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Abstract

Since the �nancial crisis of 2008, the risk awareness has increased in the
�nancial sector. Companies are regulated with regards to risk exposure.
These regulations are driven by the Basel Committee that formulates broad
supervisory standards, guidelines and recommends statements of best prac-
tice in banking supervision. In these regulations companies are regulated
with own funds requirements for market risks.

This thesis constructs an internal model for risk management that, accord-
ing to the "Capital Requirements Regulation" (CRR) respectively the "Fun-
damental Review of the Trading Book" (FRTB), computes the regulatory
capital requirements for market risks. The capital requirements according
to CRR and FRTB are compared to show how the suggested move to an
expected shortfall (ES) based model in FRTB will a�ect the capital require-
ments. All computations are performed with data that have been provided
from a power trading company to make the results �t reality. In the results,
when comparing the risk capital requirements according to CRR and FRTB
for a power portfolio with only linear assets, it shows that the risk capital
is higher using the value-at-risk (V aR) based model. This study shows that
the changes in risk capital mainly depend on the di�erent methods of calcu-
lating the risk capital according to CRR and FRTB respectively and minor
on the change of risk measure.

Keywords: Power Market, Electricity, Forward Curve, Market Risk, V aR,
ES, Basel, CRR, FRTB, Risk Management
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Intern Marknadsrisk Modellering för

Energihandelsföretag

Sammanfattning

I samband med �nanskrisen 2008 har riskmedvetenheten ökat i den �nansi-
ella sektorn. Företag regleras mot riskexponering av föreskrifter som drivs av
Baselkommittén, de utformar tillsynsstandarder och riktlinjer samt rekom-
menderar åtgärder av bästa praxis. I dessa föreskrifter regleras företag av
kapitalbaskrav mot marknadsrisker.

I det här examensarbetet beskrivs processen för att ta fram en intern riskmo-
dell, enligt "Capital Requirements Regulation"(CRR) respektive Fundamental
Review of the Trading Book"(FRTB), för att beräkna de lagstadgade kapi-
talkraven mot marknadsrisker. Kapitalbaskraven enligt regelverken jämförs
för att förstå hur det föreslagna bytet till en expected shortfall (ES) baserad
modell i FRTB kommer att påverka kapitalbaskraven. I alla beräkningar an-
vänds data från ett elhandelsföretag för att göra resultaten mer intressanta
och verklighetsanpassade. I resultatdelen, vid jämförelse av riskkapitalkra-
ven enligt CRR och FRTB för en energiportfölj med endast linjära tillgångar
kan det ses att riskkapitalet blir högre med en value-at-risk (V aR) baserad
modell. Den viktigaste upptäckten med detta är att skillnaden i riskkapi-
talkraven inte främst beror på de olika riskmåtten utan snarare de olika
metoderna för att beräkna riskkapitalet enligt CRR och FRTB.

Nyckelord: Elmarknad, Elektricitet, Forwardkurva, Marknadsrisk, V aR, ES,
Basel, CRR, FRTB, Riskhantering
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Chapter 1

Introduction

Since the global �nancial crisis of 2008, the risk awareness in the �nancial
sector has increased. Companies are regulated with regards to risk expo-
sure. These regulations are driven by the Basel Committee that formulates
broad supervisory standards, guidelines and recommends statements of best
practice in banking supervision. In expectation those member authorities
and other national authorities will take action to implement the regulations
through their own national systems. In Sweden this is regulated on national
level by Swedish Financial Supervisory Authority (FI), which in turn is gov-
erned by EU rules. The attitude towards risks has changed since the last
crisis. In the past risk management was often seen as a regulatory need, but
now companies has started to realise the bene�ts of using risk measures as
guidelines for decision making.

Companies are regulated by own funds requirements for market risks to
protect them. Otherwise, when the market conditions change, the com-
panies could su�er greatly. To avoid these situations, risk management is
important and has received considerable attention since the �nancial cri-
sis. In the �nancial crisis of 2008, weaknesses in the current regulation for
capitalising trading activities was detected, value-at-risk (V aR) as risk mea-
sure for capturing market risks was one of them. In response to this, the
Basel Committee initiated a fundamental review of the trading book regime.
Companies are regulated by capital requirements against market risks, these
capital requirements are currently based on a V aR model in the "Capital
Requirements Regulation" (CRR), but there is a proposal in the "Funda-
mental Review of the Trading Book" (FRTB) to move from this V aR model
to an expected shortfall (ES) model.

At present, FI has a standardised V aR calibrated model that companies
are allowed to use for capital requirements calculations. Institutions under
supervision of FI may also apply for permission to use an internal model for
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Chapter 1. Introduction

certain risk categories to calculate own funds requirements for market risks.
If consent shall be given the institution to use an internal model they must
ful�l a number of requirements prescribed in the regulations. Today both
the standardised and internal models are V aR based, but will according to
FRTB be replaced with ES based models. In FI's guidelines for implement-
ing an internal risk model they have suggested one of the following meth-
ods for calculating V aR, "Historical Simulations", "Variance-Covariance" or
"Monte Carlo". This is the reason why one of these methods will be used
in this thesis, even though it's clear that there exists other superior methods.

Implementing an internal risk model for a power portfolio di�ers from doing
it in other markets, since electricity as a commodity has special characteris-
tics. Electricity is a non-storable and highly volatile commodity. The power
market is complex and hard to predict by the nature of the underlying com-
modity. Electricity is non-storable and hence di�cult to move forward in
time. This implies that electricity in the Nordics can't be produced in the
summer and used in the winter when the demand is higher. This makes sea-
sonal trends occur in the electricity price, with lower prices in the summer
and higher prices in the winter. Hence a power portfolio can't be hedged
with physical electricity, instead hedging in this market is carried out by
using futures and forward contracts in long or short positions. The complex-
ity of the power market and the underlying commodity electricity makes it
di�cult to model from a risk management point of view. The high volatility
and the large �uctuations in the market implies exposures to large risks and
hence proper risk management is important for companies that are active in
this market.

1.1 Purpose of the Thesis

The purpose of this thesis is two-folded: Firstly, to show how the changes
from the present regulation CRR to the new proposals in FRTB will a�ect
the capital requirements. Secondly, be a guideline for implementing a reg-
ulatory approved internal risk model for power portfolios. The aim with
this thesis is to show all the quantitative steps that are involved in imple-
menting an internal risk model. There is a lot of literature available about
modelling the energy market, but usually only one step of the modelling
chain takes into consideration, e.g. "forward curve construction" or "factor
model". This makes it di�cult to see the big picture. The purpose here is
to combine all important parts that are required to build an internal risk
model, rather than concentrating on one part. Hopefully this thesis will �ll
these gaps and contribute to future work.

The theoretical background will be explained since that's the foundation
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Chapter 1. Introduction

of all di�erent mathematical methods, but the attention will be paid to
implementations. Di�erent mathematical models will be implemented and
combined to achieve the �nal results. More speci�c, an internal risk model,
ful�lling CRR and FRTB, to calculate capital requirements for market risks
will be developed. The capital requirements according to each regulation
will be compared to understand how the suggested move to an ES model
in FRTB will a�ect the capital requirements. An internal risk model is a
model developed to analyse the overall risk position and to quantify risks
in monetary units to determine the economic capital required to meet those
risks. The main purpose of using an internal, instead of the standardised,
risk model would be to fully integrate processes of risk and capital man-
agement within the company. Another reason to use an internal risk model
would be to possibly lower the capital requirement for the company. This
thesis will also motivate the choice of risk estimation method and identify
the advantages with using ES as a risk measure instead of V aR.

Finally, to perform this investigation, an internal risk model, calculating
V aR and ES, will be implemented for a power portfolio that has been pro-
vided from a power trading company. All calculations and simulations will
be carried out in MATLAB.

1.2 Outline of the Thesis

In Chapter 2, the background of the Nordic power market will be described,
which will give the reader a deeper understanding of the remaining paper. It
helps the unfamiliar reader to get a brief overview and understanding of the
Nordic power market that later will be modelled. Chapter 3 will summarise
the most important parts of CRR and FRTB that will be used in this thesis.
Chapter 4 discusses risk measures and di�erent risk estimation methods and
selects the most suitable method for power portfolios. Chapter 5 shows the
methodology of building an internal risk model with all the steps that are
involved, and some partial results. Chapter 6 states the results that have
been achieved, illustrated with charts and numbers. Chapter 7 discusses the
obtained results, expresses the main conclusions in the thesis and proposes
future work.
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Chapter 2

Background

The power market is a highly volatile market, which implies large risks. To
investigate those risks it's important to understand the nature of the power
market. This chapter will brie�y describe the Nordic power market and get
the reader familiar with the market, which will be helpful to get a deeper
understanding of the following chapters.

2.1 Power Market

Electricity is an essential part of our modern lives, both for households and
industries. A stable power market is a foundation for our modern society.
The Nordic power market is divided into four main parts according to [1]:
Day-ahead market (Nord Pool Spot), Intraday market (Nord Pool Spot),
Financial market (NASDAQ OMX) and Balancing market (TSO), as illus-
trated in Figure 2.1.

Figure 2.1: The Nordic power market model.
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Chapter 2. Background

2.1.1 The Nordic power market

The Nordic countries have a common, deregulated power market, where
members can trade physical power at Nord Pool Spot. Power production,
transmission capacity and the transmission of power between countries has
been extended over the years. This has resulted in a dynamic power market,
where power can be traded across areas and di�erent countries. The electric-
ity price on this market is set by supply and demand. The Nordic countries
deregulated their power markets in the early 1990s and brought their indi-
vidual markets together into one common Nordic market (Nord Pool Spot)
[2]. The Nordic countries deregulated their power market to make it more
dynamic and increase the trade of energy between countries, which makes it
easier to use the full capacity of the produced electricity. In a deregulated
power market the market is no longer controlled by the state and free com-
petition is introduced, but in contrast to the deregulated power market the
distribution of power in the networks is controlled by monopolies. The na-
tional grids are owned and managed by each country's transmission system
operator (TSO). They have the responsibility for securing the supply and
the high-voltage grid to ensure that the power is delivered to the users.

The power in the Nordic grid is generated from various energy sources, e.g.
hydro, thermal, nuclear, wind and solar. This variety of energy sources en-
sures a more "liquid" market and a more stable power supply. Electricity is
a commodity, but the unique thing with electricity compared to other com-
modities is that it's a non-storable commodity. Electricity is classi�ed as a
non-storable commodity since it's not possible to buy electricity at a certain
time point and then use it later for a reasonable price, and this feature makes
the power market complex. In complement to the physical market at Nord
Pool Spot there also exists a �nancial power market, where di�erent �nancial
contracts are used for risk management and price hedging. The electricity
price for physical delivery from Nord Pool Spot is used as the reference price
when pricing di�erent contracts at the �nancial market. In the Nordic region
�nancial contracts are traded through NASDAQ OMX Commodities.

2.1.2 Electricity price

The price of electricity is a key feature of the power market. The power price
is determined by the balance between supply and demand, i.e. the intersec-
tion between the supply and demand curves. The electricity price is a�ected
by multiple factors, e.g. the weather conditions or by power plants not pro-
ducing at their full capacity. Everything that a�ects how much power that
is produced (supply) and how much power that is used (demand) also a�ects
the electricity price [3]. Weather conditions not only control the supply of
water-, wind-, and solar power it also control the demand of power. Nuclear
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Chapter 2. Background

power is not a�ected by weather conditions, but the supply from nuclear
power plants also varies since they are surrounded by strict safety regula-
tions and sometimes need to be shut down for maintenance and repairs. In
addition to the cost of producing and distributing electricity, the electricity
price is also a�ected by the electricity certi�cate system and the Emission
Trading Scheme (ETS).

The seasonal e�ects have the largest impact on the electricity price in the
Nordic market. Temperature and water levels in the reservoirs are the most
important factors of the seasonal e�ects. These factors make the electricity
price increase in the winter and decrease in the summer. The power market
sometimes is exposed to spikes, which are sharp short-term price increases.
The most common reason for spikes is when power producers are producing
at maximum capacity, but demand is nevertheless still higher. In these situ-
ations producers are forced to start up coal plants or generators that usually
are not in operation. This is an expensive way to produce extra power but
the supply increases, which means that the supply curve points steeply up-
wards and therefore the electricity price rises quickly. These characteristics
of the electricity spot price mentioned above can be studied in �gure 2.2,
where historical daily system prices in Sweden are plotted.

Figure 2.2: Historical daily system prices in Sweden between 2006-2015.
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2.2 Nord Pool Spot

Nord Pool Spot is the Nordic market for trading with power for physical
delivery. Nord Pool Spot o�ers standard agreements that simplify business
between the market participants. Nord Pool Spot has a physical market (spot
market) for trading with electricity every hour up to the day before delivery.
Nord Pool Spot is the leading power market with physical delivery in Europe
and o�ers both "day-ahead" and "intraday" markets within nine countries
to their members. There are in total 380 companies from 20 countries trad-
ing on Nord Pool Spot according to [1]. Nord Pool Spot is owned by the
Nordic transmission system operators (TSO): Svenska Kraftnät (Sweden),
Statnett SF (Norway), Fingrid (Finland), Energinet.dk (Denmark) and the
Baltic TSO's Elering (Estonia), Litgrid (Lithuania) and AST (Latvia) [4].
Power grid fees and taxes are regulated by the governments in each country,
but the power cost on the other hand is the part of consumer price that is
competitive. Power trading companies determine the price themselves, but
usually this is done based on the market price on Nord Pool Spot. Producers
of electricity can choose if they want to sell their produced electricity directly
to the electricity exchange, to major users or to power trading companies.
A major part of all electricity generated in the Nordics is sold at Nord Pool
Spot.

