
KTH Royal Institute of Technology
Department of Mathematics

SF299X, Master’s Thesis

Exploiting Temporal Difference

for Energy Disaggregation via

Discriminative Sparse Coding

Author:
Eric Leijonmarck
ericle@kth.se

Examiner
Timo Koski

tjtkoski@kth.se

September 3, 2015



Abstract

This thesis analyzes one hour based energy disaggregation using Sparse Coding by ex-
ploiting temporal differences. Energy disaggregation is the task of taking a whole-home
energy signal and separating it into its component appliances. Studies have shown that
having device-level energy information can cause users to conserve significant amounts
of energy, but current electricity meters only report whole-home data. Thus, developing
algorithmic methods for disaggregation presents a key technical challenge in the effort
to maximize energy conservation. In Energy Disaggregation or sometimes called Non-
Intrusive Load Monitoring (NILM) most approaches are based on high frequent mon-
itored appliances, while households only measure their consumption via smart-meters,
which only account for one-hour measurements. This thesis aims at implementing key
algorithms from J. Zico Kotler, Siddarth Batra and Andrew Ng paper ”Energy Disaggre-
gation via Discriminative Sparse Coding” and try to replicate the results by exploiting
temporal differences that occur when dealing with time series data. The implementa-
tion was successful, but the results were inconclusive when dealing with large datasets,
as the algorithm was too computationally heavy for the resources available. The work
was performed at the Swedish company Greenely, who develops visualizations based on
gamification for energy bills via a mobile application.
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1 Introduction

This section describes the rationale behind the thesis and gives a brief introduction to energy
disaggregation and its challenges and future prospects. Later, we present the increase in
research interest in the field of Non-intrusive load-monitoring (NILM) and lastly present the
thesis outline in section 1.2.

Energy issues present one of the largest challenges facing our society. The world currently
consumes an average of 16 terawatts of power, 86% of which comes from fossil fuels; without
any effort to curb energy consumption or use of different sources of energy, most climate
models predict that the earth’s temperature will increase by at least 3 degrees Celcius in the
next 90 years [1], a change that could cause ecological disasters on a global scale. While there
are ofcourse, numerous facets to the energy problem, there is a growing consensus that many
energy and sustainability problems are fundamentally a data analysis problem, areas where
machine learning can play a significant role.

Perhaps to no surprise, private households have been observed to have some of the largest
capacities for improvement when it comes to efficient energy usage. Private households have
been observed to have largest capacities for improvement [2]. However, numerous studies
have shown that receiving information about one’s energy consumption can automatically
induce energy-conserving behaviors [1], and these studies also clearly indicate that receiving
appliance specific information leads to much larger gains than whole-home data alone ([9]
estimates that appliance-level data could reduce consumption by an average of 12% in the
residential sector). In the United States, electricity constitutes 38% of all energy used, and
residential and commercial buildings together use 75% of this electricity [1]; thus, this 12%
figure accounts for a sizable amount of energy that could potentially be saved.

Energy Disaggregation, also called Non-Intrusive Load Monitoring (NILM) [4], involves taking
an aggregated energy signal, for example the total power consumption of a house as read by an
electricity meter, and separating it into the different electrical appliances being used. While
field surveys and direct measurements of individual appliances have been and still are the most
straight forward methods to acquire accurate energy usage data, the need for a multitude of
sensors and time consuming installations have made energy disaggregation methods financially
unapproachable [3].

Instead, some look specifically at the task of energy disaggregation, via data analytics task
relating to energy efficiency. However, the widely-available sensors that provide electricity
consumption information, namely the so-called “Smart Meters” that are already becoming
ubiquitous, collect energy information only at the whole-home level and at a very low resolu-
tion (typically every hour or 15 minutes). Thus, energy disaggregation methods that can take
this whole-home data and use it to predict individual appliance usage present an algorith-
mic challenge, where advances can have a significant impact on large-scale energy efficiency
issues. The following figure shows the underlying structure that can happen during an hour
of different resolutions.
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Figure 1: A figure to display the difference between low (that of hourly readings) to high
resolution data. 1

Energy disaggregation methods do have a long history in the engineering community, including
some which have applied machine learning techniques — early algorithms [4] typically looked
for “edges” in power signal to indicate whether a known device was turned on or off; later
work focused on computing harmonics of steady-state power or current draw to determine
more complex device signatures [5]; recently, researchers have analyzed the transient noise of
an electrical circuit that occurs when a device changes state [6]. However, these and most
other studies we are aware of, were either conducted in artificial laboratory environments,
contained a relatively small number of devices, trained and tested on the same set of devices
in a house, and/or used custom hardware for very high frequency electrical monitoring with
an algorithmic focus on “event detection” (detecting when different appliances were turned
on and off) [1].

Figure 2: The number of publications related to NILM research. 2

1Pecan Street Inc, ’Dataport’, https://dataport.pecanstreet.org/, (accessed 10 June 2015)
2Oliver Parson, http://blog.oliverparson.co.uk/2015/03/overview-of-nilm-field.html, 25 March

2015, (accessed 10 June 2015)
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Recent development within technology and the adoption of big data has influenced and re-
searchers often refer to a recent explosion in the number of NILM publications. The figure
2 shows the number of papers published per year, from which the upward trend since 2010
is clearly visible. This renewed interest is likely due to recent countrywide rollouts of smart
meters.

