state Markov chain
framework of (Ross, 2011) to an economy with asset prices driven by a
bounded univariate time-homogeneous diffusion process which we will
denote by X. The former article uses an alternative set of sufficient con-
ditions, avoiding the use of a representative agent, in deriving the same
result. This yields a theory that enables us to interpret X as an arbitrary
process upon which there exists a derivatives market as opposed to a pro-
cess that could be considered a proxy of the market portfolio. We will next
go through the sufficient conditions and then show the derivation of the
result. We will then clarify the implications of the theory when assuming
a constant short rate of interest.

3.2.1 Model assumptions

Consider a probability space denoted by (Ω,F, F). Here F is the objective
probability measure which is unknown ex ante. The goal of this section
is to show that with the following assumptions one is able to identify the
measure F.

9



Assumption 1: There exists a money market account (MMA) with value
function, S0,t = e

∫t
0 rsds, which evolves according to,

dS0,t = rtS0,tdt, t > 0,
S0,0 = 1.

The growth rate, rt ∈ R, has the standard interpretation of the risk free
interest rate, also called the short rate.

Assumption 2: There exists n risky securities with spot prices denoted
as, S1, ...,Sn. The spot prices evolves as continuous semi-martingales over
the finite interval [0, T ]. Assume there are no dividends and no costs of
holding the securities.

Assumption 3: There is no arbitrage on the market specified in Assump-
tion 1 and Assumption 2.

Assumptions 1 through 3 guarantees the existence of a martingale measure
Q, equivalent to F, such that the security prices on the financial market
discounted by the risk free rate, e−

∫t
0 rsdsSit, are martingales under Q. This

is the first fundamental theorem of mathematical finance (see Theorem 1.1
in (Delbaen & Schachermayer, 1994)).

The F-dynamics of the numeraire portfolio will now be derived. We
mentioned that the discounted spot prices were martingales under Q so
the martingale property yields,

EQ
[ SiT
S0T

|Ft

]
=
Sit
S0t

, t ∈ [0, T ], i = 0, 1, . . . ,n. (3.1)

The previous expectation can be reformulated as an expectation under F.
Let M be the likelihood process used in creating Q, then the following is
true,

EF
[MT

Mt

SiT
S0T

|Ft

]
=
Sit
S0t

, t ∈ [0, T ], i = 0, 1, . . . ,n. (3.2)

See Proposition 10.21 in (Björk, 2009). It is useful to make the following
definition,

Lt ≡
S0t
Mt

, t ∈ [0, T ]. (3.3)

Notice that Lt is positive and grows at the risk free rate in Q-expectation
since 1

Mt
is positive and is a Q-martingale (see Proposition C.13 in (Björk,
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2009)). Hence, L is the value of some self-financing portfolio. By multiply-
ing Eq. 3.2 by Mt the follwing is obtained

EF
[SiT
LT

|Ft

]
=
Sit
Lt

, t ∈ [0, T ], i = 0, 1, . . . ,n. (3.4)

Consequently we see that L is the value of the numeraire portfolio. Thus
by choosing L as the numeraire, F becomes a martingale measure. Now
set i = 0 we obviously have,

EF
[S0T
LT

|Ft

]
=
S0t
Lt

, t ∈ [0, T ]. (3.5)

Assuming that L is a continuous semi-martingale with lognormal volatil-
ity, σt, we have

d(S0/L)

S0/L
= −σtdW

F
t , t ∈ [0, T ],

where WF
t is an F brownian motion. Itô’s formula applied to L

S0
yields,

d(L/S0)

L/S0
= σ2tdt+ σtdW

F
t , t ∈ [0, T ].

Removing the discounting we thus see that the F dynamics of Lt is given
by,

dLt

Lt
= (rt + σ

2
t )dt+ σtdW

F
t , t ∈ [0, T ]. (3.6)

Note that the risk premium for the numeraire portfolio is its instantaneous
variance. The market price of WF

t -risk is thus σt (see section 14.6 in (Björk,
2009)). This result is central to the solution of the recovery problem. By a
no arbitrage argument all derivatives on the market, complete or incom-
plete, driven solely by WF

t are related in that they have the same market
price of risk (see Proposition 15.1 in (Björk, 2009)). If we can estimate the
volatility of the numeraire portfolio we also know the real world dynamics
of any derivative on this market, provided we have its volatility which is
the same under Q as under F. With this consideration in mind we assume
the following connection between the assets on the market,

Assumption 4: There exists a univariate time-homogeneous bounded dif-
fusion process X such that Sit = Si(Xt, t), i = 0, 1, . . . ,n, where Si(x, t) :

[l,u]× [0, T ]→ R.

Note that according to the Meta-theorem 8.3.1 in (Björk, 2009) the defined
market is now complete. Furthermore, we should note that the assump-
tion that X is bounded is not necessary but merely sufficient in order for

11



recovery to work. This is of course a major restriction in the general case
but with our present interpretations of X (VIX and the short rate) it is not
an unnatural assumption.We also map the function S0(x, t) into another
function r(x, t) = ∂

∂x lnS0(x, t).
The driver, X, evolves as a continuous bounded time-homogeneous dif-

fusion under Q so there exists a Q brownian motion, WQ, a drift function
b(x), x ∈ [l,u] and variance function a2(x), x ∈ [l,u] such that X solves,

dXt = b(Xt)dt+ a(Xt)dW
Q
t , t > 0.