2.2.1 Day-ahead market, Elspot

Nord Pool's day-ahead market Elspot is the world's largest day-ahead market
for power trading and the main arena for power trading in the Nordic and
Baltic regions [5]. On the day-ahead market contracts are made between
sellers and buyers for power delivery during the next day. Trading on Elspot
is based on three di�erent types of orders, single hourly orders, block orders
and �exible hourly orders. The members can use any one or a combination of
all three order types to meet their requirements. Supply and demand are the
key factors determining the hourly market price, but transmission capacity
is also an essential feature. Bottlenecks can occur where power connections
are linked to each other. If large volumes need to be transmitted to meet
demand, this is managed by using di�erent area prices.

Bidding areas

Elspot is divided in bidding areas and there are two di�erent types of prices:

• System price: The system price is calculated disregarding the available
transmission capacity between the bidding areas in the Nordic market and
is only based on the sale and purchase orders. The system price is used as
the reference price for the �nancial market.
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• Area price: The available transmission capacity may vary in di�erent
areas and congest the �ow of electricity between the bidding areas, and
hence di�erent area prices are established at Elspot [6].

When all members have submitted their orders at Elspot, then for all bid-
ding areas equilibrium between the aggregated supply and demand curves
is established and area prices are calculated. For each Nordic country, the
local TSO decides which bidding areas the country is divided in. Sweden has
four bidding areas, see Figure 2.3. The di�erent bidding areas help indicate
constraints in the transmission systems, and ensures that regional market
conditions are re�ected in the price.

Figure 2.3: Map showing di�erent bidding areas for Elspot.

2.2.2 Intraday market, Elbas

Nord Pool's intraday market Elbas is a complement market to Elspot. It
helps secure the balance between supply and demand in the power market
for Northern Europe [7]. Of all trading handled by Nord Pool Spot, the
majority of the volume is traded at Elspot, but unforeseen events may take
place between the closing of Elspot and delivery the next day. At Elbas,
buyers and sellers are able to trade volumes close to real time to bring the
market back in balance. With an increasing amount of wind power entering
the grid the intraday market is becoming increasingly important. Wind
power is unpredictable by nature, hence the number of day-ahead contracts
and produced volume often need to be adjusted. The intraday market Elbas
will be a key enabler in the future to increase the share of renewable energy
in Europe.
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2.3 PPA Contracts

Producers can choose whether they want to sell their produced electricity
directly to the electricity exchange, to electricity trading companies or to
major users. This trade of electricity between two parties can be managed
with a power purchase agreement (PPA). PPA it's an agreement between
two parties, a seller who generates electricity and the buyer who is looking
to purchase electricity. In the PPA contract all of the commercial terms
for the sale of electricity between the two parties are de�ned, e.g. schedule
for delivery of electricity, penalties for under delivery, payment terms, and
termination [8]. PPA is a broad term and there exists several forms of PPA
contracts and they vary a lot according to the needs of buyer, seller, and
�nancing counterparties. PPA contracts can be assumed to follow the same
price mechanism as forward contracts on the �nancial market.

2.4 Financial Market

NASDAQ OMX Commodities o�ers a �nancial electricity market [9]. Finan-
cial contracts are used for price hedging and risk management. Nord Pool
Spot o�ers a spot market with physical trading in electricity each hour up
to the day before delivery. In addition to this a �nancial market exists. In
the Nordic region �nancial electricity contracts are traded through NASDAQ
OMX Commodities. They o�er a forward market for long-term trade. The
contracts have a time horizon up to six years, covering daily, weekly, monthly,
quarterly and annual contracts (in special cases other periods). For the �-
nancial market NASDAQ OMX Commodities, the system price calculated
by Nord Pool Spot is used as reference price. There is no physical delivery
for �nancial contracts. Financial contracts are entered without regards to
technical conditions, such as capacity, grid capacity and other technical re-
strictions. The �nancial market primarily consists of trading with futures
and forward contracts, which can be entered both as long and short positions.

2.4.1 Futures and forward contracts

Futures and forward contracts are the simplest form of derivatives (linear).
Futures and forward contracts give buyers and sellers the opportunity to
protect themselves against unexpected price changes. Electricity futures
and forward contracts are agreements between two parties, buyer and seller,
in which they commit, to during a speci�c future period of time, exchange a
speci�ed quantity of electricity for a prede�ned price. Futures and forward
contracts are usually agreed for products delivered at a certain time, but
since electricity is a non-storable commodity it makes no sense to deliver all
electricity at a speci�c time. For that reason electricity futures and forward
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Chapter 2. Background

contracts provide a delivery of a speci�ed constant (or deterministically time-
varying) power level over a period of time rather than at a speci�c point in
time. This period of time may be an hour, a week or a year. Electricity fu-
tures and forward contracts are thereby de�ned by price and delivery period
and not a delivery date.

The holder of these contracts does not get any physical electricity deliv-
ered. Instead, the buyer get the di�erence between the price of the contract
and the spot price during the same period paid at time T2, see Figure 2.4 for
illustration of forward contracts. The cash-�ow that the buyer will receive at
time T2 is equal to the positive cash-�ow (light grey area) minus the negative
cash-�ow (dark grey area) during the time period of the contract.

Figure 2.4: Illustration of forward contracts at NASDAQ OMX Commodi-
ties, from time T0 to T2.

Futures contracts

NASDAQ OMX Commodities o�ers two types of standard futures contracts
with di�erent length of delivery periods: daily and weekly contracts. Each
contract corresponds to 1 MWh of electricity supply. Futures contracts are
traded until the working day before the start of delivery. If all interest rates
are deterministic, then futures contracts are equal to forward contracts and
can be treated as similar products for modelling purposes.
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Forward contracts

NASDAQ OMX Commodities o�ers three types of standard forward con-
tracts with di�erent length of delivery periods: monthly, quarterly and an-
nual contracts (other special delivery periods may occur). Each contract
corresponds to 1 MWh of electricity supply. Forward contracts are traded
until the beginning of the delivery period [10].

2.4.2 Forward price curve

A forward price curve is a continuous curve where the market price of a
forward contract can be read at an arbitrary time, even for those delivery
periods that are not represented by an existing forward contract that day.
At NASDAQ OMX Commodities, standardised forward contracts are traded
with �rm delivery periods, and by looking at a speci�c contract it can be
seen what the market thinks is a reasonable price for this delivery period.
However, one cannot see what the market thinks is a reasonable price for a
delivery period that is not represented by a speci�c contract. But if mod-
elling a continuous curve between the periods of all existing contracts that
day, a forward curve can be constructed. Using the price information given
from the forward curve, buyers and sellers can see at what price a forward
contract should be traded, even if it does not exist in the present situation.
The forward curve can be useful in several ways, e.g. pricing of new con-
tracts, valuation of �nancial derivatives, budget planning and for investment
calculations. Forward curves can be constructed by various methods which
will be paid more attention later.
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Regulatory Frameworks

In order to prevent �nancial institutions from making riskier investments
than they can handle, there exists regulatory frameworks. These regula-
tory frameworks contain standardised guidelines about the capital bu�er
that institutions have to set aside to protect themselves from market risks.
The Basel Committee on Banking Supervision provides a forum for regular
cooperation on banking supervisory matters. The objective is to enhance
understanding of key supervisory issues and improve the quality of banking
supervision worldwide [11]. The Basel Committee sets the lowest standard
and each country are able to set stricter requirements. Di�erent Basel frame-
works have existed since the 1988. It started with Basel I and today Basel
III is the current framework. Basel frameworks exists in order to strengthen
the global capital markets, since with stronger capital and liquidity rules the
banking sector will be more likely to absorb �nancial stress and crises better.

Regulatory frameworks:

• Basel III: It's a comprehensive set of reform measures, developed by
the Basel Committee on Banking Supervision, to strengthen the regulation,
supervision and risk management of the banking sector [12]. The Capital
Requirements Regulation, CRR, is a regulation based on Basel III. CRR aim
to stabilise and strengthen the banking system by making banks set aside
more and higher quality capital as a bu�er against crisis.

• Basel 3.5: It can be seen as the signi�cant steps being taken by the
Basel Committee to move beyond "Basel III", i.e. it's an initial move to-
wards a "Basel IV" regulatory framework. The Fundamental Review of the
Trading Book, FRTB, is a proposal of a new updated CRR regulation based
on Basel 3.5. FRTB contains revisions of the capital framework in CRR and
aim to contribute to a more stable banking sector by strengthening capital
bu�ers for market risks.
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3.1 Capital Requirements Regulation - CRR

This section will contain a summary of those parts in CRR that are impor-
tant for this thesis. Institutions under supervision of the Swedish Financial
Supervisory Authority (FI) may, in accordance with article 363 "Permission
to use internal models" in CRR, apply for permission to use an internal V aR
model to calculate own funds requirements for market risks for one or more
risk categories. If consent shall be given the institution to use an internal
V aR model they must meet a number of requirements speci�ed in article
364 "Own funds requirements when using internal models" in CRR. Institu-
tions using the internal model for one or more risk categories must also ful�l
the standardised model for own funds requirements, for those risk categories
which permission to use an internal V aR model has not been given.

3.1.1 Own funds requirements for commodity risks using in-

ternal models - CRR

This section will summarise the parts in CRR that determine the calcula-
tions of own funds requirements for the risk category commodity risks (see
CRR [13] for complete details).

The use of an internal V aR model to calculate own funds requirements for
market risks is comprised in the Internal Models Approach (IMA). The in-
ternal V aR model needs to be granted by competent authorities to be used
to calculate capital requirements. Furthermore for the model to be granted
the calculations must follow the requirements in Article 364 in CRR. Where
V aR is required to be calculated according to Article 365(1) in CRR, spec-
i�ed in the �rst grey box. Additionally the stressed value-at-risk (sV aR) is
required to be calculated according to Article 365(2) in CRR, speci�ed in
the second grey box.

Quantitative standards

According to Article 364 in CRR the own funds requirements, V aRC , for
risk categories approved using an internal V aR model is equal to the sum of
points a) and b):

a) The higher of the following values:

(i) Previous days V aR (V aRt−1).
(ii) An average of the preceding sixty business day's V aR (V aRavg)
multiplied by the multiplication factor mc.
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The calculation of V aR shall be subject to the following min-

imum standards:

• At least daily calculation of the V aR measure.
• A 99th percentile, one-tailed con�dence interval.
• A 10-day holding period (may use holding periods shorter than 10
days scaled-up to 10 days by an appropriate methodology).
• V aR model inputs calibrated to historical data from a period of at
least one year except where a shorter observation period is justi�ed
by a signi�cant upsurge in price volatility.
• At least monthly data set updates.

b) The higher of the following values:

(i) Latest available sV aR (sV aRt−1).
(ii) An average of the preceding sixty business day's sV aR (sV aRavg)
multiplied by the multiplication factor ms.

The calculation of sV aR shall be subject to the following

minimum standards:

• At least weekly calculation of sV aR measure.
• A 99th percentile, one-tailed con�dence interval.
• A 10-day holding period (may use holding periods shorter than 10
days scaled-up to 10 days by an appropriate methodology).
• V aRmodel inputs calibrated to historical data from a continuous 12-
month period of signi�cant �nancial stress relevant to the institutions
portfolio.
• At least yearly data set updates.

The multiplication factors mc respectively ms shall be the sum of at least 3
and an addend obtained from table 3.1, i.e. mc = 3 + addend and ms = 3 +
addend. The addend takes a value between 0−1 and depends on the number
of overshootings for the most recent 250 business days. An overshooting is
de�ned as when the actual daily portfolio loss exceeds the corresponding
days 1-day V aR value.
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Number of overshootings: addend:

Fewer than 5 0,00
5 0,40
6 0,50
7 0,65
8 0,75
9 0,85
10 or more 1,00

Table 3.1: Table with number of overshootings and corresponding addends
used to calculate the multiplication factors mc = 3 + addend and ms =
3 + addend.

3.2 Fundamental Review of the Trading Book - FRTB

FRTB is a proposal for a new updated version of the current regulation CRR
that will be a part of the regulatory framework Basel 3.5. The ambitions with
the proposals in FRTB are to strengthen capital standards for market risk,
and thereby contribute to a more stable banking sector. In FRTB there is a
proposal to move from a V aR model to an ES model for capital requirement
calculations, since a number of weaknesses have been identi�ed with using a
V aR model for regulatory capital requirements, mainly V aR′s inability to
capture "tail risk".

3.2.1 Own funds requirements for commodity risks using in-

ternal models - FRTB

This section will summarise the changes and the parts in FRTB that de-
termine the calculations of own funds requirements for the risk category
commodity risks (see FRTB [14] for complete details).