Figure 3: The figure shows citations of NILM related publications and highlights the paper
by Kotler et. al [1]. The figure to the left shows number of citations overall, while the right
figure show the number of citations for the year 2014. 3

Since older papers have had more time to accumulate citations, it’s also interesting to look
at citations per year to get a better idea of recent trends in the field, as shown by the graph
on the right. Unlike before, there is no standout paper, with recent review papers and data
set papers receiving the greatest citation velocity. One can see that the paper has not been
the primary focus of research and is therefore interesting to look into. Besides these papers,
a number of the remaining highly cited papers propose techniques based upon principled
machine learning models. Most of the papers also focus on high-resolution data; in contrast,
this thesis focuses on disaggregating electricity using low-resolution, hourly data of the type
that is readily available via smart meters (but where most single-device “events” are not
apparent); where we specifically look at temporal differences.

The method builds upon sparse coding methods and recent work in block-coordinate de-
scent [7, 8]. Specifically, we use a structured perceptron sparse coding algorithm presented
in [1] using a coordinate descent approach to learn a model of each device’s power consumption
over the specified time domains, week, two weeks and a month. While energy disaggregation
can naturally be formulated as such a single-channel source separation problem, there is no
previous application of these methods to the energy disaggregation task, until Kotler, Batra
and Ng’s algorithm [1], presented in algorithm 4.5.2. Indeed, the most common application
of such algorithm is audio signal separation, which typically has very high temporal resolu-
tion; thus, the low-resolution energy disaggregation task we consider here poses a new set of

3Oliver Parson, http://blog.oliverparson.co.uk/2015/03/overview-of-nilm-field.html, 25 March
2015, (accessed 10 June 2015)
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challenges for such methods, and existing approaches alone perform quite poorly. This thesis
shows that the methods presented in [1] was cumbersome to implement and evaluate. The
thesis also addressess the need for accurate energy consumption data, where the available
dataset is far from being a good representation of the consumption inside a whole house. It
also addresses that temporal differences have not affected the accuracy.

1.1 Purpose

The work described in this thesis was carried out at Greenely 4. Greenely is a mobile ap-
plication company based in Sweden, where a gamification model to educe a better energy
consumption when providing consumers with their energy bills is being developed. Their so-
lution is solely based on total energy consumption bills but would like to investigate a possible
disaggregation for their costumers.

The work has been to provide Greenely with steady insights of the energy disaggregation field
as well as to implement Kotler et.al. models for a base model for energy disaggregation. The
thesis aims to try to replicate their algorithm with using less data by using it on subsets of
a larger dataset and therefore achieve reasonable disaggregation results. The performance
results are presented and used for deciding whether or not to adopt the devised algorithm for
their energy disaggregation.

1.2 Thesis outline

• Introduction

– This section describes the motivation behind this thesis, it also gives a brief intro-
duction to energy disaggregation and its challenges and future prospects.

• Preliminaries

– This section presents a brief overview of the mathematical background behind Op-
timization, Machine Learning and Artificial Neural Networks (ANN) to eventually
go into Sparse Coding with two examples in computer vision and speech recogni-
tion.

• Problem definition

– In this section we describe what is demanded from the solution and what the thesis
aim at achieve as well as some useful simplifications made for the thesis.

• Fabrication

– In this section we talk about the dataset used and the data pre-processing done
for usability. Here we also make a complete outline of the Discriminative Disag-
gregation via Sparse Coding (DDSC) algorithm, as well as the implementation.

• Results

– This section presents the performed experiments, along with their respective re-
sults. We first present results based on subset to prove that the algorithm works
properly on a small subset. Next we present results on different temporal subsets of

4Greenely, http://greenely.com/about-us/, 25 Feb 2015, (accessed 10 June 2015)
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the data. We then present predicted energy profiles and total energy profiles, then
showing the learned basis functions and furthermore error and accuracy results.
Finally, showing the evolution of the accuracy and error for the different settings.

• Conclusions

– This section discusses and concludes the methods and results given by this paper,
as well as future research and improvements that could be made to the implemen-
tation.
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2 Preliminaries

Throughout this paper, bold capital letters denote matrices (e.g., X) and bold lower-case
letters denote column vectors (e.g., x). ‖X‖2 = (XTX)1/2 and ‖X‖1 =

∑
i |xi| denote

the l2 and l1 norms, respectively, with T indicating the matrix transpose. We also denote
‖X‖F = (Tr(XTX))1/2 as the Frobenius norm, where Tr indicate the trace of a matrix, i.e.,
Tr(X) ≡

∑n
i=1 xii.

This section contains the theory to implement a model such as the model presented in section
4. We first present a brief overview of the mathematical background behind Optimization,
Machine Learning and Artificial Neural Networks (ANN) in sections 2.1,2.2 and 2.3 respec-
tively. This theory leads up to all the necessary details involved with Sparse Coding, which
is presented in 2.3.7 with two examples in computer vision and speech recognition to give the
reader a better understanding of the concept. We later present an underlying concept called
Non-Negative Matrix-Factorization in section 2.3.8 and the proof behind it. This technique
is commonly used when dealing with tasks involving only positive values.

2.1 Optimization

A problem that consists of finding the best solution from a set of feasible solutions. In
mathematics and computer science, we refer this as a optimization problem. The standard
form of a optimization problem is defined as

min︸︷︷︸
x

f(x)

subject to gi(x) ≤ 0, i = 0, . . . , n

where we define f(x) as the objective function to be minimized with respect to x and gi(x) as
the i:th constraint. By convention, the standard form is to minimize the objective function,
we can maximize by negating the expression above [10].

2.1.1 Cost function

An objective function that is of standard form is often referred to as a cost or loss function
that maps events or values of variables to some value that represents the ”cost” involving
that particular event. In classification, the cost is usually portrayed as ”penalty” involving
an incorrect classification.