We have the following generator,

Gxt =
∂

∂t
+
a2(x)

2

∂2

∂x2
+ b(x)

∂

∂x
. (3.7)

The risky securities satisfies the linear parabolic partial differential equa-
tion,

GxtSi(x, t) = r(x, t)Si(x, t), x ∈ [l,u], t ∈ [0, T ]. (3.8)

This is a fact we will use in the derivation in the next section.

Assumption 5: The functions r(x, t),b(x) and a2(x) are known ex ante.
a(x) is positive on (l,u).

We will comment on how to handle this assumption in the methodology
section below.

Assumption 6: Assume,

Lt ≡ L(Xt, t), x ∈ [l,u], t ∈ [0, T ], (3.9)

where L(x, t) is a positive function. Also assume that rt depends only on
the driver X and not on time t,

r(x, t) = r(x), x ∈ [l,u], t ∈ [0, T ]. (3.10)

We finally assume that the volatility , σ, of L depends on X only. Thus we
have,

dLt

Lt
= r(Xt)dt+ σ(Xt)dW

Q
t , t ∈ [0, T ]. (3.11)

We will now go on to the next section and show that under these assump-
tions it is actually possible to find out what σ(x) looks like. This implies
that the market price of risk is determined and we can appeal to Girsanov’s
theorem in changing the probability measure from Q to F and thus obtain
the dynamics of the driver X and all the spot prices Si under F.
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3.2.2 Deriving the result

First we derive an expression for σ(x) in terms of L(x, t) by using Assump-
tion 6. Then we will determine L(x, t), and the market price of risk is
completely known.

Itô’s formula applied to Eq. 3.9 with derivative terms evaluated in
(Xt, t) yields,

dLt =
[∂L
∂t

+ b(Xt)
∂L

∂x
+
a2(Xt)

2

∂2L

∂x2

]
dt+ a(Xt)

∂L

∂x
dWQ

t . (3.12)

Setting the diffusion coefficients in the previous equation equal to the dif-
fusion coefficient in Eq. 3.11 we obtain,

σ(x)L(x, t) ≡ a(x)∂L
∂x

(x, t)⇔

σ(x) ≡ a(x) 1

L(x, t)
∂L

∂x
(x, t) = a(x)

∂

∂x
lnL(x, t). (3.13)

Because a(x) > 0 on (l,u) we can without problems divide by it in the
previous equation. Then integrate w.r.t. x to get,

lnL(x, t) =
∫x σ(γ)
a(γ)

dγ+ f(t).

Hence, after exponentiation it is clear that the value function of the nu-
meraire portfolio separates multiplicatively into two functions dependent
on x and t respectively positive on (l,u) and t > 0,

L(x, t) = π(x)p(t).

We know from the self-financing condition on the numeraire portfolio
it must satisfy the PDE given in Eq. 3.8 so we have,

π(x)p ′(t) +
a2(x)

2
π ′′(x)p(t) + b(x)π ′(x)p(t) = r(x)π(x)p(t).

Rearranging this equation gives,

a2(x)

2

π ′′(x)

π(x)
+ b(x)

π ′(x)

π(x)
− r(x) = −

p ′(t)

p(t)
, x ∈ (l,u), t ∈ [0, T ].

The equality can only be true if both sides are equal some constant, say
−λ ∈ R. This yields two ordinary differential equations,

13



p ′(t; λ)
p(t; λ)

= λ, t ∈ [0, T ] (3.14)

with solution,

p(t; λ) = p(0; λ)eλt ∝ eλt,

and

a2(x)

2
π ′′(x; λ) + b(x)π ′(x; λ) − r(x)π(x; λ) = −λπ(x; λ), x ∈ (l,u). (3.15)

As far as boundary conditions go for this ODE we have assumed that
the driver X is bounded. This implies some restrictions on the domain of
the infinitesimal generator in Eq. 3.7. The eigenfunction π has to obey
these restrictions. If one allows boundry conditions to be separated, that
is of the form,

Aπ(l) −Bπ ′(l) = 0, A2 +B2 > 0

Cπ(u) +Dπ ′(u) = 0, C2 +D2 > 0,

we obtain a regular Strum-Liouville problem (see section 3.1). Depend-
ing on the behaviour of the driver X near it’s boundaries l,u the boundary
conditions can be determined, that is the coefficients A,B,C and D are
specified. For example, to enforce a completely reflexive behaviour of X
we set A = 0 and C = 0 while setting B = 0 and D = 0 enforces a killing be-
haviour at the boundaries (see Item 7, Chapter 2 in (Borodin & Salminen,
2002)).