The Basel Committee has agreed to use ES at con�dence level 97.5% for the
internal model approach, which also has been used to calibrate the revised
standardised model for market risks. The proposed change by moving to a
single stressed metric for the internal model approach in FRTB represents a
rationalisation of the current regulation. In FRTB the Committee proposes
to introduce "liquidity horizons" in the market risk metric. A liquidity hori-
zon is de�ned as "the time required executing transactions that extinguish
an exposure to a risk factor, without moving the price of the hedging instru-
ments, in stressed market conditions". Five di�erent "liquidity horizons"
will be assigned for di�erent categories of risk factors, with lengths between
10 days and one year.
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Main changes

The Basel Committee has outlined a number of issues with CRR that are
based on using V aR as a quantitative risk measure [14]. It has been noticed
that the existing V aR based model raises a number of issues and the most
notably one is the inability to capture the "tail risk" of the loss distribution.
Hence the Committee has decided to use ES as a quantitative risk measure
for market risks, since measuring the "tail risk" by using ES takes both the
size and likelihood of losses into account. Based on the more complete cap-
ture of tail risks using an ES model, the Committee believes that moving to
ES with a con�dence level of 97.5% is an appropriate move. This con�dence
level will provide a broadly similar level of risk capture as the existing V aR
with a con�dence level of 99% while providing a number of bene�ts. ES
is usually less sensitivity to extreme outliers in the observations and has in
general a more stable model output.

A key weakness of the trading book regime before the �nancial crisis of
2008 was its reliance on risk metrics that were calibrated to current market
conditions, which resulted in undercapitalised trading book exposures in the
crisis. To overcome this weakness an additional capital charge based on a
stressed V aR was introduced, but the Committee has recognised that basing
regulatory capital on both current V aR and stressed V aR calculations, as
in CRR, may be unnecessarily duplicative. To simplify the calculations the
proposals in FRTB will simplify CRR by moving to a single ES calculation
that is calibrated to a period of signi�cant �nancial stress. A period of signif-
icant �nancial stress is de�ned as a 12-month continuously historical period
that would maximise the risk metric for a given portfolio. In addition, to
ensure that the reduced set of risk factors is su�ciently complete to allow
the accurate identi�cation of stressed periods, these factors must explain at
least 75% of the variation of the full ES model.

Quantitative standards

• ES for risk capital purposes, ESC , is equal to the maximum of the most
recent observation, ESt−1, and a weighted average of the previous 60 business
days, ESavg, scaled by a multiplier mc. ESC is calculated as

ESC = max{ESt−1, mc · ESavg}. (3.1)

• ES of the most recent observation, ESt−1, is calculated as

ESt−1 = ESR,S ·
ESF,C
ESR,C

, (3.2)

where ESR,S is equal to the expected shortfall based on a stressed obser-
vation period using a reduced set of risk factors multiplied by the ratio of
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the expected shortfall measure based on the most recent 12-month observa-
tion period with a full set of risk factors ESF,C and the expected shortfall
measure based on the current period with a reduced set of risk factors ESR,C .

• ES for a weighted average of the previous 60 business days, ESavg, is
calculated as

ESavg = ESavgR,S ·
ESavgF,C

ESavgR,C

, (3.3)

where ESavgR,S , ES
avg
F,C and ESavgR,C follows the same explanations used in equa-

tion 3.2, but calculated with a weighted average of the previous 60 business
days.

• The multiplier, mc, is calculated in the same way as in CRR according
to table 3.1, where mc is a multiplier which re�ects the backtesting of daily
V aR at 99% con�dence level and based on current observations on the full
set of risk factors.

• ES must be computed on a daily basis in the internal model for regu-
latory capital purposes.

• ES must be calculated using a 97.5% one-tailed con�dence interval.

• For ES calculations according to [15] the liquidity horizons should be
re�ected by scaling the ES value calculated with a base liquidity horizon.
For the scaling of ES to the liquidity horizon of the relevant risk factor,
ES should �rst be calculated at a base liquidity horizon of 10 days with
full revaluation. Then scaled up to the liquidity horizon of the risk factor
category according to equation 3.4.

ES =

√√√√(EST (P,Q))2 +
∑
j≥2

(
EST (P,Qj)

√
(LHj − LHj−1)

T

)2

(3.4)

Where ES is the regulatory liquidity horizon adjusted expected shortfall. T
is the length of the base horizon, 10 days. EST (P ) is expected shortfall at
horizon T of a portfolio with positions P = (pi) with respect to shocks to
all risk factors that the positions P are exposed to. EST (P, j) is expected
shortfall at horizon T of a portfolio with positions P with respect to shocks
for each position pi in the subset of risk factors Q(pi, j), with all other
risk factors held constant. Expected shortfall at horizon T , EST (P ) and
EST (P, j) must be calculated for changes in risk factors over the time interval
T with full revaluation. LHj is the liquidity horizon j, with lengths according
to table 3.2.
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j LHj

1 10
2 20
3 60
4 120
5 250

Table 3.2: Table with liquidity horizons (LH).

• Liquidity horizon adjusted expected shortfall should be calculated based
on the liquidity horizon n. Risk factor categories and corresponding liquidity
horizon can be seen in appendix B.

• The performance of the risk management models will be evaluated through
daily backtesting. Backtesting requirements need to be based on comparing
a 1-day V aRmeasure at both 97.5% and 99% con�dence level to actual pro�t
and loss (P&L) outcomes, using at least one year of current observations of
1-day actual and theoretical P&L.

3.3 Summary of Changes

Change from V aR to ES
Changing risk measure, moving from V aR at 99% con�dence level in CRR
to ES at 97,5% con�dence level in FRTB. ES at 97,5% con�dence level is
expected to provide a broadly similar level of risk capture in the most cases
as the existing V aR with a con�dence level of 99%. The main reason for
this change of quantitative risk measure is the inability of V aR to capture
the "tail risk" of the loss distribution.

Use of di�erent liquidity horizons

FRTB proposes varying "liquidity horizons" for di�erent risk factor cate-
gories in the market risk metric. Five di�erent "liquidity horizons" will be
assigned for risk factor categories, ranging between 10 days and one year.
This is a di�erence compared to CRR, where all V aR values using a 10-day
liquidity horizon.

Move to a single stressed risk metric

Basing regulatory capital on both current V aR and stressed V aR as in CRR
has been recognised as unnecessarily duplicative and FRTB will simplify the
regulatory capital calculations by moving to a single stressed ES calculation
that is calibrated to a period of signi�cant �nancial stress.
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Risk Estimation Methods

Today's competitive and deregulated power market is characterised by high
volatility in electricity prices, hence proper risk quanti�cation is important.
Risks can be quanti�ed in monetary units by using di�erent risk measures.
V aR has become the most commonly used risk measure for quantifying mar-
ket risks, ES is another commonly used risk measure. Tail risks are generally
hard to measure by the nature of the event, since the event could change
unexpected, very sudden and have a large impact. If the market conditions
suddenly changes, companies may lose everything and go bankrupt (e.g.
Lehman Brothers). To avoid situations like these, proper risk measures in
monetary units are important and has devoted a lot of attention since the
last crisis of 2008. The strength of both V aR and ES lies in their generality,
they are general risk measures and based on the probability distribution for
portfolios' market values.

Internal V aR models, according to CRR, has been suggested by FI's guide-
lines [17] to be calculated with one of the following methods, "Historical
Simulations", "Variance-Covariance" or "Monte Carlo". This is the reason
why one of these methods will be used, even though it's clear that there
exists other superior methods (known from taking the course "SF2980, Risk
Management" at KTH). FI has not stated any guidelines for implementation
of the new proposals in FRTB yet, but in FRTB no particular type of ES
model is prescribed. To make the comparison between CRR and FRTB as
fair as possible the same method for calculating capital requirements accord-
ing to CRR will also be used for FRTB. The reason that FI is suggesting one
of these methods, despite their weaknesses, is probably due to the simplicity
of the methods.

In the beginning of this chapter V aR and ES will be described, pros and
cons will be discussed, which will be useful later when comparing capital
requirements according to CRR and FRTB. The main focus in this chapter
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will be on the three di�erent risk metrics suggested by FI. Each of them will
be explained and the conclusions will be used to motivate the selection of
risk metric. The reason for this investigation is that FI has written "Describe
the models brie�y and justify the choice of model" in their guidelines dealing
with the application process for using an internal risk model approach.

4.1 Risk Measures

4.1.1 Value-at-Risk

V aR is a commonly used method for quantifying market risks. It has a
great appeal since it can summarise all market risks of the company's entire
portfolio across physical and derivatives positions and represent that as one
number in monetary units. V aR is not a consistent risk measure, di�erent
models will give di�erent V aR results [18]. V aR does not measure liquidity
risk, political risk or regulatory risk, since it only measures quanti�able risks.
V aR measures the worst expected loss on a portfolio over a given period of
time with a given con�dence level p, i.e. the maximum amount of money
that may be lost during that period of time [19]. V aR models are simple
to understand for all levels of sta�s in the organisation and this is probably
one of the main reasons why V aR has been adopted so rapidly as the most
commonly used risk measure. V aR calculations should be based on a long
historical time series, hence it's not always very inductive of the current level
of market volatility. An issue with V aR is that historical time series misstate
the current level of risk and this could potentially lead to an inappropriate
level of risk in a portfolio. In periods when the market is volatile, V aR will
not �ag the high level of risk since it's based on an older time series from
more stable market conditions. This could result in that investors could
hold more risk than they should during these market conditions. In order to
correct this e�ect, CRR uses stressed value-at-risk (sV aR) as a complement
to V aR. The computations for sV aR is the same as for V aR but applied to
historical data from a period with signi�cant �nancial stress on the market.
sV aR captures how stressed market conditions e�ects the portfolio, which
occurs occasionally at the market. The stressed calculations are due to the
importance of ensuring that regulatory capital will be su�cient in periods of
signi�cant market stress. As the �nancial crisis of 2008 showed, it's during
stress periods the capital is most critical to absorb losses.

4.1.2 Expected Shortfall

The biggest weakness with V aR is that it possibly could hide catastrophic
risks in the left tail since it's only a quantile value and a remedy for this
is to use ES instead. ES is in some literature called Average V aR, Con-
ditional V aR, Tail V aR or Tail Conditional Expectation. ES is calculated
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as the average V aR value beyond con�dence level p, and hence it captures
catastrophic loss events with small probabilities located in the left tail. ES
is often proposed to be a superior risk measure compared to V aR. The main
advantages of ES is that it considers all values located in the left tail of the
probability distribution and it's a coherent measure of risk. If a risk mea-
sure is not coherent it could (possibly) discourage portfolio diversi�cation
[18]. ES at con�dence level p could be explained as the expected return
of the portfolio in the worst 1 − p percentage of all cases. Similar to V aR,
ES represent risks as one number in monetary units, it's not a consistent
risk measure and does not measure liquidity risk, political risk or regulatory
risk. The advantage that ES cover extreme losses better than V aR is the
main reason why the Basel committee has decided to change to ES in FRTB
as the standardised risk measure for market risks. As with everything else,
the advantages of ES over V aR do not come without some disadvantages.
For ES calculated with a fat-tailed underlying distribution the estimation
errors are greater than for a corresponding V aR measure. This estimation
error can be reduced by increasing the sample size of the simulation, hence
ES is more costly to compute when considering tail risk with fat-tailed dis-
tribution. Another disadvantage with ES is that it has more complicated
backtesting than V aR, hence the backtesting according to FRTB is still
performed using V aR. Stressed expected shortfall (sES) can be seen as a
complement to ES. The computations for sES is the same as for ES but
applied to a historical period with signi�cant �nancial stress on the market.

4.2 Simulation Methods for Risk Measures

Risk associated with �nancial instruments in a portfolio arises because of
changes in risk factor values over future time periods. These changes in risk
factor values can be simulated by using various methods. This section will fo-
cus on market risks, i.e. the exposure to losses in the market place through
physical and derivative positions. There are several methods for calculat-
ing V aR and ES, the methods can be either parametric or non-parametric.
Parametric methods are based on statistical parameters of the risk factor dis-
tribution and non-parametric methods are based on simulations or historical
models [20]. There are three di�erent methods suggested in FI's guidelines
for implementing an internal risk model:

1) Historical simulations (non-parametric)
2) Variance�Covariance method (parametric)
3) Monte Carlo simulations (non-parametric)

It's easy to estimate V aR and ES once the portfolio P&L distribution has
been constructed. The di�erence between these methods are due to the man-
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ner in which this P&L distribution is constructed. Each of these methods
for V aR and ES calculations will be explained and compared against each
other in the following sections.

4.2.1 Historical simulations

Historical simulation is the easiest non-parametric method to implement.
The idea is simply to use only historical market data in calculation of V aR
and ES for the current portfolio. Historical simulation is a full valuation
method, i.e. it estimates the probability distribution by generating a num-
ber of scenarios and revaluates a portfolio under these scenarios. Historical
simulation doesn't require any statistical assumption about the distribution
of returns or their volatility. Using the historical simulation approach, a set
of historical data is needed to model the value at a future time T > 0 of
a portfolio. The key assumption made for historical simulation is that the
information in the samples is representative of future values and that no ad-
ditional probability beliefs of the modeller are relevant, i.e. in this approach
the set of possibly future scenarios are fully represented by events in the
historical observation period [21].