Supervised learning tasks, described in 2.2, such as regression or classification for parameter
estimation can be formulated as a loss function over a training set. The goal is to find the
models that represent the input well; and the loss function quantifies the amount of deviation
of the prediction from the true values [10].

2.2 Machine Learning

Machine learning can be considered a sub-field of computer science and statistics which can
be described as the study of algorithms that can learn from data. Mostly Machine learning
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is employed on computational tasks where designing and programming explicit, rule-based
algorithms is infeasible. The common applications include spam filtering, optical character
recognition (OCR), search engines and computer vision. It also has ties to both artificial
intelligence and optimization.

Machine learning tasks are typically classified into three broad categories, depending on the
nature of the learning ”signal” or ”feedback” available to a learning system. One category is
Supervised learning; where the computer is presented with example inputs and their desired
outputs, given by the user, and the goal is to learn a general rule that maps inputs to
outputs. The second category is Unsupervised learning, where no labels are given to the
learning algorithm. This way the algorithm has to find its own structure in the input, this
algorithm can be run to do stand-alone unsupervised learning (discover hidden patterns) or
a means towards another type of end. Sparse Coding, which forms the basis of this thesis
is a neural network model for unsupervised learning. Lastly we have reinforcement learning
where a computer program interacts with a dynamic environment in which it must perform a
certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has
come close to its goal or not. Another example is learning to play a game by playing against
an opponent [11].

A core objective of a learner is to generalize from its experience. Generalization in this context
is the ability of a learning machine to perform accurately on new, unseen examples/tasks after
having experienced a learning data set [12,13]. The training examples usually come from some
unknown probability distribution and the learner has to build a general model so as to produce
sufficiently accurate predictions from incoming new examples.

In machine learning one can simplify the inputs by mapping them into a lower-dimensional
space through dimensionality reduction, described in section 2.2.1.

2.2.1 Dimensionalty Reduction

Representing an object as a vector of n elements, we say that the vector is in n-dimensional
space. Dimensionalty reduction refers to a process of representing the object of n-dimensional
vector to an m-dimensional vector, where m < n. By refining the data in this way, we may lose
information that might be valuable but we can represent it using less dimensions and in some
cases we can even make a better prediction or analysis using this subspace. The common
linear dimensionality reduction is called Principal Component Analysis (PCA), which find
”internal axes” of a dataset, called components and sort by importance. It performs a linear
mapping of the data to a lower-dimensional space in such a way that the variance of the data
in the low-dimensional representation is maximized. The original space is not retained, i.e.
we have lost some information but keep the most important variance to the space spanned
by a few eigenvectors. The first m components are then used as the new basis. Each of these
components may be thought of as a high-level feature, describing data vectors better than
original axes [21].

Dimensionality reduction can be divided into feature selection and feature extraction. Feature
selection approaches try to find a subset of the original variables, while feature extraction
transforms the data in high-dimensional space to that of a fewer dimensional space. The
data transformation may be linear, as in PCA, but many nonlinear dimensionality reduction
techniques also exist [22].

A different approach to nonlinear dimensionality reduction is through the use of autoencoders,
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a special kind of feed-forward neural networks with a bottle-neck hidden layer, which is
presented in-depth in section 2.3.2.

2.2.2 Deep Learning

A branch of machine learning based on algorithms that try to model high-level abstractions
in data by using complex structures or multiple non-linear transformations is referred to deep
learning [17, 18]. Deep learning focuses on learning representations of data, where it has
maybe come to replacing handcrafted features with efficient algorithms for unsupervised or
semi-supervised feature learning and hierarchical feature extraction [19].

Some representation are based on interpreting information processsing in a nervous system
inspired by advances in neuroscience, such as neural coding which attempts to define a re-
lationship between the stimulus and the neuronal responses and the relationship among the
electrical activity of the neurons in the brain [20], see section 2.3.3 for more information.

2.3 Artificial Neural Networks

In machine learning, a family of statistical learning algorithms called artificial neural networks
(ANN) that were inspired by the work of McCulloch, Warren; Walter Pitts as early as 1943 to
reflect a central nervous systems of animals [24]. Generally ANN is a network with connected
nodes and edges that form a artificial ”biological neural network” which compute values from
inputs provided by the edges connected to the nodes, even though the relation between the
model and the brain is debated to what degree it really represents the brain [26].

ANN models are essentially mathematical functions defining a function

f : X → Y (1)

but sometimes models are also associated with a particular learning algorithm, like the per-
ceptron presented in the section 2.3.1 below. The learning output is obtained by connection
weights, parameters and specific architecture by the learning algorithm. Two frameworks
where ANN have made a great contribution is computer vision and speech recognition tasks,
where rule-based programming have been unsuccessful at detecting patterns [25]. The con-
nection between neural networks and Sparse Coding is explained in section 2.3.3.