We denote the principal solution by ρ,φ(x), that is the smallest eigen-
value λ for which there exist an eigenfunction π(x) which solves Eq. 3.15

and it’s corresponding eigenfunction. From section 3.1 we know that this
principal solution is unique (up to positive scaling in φ(x)) and it is in
fact the only solution which yields a positive value function, L(x, t), on the
entire interval (l,u) because all other eigenfunctions contain at least one
zero in the interval (l,u). Thus it is only this principal solution we are
interested in since the numeraire portfolio must be positive. The principal
solution can be found with numerical methods but in this study it will be
found analytically.

Once the principal solution is found the expression for L(x, t) is,

L(x, t) = φ(x)eρt, x ∈ (l,u), t ∈ [0, T ], (3.16)
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which is determined up to a scaling constant due to the factor in φ(x).
We will see that the scale factor will cause no problem when finding the
real world density.

Inserting the right hand side of Eq. 3.16 into right hand side of Eq.
3.13 the following expression for the function σ(x) is obtained,

σ(x) = a(x)
∂

∂x
(lnφ(x) + ρt) = a(x)

∂

∂x
lnφ(x). (3.17)

Hence the market price of risk is determined. By appealing to Gir-
sanov’s theorem (see Theorem 11.3 in (Björk, 2009)) the F-dynamics of Xt
is given by,

dXt = [b(Xt) + σ(Xt)a(Xt)]dt+ a(Xt)dW
F
t , t > 0. (3.18)

The F-dynamics of the spot prices Sit can also be determined. Recall
that in Assumption 4 we assumed that Sit = Si(Xt, t) so using Itô’s lemma
we have,

dSit =
[∂Sit
∂t

+ b(Xt)
Sit
∂x

+
a2(Xt)

2

∂2Sit
∂x

]
dt+ a(Xt)

∂Sit
∂x

dWQ
t .

In an arbitrage free market the drift is equal to r(Xt)Sit(Xt, t) under Q

so we obtain after a change of measure,

dSit = [r(Xt)Sit(Xt, t) + σ(Xt)a(Xt)
∂Sit
∂x

]dt+ a(Xt)
∂Sit
∂x

dWF
t . (3.19)

Now the real world probability density, dF, can be determined in the
following way. The change of numeraire theorem (Géman, El Karoui, &
Rochet, 1995) states that the Radon-Nikodym derivative is given by,

dF

dQ
=
S0,0

S0,T

LT
L0

= e−
∫T
0 r(Xt)dt

L(XT , T)
L(X0, 0)

.

Inserting the right hand side of Eq. 3.16 into the previous equation
yields,

dF

dQ
= e−

∫T
0 r(Xt)dt

φ(XT )

φ(X0)
eρT .

Solving for the real world density we obtain,

dF = e−
∫T
0 r(Xt)dt

φ(XT )

φ(X0)
eρTdQ. (3.20)

All the quantities on the right hand side are known and notice that the
unknown positive scaling factor in φ(x) mentioned previously cancels out
thus the real world probability density are completely determined.
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3.3 Theoretical implications of constant short rate

The theory above makes no assumptions about the driving process X,
apart from it being a univariate bounded diffusion process. On the other
hand it makes an assumption about the short rate, namely that all stochas-
tic variation is determined by the driver X. There exist many candidate
processes which real world probability measure we wish to recover but at
the same time do not effect the short rate. In order to facilitate that in the
theory above we have to assume that the short rate is constant. Thus it
is interesting to see what the theory above implies when the short rate is
constant i.e. r(x) = r in Eq. 3.10. We obtain the following equation,

a2(x)

2

d2π

dx2
+ b(x)

dπ

dx
= (r− λ)π, x ∈ [l,u], (3.21)

Aπ(l) −Bπ ′(l) = 0, Cπ(u) +Dπ ′(u) = 0.

We are only interested in the smallest value of λ for which there exist a
non trivial real valued solution to Eq. 3.21, previously called ρ, and its
corresponding eigenfunction, φ(x). We can thus proceed by using the fact
that the equation above can be transformed into an equivalent self-adjoint
form (see (Carr & Yu, 2012)). We obtain the following equation,

d

dx

(
p(x)

dπ

dx

)
− q(x)π+w(x)(λ− r)π = 0 (3.22)

Aπ(l) −Bπ ′(l) = 0, Cπ(u) +Dπ ′(u) = 0.

where p(x) = e

∫x
l
2b(γ)

a2(γ)
dγ, q(x) = 0, w(x) =

2p(x)
a2(x)

. Since p(x) and w(x) are
positive and q(x) is nonnegative on the interval [l,u] we know that every
eigenvalue in Eq. 3.21 is nonnegative (See Theorem 1 in Section 3.1), that is
every λi is such that r− λi > 0. We can immediately see from Eq. 3.21 that,
with an ansatz r− ρ = 0, a solution for the corresponding eigenfunction is
any constant function, call it c. By Sturm-Liouville theory we know that
this solution is unique up to a scaling constant, denote this constant by K.
Hence we have found the principal solution of 3.21 with enough precision
to conclude the following by insertion into Eq. 3.20,

dF = e−
∫T
0 rdterT

Kc

Kc
dQ = e−rTerT

Kc

Kc
dQ = dQ. (3.23)