Historical simulations in three steps:

1) Identify the instruments in the portfolio and obtain time series for each
of these instruments over some de�ned historical period.
2) Use the historical data in the current portfolio to obtain the portfolio
P&L distribution.
3) V aR and ES estimates can then be determined from histogram of the
portfolio P&L.

This is a subjective approach, but it's non-parametric and reasonable un-
der the assumption that the mechanisms that produced the returns in the
past are the same as those that will produce the returns in the future. For the
historical simulation to be useful the sample preparation is very important,
since if the generated sample of returns, or value changes, can be viewed as
samples from IID R.V., then standard statistical techniques can be used to
investigate the probability distribution of future portfolio values expressed
as known functions of future returns or value changes [22].

Advantages:

+ It's simple to understand, intuitive and straightforward to implement.

+ It takes fat-tails into account in the P&L distribution.

+ It can be applied virtually to any type of instrument, all market risk
types and uses full valuations.
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+ It doesn't make any assumptions about the statistical distribution.

Disadvantages:

- It requires su�cient history of the relevant market variables, to get enough
data for simulations.

- It assumes that the history will repeat itself. Even though this assumption
is often reasonable, it may lead to underestimations of extreme losses, since
future losses may be worse than past losses.

- It determines the distribution of the portfolio completely by the distribu-
tion of the underlying market variables over the selected time period. This
can lead to abrupt changes in the risk measure estimates when di�erent
periods of historical data are used.

4.2.2 Variance�Covariance method

The variance-covariance method is a parametric method. It's based on the
assumption that changes in market parameters and portfolio values are nor-
mally distributed. The simplicity of this method and the assumption of
normality makes it ideal for simple portfolios with only linear instruments
and without fat-tailed distribution. For normally distributed pro�t and loss
distributions, V aR and ES are scalar multiples of each other, since both are
scalar multiples of the standard deviation σ. Therefore, in this case with the
variance-covariance method, V aR provides the same information about the
tail loss as ES. This implies that for the normality assumption, ES has no
advantage over V aR [23].

Variance-covariance method in three steps:

1) Map individual investments into a set of simple and standardised market
instruments. Each instrument is then stated as a set of positions in these
standardised market instruments.
2) Estimate the variances and covariances of these instruments. The statis-
tics are usually obtained by looking at the historical data.
3) Calculating V aR and ES for the portfolio by using the estimated vari-
ances and covariances (covariance matrix) and the weights on the standard-
ised positions.

When using the variance-covariance method, options are handled by repre-
senting them in terms of a delta equivalent position in the underlying asset.
The assumption of normally distributed returns and the delta approximation
leads to normally distributed portfolio returns. The variance-covariance ap-
proach is widely used and accepted as the basic method for evaluating V aR
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and ES for portfolios without a large component of options [22].

Advantages:

+ It's simple to understand and computationally e�cient, i.e. calculations
only involving simple vector and matrix multiplication.

Disadvantages:

- It assumes that portfolio values are normally distributed, which is not
always realistic. This assumption is not valid for markets which are char-
acterised by fat-tailed return distributions, i.e. in reality extreme outcomes
are more likely than normal distribution would suggest. In this cases V aR
and ES may be underestimated by using the variance�covariance method.

- It's di�cult to improve the model while retaining the simple delta V aR and
ES calculations because the simplicity relies on the normality assumption.

- It's not really appropriate for derivatives portfolios, since the delta equiv-
alent approximation throws away all the options information, whose returns
are non-linear functions of risk variables, which can lead to a major under-
estimation of V aR and ES.

4.2.3 Monte Carlo simulations

Monte Carlo simulations is another non-parametric method. It's the most
popular of the three approaches when there is a need for a sophisticated
and powerful risk metric system, but it's also the most challenging one to
implement. The Monte Carlo method is based on simulations of the joint
behavior of all relevant market variables and uses this simulation to generate
possible future values of the portfolio. Monte Carlo simulations is a full val-
uation method, i.e. it estimates the probability distribution by generating a
number of scenarios and revaluates a portfolio under these scenarios [22].

Monte Carlo simulation method in two steps:

1) Stochastic processes for �nancial variables are speci�ed and correlations
and volatilities are estimated on the basis of market or historical data.
2) Price paths for all �nancial variables are simulated (thousands of times).
The portfolio is revaluated with these price realisations and then compiled
to a joint P&L distribution, from which V aR and ES estimates can be cal-
culated.

One of the largest strengths with Monte Carlo simulations is the ability of
pricing non-linear derivatives on the market variables, since option pricing
models are used to compute the changes in the option prices for each of the
simulated states of the underlying forward curve. Monte Carlo simulation
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techniques are �exible and very powerful. It takes all nonlinearities of the
portfolio value with respect to its underlying risk factor into account as well
as all desirable distributional properties, e.g. time varying volatilities and
heavy-tails. The problem with this approach is that it's by far the most com-
putationally consuming since you need to revalue the portfolio many times.
But with today's powerful computers this is not a major problem. More
signi�cant disadvantages are that the method is more complex and harder
to understand and implement than other more basic methods.

Advantages:

+ It incorporates all desirable distributional properties, such as fat-tails and
time varying volatilities.

+ It prices non-linear derivatives on the market variables.

Disadvantages:

- It's complex to implement and understand.

- It's computationally demanding.

4.3 The Choice of Method

As seen in the previous sections, all methods have di�erent advantages and
disadvantages. Below, the main di�erences between the methods are sum-
marised.

Main di�erences:

• The ability to capture the risk of non-linear instruments (e.g. options).

• The simplicity of implementation and ease of understanding for all lev-
els of sta� in the organisation.

• Flexibility in the method, to be able to incorporate alternative assump-
tions.

• Most importantly, the reliability of the results; e.g. capturing fat-tails
and using time varying volatilities.

Historical simulations captures the fat-tails of the portfolio P&L distribu-
tion. However historical simulations only gives an accurate picture if history
repeats itself, which may lead to underestimations of extreme losses. The
historical method is rejected due to the paradox of the future worst case
scenarios, since it doesn't allow future values to be worse than in the past.
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The covariance-variance method doesn't capture heavy-tails and is not ap-
propriate for the power market, since it's characterised by fat-tailed distri-
butions. It's not a good approach for portfolios with options either, but it's
suitable for simple portfolios that includes only linear instruments and no
fat-tails. The variance-covariance approach is rejected due to its underesti-
mation of risk, since fat-tails are signi�cant for the power market.

With the Monte Carlo method, knowledge of future changes in the mar-
ket can be incorporated into the simulations, which can be especially useful
for the power market. The Monte Carlo method seems to be the most suit-
able method for calculating V aR and ES for a power portfolio, since it both
captures heavy-tailed distributions and allows time varying volatilities. In
fact the Monte Carlo method is the only one of the di�erent methods that
ful�ls three out of four criteria above. Another reason for the choice of this
approach is the need for large amounts of simulated data in order to cover as
many scenarios as possible, which is an advantage compared to the histori-
cal simulations method. The Monte Carlo method is considered to have the
greatest advantages in this case and the computationally consuming disad-
vantages is not a major problem, since there is access to powerful computers
today which makes it easier to handle large amounts of data. Another ad-
vantage by using the Monte Carlo method is the generality. An internal
model using Monte Carlo simulations can later be extended to cover portfo-
lios containing all kinds of non-linear instruments.

Finally, the investigation of di�erent risk metrics has resulted in choosing the
Monte Carlo method. It's considered to be the most suitable of FI's three
suggested methods for calculating market risk in power portfolios. This mo-
tivation of model selection is requested by FI when applying for permission
to use an internal model for calculating own funds requirements for market
risks.
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Methodology

This chapter will describe the methodology of the thesis and show partial
results achieved during the di�erent steps. Risk management in the power
market requires knowledge about the electricity forward price curve, i.e. mar-
ket values that can be applied to forward positions in the portfolio. Rep-
resenting forward prices by one continuous term structure curve is regarded
as an e�cient way of representing market prices. Smooth forward curves
have been constructed with a method that uses the maximum smoothness
criteria. From the term structure of these forward price curves, volatilities
for di�erent times to delivery can easily be determined. Future movements
of the electricity forward curve have been studied by using a non-arbitrage
term structure three factor�model. Finally, Monte Carlo simulations has
been used to determine the P&L probability distribution of the portfolio to
be able to calculate V aR and ES. The procedure can be summarised in the
following six steps.

General steps:

1) Process data
2) Model continuous forward curves
3) Determine volatility term structure
4) Use a forward market model to determine future movements of the elec-
tricity forward price curve
5) Run Monte Carlo simulations to determine portfolio P&L probability
distribution
6) Calculate V aR and ES with the results from Monte Carlo Simulations

These six steps above are general guidelines covering how V aR and ES
can be calculated for power portfolios. All steps can be performed in di�er-
ent ways. In the following sections each step will be explained and described
how it has been performed in this thesis. But �rst we will start with making
some important assumptions.
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5.1 Assumptions

Throughout this thesis, to enable use of mathematical �nancial theory, the
following three assumptions are made about the market:

• The value additivity principle applies
• The absence of arbitrage in the market
• The market is rational and competitive

These assumptions are prerequisites for being able to use some �nancial
models. Another assumption that is assumed throughout this thesis is that
all interest rates are deterministic. For stochastic processes, the forward
price is a martingale under the forward measure and the futures price is a
martingale under the risk-neutral measure. When interest rates are deter-
ministic, the forward measure and the risk neutral measure are the same,
hence futures and forward contract prices will evolves in the same manner
and can be treated as equal products for modelling purposes.

5.2 Data Set

Historical electricity system spot prices on an hourly granularity between
1 January 2006 until 7 July 2015 from Nord Pool Spot are collected from
Energinet.dk [24]. This downloaded data set is processed, to get daily spot
prices, by taking the average value of the 24 hourly spot prices for each
day during the period. By studying the electricity spot price in �gure 2.2
it can be seen that electricity spot prices exhibit seasonality trends, mean-
reversion, high volatility and large jumps. The seasonal component is due
to the shifting demand during di�erent seasons, though also the supply is
a�ected. We will focus on the seasonality component. The daily spot price
time series will be used to calibrate the seasonality part of the electricity
price, which later will be used as a prior-function when calculating the for-
ward curves by using the maximum smoothness criteria.

A historical data set containing price information about all futures and for-
ward contracts that have been available on NASDAQ OMX Commodities
[25] during a �ve years period between July 2010 and July 2015 has been
provided by NASDAQ. The futures and forward contracts in this data set
concern delivery of 1 MWh during every hour (i.e. base load) of the delivery
period and all prices in the data set are closing prices.

28



Chapter 5. Methodology

Preparation of data:

1) The NASDAQ data set is sorted into di�erent worksheets, one worksheet
for each date, which results in a total of 1282 worksheets.

2) All irrelevant contracts and contracts without available closing price are
removed.

3) All contracts for each day are sorted in descending order and overlap-
ping contracts are deleted. When deleting overlapping contracts, contracts
for shorter time periods are prioritised, i.e. if there are weekly contracts
available for some month and also a monthly contract, the weakly contracts
are kept and the monthly contract is deleted.

4) All available daily contracts are removed from each day. This is done for
two reasons. First of all the very short end (daily contracts) of the electricity
forward curve are not analysed here because daily contracts exhibit volatility
nearly as high as the spot price and signi�cantly greater than volatilities of
weekly and longer-term contracts. Secondly, daily contracts are removed to
avoid having an almost singular matrix in the forward curve calculations,
since these contracts often correspond to almost dependent rows in the sys-
tem of equations.

After that the NASDAQ data set is rearranged and divided into di�erent
worksheets, containing contracts available each day, an example of the in-
formation that each worksheet contains is plotted and shown in �gure 5.1.
Notice that the contracts in the left part of this �gure �uctuates a lot in
price and this is due to seasonal e�ects.
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Figure 5.1: An example from the NASDAQ data set showing all weekly,
monthly, quarterly and yearly contracts available as of �rst of April 2015.

This processed data will later be used to calculate a smooth forward price
curve for each day in the time period and calculate the volatility term struc-
ture in the market for di�erent times to maturity. The volatility in the
market for di�erent times to maturity has to be known to estimate the fu-
ture movements of the forward price curve when calculating the value of a
contract at a future date.

5.3 Power Portfolio

According to section 1 in article 362 "Permission to use internal models" in
CRR (similar for FRTB) institutions could apply for permissions to use their
internal models for a speci�c risk category and the external for the other risk
categories. This model will be built as an internal model for risk category
(f), commodities risk.

Portfolios containing the following types of assets will be considered:
• Forward contracts
• Futures contracts (Treated as forward contracts, since deterministic inter-
est rates assumption)
• PPA contracts
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As earlier mentioned, electricity contracts are written on a commodity �ow
rather than on a bulk delivery. The forward price curve will give us today's
price of a unit (1 MWh) of electricity delivered at a speci�c instant of time
in the future, but all electricity contracts are written on a future average,
i.e. the delivery during a time period. Hence the relation between the for-
ward price function and the average based contracts need to be used. Let
F (t, T1, T2) be today's contract price of an average based future contract
delivering one unit of electricity at a rate 1/(T2 − T1) in the time period T1
to T2, where t ≤ T1 < T2. Assume that the contract is paid as a constant
cash �ow during the delivery period, then the average contract price in [26]
is written as

F (t, T1, T2) =

∫ T2

T1

w(u, r)f(t, u)du (5.1)

where

w(u, r) =
e−ru∫ T2

T1
e−rvdv

. (5.2)

This can be approximated (assuming a zero interest rate, r ≈ 0) as

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

f(t, u)du, (5.3)

which is a very good approximation for reasonable levels of the interest rate.