There are two main ways to ”feed” the network with information. One being that of a
feedforward neural network, the term “feedforward” indicates that the network has links
that extend in only one direction. Except during training, there are no backward links in a
feedforward network; all links proceed from input nodes toward output nodes. Eventually,
despite the apprehensions of earlier workers, a powerful algorithm for apportioning error re-
sponsibility through a multi-layer network was formulated in the form of the backpropagation
algorithm [29]. The effects of error in the output nodes are propagated backward through
the network after each training case. The essential idea of backpropagation is to combine a
non-linear multi-layer perceptron-like system capable of making decisions with the objective
error function of the Delta Rule [29].
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2.3.1 Perceptron

The basic concept of a single layer perceptron was introduced by Rosenblatt in 1958 [25]. It
computes a single output by forming a linear combination of real-valued inputs and weights
to possibly giving it through some non-linear function. This can be written as

y = φ(

n∑
i=1

aixi + b) = φ(aTx + b) (2)

where a denotes the vector of weights, x is the vector of inputs, b is the bias and φ is the
activation function. Usually in multilayer networks, the activation function is often chosen to
be the logistic sigmoid 1/(1 + e−x) or the hyperbolic tangent tanh(x). They are convenient
as they are close to linear near the origin, while they converge to a value when leaving the
origin. This allows perceptron networks to model well both strongly and mildly nonlinear
mappings [27]. Perceptrons were a popular machine learning solution in the 1980s, but since
the 1990s faced strong competition from the much simpler support vector machines [28].
More recently, there has been some renewed interest in backpropagation networks, such as
perceptrons due to the successes of deep learning, see section 2.2.2 for more detail.

A typical perceptron layer network consists of source nodes forming the first layer. Following
with one or more hidden layers, and an output layer of nodes, in the case where we have three
or more layers it is usually called a multilayer perceptron (MLP). The input signal propagates
through the network layer-by-layer. The signal-flow of such a network with one hidden layer
can be seen in figure 4 in section 2.3.2.

The computations performed by such a feedforward network with a single hidden layer with
nonlinear activation functions and a linear output layer can be written mathematically as

y = f(x) = Bφ(Ax + a) + b (3)

where x is a vector of inputs and y a vector of outputs. A is the matrix of weights of the
first layer, a is the bias vector of the first layer. B and b are, respectively, the weight matrix
and the bias vector of the second layer.

MLP networks are typically used in supervised learning problems. Here the training set of
input-output is pairs and the network must learn to model the dependency between them.
The training here means adapting all the weights and biases ( A,B,a and b in equation 3 to
their optimal values for the given pairs (x(t),y(t)). The criterion to be optimised is typically
the squared reconstruction error.

∑
t

||f(x(t))− y(t)||2. (4)

By setting the same values for the inputs as well as the outputs of the network, MLP networks
can be used for unsupervised learning. The values of the hidden neurons extract the sources,
this approach however is rather computationally intensive. [30]
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2.3.2 Autoencoder

Autoencoder is a simple 3-layer neural network where output units (Layer L3) are directly
connected back to input units (Layer L1). E.g. in a network presented in the figure below:

Figure 4: As a concrete example, suppose the inputs x are the pixel intensity values from a
10× 10 image (100 pixels) so n = 100, and there are s2 = 50 hidden units in layer L2. 5

Typically in an autoencoder, the number of hidden units are much less than number of input
and output. As a result, it first compresses (encodes) the input vector to ”fit” in a smaller
representation, and then tries to reconstruct (decode) it back. Here is where Sparse Coding
can be said to be an extension of autoencoders with the constraint that the hidden layer must
mostly be unused nodes (sparse), for more information on their similarities see the end of
section 2.3.7. Autoencoders simple form can be written as

∥∥Aσ(ATx)− x
∥∥2 (5)

where σ is a nonlinear function such as the logistic sigmoid, and A is the activation density
of the nodes. Once a deep network is pretrained, input vectors are transformed to a better
representation. [32]

2.3.3 Sparse Coding and the connection to Neural Networks

Information retrieved is presented in the brain by the pattern of activations of the nerual
connections formed, which we say form a neural code. This defines the pattern at which the
neural activity corresponds to each presented information. One property of the neural code
is the fraction at which the neurons are active at any time. If a set of N neurons, which
can be active in the region ∈ [0, 1/2] corresponding to low activity to strong activity, the
expected value of this fraction is the density of the code. If the average fraction is above 1/2
we can replace each active neuron with an inactive one causing the fraction activity to get
below 1/2 without loss of information and vice versa. Sparse coding is a neural code, which
is of a relatively small set of neurons but with strong activity. For each set of information, a
different subset is triggered of all available neurons. [33]

5Stanford, http://ufldl.stanford.edu/wiki/index.php/Autoencoders and Sparsity,7 April 2013, (ac-
cesed 10 July 2015)
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2.3.4 Local Codes

Low activity of neurons are local codes, where an item is represented by a small set of
neurons or a separate neuron, this way one can ensure that there is no overlap between
the representations of two items. To understand this we make an analogy that envolves
the characters on a computer keyboard, where each key encodes a single character. This
scheme has the advantage that it is simple and is also easy to decode, due to local codes only
representing a finite number of combinations. More generalization is essential and a widely
observed behavior. [35]

2.3.5 Dense Distributed Codes

The opposite of local codes are dense codes, where the average activity ratio is ≥ 0.5, the
item is represented by activities of all the neurons, which implies a representational capacity
of 2N . Given the billions of neurons in a human brain, 2N , as the number of neurons the
representational capacity of a dense code in the brain is immense, therefore its greatest feature
is dealing with redundancy. Dense codes limit the number of memories that can be stored in
an associative memory by simple learning rules. On the contrast, dense codes may facilitate
good generalization performance and high redundancy.

2.3.6 Sparse Codes

These neural codes come to a favorable compromise between dense and local codes by having
a small average activity ratio, called sparse codes [33]. We can redeem the capacity of local
codes by a modest fraction of active units per pattern, thus interference by items represented
simultaneously will be less likely as capacity grows exponentially with average activity ratio.
It is more likely that a single layer network with a sparse representation as input can learn to
generate a target output [37]. Due to linear discriminant functions being able to map higher
proportions, see Perceptrons for linear separability in section 2.3.1. Single layer networks for
learning is therefore simpler, faster and substantially more plausible as a way of a biological
implementation in the brain, as the redundancy for fault tolerance can be chosen by controlling
the sparseness.