In other words in the case of a constant short rate of interest the above
theory implies that the real world probability measure is identical to the
risk adjusted measure. This means that the pricing of the assets specified
in the model are risk-neutral i.e. the risk premiums are zero.
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3.4 Recovery of the short rate

The previous subsection shows that we are not able to pick any asset, make
the standard assumption of constant interest rate and obtain a non zero
risk premium. In this subsection I proceed by considering the short rate as
the underlying driver. In this case the relationship between the short rate
and the underlying driver is precisely r(x) = x (see Eq. 3.10). Making the
assumption that the term structure of bonds are driven solely by the short
rate, the bonds play the role of Si(Xt, t) in Assumption 4 above.

One of the most popular stochastic models for the risk neutral dynam-
ics of the short rate is the Cox-Ingersoll-Ross model introduced in (Cox et
al., 1985). The SDE is given by

dXt = κ(θ−Xt)dt+ s
√
XtdW

Q
t , (3.24)

where θ, s > 0, κ ∈ R and B is a standard Brownian motion under the risk
neutral measure. Also set γ =

√
κ2 + 2s2. The Feller condition, 2κθ > s2 is

also assumed. The following expectation is well known (see for example
(Durfesne, 2001)),

E[XT |Ft] = θ+ (Xt − θ)e
−κ(T−t). (3.25)

Zero coupon bond prices are given by

SCIR(Xt, t, T) = A(t, T)e−B(t,T)Xt , (3.26)

A(t, T) =
[ 2γeκ+γ((T−t)/2)

(γ+ κ)(eγ(T−t) − 1) + 2γ

]2κθ/s2
, (3.27)

B(t, T) =
2(eγ(T−t) − 1)

(γ+ κ)(eγ(T−t) − 1) + 2γ
. (3.28)

The Sturm Liouville equation becomes,

1

2
s2xπ ′′ + (κθ− κx)π ′ − xπ = −λπ, (3.29)

with λ ∈ R. As alluded to previously boundary conditions are not needed
but only sufficient. In the above equation the Feller condition assumed
above imposes a natural boundary at zero and in (Qin & Linetsky, 2014)
it is shown that this is enough to obtain a unique principal solution with
a positive eigenfunction. The above equation can be transformed to a
confluent hypergeometric equation (see (Slater, 1960)) which solutions are
characterized by linear combinations of Kummer and Tricomi functions (see
(Abramowitz & Stegun, 1964)).

The set of solutions to Eq. 3.29 are given in Proposition 9 (i) in (Davydov
& Linetsky, 2003). For our purposes only the solution for the smallest
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eigenvalue is needed since that is the only solution which gives a positive
eigenfunction on the entire support. We have,

ρ =
κθ

2
(γ− κ),

φ(x) = e
−

(γ−κ)

s2
x.

From Eq. 3.17 and Eq. 3.18 the instantaneous risk premia for the short
rate becomes,

σ(Xt)a(Xt) = −Xt(γ− κ).

The magnitude of the risk premia increases monotonically in both κ

and s and the higher κ the less effect an increasing s has.
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Figure 3.1: Instantaneous risk premia for the short rate as a function of κ and s.

The dynamics of the short rate under the F-measure can now be recov-
ered as,

dXt = γ(
κθ

γ
−Xt)dt+ s

√
XtdW

F
t

i.e. a CIR process with mean reversion γ and long term mean κθ
γ .
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Chapter 4

Data & Methodology

4.1 Data

To investigate the theory with regards to VIX the VIX Index values, calcu-
lated by the Chicago Board of Options Exchange (CBOE), between Febru-
ary 2010 to August 2015 are used. This time series is taken from the Board
of Governors of the Federal Reserve System database.1. The data set used
in the empirical investigation for short rate recovery is the Treasury Con-
stant Maturity Rates. These are also provided by the Board of Governors
of the Federal Reserve System2. Four time series of different maturities
are used, 1,3,6 and 12 months. Each time series is of daily frequency. This
data also spans over the period February 2010 to August 2015. The esti-
mation methodology used by the Federal Reserve to construct the yield
data is a quasi-cubic hermite spline model which input is primarily yields
for on-the-run U.S Treasuries. According to the U.S treasury on-the-run
treasuries usually trades close to par so when these data points are used as
knot points in the cubic spline model the yield curve is to be considered a
par yield curve. Furthermore, the coupons are paid with semi-annual pe-
riodicity.3 All rates are converted to continuously compounded rates. The
day count convention for all US Treasury securities are based on actual
day counts on a 365- or 366-day year. 4

To transform the par yield curve into a zero coupon yield curve the
Matlab R©-function pyld2zero() is used. The function uses the bootstrap
method to obtain the zero coupon rates for all maturities (see (Fabozzi,
2005) for more on the bootstrapping method). The zero coupon yield
curve is shown in Figure 4.1.