5.4 Forward Curve Model

Determining the electricity forward curve is a non-trivial task and requires
special methods. These continuous term structure curves are also used in
other �elds, but these methods cannot be applied directly to the power mar-
ket. The power market di�ers from other commodity markets in how elec-
tricity futures and forward contracts are designed with delivery during a time
interval rather than as a bulk delivery. Unlike the yield curve, the electricity
forward curve has seasonal patterns, is weather dependent and is extremely
volatile at the short end. Electricity futures and forward contracts concern
delivery of electricity during a given time period (day, week, month, quarter
or year) in the future, not a single hour or day and hence the electricity
forward curve cannot be constructed simply by interpolating between points
in the price-maturity space. Consequently, the methods developed for �xed
income markets cannot be applied directly to electricity price data.

Electricity futures and forward contracts consist of load pattern, start date
and end date for the delivery period. A load pattern is a deterministic func-
tion of time that speci�es how the amount of electricity should be divided
during the delivery period. There are di�erent types of load pattern, base
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load and peak load are two types of load patterns. Base load has constant
delivery and for peak load the amount of electricity that should be delivered
varying in time, in this thesis only base load will be used, but peak load
could be implemented in the used models. As a clari�cation the peak load is
used during the peak period, which occurs during the opening hours of the
industries when the demand for electricity is highest. The literature about
electricity forward curve modelling is not as rich as for yield curve mod-
elling. Representing forward prices by one continuous term structure curve
is required for implementing a non-arbitrage term structure model for risk
management. After investigating several methods, the maximum smooth-
ness criteria with a seasonal prior-function has been decided to be used to
�t the smoothest possible forward curve to closing prices.

This method proposed in [27] uses the maximum smoothness criteria to
construct a smooth forward curve that consist of a prior function and an
adjustment function. The main advantages with this method are calculation
speed, closed form solution and the ability of handling overlapping contracts.

5.4.1 Maximum smoothness model

From the NASDAQ data set, start and end dates ((T s1 , T
e
1 ),(T

s
2 , T

e
2 ),...,(T

s
m,

T em)) for the delivery period for all contracts available that day are known.
This list of dates needs to be transformed to the form (t0, t1,..., tn), where
overlapping contracts are divided into sub periods. This new list is almost a
copy of the �rst list but duplicated dates are removed and the list is sorted
in ascending order. In the data set from NASDAQ, all prices are given as
closing prices, which will be denoted as FCi , where i represent all di�erent
contracts available that day. The forward function in this model is de�ned
as

f(t) = h(t) + g(t) t ∈ [t0, tn], (5.4)

where h(t) is an exogenous prior function and g(t) is an adjustment function.
The prior function can be seen as a subjective forward curve adjusted to the
market price.

Maximum smoothness criteria

The smoothest possible forward curve on the interval [t0, tn] is de�ned as one
that minimises the following expression

min
x

∫ tn

t0

[g′′(t;x)]2dt, (5.5)

where smoothness of a function is de�ned as the mean square value of its
second derivative. As can be seen in equation 5.5 it minimises the mean
square value of the adjustments function's (g(t)) second derivative, this is
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due to better re�ect the seasonal patterns in the prior function (h(t)). The
adjustment function, g(t), will not only be the smoothest possible function
it also has to ful�l the following four criteria:

1) Twice continuously di�erentiable.
2) Horizontal at time tn.
3) Smoothest possible in the sense of equation 5.5.
4) The average value of the forward price function f(t) = g(t) + h(t) for
contract i is equal to the closing price FCi .

Adjustment function

The present value of the forward price function, f(t), has been approximated
with the average value according to equation 5.3. This seems to be a valid
approximation since the interest rate e�ect is less than both the e�ect of the
prior and the smoothing functions. The smoothest adjustment function, g(t),
with properties that ful�l all the above mentioned criteria is a polynomial
spline of order �ve. This has been proved in [28]. The proof is left outside
the scope of this thesis and the curious reader is referred to the additional
literature. With this clari�ed the adjustment function can be written as

g(t)=


a1t

4 + b1t
3 + c1t

2 + d1t+ e1 t ∈ [t0, t1]
a2t

4 + b2t
3 + c2t

2 + d2t+ e2 t ∈ [t1, t2]
...

ant
4 + bnt

3 + cnt
2 + dnt+ en t ∈ [tn−1, tn].

Constraints

The parameter x to the adjustment function can be determined by solv-
ing the equality constrained convex quadratic programming problem cor-
responding to equation 5.5 subject to the following �ve (C1,...,C5) natu-
ral constraints in the connectivity and derivatives smoothness at the knots,
j=1,. . . , n-1.

C1:

(aj+1−aj)t4j+(bj+1−bj)t3j+(cj+1−cj)t2j+(dj+1−dj)tj+ej+1−ej = 0 (5.6)

C2:

4(aj+1 − aj)t3j + 3(bj+1 − bj)t2j + 2(cj+1 − cj)tj + dj+1 − dj = 0 (5.7)

C3:

12(aj+1 − aj)t2j + 6(bj+1 − bj)tj + 2(cj+1 − cj) = 0 (5.8)

C4:

g′(tn;x) = 0 (5.9)
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∫ T e
i

T s
i

e−rt(g(t) + h(t))dt =

∫ T e
i

T s
i

e−rtFCi dt (5.10)

for i = 1, ...,m.
C5:

FCi ≈
1

T ei − T si

∫ T e
i

T s
i

(g(t) + h(t))dt (5.11)

where the approximation from equation 5.3 are used. This minimisation
problem has a total of [3n+m−2] constraints and it can be written on matrix
form, matrix notations used for implementations can be seen in appendix A.

Prior function

Di�erent prior-functions can be used, but for electricity contracts a prior-
function with seasonality seems to give the best result. If no prior-function
is used, the curve will almost be totally smooth in the end when only yearly
contracts are available and that doesn't seems to be a good solution, since
electricity prices has seasonal variations. But by using a prior-function that
captures these seasonality e�ects, we get a curve that seems to describe
forward prices better. The impact of the prior-function is small in the be-
ginning of the smooth forward curve, when shorter contracts are available,
after that the prior-function in�uences the smoothed forward function more
and more. In the end of the smoothed forward curve when there are only
yearly contracts available the e�ect of the prior-function is largest, hence
this long settlement period gives the adjustment function less constraints
and thus the prior-function in�uence the forward curve more. This can be
summarised as that the prior function has a small e�ect on the smoothed
forward curve when contracts with settlement periods shorter than a year
are available and a large e�ect in the right end of the curve when only yearly
contracts are available.

The prior function selected in this thesis is derived from the seasonality
e�ect of the spot prices on Nord Pool Spot. The logarithm of the electricity
price (spot price) St at time t can be modelled as the sum of a deterministic
part Dt and a stochastic part Xt as follows:

log(St) = Dt +Xt. (5.12)

The deterministic (seasonal) part Dt in equation 5.12 is assumed to be to-
tally predictable and is presented by a known deterministic function of time.
A crucial part of forward curve modelling is to select a suitable deterministic
part (seasonal). As seen in �gure 2.2, daily spot prices are subject to sea-
sonality trends. Hence the deterministic seasonal part Dt in equation 5.12
is modelled by using trigonometric functions suggested in [29] as follows:

Dt = c1sin(2πt) + c2cos(2πt) + c3sin(4πt) + c4cos(4πt) + c5. (5.13)
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{
c1, ..., c5 = Constant parameters
t = The annualised time factors

In this report we will not pay attention to the stochastic part of the spot
price, but it's important to have in mind that this part also a�ects the elec-
tricity price. We are only interested in determining the seasonality e�ect of
the electricity price, which corresponds to the deterministic part Dt in equa-
tion 5.12. This is done by estimating the parameters in equation 5.13 and
the results will be used as a prior function when calculating forward price
curves by using maximum smoothness criteria. The model parameters, for
the deterministic part Dt of the model, are estimated by using the method
of least squares as follows:

min
c1,..,c5

N∑
t=1

(log(St)−Dt)
2. (5.14)

Figure 5.2: Historical electricity spot prices from Nord Pool Spot and sea-
sonality between 2006 and 2015.

In �gure 5.2 historical spot prices and estimated seasonality e�ect are plot-
ted, this seasonality curve has been used as prior-function. As can be seen
in this �gure, since the seasonality has been estimated with the least square
method, the resulting seasonality function can be seen as the average season-
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ality during this time period. This implies that the red seasonality curve gets
lower amplitude than the blue spot price curve and this seems reasonable to
use as a prior-function (seasonal) for smooth forward curves, since forward
contracts are less volatile than the spot price. The red seasonality function
has been extrapolated to get the prior-function for future dates.

Figure 5.3: Available contracts and the smoothed forward curve 2010-06-25.
The horizontal line segments represent the actual market prices for contracts
and the length of these lines corresponds to the delivery period on which the
contracts are written. The orange continuous line is the smoothed term
structure.

Figure 5.3 shows the result of a continuous forward price curve calculated
with maximum smoothness criteria and available contracts for the �rst day
in the NASDAQ data set, i.e. 2010-06-25.
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Figure 5.4: Available contracts and the smoothed forward curve 2015-07-06.
The horizontal line segments represent the actual market prices for contracts
and the length of these lines corresponds to the delivery period on which the
contracts are written. The orange continuous line is the smoothed term
structure.

Figure 5.4 shows the result of a continuous forward price curve calculated
with maximum smoothness criteria and available contracts for the last day
in the NASDAQ data set, i.e. 2015-07-06.

5.5 Volatility Term Structure

To simulate future movements of the forward price curve, the volatility term
structure has to be investigated. The smooth forward curve, described in
the previous section, has been simulated for all days in the data set from
NASDAQ until 2015-04-01, in total 1215 smooth forward curves have been
calculated. The results from these forward curve simulations are plotted in
3D in �gures 5.5 to 5.10, divided in one plot for each year. Each of these
forward curves has been calculated from the historical data of contracts that
were available at the market on that speci�c day. The x-axis shows the date
that the forward curve is calculated for, the y-axis shows number of days to
maturity and the z-axis shows the forward price in Euro/MWh.
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Figure 5.5: Smooth forward curves Jul-Dec 2010.

Figure 5.6: Smooth forward curves 2011.
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Figure 5.7: Smooth forward curves 2012.

Figure 5.8: Smooth forward curves 2013.
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Figure 5.9: Smooth forward curves 2014.

Figure 5.10: Smooth forward curves Jan-Mar 2015.
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From studying �gures 5.5 to 5.10 it can be seen that the highest volatility
in the market that occurred during this almost �ve years timespan, was in
the end of year 2010 in �gure 5.5 and in the beginning of year 2011 in �gure
5.6. From the volatility term structure showed in �gures 5.5 to 5.10 the
standard deviation (volatility) for all contracts with equal time to maturity
has been calculated. To analyse the volatility curve all log-returns has to be
calculated as

Rmi = ln

(
Pmi+1

Pmi

)
, (5.15)

where i = 1, ..., Ns and m = 1, ..., Nm, in this thesis Ns = 1215 business
days and Nm = 730 days to maturity. Then the standard deviation for all
log-returns with equal time to maturity are calculated as

σmd = std(Rm), (5.16)

where Rm is a vector containing all log-returns with the same time to ma-
turity. If daily prices, P, are inserted in equation 5.16 this results in daily
standard deviation and to get the annual standard deviation the results has
been multiplied by

√
252 according square − root − of − time rule in [30],

since one year has 252 business days. This will be calculated as

σmy =
√

252(σmd ), (5.17)

where σmd is the daily standard deviation for a speci�c time to maturity, m,
scaled up to annual standard deviation σmy for the same time to maturity.
The resulting volatility curve from these calculations is achieved by plotting
σmy for all di�erent times to maturity, which is showed in �gure 5.11.
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Figure 5.11: Volatility curve, smooth volatility curve and investigated points.

It can be seen in �gure 5.11 that the volatility curve (blue line) achieved by
plotting σmy for all di�erent times to maturity has some jumps. These jumps
could possibly make the result unfair if the volatility is measured in such
point, hence the curve has been smoothed as can be seen in the same �gure
(red line). From �gure 5.11 it can be seen that the volatility function is a
decreasing function, the volatility decreases for contracts with longer time to
maturity. This is a typical characteristic for the electricity forward market.
Short-term contracts have very high volatility and long-term contracts have
signi�cantly lower volatility. This is the main reason why it's common to
hedge a power portfolio with contracts that have di�erent time to maturity
and not only buying short-term contracts, which would make the portfolio
highly volatile and exposed to large risks.