For learning various tasks a neural code can therefore contain codewords of varying sparse-
ness. This implies that we want to maximize sparseness while having a high representational
capacity. One plausible way would be to assign sparse codes for items of high probability while
having distributed codes for lower probability items. A code with a given average sparseness
can contain codewords of varying sparseness. If the goal is to maximize sparseness while
keeping representational capacity high, a sensible strategy is to assign sparse codewords to
high probability items and more distributed codewords to lower probability items. However,
if we would only store identities of active units, the code would have short average discription
length [38]. Some perceptual learning could be explained by prediction of the sparseness of
the encoded items with high probability.

Below is an example where the input signal is an image, the basis vectors represent the sparse
coding method. In the example below we present an explicit visualization of the sparse coding.
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Example 1. An image reconstruction usage of sparse coding. The basis vectors are
visualized in Figure 5, which have been trained from natural images. The basis vectors
are then used to represent different parts of a picture using the activation matrix.

Figure 5: Sparse basis functions learned from images.

These basis vectors are used with activations to represent an image. The activation
matrix is best represented in the figure below, where a part of an image uses the
activated vectors (non-black) to represent the corresponding image.

Figure 6: An image, encoded with the basis functions from figure 5 and reconstructed
in the right plot using certain subsets of activations and basis functions for each patch.
The red square represents a patch where we have encoded the activations for some basis
functions, shown as the middle plot, to reconstruct the patch of the decoded image to
the right. Notice, among the entire set of basis functions, only a fair amount is used
and the rest is black indicated that they are not being used, i.e. we have a ”sparse”
representation of the image. 6

6Peter Foldiak and Dominik Endres ,Scholarpedia, http://www.scholarpedia.org/article/Sparse coding,
2008, (accessed 10 June 2015)

12



2.3.7 Sparse Coding

Sparse Coding is similar to Principal Component Analysis (PCA) in that we want to find a
small number of basis functions to represent an input signal as a linear combination presented
in equation 6 but with a constraint that the learned basis functions need to be sparse and of
a higher dimension than the input data. Here we present the general theory behind Sparse
Coding and an example used for signal processing in example 2 [36].

x ≈ BA (6)

Consider a linear system of equations x =
∑k
i=1 aiφi, the vector coefficients ai are no longer

uniquely determined by the input vector x, where
∑k
i=1 ai = B is an underdetermined m× p

matrix (m � p). B, is called the dictionary or sometimes design matrix. The problem is to
estimate the signal α, subject to the constraint that it is sparse. The underlying motivation for
sparse decomposition problems is that even though the observed values are in high-dimensional
(m) space, the actual signal is organized in some lower-dimensional subspace (k � m). This
implies that x can be decomposed as a linear combination of only a few m× 1 vectors in B,
called atoms [34].

Regular PCA allows us to learn a complete set of basis vector while the Sparse Coding
wishes to learn an over-complete basis to recognize patterns and structures inherent in the
input data. Although we now can recognize patterns in the data, we have coefficients of the
columns αi that are no longer uniquely determined by the input vector x ∈ R2. This is
why we introduce a criterion called sparsity to resolve the degeneracy introduced by over-
completeness, where sparsity is defined as having few non-zero components. The definition
of the sparse coding cost function on a set of m input vectors is presented in equation 7.
In artificial neural networks, the cost function represents a function to return a number
representing how well the neural network performed to map training examples to correct
output [36].

min
a
(j)
i ,φi

m∑
j=1

∥∥∥∥∥x(j) −
k∑
i=1

a
(j)
i φi

∥∥∥∥∥
2

︸ ︷︷ ︸
reconstruction term

+λ

k∑
i=1

S(ai)
(j)

︸ ︷︷ ︸
sparsity penalty

(7)

where S(a
(j)
i ) is a sparsity cost function which penalize ai for being far from zero. The

first term in equation 7 is a reconstruction term that forces the algorithm to provide a good
representation of x and the second as a sparsity penalty which force the representation to be
sparse, while λ is a scale to determine the relative importance between the two contributions.

Note that if we are given S(a
(j)
i ), estimation of φi is easy via least squares. In the beginning,

we do not have S(a
(j)
i ) however. Yet, many algorithms exist that can solve the objective

above with respect to S(a
(j)
i ).

The most direct approach to determine sparsity is through the ”L0” norm S(ai) = 1(|ai| > 0),
which is non-differentiable and difficult to optimize. The more common choices for sparsity
cost penalty S(ai) are the L1, S(ai) = |ai|1 and the log penalty S(ai) = log(1 + a2i ). To
prevent empirical scaling of ai and φi to make the sparsity penalty arbitrarily small, we
constrain ‖φ‖2 to be less than some constant C. Including the constraint demand we get the
full sparse coding cost function [36]
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min
a
(j)
i ,φi

m∑
j=1

∥∥∥∥∥x(j) −
k∑
i=1

a
(j)
i φi

∥∥∥∥∥
2

+ λ

k∑
i=1

S(ai)
(j)

subject to ‖φi‖2 ≤ C, ∀ i = 1, . . . , k

(8)

Below we present another example of sparse coding but used in a context of signal processing
of a one dimensional signal.