1Can be found at the following webpage https://research.stlouisfed.org/fred2/series/VIXCLS
2Can be found at the following webpage https://research.stlouisfed.org/fred2/categories/115

3http://www.treasury.gov/resource-center/data-chart-center/interest-
rates/Pages/yieldmethod.aspx

4http://www.treasury.gov/resource-center/faqs/Interest-Rates/Pages/faq.aspx#1
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Figure 4.1: Time series and cross-sectional evolution of the zero coupon yield curve for
maturities 1 to 12 months.

4.2 Relation between VIX and the short rate

A priori it is unclear what the relationship between the short rate and
VIX should be. The hypothesis used is therefore that they are unrelated.
This hypothesis will simply be investigated visually in a scatter plot and
by a linear regression of the first difference of the 1 month zero coupon
Treasury bill rate onto the percentage change in the VIX Index over the
sample period.

4.3 Short rate recovery

4.3.1 Calibration

To extract the implied CIR parameters under the risk neutral measure the
sum of the squared differences between the CIR term structure computed
by Eq. 3.26 and the observed zero coupon bond price curve is minimized.
Formally we solve the following optimization problem,

minimize
r,κ,θ,s

4∑
i=1

(SCIR(r, t, Ti) − Sobs(t, Ti))2,

subject to 2κθ > s2,
κ, θ, s > 0,
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for each date in our sample period. Notice that we consider the short rate,
r, as a latent state variable which we also calibrate in the optimization pro-
cess. The parameters are recalibrated each day yielding new parameter
estimates. Except for the parameter constraints this is the same minimiza-
tion as in (S. J. Brown & Dybvig, 1986). To carry out the optimization
the global optimizer provided by Matlab R© named patternsearch() is
used.

4.3.2 Principal Component Analysis

Principal component analysis (PCA) will be used in checking the calibra-
tion results. The main intuition will be stated in this section, for a more
complete account of PCA see (Jolliffe, 2002). The changes in calibrated
parameters should be caused by changes in the yield curve. As pointed
out in (R. H. Brown & Schaefer, 1994) and mentioned in section 2.2 the
objective function is very flat in some directions of the parameter space
and this could lead to unstable parameter calibration results. Therefore
PCA is used to check the substance in the calibrated parameters. In or-
der to run a PCA one needs the matrix of measurements, call it X with
dimension n× p. In the present case this is the matrix with yields of the
different maturities in the columns and each row correspond to a different
date. When computing the principal components this matrix is centred to
have zero mean, X0. The covariance matrix of X0 is then computed. The
eigenvectors of the covariance matrix is placed column wise in the matrix
A of dimension p× p. The matrix A is orthogonal so A−1 = A ′, where
′ means transpose. These eigenvectors are called principal components
(PC) and corresponding to each PC there is an eigenvalue. Normalizing
each eigenvalue with the sum of the eigenvalues gives the percentage of
the explained variance from each PC. The principal component scores, Z,
can be define as follows,

Z = X0A.

Inverting the above equation the following is obtained,

ZA ′ = X0.

By the above equation it is evident that the scores in each column of
Z can be interpreted as the influence of the respective components on the
yield curve. Thus a change in the principal component score means that a
change in the shape of the yield curve is observed.

The calibration results will be checked by running multiple linear re-
gressions of the first difference (time series wise) of the calibrated parame-
ters on the first difference of the principal component scores. It is desirable
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to see some relation between the quantities to ensure that a change in the
calibrated parameter is caused by a fundamental change in the yield curve
shape.

4.3.3 Prediction

The model will be evaluated based on its power to predict the changes
in the TBR1. The predictions are based on the assumption that it can be
used as a proxy for the short rate which is unobservable. As mentioned
previously a study which uses the TBR1 as a short rate proxy is (Chan et
al., 1992). The methodology presented previously allows us to recover the
short rate process under F, thus this will be the process used in forecasting
changes in the TBR1. Using Eq. 3.25 the prediction of the change in the
short rate from today until a specified future date is given by

ŷ1t,T = EF[rT − rt|Ft] = (rt −
κθ

γ
)(e−γ(T−t) − 1). (4.1)

Since γ > 0, it means the second term above will be less than 0. Thus if
rt is less than the long term mean, κθγ , the prediction will be of a positive
change in the short rate. If rt is greater than the long term mean the
prediction will be that a negative change will occur.

The predictions of the recovered process will be benchmarked to pre-
dictions from two other processes. The first one is the CIR process with
the calibrated risk neutral parameters. Risk neutral prediction with the
CIR process is for example studied in (Hin & Dokuchaev, 2015). This
comparison will give a sense of the gain from the recovery step since the
prediction error corresponding to errors in the calibration step is present
in the prediction errors of both processes. The prediction equation is given
by,

ŷ2t,T = EQ[rT − rt|Ft] = (rt − θ)(e
−κ(T−t) − 1). (4.2)

The logic is the same as before regarding the sign of predicted change
in short rate.