To model the instantaneous volatility function, the forward market at date
t is represented in [31] by a continuous forward price function, where f(t, T )
denotes the forward price at date t on a contract with time to delivery
T − t ≥ 0. Consider a forward contract with time to delivery T − t and
assume with respect to the risk-adjusted martingale probability measure the
following forward price dynamics at date t:

df(t, T )

f(t, T )
=

(
a

T − t+ b
+ c

)
dW ∗(t) (5.18)

where a, b and c are positive constants and dW ∗(t) is the increment of a
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standard Brownian motion (often called Weiner process) with expected value
0 and variance dt. Set

σ(T − t) =
a

T − t+ b
+ c (5.19)

where T − t ≥ 0 is time to delivery. To determine the three parameters a,
b and c the instantaneous volatility in equation 5.19 is calibrated to three
di�erent delivery points 0 ≤ τS ≤ τM ≤ τL. Let σS denote short volatility,
i.e. a point in the short end of the volatility curve. Let σM denote medium
volatility, i.e. a point with medium volatility on the curve. Finally let σL
denote long volatility, i.e. a point in the long end of the volatility curve.
Where σS ≥ σM ≥ σL translates into a decreasing and convex volatility
structure. By using these de�nitions, the three di�erent volatilities can be
written as

σS = σ(0) =
a

b
+ c (5.20)

σM = σ(0.5) =
a

0.5 + b
+ c (5.21)

σL = σ(∞) = lim
τ→∞

(
a

τ + b
+ c

)
(5.22)

where σS ≥ σM ≥ σL. With τS = 0, τM = 0.5 and τL = 2 years, this results
in the following volatilities:

σS = σ(τS) = σ(0) = 1.0477
σM = σ(τM ) = σ(0.5) = 0.2737
σL = σ(τL) = σ(2) = 0.1392

Then the three parameters a, b and c can be determined from equations
5.20-5.22 as follows:

a = 0.5
σM − σL
σS − σM

(σS − σL) (5.23)

b = 0.5
σM − σL
σS − σM

(5.24)

c = σL. (5.25)

With the calculated volatilities above inserted in equations 5.23-5.25 a =
0.0789, b = 0.0869 and c = 0.1392. One thing worth mentioning is that the
volatility calculations in this section has been simpli�ed, since it has been
assumed that the volatility curve is the same throughout the year. This
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is probably a bit unfair since the electricity price follows seasonal trends.
Seasonality e�ects can also be seen in the volatility, characterised with higher
volatilities in the winter and lower volatilities in the summer for the Nordic
market. An expansion would be to simulate the volatility curve with a
volatility function that follows the seasonal pattern in the volatility, but this
falls outside the scope for this thesis and is left for further development.

5.5.1 Stressed volatility term structure

To calculate sV aR and sES the volatility structure has to be calibrated to a
continuous 12-month period when the market has been in signi�cant �nan-
cial stress. From the volatility term structure showed in �gures 5.5 to 5.10
it can be seen that the market was in signi�cant �nancial stress the second
half of 2010 and the �rst half of 2011, hence this period has been selected
for calculation of sV aR and sES. The selected period containing signi�cant
�nancial stress has been illustrated in �gure 5.12.

Figure 5.12: Smooth forward curves in a signi�cant �nancial stressed period
between the second half of 2010 and the �rst half of 2011.
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In �gure 5.13 the stressed volatility curve has been plotted, which has been
calculated in the same way as the volatility curve in �gure 5.11 with equations
5.15-5.17.

Figure 5.13: Stressed volatility curve, smooth stressed volatility curve and
investigated points.

By comparing the volatility curves in �gure 5.13 and 5.11, it can be seen that
the volatility at τS is lower for stressed market conditions. It may initially
be considered strange, but by inspection of �gure 5.12 it can be seen that
the volatilities for stressed market conditions are highest for contracts with
slightly longer time to maturity (> τS). The volatilities at time τM and τL
are both higher for the stressed market conditions. With τS = 0, τM = 0.5
and τL = 2 years and the same calculations as before, this results in the
following stressed volatilities:

σS = σ(τS) = σ(0) = 0.6271
σM = σ(τM ) = σ(0.5) = 0.3326
σL = σ(τL) = σ(2) = 0.1516

The calculated stressed volatilities above gives the following parameters
a = 0.1461, b = 0.3073 and c = 0.1516.
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5.6 Forward Market Model

The one-factor model in equation 5.19 could be used for risk management
purpose as a representation of the forward price dynamics. But since that
equation only represent a one-factor model the instantaneous forward price
changes for di�erent delivery dates will be perfectly correlated. If this one-
factor model would be used as simulation model this would imply that the
set of possible scenarios will be restricted to more or less parallel shifts in the
forward curve. This would not be a good representation for the most mar-
kets and hence risks would be underestimated, which could lead to terrible
unexpected losses. Instead of a one-factor model, in order to obtain a richer
class of possible forward price functions (possible scenarios), a three-factor
model is introduced in [32]. This three-factor model will be used in this
thesis and it represent the forward market at date t by a continuous forward
price function. In this model considering a forward contract with delivery at
date T ≥ t, the following forward price dynamics are assumed with respect
to the martingale probability measure:

df(t, T )

f(t, T )
=

a

T − t+ b
dW ∗1 (t) +

(
2ac

T − t+ b

) 1
2

dW ∗2 (t) + cdW ∗3 (t), (5.26)

where a, b, and c are positive constants and dW ∗1 (t), dW ∗2 (t) and dW ∗3 (t) are
increments of three uncorrelated standard Brownian motions with expecta-
tion E∗t [dW ∗(t)] = 0 and V ar∗t [dW

∗(t)] = dt. For computer simulations the
increments of the standard Brownian motions (often called Wiener incre-
ment) can be discretised with a timestep dt as

dW ∼
√
dtN(0, 1), (5.27)

according to [33]. The instantaneous dynamics of equation 5.26 is normal
with expected value zero and variance:

V ar∗t

[
df(t, T )

f(t, T )

]
=

{(
a

T − t+ b

)2

+
2ac

T − t+ b
+ c2

}
ds, (5.28)

which is consistent with the dynamics in equation 5.18. The positive con-
stants a, b, and c derived from equation 5.18 also applies for equation 5.26.
It follows from equation 5.26 that the forward price function f(τ, T ) at a
future date τ ∈ [t, T ] is given by the following stochastic integral equation:

f(τ, T ) = f(t, T )exp

{∫ τ

t

a

T − s+ b
dW ∗1 (s)− 1

2

∫ τ

t

(
a

T − s+ b

)2

ds

}
exp

{∫ τ

t

(
2ac

T − s+ b

) 1
2

dW ∗2 (s)− 1

2

∫ τ

t

2ac

T − s+ b
ds

}
exp

{∫ τ

t
c dW ∗3 (s)− 1

2

∫ τ

t
c2 ds

}
,

(5.29)
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where f(t, T ) is the forward price for a contract at time t with delivery at
date T ≥ t and the three exponential terms represents the future movement
of that point during the future time period τ − t. It can be con�rmed that
the forward price is a martingale with respect to the ∗-probability measure
by observing that E∗t [1τf(τ, T )] = f(τ, T ). By using the discretisation from
equation 5.27 and evaluating equation 5.29 in each point of the calculated
smooth forward curve, a new curve showing possible future movements at
time τ−t of the forward curve will be obtained. These possible realisations of
the forward curve at a future time will later be used for calculating expected
portfolio pro�t or loss.

5.7 Risk Management

The idea with both V aR and ES is to analyse the downside of the proba-
bility distribution of the future portfolio value. To obtain this probability
distribution (P&L) of the portfolio value at a future date, the Monte Carlo
simulation method will be used. This Monte Carlo simulation procedure for
determining the probability distribution of future portfolio pro�t and loss
function can be described in three main steps.

1) Use a random generator and calculate possible outcomes for the forward
price function in equation 5.29, possibly outcomes are shown in �gure 5.14
below (red curves).
2) Evaluate each asset in the portfolio by using the forward curve for the cur-
rent day and also evaluate each asset in the portfolio by using the simulated
forward curve from equation 5.29 at a future time. Then calculate future
pro�t or loss for each asset by taking the di�erence between the simulated
forward curve and the values of the asset evaluated with the forward curve
that day.
3) Sum up (value additivity) calculated pro�t and loss values for each posi-
tion to get portfolio pro�t or loss.
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Figure 5.14: The smooth forward curve 2015-04-01 and examples of 50 sim-
ulated 10-day forward curves.

Repeat points 1-3 for a large number of iterations (thousands) to get a
large number of pro�ts and losses for the portfolio, and then the probability
distribution of the future pro�ts and losses can be approximated by the
histogram following from the simulations. In the calculations, thousands of
forward curves will be simulated and the portfolio will be revaluated for each
of them to approximate the future portfolio pro�t and loss distribution. The
portfolio P&L will later be used in risk management purposes to calculate
V aR and ES for the portfolio.

5.8 Backtesting

In accordance with both CRR and FRTB shall V aR be used for backtesting
of internal risk models and hence this section will focus on V aR backtest-
ing. Backtesting refers to testing the accuracy of a model over a historical
time period when the true outcome is known. E�cient market risk mod-
elling requires a method to test the accuracy of the model. Even if the risk
measure is estimated in detailed risk analysis, the measure itself does not
tell anything about its accuracy. Hence the concept backtesting has been
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introduced to achieve a measure of accuracy regarding the risk measure.
Backtesting is used to con�rm that actual losses are in line with projected
losses. The general approach for performing V aR backtesting for an asset,
is to record the number of occasions, over a historical time period, when the
actual loss exceeds the model predicted V aR and compare this number to
the pre-speci�ed con�dence level of V aR. Backtesting can be used to verify
whether the assumptions, parameters or methods in the model need to be
further calibrated. From the backtesting results the user may be able to
draw conclusions to improve the model if it does not achieve a certain stan-
dard or reject the choice of model if competing options is favored. The Basel
committee has adopted backtesting when implementing internal risk models
for capital requirements. Both in CRR and FRTB the calculated backtesting
are performed by comparing 1-day V aR values with 1-day actual P&L and
1-day theoretical P&L using at least one year of historical observations.

• Actual P&L: Actual P&L, also called "dirty" P&L, is the reported
P&L for a portfolio by the accounting system. It's impacted by trades and
fee income that takes place during the V aR horizon, i.e. trades that V aR
cannot anticipate.

• Theoretical P&L: Theoretical P&L, also called "clean" P&L, is the
hypothetical P&L that would have been realised if no trading took place
and no fee income were earned during the V aR horizon.

Since only a �xed portfolio held at 2015-04-01 has been provided, this thesis
will focus on clean backtesting. Clean backtesting use a �xed portfolio and
the clean P&L series are compared with the risk measure. Clean backtesting
can be used to determine if the risk model has a systematic bias. If the re-
sults from the backtesting procedure are satisfactory, then it raises no issues
regarding the quality of the internal risk model. However if the backtesting
uncovers di�erences between the V aR and the theoretical (or actual) P&L
it indicates that problems almost certainly must exist, either with the in-
ternal risk model or with the assumptions made in the selected backtesting
procedure.

The backtesting results of an accurate V aR model should ful�l a number
of criteria. Firstly, the number of exceedances should be as close as possible
to the number implied by the used con�dence level in the V aR model. If
a V aR model at con�dence level 99% is backtested for 250 business days,
it should be as close as possible to 2-3 (2,5) exceedances. Secondly, for an
accurate V aR model the exceedances should be randomly distributed over
the sample. There shouldn't be any "clustering" of exceedances, since this
would indicate that the model under/over estimates V aR in certain periods.
This is an important criteria to have in mind when performing backtesting
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for power portfolios, since "clustered" exceedances are common for power
portfolios. This is due to the seasonality of the electricity price. An inappro-
priate risk model can possible have di�culties capturing this cyclicality of
the power market, which could lead to "clustering" of exceedances in some
season.
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Chapter 6

Results

6.1 Portfolio Hedging

The power portfolio, used in this thesis, is described in details in appendix
C, where all positions in the portfolio are showed. This portfolio was held
at 2015-04-01 and is considered for all calculations and results showed in
this thesis. The portfolio contains PPA, futures and forward contracts. It
has a mixture of monthly, quarterly and yearly contracts (some other special
contracts exists). The portfolio takes both long and short positions respec-
tively and is hedged for seasonal patterns in the electricity price, see �gure
6.1. In this �gure it's clear that the number of long and short positions are
hedged by the seasonality of the electricity price, with a majority of short
contracts in the summer when the electricity price is low and a majority of
long contracts in the winter when the electricity price is high. In this �gure
the net sum of number of long and short contracts held in the portfolio has
simply been divided to each day, i.e. the net exposure each day. For exam-
ple, if the portfolio has 31 month long contracts in January they have been
divided into 1 contract for each day (would have been -1 contract for a short
position). This division of contracts into days is performed for all contracts
in the portfolio, and the numbers of contracts each day are summed up to
get the net exposure over number of contracts on a daily resolution. This is
useful for seeing how the portfolio is hedged against seasonal price variation.
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Figure 6.1: Daily net exposure of portfolio held 2015-04-01.

This portfolio has been provided from a power trading company, but could
easily be changed to some other portfolio. This portfolio is only used as an
example to show the results from the calculations with real numbers.

6.2 Risk Measures

V aR is calculated with a 10-day holding period and a 99% con�dence level,
in accordance with CRR. ES is also calculated with a 10-day holding period
but with a 97.5% con�dence level, in accordance with FRTB.

6.2.1 Value-at-Risk

Figure 6.2 shows a P&L histogram, with a red part for values below VaR
and a grey part for values above. The blue line shows a PDF that is �tted
to the P&L histogram.
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Figure 6.2: P&L histogram with �tted PDF and portfolio VaR at 99%
con�dence level.