Example 2. Say, we have an infinite 1−D time-series signal. We can represent this
signal in the Fourier domain, where we get a few coefficients representing the whole
signal in a different domain.

x =

k∑
i=1

aiφi ≈ x′

We want to find these few coefficients (ai,the basis) of an input signal in the alternative
domain and reconstruct your signal with these few coefficients. Once we have found
the coefficients, we determine how close is the reconstructed signal to our original input
signal by the error. That is to minimize our representation: |x− x′|.
The least number of basis functions of the input signal that minimize the above error,
is the best basis representation of our input signal. We then could use the L2 norm
for the error, which is what we are most familiar with and it computes the Euclidean,
square difference, between basis functions. Basically, L0 norm looks like a Dirac Delta
Function, L1 norm looks like a diamond and L2 norm looks like a circle and are the
other types of norms which can be used in this context.

To end this section we would like to review the difference between Sparse Coding, Autoen-
coders and Sparse-PCA, as it is somewhat missleading at times.

• Autoencoders do not encourage sparsity in their general form.

• An autoencoder uses a model for finding the codes, while sparse coding does so by means
of optimisation.

Note that Sparse Coding, looks almost the same as Autoencoder as in equation 5 in section
2.3.2 Autoencoders, once we set B = σ(ATx). For natural image data, regularized autoen-
coders and sparse coding tend to yield very similar B. However, auto encoders are much more
efficient and are easily generalized to much more complicated models. E.g. the decoder can
be highly nonlinear, e.g. a deep neural network. Therefore, Sparse coding can be seen as a
modification of the sparse autoencoder method in which we try to learn the set of features
for some data ”directly”.

In Sparse-PCA one also wants to represent a collection of vectors as a linear combination
of basis vectors (a.k.a. principal components). Here the focus, as in traditional PCA, is on
choosing a small n�M number of basis vectors that together ”explain as much variance” as
possible, i.e. represent the original data as well as possible. And the sparsity is enforced not
on the mapping bases →data, but on the mapping data→bases, because the idea is to have
PCs that are linear combinations of only small subsets of original features/vectors (to ease
the interpretation), as explained in Zou, Hastie, and Tibshirani, 2006 [40].

14



2.3.8 Non-Negative Sparse Coding

In standard Sparse Coding, described above, the data is described as a combination of ele-
mentary features involving both additive and subtractive interactions. The fact that features
can ‘cancel each other out’ using subtraction is contrary to the intuitive notion of combining
parts to form a whole [39]. Arguments for non-negative representations come from biologi-
cal modeling, where such constraints are related to the non-negativity of neural firing rates.
These non-negative representations assume that the input data X, the basis B, and the hidden
components A are all non-negative. Since energy consumption is an inherently non-negative
quantity, this representation is beneficial is reasonable for modeling energy usage.
Non-negative matrix factorization (NMF) can be performed by the minimization of the fol-
lowing objective function:

C(A,B) =
1

2
‖X−BA‖2 (9)

Here Hoyer [39] take ‖X−BA‖2 =
∑
ij [Xij −BAij ]

2. Denoting a general matrix norm by

‖A‖p,q =

 n∑
j=1

(
m∑
i=1

|aij |p
)q/p1/q

(10)

Using p = 2, q = 2 we get the Frobenius norm and we conclude that equation 9 is using the
Frobenius norm, this is an insurance for later use in the Discriminative Disaggregation via
Sparse Coding model 4.5.2.

‖A‖2F =

√√√√ m∑
i=1

n∑
j=1

|aij |2

2

=
∑
i,j

[aij ]
2

Definition 1. Non-negative sparse coding (NNSC) of a non-negative data matrix X (i.e.
∀ i, j : Xij ≥ 0) is given by the minimization of

C(A,B) =
1

2
‖X−BA‖2 + λ

∑
ij

Aij (11)

subject under the constraints ∀ i, j : Bij ≥ 0, Aij ≥ 0 and ∀ i : ‖Bi‖ = 1, where Bi

denotes the i:th column of B. It is also assumed that the constant λ ≥ 0.
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Theorem 1. The equation 9 is non-increasing under the update rule:

At+1 = At. ∗ (BTX)./(BTBAt + λ) (12)

where .∗ and ./ denote element-wise multiplication and division (respectively), and the addi-
tion of the scalar λ is done to every element of the matrix BTBAt.

The proof is seen below in 2.3.8. As each element of A is updated by simply multiplying with
some non-negative factor, it is guaranteed that the elements of A stay non-negative under
this update rule. As long as the initial values of A are all chosen strictly positive, iteration
of this update rule is in practice guaranteed to reach the global minimum to any required
precision.

Proof of Theorem 1. To prove Theorem 1, first note that the equation 11 in defini-
tion 1 is separable in the columns of A so that each column can be optimized without
considering the others. We may thus consider the problem for the case of a single
column, denoted s. The corresponding column of X is denoted x, giving the objective

F (a) =
1

2
‖X−Ba‖2 + λ

∑
i

ai (13)

We need an iliary function G(a,at) with the properties that G(a,a) = F (a) and
G(a,at) ≥ F (a). We will then show that the multiplicative update rule corresponds
to setting, at each iteration, the new state vector to the values that minimize the
auxiliary function:

at+1 = argmin
a
G(a,at). (14)

This is guaranteed not to increase the objective function F , as

F (at+1) ≤ G(at+1,at) ≤ G(at,at) = F (at). (15)

We define the function G as

G(a,at) = F (at) + (a− at)T∇F (at) +
1

2
(a− at)TK(at)(a− at) (16)

where the diagonal matrix K(at) is defined by elementwise division as

Kij(a
t) = δij

(BTBat)i + λ

ati
, (17)

where i denotes the i:th column. Inserting a in function G we get the result from
equation 15, G(a,a) = F (a). Writing out