The second benchmark process is a naive predictor which guess of
future values is simply the present observed value. Such a process is
called a martingale. This comparison gives a sense of the added value of
the entire procedure in which the calibration step is included. By using
the martingale property of the process the prediction equation is obtained
as,

ŷ3t,T = EF[rT − rt|Ft] = 0. (4.3)
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As in (Hin & Dokuchaev, 2015) predictions on several horizons are
made. The horizons range from 1 to 52 weeks with one week apart. So
on each date in our sample 52 different forecasts are made. The number
52 is chosen with respect to the result in (Hin & Dokuchaev, 2015) that
predictions on longer horizons than maturities of bonds used to calibrate
the CIR model seems uninformative.

Measuring the statistical significance of the difference in the predictors
the Diebold-Mariano test is used (see (Diebold & Mariano, 1995)). This test
is widely used in studies evaluating forecasts, for example (Diebold & Li,
2006). Denote the change in the TBR1 between t and T by yt,T . The predic-
tion error for the i:th predictor for horizon T − t is then eit,T = ŷit,T − yt,T .
The test uses a loss function, in our case quadratic loss L(eit,T ) = (eit,T )

2,
and states the null hypothesis as E[L(eit,T )] = E[L(ejt,T )]. The test allows the
forecast errors to have non-zero mean, be non-Gaussian, serially correlated
and contemporaneously correlated (correlation between model forecasts).
This is especially important in the test between recovered and risk-neutral
forecasts since they use the same information set to make predicitons over
the same sample period so they are most likely correlated. The fact that
the test takes into account the serial correlations of the prediction errors
is also important since such serial correlations are common in multi step
forecasts as noted in (Diebold & Mariano, 1995).

23



Chapter 5

Results

5.1 VIX and the short rate

In Figure 5.1 the changes in the TBR1 is plotted against the percentage
changes in the VIX Index. Here the TBR1 is assumed to be a good proxy
for the short rate. There does not seem to be any particular relation be-
tween the two variables. When regressing the changes in TBR1 onto the
percentage changes in VIX the p-value for the estimated regression coef-
ficient turns out to be 0.22 and 0.94 for the intercept. The null hypothesis
that the intercept and the regression coefficient is equal to zero can not be
rejected as a result.
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Figure 5.1: Changes in TBR1 against VIX percentage changes over the sample period.
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5.2 Short rate recovery

5.2.1 Calibration

In Figure 5.2 the pricing errors of the CIR calibtration are shown. The aver-
age calibration percentage error over the sample period is approximately
3.88× 10−5 and the standard deviation is 2.55× 10−5. To judge the error of
the fit, this error will be compared to the average bid ask spread of the US
Treasury bills. In the model the assumption of a single price is made and
the fact that in the real market only the bid and ask prices are observed
and this discrepancy is not accounted for. The "real" price is somewhere
inside this spread. Since the fit is not made to this "real" price, which is
the price that is modelled, there is limited value in obtaining a fit much
less than the bid-ask spread.

In (Flemming, 2003) the mean bid-ask spread in the yields for US Trea-
sury securities are given. For the US Treasury bills with 3, 6 and 12 months
to maturity they are 0.71, 0.74 and 0.52 basis points. To convert the spreads
into price units the the relation between yield and price can be used,

y = −
log p(t, T)
T − t

.

Using the above formula the bid-ask spread in the yields can be ex-
pressed in terms of bid-ask gross percentage price spread,

ybid − yask = −
1

T − t
log

pbid(t, T)
pask(t, T)

.

Inverting the above expression and converting to net percentage the
following expression is obtained,

pbid(t, T)
pask(t, T)

− 1 = e−(ybid−yask)(T−t) − 1.

Evaluating the above expression with the numbers given in (Flemming,
2003) the bid-ask percentage price spread for the 3, 6 and 12 months bonds
becomes 1.78× 10−5, 3.70× 10−5, 5.20× 10−5. Thus the average spread is
3.56× 10−5. The CIR calibration error is 9% bigger in magnitude than this
average bid-ask spread. This is deemed to be a satisfying fit.
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In Figure 5.3 the trajectories of the calibrated parameters are shown
and the means and standard deviations of the parameter estimates are
given in Table 5.1. In the upper left plot the implied short rate process
is shown. The other plots show the CIR process parameter estimates.
The estimates are far from constant as the CIR model suggests, this is
consistent with results in (R. H. Brown & Schaefer, 1994). This does not
have to be viewed as problematic for the method however because this
can be seen as the way that the method absorbs eventual non-stationarity
in the true short rate process. This is the virtue of calibrating the process
cross sectionally.