6.2.2 Expected Shortfall

Figure 6.3 shows a P&L histogram, with a red part for values below the
highest value in the ES calculations and a grey part for values above. The
blue line shows a PDF that is �tted to the P&L histogram.
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Figure 6.3: P&L histogram with �tted PDF and portfolio ES at 97.5%
con�dence level.

6.2.3 Risk report

The risk report in �gure 6.4 is the output presented in MATLAB when
performing the risk calculations at a certain date, in this case �rst of April
2015. It present some useful information about the considered portfolio but
most importantly 10-day V aR and ES for the portfolio. Total number of
contracts is the sum of long and short contracts in the portfolio. Net exposure
for the portfolio is the sum of all exposures in long and short positions.
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Figure 6.4: Risk report output from MATLAB.

To comment the results in the risk report it can be seen that ES is only
slightly larger than V aR, which was expected since the portfolio only con-
tains linear assets. The size of V aR and ES respectively is around 6% of
the total portfolio net exposure, which seems like a reasonable number.

6.3 Stressed Risk Measures

sV aR is calculated during a 12-month period (July 10 to June 11) with
signi�cant �nancial stress for a 10-day holding period and a 99% con�dence
level, in accordance with CRR. sES is calculated during the same 12-month
period with signi�cant �nancial stress for a 10-day holding period but for a
97.5% con�dence level, in accordance with FRTB.

6.3.1 Stressed Value-at-Risk

Figure 6.5 shows a stressed P&L histogram, with a red part for values below
VaR and a grey part for values above. The blue line shows a PDF that is
�tted to the stressed P&L histogram.
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Figure 6.5: Stressed P&L histogram with �tted PDF and portfolio VaR at
99% con�dence level.

6.3.2 Stressed Expected Shortfall

Figure 6.6 shows a stressed P&L histogram, with a red part for values below
the highest value in the ES calculations and a grey part for values above that.
The blue line shows a PDF that is �tted to the stressed P&L histogram.
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Figure 6.6: Stressed P&L histogram with �tted PDF and portfolio ES at
97.5% con�dence level.

6.3.3 Stressed risk report

The stressed risk report in �gure 6.7 is the output presented in MATLAB
when performing the stressed risk calculations at a certain date, in this case
�rst of April 2015. It present some useful information about the considered
portfolio but most importantly 10-day sV aR and sES for the portfolio.
Total number of contracts is the sum of long and short contracts in the
portfolio. Net exposure for the portfolio is the sum of all exposures in long
and short positions.
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Figure 6.7: Stressed risk report output from MATLAB.

To comment on the results in the stressed risk report it can be seen that sES
is only slightly larger than sV aR in this case also, which was expected with
the same motivation as before. The size of sV aR and sES respectively is
around 7% of the total portfolio net exposure, which seems like a reasonable
number. By comparing the results in the stressed risk report in �gure 6.7
and the risk report in �gure 6.4 it can be seen that both value-at-risk and
expected shortfall is higher using stressed market conditions, around 7% of
the total portfolio net exposure instead of around 6%. This is a valid result,
since if the risk would have been smaller for the stressed period then it would
have indicated that the market wasn't in signi�cant �nancial stress during
the selected period of 2010-2011.

6.4 Capital Requirements

This section combines the regulatory calculation standards stated in chapter
3 with the results obtained previously in this chapter, to calculate capital
requirements for market risks.

6.4.1 Capital requirement - internal VaR model

An average of the preceding 60 business day's sV aR (sV aRavg)) can't be
calculated since the only portfolio data that is available is for a �x day.
Electricity price has seasonal e�ects and it's not reasonable to assume that
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the portfolio looks the same as on 2015-04-01 the preceding 60 business
day's. The seasonal e�ect in the portfolio can be seen in �gure 6.1, which
clearly shows that the portfolio is hedged against seasonal e�ects, by taking
di�erent weights between short or long positions. We have to assume that for
2015-04-01, V aR and sV aR are the highest values and use them to calculate
value-at-risk for risk capital purposes, V aRC , hence

V aRC = V aRT + sV aRT , (6.1)

where V aRT and sV aRT are our calculated values for V aR and respectively
sV aR with base liquidity horizon T, i.e. 10 days. From the risk report in
�gure 6.4 value-at-risk, V aR, on the �rst of April, 2015, with the 10-day
base liquidity horizon and a 99% con�dence level is given as 247, 569 Euro
and corresponding stressed value-at-risk, sV aR, is given as 280, 240 Euro in
�gure 6.7. These values inserted in equation 6.1 gives the value-at-risk for
risk capital purposes, V aRC = 527, 809 Euro, the second of April, 2015.

6.4.2 Capital requirement internal ES model

With the same motivation as in the V aRC calculation, we have to assume
that the most recent observation ESt−1 is the maximum value in equation
3.1 and use it to calculate expected shortfall for risk capital purposes, ESC .
Since our model only has one risk factor category, energy price, equation 3.4
can be simpli�ed to

ES =

√
(EST )2 +

(
EST

√
(LHj − LHj−1)

T

)2

, (6.2)

where EST is our calculated value for ES with base liquidity horizon T, i.e.
10 days. The liquidity horizons LHj and LHj−1 are given in table 3.2. From
the table in appendix B it can be seen that risk factor category "Energy
price" shall be scaled up to a 20-day liquidity horizon, i.e. LHj = 20 and
LHj−1 = 10. Hence in our case equation 6.2 can be written as

ES =
√

2(EST )2, (6.3)

where EST could be either ES or sES with base liquidity horizon T. With
the same motivation as above (only one risk factor category) the expected
shortfall for risk capital purposes, ESC in equation 3.1 can be simpli�ed to

ESC = ESR,S = sES =
√

2(sEST )2. (6.4)

From the risk report in �gure 6.7 stressed expected shortfall, sES, on the �rst
of April, 2015, with the 10-day base liquidity horizon and a 97,5% con�dence
level is given as 281, 369 Euro. Stressed expected shortfall, sES = 281, 369
Euro, inserted in equation 6.4 gives the expected shortfall for risk capital
purposes, ESC = 397, 916 Euro, the second of April, 2015.

59



Chapter 6. Results

6.4.3 Capital requirements comparison

In table 6.1 risk capital requirements V aRC and ESC are presented for
the second of April 2015. As can be seen, V aRC is signi�cantly higher
than ESC despite that V aR and ES from the calculations are almost equal.
This shows that for portfolios only containing linear assets, the di�erence
in capital requirements for market risks is not due to the risk measures but
rather the di�erent methods of calculating the risk capital in the respective
regulations.

Capital Requirement 2015-04-02

V aRC 527,809 Euro

ESC 397,916 Euro

Table 6.1: Risk capital requirements, V aRC and ESC .

6.5 Performed Backtesting

Basic "backtesting" has been performed for a period of 60 business days. The
"backtesting" has been calculated for a time period that includes 2015-04-01,
30 business days before and 30 business days after. This "backtesting" has
been performed with the �xed portfolio ("clean" backtesting) held at 2015-
04-01 and �xed volatilities calculated for the same date. Results from the
"backtesting" is showed in �gure 6.8. In this �gure a 1-day V aR is compared
to a 1-day theoretical portfolio P&L. The reason for that "backtesting" has
been performed for only 30 business days before and after 2015-04-01 is
due to the reason that the model uses �x volatilities. Before more rigorous
backtesting, for a longer period, can be performed the model has to be
extended by using time varying volatilities, but this is omitted in this thesis.
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Figure 6.8: 1-day VaR and 1-day theoretical portfolio loss (positive loss) at
2015-04-01 and for the 30 latest/upcoming business days, calculated with
the �xed portfolio held at 2015-04-01.

Studying this �gure shows that around day 0 (2015-04-01) when this portfolio
was held and properly hedged the actual portfolio return shifts between pro�t
and loss. For the majority of days before 2015-04-01 the portfolio returns
are pro�ts and for the majority of days after the portfolio returns are losses.
This �gure doesn't say that much about the performance of the model, but
it indicates that the numbers are in reasonable size, since V aR is larger than
the theroetical P&L in the most cases. To investigate the performance of
the model further, backtesting for a longer time period and for all di�erent
kinds o� portfolios has to be performed. Otherwise the model could be
suitable for one portfolio but not for another portfolio. This could be tested
by using di�erent portfolios e.g. portfolios with only short positions, only
long positions, only contracts with short time to maturity, only contracts
with long time to maturity, a mixture of these combinations etc.
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Summary and Conclusion

This chapter interprets the results, summarises the main conclusions and
discusses further studies.

For the considered portfolio, containing only linear instruments (PPA, fu-
tures and forward contracts), the capital requirement with an internal V aR
model in accordance with CRR has been calculated to 527, 809 Euro. Corre-
sponding capital requirement with an internal ES model in accordance with
FRTB has been calculated to 397, 916 Euro. It's observed for this portfolio
that V aR at a 99% con�dence level and ES at a 97.5% con�dence level are
in fact almost identical. The explanation to this is that the portfolio only
contains linear instruments and for such portfolios ES has no major advan-
tages over V aR. But still the capital requirements for the portfolio di�ers,
the internal V aR model in accordance with CRR results in a larger capital
requirements than the internal ES model in accordance with FRTB for the
same portfolio. The reason for this di�erence in capital requirements is not,
in this case, due to the choice of risk measure, but instead a�ected by the
di�erent procedures for calculating risk capital V aRC and ESC respectively
in the models. If adding non-linear instruments (options) to the portfolio
ESC would probably increase more than V aRC . The reason for this is that
portfolios containing non-linear instruments often have larger risks and heav-
ier tails, which are better captured by ES than V aR.

This is the �rst version of this internal risk model. It performs all mod-
elling steps and the result seems reasonable, but before the model could be
implemented for risk management it has to be extended with a better calibra-
tion to the market and more backtesting. The internal risk model developed
in this thesis ful�ls the requirements in CRR and FRTB to calculate capital
requirements for market risks, but it's not ready to be used for risk manage-
ment. First of all, di�erent prior-functions should be tested when calculating
the smooth forward curve and compared against each other to �nd the prior-
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function that �ts reality best. The model should also be extended by using
a seasonal driven volatility function. In the present version of the model the
volatility has been considered unchanged throughout the year and this is an
unfair simpli�cation. Another source of error that should be investigated is
the length of the historical period that the volatilities are calculated over.
In this version they have been calculated over almost 5 years. This could
possibly be a too long time period and the volatility of the market might
have changed during it. If the model will be used for portfolios that contain
non-linear instruments the model has to be extended.

For risk management use of the model it would have been good if it al-
lowed overlapping contracts when calculating the forward price curve. How
this could be implemented in the model is showed in equation A.14 in the end
of appendix A. This would make the model more general and easier to use on
a daily basis, since contracts on NASDAQ OMX commodities are available
with overlapping delivery periods. In the list below, the main points that
are suggested for further studies are summarised.

Suggestions for further studies:

• Compare di�erent prior-functions and select the one that �ts reality best.
• Use seasonal driven volatilities to re�ect seasonal �uctuations in the volatil-
ities.
• Extend the backtesting by considering a longer time period, di�erent types
of portfolios and recalculated volatilities.
• Extend the model to capture non-linear assets (options).
• Extend the model to allow contracts with overlapping delivery periods.
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Appendix A

Matrix Notations

A.1 Matrix notations used for implementation of

smooth forward curves

It's showed by Ollmar in [28] that by inserting g
′′
(t) in equation 5.5 and

integrating the �rst part of the minimisation problem, it can be written in
matrix form as

min
x

xTHx, (A.1)

where

xT = [a1 b1 c1 d1 e1 a2 b2 c2 d2 e2 . . . an bn cn dn en], (A.2)

 h1 0
. . .

0 hn

 and (A.3)


144
5 ∆5

j 18∆4
j 8∆3

j 0 0

18∆4
j 12∆3

j 6∆2
j 0 0

8∆3
j 6∆2

j 4∆j 0 0

0 0 0 0 0
0 0 0 0 0

 . (A.4)

x is a column vector with dimensions [5n x 1], H is an asymmetric matrix
with dimensions [5n x 5n] and ∆l

j = tlj+1−tlj for l = 1, . . . , 5. The constraints
C1-C5 in equations 5.6-5.11 can also be written in matrix form, Ax =
B, where B is a column vector with dimensions [3n+m-2 x 1] and A is a
matrix with dimensions [3n+m-2 x 5n]. An explicit solution to equation
5.5 can be obtained by using the Lagrange multiplier method, where λT =
[λ1, λ2, ..., λ3n+m−2] is the corresponding Lagrange multiplier vector to the
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constraints C1-C5. By applying this to equation 5.5, it can be written as
the following unconstrained minimisation problem:

min
x,λ

xTHx + λT (Ax−B). (A.5)

The solution [x∗, λ∗] to the unconstrained minimisation problem in equation
A.5 could be determined by solving the following linear system of equations:[

2H AT

A 0

] [
x
λ

]
=

[
0
B

]
, (A.6)

where matrix A and vector B can be constructed by writing the conditions
C1-C5 in chapter 6 from equations 5.6-5.11 as a linear system of equations
Ax=B. The dimensions of equation A.6 is as follows: left matrix has dimen-
sions [8n+m-2 x 8n+m-2] and hence the two vectors must have the dimen-
sions [8n+m-2 x 1]. This system of equation can easily be solved numerically
by Gaussian elimination. First some variables are explained and then it's
showed how the matrixA and the vector B are built-up from the constraints.

n = Number of polynomials
m = Number of forward contracts
t0, t1, ..., tn = The knot points of the polynomial

The continuity condition C1 corresponds to the following elements in matrix
A:

−t41 −t31 −t21 −t1 −1 t41 t31 t21 t1 1 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 −t42 −t32 −t22 −t2 −1 t42 t32 t22 t2 1 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 −t43 −t33 −t23 −t3 −1 t43 t33 t23 t3 1 . . .
...