F (a) = F (at) + (a− at)T∇F (at) +
1

2
(a− at)T (BTB)(a− at), (18)

we see that the second property, G(a,a′) ≥ F (a), is satisfied if

0 ≤ (a− at)T [K(at)−BTB](a− at). (19)
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Hoyer proved this positive semidefiniteness for the case of λ ≥ 0 [39]. He concludes
that as a non-negative diagonal matrix is positive semidefinite, and the sum of two
positive semidefinite matrices is also positive semidefinite, the proof for λ = 0, in his
paper also holds for λ ≥ 0. It remains to be shown that the update rule in equation
12 selects the minimum of G. This minimum is easily found by taking the gradient
and equating it to zero:

∇aG(a,a) = BT (Bat − x) + λc + K(st)(a− at) = 0, (20)

where c is a vector with all ones. Solving for a, this gives

a = at −K−1(at)(BtBat −BTx + λc) (21)

= at − (at./(BTBat + λc)). ∗ (BTBat −BTx + λc) (22)

= at.× (BTx./(BTBat + λc)) (23)

which is the desired update rule 12.
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3 Problem Definition

In this section we describe what is required of the solution and what this thesis aims at
achieving as well as some useful simplifications made for this thesis.

Kotler et. al. [1] train the DDSC algorithm with weeks sampled across two years of data as to
generalize the training. This thesis aims at reimplementing the algorithm and investigating
the possibility of training with less data but taking the advantage of the temporal correlation
between years as to further extend the algorithm by pre-processing the data better, by training
the algorithm for the same timeperiod across two years instead of randomly.

3.1 Solution

1. Retrieve similar data

2. Pre-process

3. Implementation

4. Tweak algorithm using temporal difference

The first problem to address is to retrieve valuable and similar data mostly found via githubs
Awesome-public-datasets [45]. Once the data has been decided on we pre-process and im-
plement the algorithm, where the algorithm itself could pose a challenge as there is no ex-
plicit formulation stated in the paper [1], nor any source code available. This thesis aims
at reproducing the results, by focusing on exploiting the data at hand. The method relies
substansually on the data, which could prove to produce very different results. The imple-
mentation is limited by the amount of computational power that is available as it run by
standard student-laptop. This is reflected on the choice of training set and as well as the
choice of number of basis for the algorithms (this is preferably higher in dimension than the
dimensionality of the data).
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4 Fabrication

This section accounts for the dataset used and the data pre-processing assumptions made for
usability, we also visualize the datasets used. In section 4.3, we make a complete outline of
the algorithm which is the basis for this thesis. Lastly, in section 4.4, we review what has
been implemented in detail and what tools have been.

4.1 Dataset

In this paper, the Pecan Street data [47] has been solely used. The reason is that most of the
current datasets include as much detail, but lack a vast number of houses, which is needed in
order for a deep learning to train itself.

4.2 Data pre-processing

If there is much irrelevant and redundant information present or noisy and unreliable data,
then knowledge discovery during the training phase is more difficult. Data preparation and
filtering steps have taken considerable amount of processing time. The process has included
cleaning, normalization, transformation of the dataset, where the end product have been the
final training set.

The data that has been chosen for creating the training and testing set have been from the year
2014 and 2015. The raw data contain more than 8 billion readings from different appliances
in 689 houses. However the problem with most data is incompleteness. The appliances that
have been taken into consideration have been; air, furnace, dishwasher, refrigerator and the
summed values of the other appliances called miscellaneous category, for more detail visit
Pecan Street Inc. These appliances were chosen due to the lack of information, investigating
the dataset revealed that almost 80% of the values were not present for most monitored
appliances. Out of the chosen appliances, a house was taken into account if it had missing
values of more than one appliance for each hour.

For treating missing values we assuming that appliances run as a constant fashion, meaning
that we interpolate the nearest value from the previous reading to complete the dataset.
Below we find energy readings of the whole-home usage of electricity in the dataset.
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Figure 7: Training households, 2014

As seen from the figure 7, some houses end up using almost 10 times more elecricity than the
average household. These households have an impact to focus less on the more generalized
households. Presumably these households are not of interest for Greenely or the generalized
result in which we would want to classify. Here the assumption has been that these households
are more of industrial size, although not nearly enough power consumption to be compared
to, but acting more of a reference for which households have been investigated.
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Figure 8: This figure shows two plots representing the weekday and weekend datasets. The
datasets are compressed of a whole year of weekdays and weekends respectively. The left plot
have values for all the hours of the weekends for a year 2496 hours. The right plot consists of
hourly readings of 6240 hours.

From the figure above 8, we can see that the left plot which has the weekends, consists of
peaks of consumption. In comparison with the right plot, where we have a more consistent
behaviour of the household consumption. However, we note that energy consumption show
that it is not significant enough to take into consideration. We conclude that the algorithm
could find better shapes within the data when the dataset has been split, however there will
probably be no seen affect from the energy consumption.
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Figure 9: A week of the consumption data for the appliances and whole-home usage

The figure shows consumption of the considered appliances. Pecan Street Inc’s dataset is
a great source of energy consumption data, however they have made a choice of registering
average consumption of the particular appliance during that interval, with the aim that; if a
refrigerator has been consuming one kilowatt per minute for 10 min and then gets turned off,
it will be represented as 1

10 instead of 1
60 , which could make the observation-based method

flawed, as the assumption of precise measurements is the basis of the algorithm that Kotler
et. al. presented [1].

22



Figure 10: Histogram of the household usage.