Another source of instability could stem from insensitivity of the ob-
jective function value with respect to changes in parameter values. Since a
numerical optimization algorithm is used with some termination criteria,
we will end up with an approximate solution. If the objective function
is very insensitive to changes in any of the parameters then a sufficiently
"good" objective function value can be obtained with widely varying pa-
rameter estimates. This is depicted in Figure 5.4. The plot depicts the ob-
jective function value when the parameters are scaled 50% up and down
from optimum. It is evident that the most unreliable parameter is the s
parameter. Its surface is almost completely flat over the entire sample pe-
riod compared to the other parameters. The objective function show some
sensitivity to short rate changes in the first part of the sample period but
in the last two years its surface also becomes flat. The objective function
response is generally greater for changes in κ and θ.
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Short rate κ θ s
Sample mean 4.41× 10−4 0.088 0.038 0.030

Standard deviation 3.77× 10−4 0.059 0.0167 0.037

Table 5.1: Time series mean and standard deviation for the calibrated parameters.
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Figure 5.3: Evolution of implied short rate and calibrated CIR parameters.
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(a) Short rate (b) κ

(c) θ (d) s

Figure 5.4: Sensitivity of the objective function at optimal point w.r.t. short rate and CIR
parameters. In each plot the the parameter of study is varied +/− 50% from optimum in
the parameter-axis while the other parameters are fixed at optimal values.

In Figure 5.5 the difference between the recovered mean reversion pa-
rameter and the risk neutral mean reversion parameter is shown. The
difference is positive over the entire sample which means that a higher
degree of mean reversion is exhibited in the recovered process than for the
risk neutral process. With this in mind, comparing the long term mean
under F and Q one sees that the long term mean under F will be less than
the long term mean under Q.
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Figure 5.5: Difference between recovered- (γ) and risk neutral mean reversion (κ).

5.2.2 Correspondence with principal components

To assess the substance in the calibration of the parameters multiple lin-
ear regressions are performed where the first difference of the parameter
estimate act as a dependent variable and the first difference of the three
most dominant principal component scores act as independent variables.
The principal components are extracted from the yield curve data. If a
variable shows to be insignificant it is omitted and the regression is reran.
In Figure 5.6 the component eigenvectors are plotted. It is clearly feasi-
ble to interpret changes in the scores corresponding to these components
as changes in the level, slope and curvature of the yield curve. This in-
terpretation is standard in the yield curve literature. Shifts in these risk
factors explain 99.44% of the yield curve variation in the present sample.
Even though we acknowledge that there is not a linear relation between
the parameters and the principal component scores it would be reassur-
ing to see some correspondence between the changes in risk factors and
changes in the parameter estimates. This is because changes in parameter
estimates should be caused by changes in yield curve shape. The R2 will
be dampened due to the assumed linear relation although it is nonlinear.
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Figure 5.6: First three principal components extracted from yield curve.

In Table 5.2 the regression results are shown. The short rate is the
variable that is the most related to shifts in the risk factors. Roughly 50% of
its variance can be explained by parallel shifts and steepening/flattening
of the yield curve. An upward parallel shift lead to an increasing short
rate which is an expected effect. A steepening of the yield curve lead to
a decreasing short rate. The intuition is that in order for the level of the
yield curve to be unchanged a steepening of the yield curve has to be
caused by the short maturity yields tipping down and the long maturity
yields shooting up. This effect is reasonable as well. The parameter κ is
related to parallel shifts in the yield curve although the R2 is just 1%. 16%
of the variation in θ , which is the risk adjusted long term mean short
rate level, can be explained by changes in the slope and curvature. The
intuition is along the same lines as for the slopes influence on the short
rate. If the level is fixed then a steepening of the yield curve is caused by
the short maturity yields going down and the long maturity yields going
up which indicates that the long term mean short rate is increasing. When
the curvature increases θ increases as well. Increasing curvature means
increasing long term yields so this result is not surprising. 11% of the
variation in the s parameter is explained by parallel shifts and changing
slope. An upward parallel shift increases s and a steepening of the curve
decreases s.

The regressions are also ran on the recovered mean reversion, γ and
recovered long term mean, κθγ . The effects are almost the same as for the
risk neutral parameters except for the magnitudes and that γ is decreasing
for increased curvature.
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Short rate κ θ s γ κθ
γ

Intercept

PC1 0.1663
∗∗

30.4601
∗∗

15.9251
∗∗

38.4486
∗∗

(0.0172) (7.8084) (5.2726) (9.0097)
PC2 -0.6066

∗∗
26.4237

∗∗
27.3684

∗∗

(0.0215) (2.0459) (2.3219)
PC3 29.7238

∗∗ -91.7152
∗∗ -56.9186

∗∗
40.4359

∗∗

(2.3219) (7.4818) (12.7847) (2.6352)
R2 0.4988 0.0119 0.1609 0.1148 0.0249 0.181

N 1325 1325 1325 1325 1325 1325

Table 5.2: Coefficients and standard errors (parentheses) from regression. First difference
of variable/parameter on first difference of scores corresponding to first three principal
components of the yield curve. ** denotes significance on at least 5% level.

5.2.3 Prediction

In this section the prediction power of the recovered process is evaluated.
In Figure 5.7 the predictions for the change in TBR1 with the recovered
process and the actual change in TBR1 is shown. It is clear that for the 1

week prediction the variance of the changes in the TBR1 is much greater
than for the predictions. This does not necessarily mean that the forecaster
is bad but this signifies that the model interprets the changes in TBR1

as very noisy at this horizon. As the prediction horizon lengthens the
variance of the predictor increases and it seems to become biased.
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Figure 5.7: Changes in the 1 Month Treasury Bill Rate and predicted changes by the
recovered process.