(A.7)
which has the size [n-1 x 5n] and the corresponding elements in vector B are
n − 1 zeros. Condition C2 corresponds to the following elements in matrix
A:

−4t31 −3t21 −2t1 −1 0 4t31 3t21 2t1 1 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 −4t32 −3t22 −2t2 −1 0 4t32 3t22 2t2 1 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 −4t33 −3t23 −2t3 −1 0 4t33 3t23 2t3 1 0 . . .
...

(A.8)
which has the size [n-1 x 5n] and the corresponding elements in vector B are
n − 1 zeros. Condition C3 corresponds to the following elements in matrix
A:

−12t21 −6t1 −2 0 0 12t21 6t1 2 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 −12t22 −6t2 −2 0 0 12t22 6t2 2 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 −12t23 −6t3 −2 0 0 12t23 6t3 2 0 0 . . .
...

(A.9)
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which has the size [n-1 x 5n] and the corresponding elements in vector B
are n − 1 zeros. The terminal condition C4 corresponds to the following
elements in matrix A:

. . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4t3n 3t2n 2tn 1 0

(A.10)
which has the size [1 x 5n] and the corresponding element in vector B is
zero. The last condition C5 is equal to∫ T e

j

T s
j

g(t)dt = FCj (T ej − T sj )−
∫ T e

j

T s
j

h(t)dt (A.11)

and to rewrite this condition as a linear system of equation the left-hand side
of equation A.11 are inserted in matrix A and the right-hand side in vector
B. Next step is to construct a set of knot points where each sub-period is
equal to the domain of a polynomial. This set of knot points are de�ned as

ρ1i = [(T ej )5 − (T sj )5]/5

ρ2i = [(T ej )4 − (T sj )4]/4

ρ3i = [(T ej )3 − (T sj )3]/3

ρ4i = [(T ej )2 − (T sj )2]/2

ρ5i = T ej − T sj .

(A.12)

Condition C5 for non-overlapping contracts corresponds to the following
elements in matrix A:

ρ10 ρ20 ρ30 ρ40 ρ50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 ρ11 ρ21 ρ31 ρ41 ρ51 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 ρ12 ρ22 ρ32 ρ42 ρ52 0 0 0 0 0 . . .
...

(A.13)

An example of condition C5 for overlapping contracts, where the �rst con-
tracts has a settlement period [t1, t2], when we have divided the integral
corresponds to the following elements in matrix A:

ρ10 ρ20 ρ30 ρ40 ρ50 ρ11 ρ21 ρ31 ρ41 ρ51 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 ρ11 ρ21 ρ31 ρ41 ρ51 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 ρ12 ρ22 ρ32 ρ42 ρ52 0 0 0 0 0 . . .
...

(A.14)
In both the case overlapping and non-overlapping contracts the element in
vector B that corresponds to contract j can be written as

FCj (T ej − T sj )−
∫ T e

j

T s
j

h(t)dt. (A.15)
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When all corresponding rows in matrixA are combined, it gives the following
matrix:

A =



−t41 −t31 −t21 −t1 −1 t41 t31 t21 t1 1 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 −t42 −t32 −t22 −t2 −1 t42 t32 t22 t2 1 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 −t43 −t33 −t23 −t3 −1 t43 t33 t23 t3 1 . . .
...
−4t31 −3t21 −2t1 −1 0 4t31 3t21 2t1 1 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 −4t32 −3t22 −2t2 −1 0 4t32 3t22 2t2 1 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 −4t33 −3t23 −2t3 −1 0 4t33 3t23 2t3 1 0 . . .
...
−12t21 −6t1 −2 0 0 12t21 6t1 2 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 −12t22 −6t2 −2 0 0 12t22 6t2 2 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 −12t23 −6t3 −2 0 0 12t23 6t3 2 0 0 . . .
...
. . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4t3n 3t2n 2tn 1 0

ρ10 ρ20 ρ30 ρ40 ρ50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 ρ11 ρ21 ρ31 ρ41 ρ51 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 ρ12 ρ22 ρ32 ρ42 ρ52 0 0 0 0 0 . . .
...


(A.16)

which has dimensions [3n+m-2 x 5n]. When all corresponding elements in
vector B are combined, it gives the following column vector:

B =
[

0 0 0 0 0 . . . FCj (T ej − T sj )−
∫ T e

j

T s
j
h(t)dt . . .

]′
(A.17)

which has dimensions [3n+m-2 x 1]. The �rst 3(n-1)+1 elements in vector
B are zero and the last m elements corresponds to equation A.15.
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Risk Factor Categories - FRTB

B.1 Table with risk factor categories and liquidity

horizons

This table is given in [15].

Risk factor category n Risk factor category n

Interest rate � domestic currency
of a bank: EUR, USD, GBP, AUD, Equity price (small cap)

JPY, SEK and CAD 120 volatility 120

Interest rate ATM volatility � other
currencies 260 Equity (other) 120

Interest rate ATM volatility Interest FX rate � liquid currency
rate (other) 60 pairs 120

Interest rate ATM volatility (other
than yields and ATM volatility) 60 FX rate (other currency pairs) 20

Credit spread � sovereign (IG) 20 FX volatility 60

Credit spread � sovereign (HY) 60 FX (other) 60

Credit spread � corporate (IG) 60 Energy price 20

Credit spread � corporate (HY) 120 Precious metal price 20

Credit spread � structured (cash
and CDS) 250 Other commodities price 60

Credit (other) 250 Energy price volatility 60

Equity price (large cap) 10 Precious metal price volatility 60

Other commodities price
Equity price (small cap) 20 volatility 120

Equity price (large cap) volatility 20 Commodity (other) 120

Table B.1: Risk factor categories in FRTB.
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Power Portfolio

C.1 PPA Contracts 2015-04-01

Contracts: Period: Type: Number of contracts:

APR-15 Monthly Buy 31823

MAY-15 Monthly Buy 31560

JUN-15 Monthly Buy 26708

JUL-15 Monthly Buy 70691

AUG-15 Monthly Buy 80057

SEP-15 Monthly Buy 104904

OCT-15 Monthly Buy 108474

NOV-15 Monthly Buy 116831

DEC-15 Monthly Buy 122476

JAN-16 Monthly Buy 75072

FEB-16 Monthly Buy 63303

MAR-16 Monthly Buy 56923

APR-16 Monthly Buy 44696

MAY-16 Monthly Buy 40973

JUN-16 Monthly Buy 37619

JUL-16 Monthly Buy 34641

AUG-16 Monthly Buy 40149

SEP-16 Monthly Buy 52922

OCT-16 Monthly Buy 59090

NOV-16 Monthly Buy 63804

DEC-16 Monthly Buy 66160

JAN-17 Monthly Buy 45947

FEB-17 Monthly Buy 39460

MAR-17 Monthly Buy 35140

APR-17 Monthly Buy 27472

MAY-17 Monthly Buy 25128
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JUN-17 Monthly Buy 22654

JUL-17 Monthly Buy 21125

AUG-17 Monthly Buy 24346

SEP-17 Monthly Buy 33128

OCT-17 Monthly Buy 38640

NOV-17 Monthly Buy 41827

DEC-17 Monthly Buy 42484

JAN-18 Monthly Buy 37100

FEB-18 Monthly Buy 32575

MAR-18 Monthly Buy 28664

APR-18 Monthly Buy 22822

MAY-18 Monthly Buy 20744

JUN-18 Monthly Buy 18440

JUL-18 Monthly Buy 17411

AUG-18 Monthly Buy 19903

SEP-18 Monthly Buy 27546

OCT-18 Monthly Buy 31802

NOV-18 Monthly Buy 34060

DEC-18 Monthly Buy 34418

JAN-19 Monthly Buy 37162

FEB-19 Monthly Buy 32651

MAR-19 Monthly Buy 28734

APR-19 Monthly Buy 22911

MAY-19 Monthly Buy 20846

JUN-19 Monthly Buy 18535

JUL-19 Monthly Buy 17479

AUG-19 Monthly Buy 19952

SEP-19 Monthly Buy 27576

OCT-19 Monthly Buy 25440

NOV-19 Monthly Buy 27323

DEC-19 Monthly Buy 27792

JAN-20 Monthly Buy 24121

FEB-20 Monthly Buy 21053

MAR-20 Monthly Buy 18522

APR-20 Monthly Buy 14436

MAY-20 Monthly Buy 13014

JUN-20 Monthly Buy 11538

JUL-20 Monthly Buy 11450

AUG-20 Monthly Buy 13263

SEP-20 Monthly Buy 18603

OCT-20 Monthly Buy 20635
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NOV-20 Monthly Buy 21982

DEC-20 Monthly Buy 21930

Table C.1: PPA contracts in portfolio at 2015-04-01.

C.2 Forward Contracts 2015-04-01

Contracts: Period: Type: Number of contracts:

ENOMAPR-15 Monthly Buy 31823

ENOMMAY-15 Monthly Buy 31560

ENOMJUN-15 Monthly Buy 26708

ENOMJUL-15 Monthly Buy 24289

ENOMAUG-15 Monthly Buy 27681

ENOMSEP-15 Monthly Buy 40263

ENOMOCT-15 Monthly Buy 45523

ENOMNOV-15 Monthly Buy 47293

ENOMDEC-15 Monthly Buy 50332

ENOMJAN-16 Monthly Buy 52382

ENOMFEB-16 Monthly Buy 36978

ENOMMAR-16 Monthly Buy 40394

ENOMAPR-16 Monthly Buy 31709

ENOMMAY-16 Monthly Buy 31287

ENOMJUN-16 Monthly Buy 26356

ENOMJUL-16 Monthly Buy 23853

ENOMAUG-16 Monthly Buy 26983

ENOMSEP-16 Monthly Buy 39601

ENOMOCT-16 Monthly Buy 44000

ENOMNOV-16 Monthly Buy 45116

ENOMDEC-16 Monthly Buy 48282

ENOMJAN-17 Monthly Buy 49223

ENOMFEB-17 Monthly Buy 34229

ENOMMAR-17 Monthly Buy 37977

ENOMAPR-17 Monthly Buy 29842

ENOMMAY-17 Monthly Buy 29610

ENOMJUN-17 Monthly Buy 24872

ENOMJUL-17 Monthly Buy 22563

ENOMAUG-17 Monthly Buy 25481

ENOMSEP-17 Monthly Buy 37480

ENOMOCT-17 Monthly Buy 41643

ENOMNOV-17 Monthly Buy 42613

ENOMDEC-17 Monthly Buy 45804
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ENOMJAN-18 Monthly Buy 47908

ENOMFEB-18 Monthly Buy 33086

ENOMMAR-18 Monthly Buy 36970

ENOMAPR-18 Monthly Buy 29064

ENOMMAY-18 Monthly Buy 28913

ENOMJUN-18 Monthly Buy 24255

ENOMJUL-18 Monthly Buy 21583

ENOMAUG-18 Monthly Buy 24336

ENOMSEP-18 Monthly Buy 4302

ENOMOCT-18 Monthly Buy 4779

ENOMNOV-18 Monthly Buy 5075

ENOMDEC-18 Monthly Buy 5027

ENOMJAN-19 Monthly Buy 3298

ENOMFEB-19 Monthly Buy 2867

ENOMMAR-19 Monthly Buy 2523

ENOMAPR-19 Monthly Buy 1950

ENOMMAY-19 Monthly Buy 1749

ENOMJUN-19 Monthly Buy 1549

ENOMJUL-19 Monthly Buy 1548

ENOMAUG-19 Monthly Buy 1806

ENOMSEP-19 Monthly Buy 2552

ENOMOCT-19 Monthly Buy 2835

ENOMNOV-19 Monthly Buy 3011

ENOMDEC-19 Monthly Buy 2983

ENOQ2-15 Quarterly Sell 10920

ENOQ3-15 Quarterly Sell -13248

ENOQ4-15 Quarterly Sell -41971

ENOQ1-16 Quarterly Buy 2183

ENOQ4-16 Quarterly Buy 6627

ENOQ1-17 Quarterly Buy 10795

ENOYR-15 Yearly Sell -1443578

ENOYR-16 Yearly Sell -1205340

ENOYR-17 Yearly Sell -1059960

ENOYR-18 Yearly Sell -359160

ENOYR-19 Yearly Sell -464280

ENOYR-20 Yearly Sell -184464

JAN-14 - DEC-15 Other Buy 17520

SEP-18 - DEC-18 Other Buy 143521

JAN-19 - FEB-19 Other Buy 66552

Table C.2: Forward contracts in portfolio at 2015-04-01.
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