In Figure 5.8 the differences in squared prediction errors for the recov-
ered process and the risk neutral process are shown for different predic-
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tion horizons . In this specific sample the average error for the recovered
process becomes progressively better relative to the risk neutral process as
the horizon lengthens. This is an indication that the model is in fact able
to account for the term premium to some degree.
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Figure 5.8: Box plot showing the difference in squared prediction errors from the recovered
process and the risk neutral process. Box length denotes the difference between 3rd and
1st quantile (IQR). Upper whisker fence is equal greatest value less than or equal to 3rd
quantile +1.5× IQR. Lower whisker fence is analogous.

In Figure 5.9 the same difference is shown for the recovered process
relative to the martingale process. It shows that the recovered process is
showing relatively worse performance as the prediction horizon increases.
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Figure 5.9: Box plot showing the difference in squared prediction errors from the recovered
process and the martingale process. Box length denotes the difference between 3rd and
1st quantile (IQR). Upper whisker fence is equal greatest value less than or equal to 3rd
quantile +1.5× IQR. Lower whisker fence is analogous.

To measure the statistical significance of the above results Diebold-
Mariano tests are performed at each prediction horizon for two different
alternative hypothesis. One which the hypothesis is that the expected
squared prediction error of the recovered process is less than for the risk
neutral process. The other hypothesis is that the expected squared predic-
tion error for the naive martingale process is less than for the recovered
process. The p-values are depicted in Figure 5.10. For the first hypothe-
sis test the p-values are below the 5% level for horizons longer than three
weeks. For the second hypothesis test the p-values stays below the 5%
level for horizons longer than four weeks.
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Figure 5.10: P-values of of DM-tests with two different alternative hypothesis. One with
alt. hypothesis that expected squared prediction error is less for recovered process than
for risk neutral process and one with alt. hypothesis that the expected squared prediction
error is less for the martingale process than for the recovered process.
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Chapter 6

Conclusion and further
research

In this thesis the continuous state space version of the recovery approach
of (Ross, 2011) has been studied. It was shown that making the assumption
of a constant short rate leads to that the risk premia of the underlying
driver of the model and its derivatives are zero. This render the empirical
investigations in the case of VIX being the driver rather short. No evidence
can be found that VIX is anything other than independent of the short
rate, thus the above assumption has to be made. Hence the model seem to
contradict empirical evidence that the risk premium of derivatives of VIX
such as VIX futures is negative.

Another application that was considered was using the theory to re-
cover the short rate dynamics. In this case the relationship between the
driver of the market and the short rate was much clearer than in the VIX
case. It is in fact the identity function. Proceeding by assuming that short
rate evolves as a CIR diffusion and calibrating its parameters to the US
zero coupon Treasury bill curve, the recovery approach was tested in its
power to predict future changes in the 1 month Treasury bill rate (short
rate proxy).

In the calibration step it was found to be challenging to obtain robust
parameter estimates. A possible reason for this was the flatness of the
objective function in certain directions of parameter space. This was es-
pecially noticeable in the CIR volatility direction. The substance of the
parameter calibration was checked with principal component analysis.

The theory was tested through its prediction on 52 different horizons.
The recovery step of the approach was evaluated through a comparison of
the difference of the squared prediction error from the recovered process
and the risk neutral process. In the sample period the mean difference
was decreasing in the prediction horizon. This difference was statistically
significant on a 5% level by the Diebold-Mariano test for prediction hori-
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zons longer than three weeks. This is consistent with previous research
showing that predictions are improved by taking the term premium into
account.

The recovered process was also compared to a naive predictor which
guess on future changes in the 1 month Treasury bill rate is constantly
zero. This naive benchmark saw better predictions than the recovered
process as the prediction horizon lengthened in the sample used. Accord-
ing to the Diebold-Mariano test this was statistically significant on the 5%
level for horizons longer than four weeks.

Conclusively, there seem to be some potential in retrieving the risk
premium from the derivatives market by the recovery approach. The most
straightforward setting in which to do this is in the classical one factor
short rate setting where the relationship between the driver and the short
rate is simple.

In terms of further research, the problem of constant short rate leading
to zero risk premium could possibly be avoided by modelling the driver
under some other probability measure than the risk-adjusted measure. For
example the measure where the driver itself is used as numeraire would
lead to the driver-drift showing up in the Sturm-Liouville equation instead
of the constant short rate. Since the numeraire must be traded one can not
use VIX as the driver in this case, but instead one has to use some closely
related traded instrument such as VIX futures.

In the short rate recovery application better predictions can possibly
be obtained by using some measure of historical volatility to improve the
estimate of the s parameter in the CIR diffusion. This does not improve
the recovery approach in itself, but might help to isolate some potential
problems with practically applying it. Furthermore, in the spirit of (Rogers
& Stummer, 2000) it could also be interesting to hold all parameters con-
stant except for the short rate in the calibration. One should expect to see
the fit to worsen but not worsen essentially according to (Rogers & Stum-
mer, 2000). Then check if the predictive power of the model decreases or
increases.
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