The histogram in figure 10 is presented to show that the usual consumption is substantially
around the values 0.2 to 0.8 kW per hour. This is what Energy Information Administration
EIA presented in 2013 [46], where they present the average consumption of an American
household to 10,908 kilowatthours (kWh) which in turn corresponds to:

10.908kWh/(24× 365)h = 1.245205479kW

The average consumption for the Pecan Street households is 1.2244009446607182 kW, in the
regard of average consumption the dataset can be seen as a good representation for a general
household within the United States. Interesting to note is that the data can be fitted to a
Weibull distribution, which has been used for providing dummy data.
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4.3 Discriminative Disaggregation via Sparse Coding

This approach was presented in 2011 by J. Kolter MIT and Batr, Y.Nh from Stanford in [1].
It is based on improvements of single-channel source separation and enable a sparse coding
algorithm to learn a model of each device’s power consumption over a typical week. These
learned models are then combined to predict the power consumption of different devices in
previously unseen homes, using only their aggregate signal. Typically these algorithms have
been used in audio signal separation, which usually has high temporal resolution (precision of
measurement w.r.t. time) in contrast to low-resolution energy disaggregation; which impose
new challenges within the field. Their algorithm shows an improvement of discriminatively
training sparse coding dictionaries for disaggregation tasks. More specifically, they formulate
the task of maximizing disaggregation as a structured prediction problem.

The sparse coding approach to source separation, which forms for the basis for disaggregation,
is to train separate models for each individual class Xi ∈ RT×m, where T is the number of
samples (hours in the given timeperiod) and m is the number of features (households included)
then use these models to separate an aggregate signal. Formally, sparse coding; models the
ith data matrix using the approximation Xi ≈ BiAi where the columns of Bi ∈ RT×n contain
a set of n basis functions, also called the dictionary, and the columns of Ai ∈ Rn×m contain
the activations of these basis functions, see section 2.3.3 for more detail. The data input is
describe below:

• We define one class (e.g. heater) Xi ← 1, . . . , k

• Where Xi ∈ RT×m, ex: week T = 24× 7 = 168 of m houses

• One aggregated household X̄←
∑
i:k Xi

• Assuming we have individual energy readings X1, . . . ,Xk

• Sparse encode A,B such that (n� m,T )

• Goal: test with new data X̄′ to components X′1, . . . ,X
′
k

Sparse Coding additionally imposes the constraint that the activations Ai be sparse, i.e., that
they contain mostly zero entries. This allows for learning overcomplete sets of representations
of the data (more basis functions than the dimensionality of the data, n� m,T ). This makes
sparse coding interesting for the field of energy disaggregation since the input data (energy
consumption) is inherently positive. They also impose that the activations and dictionaries
(bases) be non-negative, presented by [39] as non-negative sparse coding, see section 2.3.8 for
more detail. The non-negative sparse coding objective

min
A≥0
‖Xi −BiA‖2F + λ

∑
p,q

Apq subject to
∥∥∥b(j)

i

∥∥∥
2
≤ 1, j = 1, . . . , n (24)

where Xi,Ai and Bi are defined as above, while λ ∈ R+ is a regularization parameter
and norms defined as in beginning of section 2 2. The sparse coding optimization problem
is convex for each optimization-variable whilst holding the other variable fixed. The most
common technique is to alternate between minimizing the objective over Ai and Bi [1].

When the representations have been trained for each of the classes (appliances), we concate-
nated the bases to form a single joint set of basis functions and solve a disaggregation for a
new aggregate signal X̄ ∈ RT×m′

using the procedure presented below.
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Â1:k = arg min
A1:k≥0

∥∥∥∥∥∥∥X̄− [B1 · · ·Bk]

A1

...
Ak


∥∥∥∥∥∥∥
2

F

+ λ
∑
i,p,q

(Ai)pq

:= arg min
A1:k≥0

F (X̄,B1:k,A1:k)

(25)

where A1:k is denoted as [A1, . . . ,Ak] and we abbreviate the optimization objective as
F (X̄,B1:k,A1:k). We then predict the ith component of the signal to be

X̂i = BiÂi. (26)

The intuition is that if Bi is trained to reconstruct the ith class with small activation, then
it should better represent the ith portion of the aggregate signal than all other bases Bj for
j 6= i. Henceforth they construct a way of evaluating the quality of the resulting disaggregation
(disaggregation error)

E(X1:k,B1:k) :=

k∑
i=1

1

2

∥∥∥Xi −BiÂi

∥∥∥2
F

s.t. Â1:k = arg min
A1:k≥0

F

(
k∑
i=1

Xi,B1:k,A1:k

)
, (27)

which quantifies the reconstruction process for each individual class when using the activations
obtained only via the aggregated signal.

4.3.1 Structured prediction for Discriminative Disaggregation Sparse Coding

One of the issues that Andrew Ng and J.Zico Kotler point out, using Sparse Coding, the
training is solely done for each appliance at hand when the whole-home consumption from
consumers have a large variance, as can be seen in figure 7. The method revolves around
training each individual class to produce a small disaggregation error. It is furthermore hard
to optimize the disaggreagtion error direcly over the basis B1:k, ignoring the dependance of
Â1:k on B1:k, resolving for the activations Â1:k ; thus ignoring the dependance of Â1:k on
B1:k, which loses much of the problem’s structure and this approach performs very poorly in
practice.

In their paper they define an augmented regularized disaggregation error objective

Ẽreg(X1:k,B1:k, B̃1:k) :=

k∑
i=1

1

2

∥∥∥X̄−BiÂi

∥∥∥2
F

+ λ
∑
i,p,q

(Âi)pq


subject to Â1:k = arg min

A1:k≥0
F

(
k∑
i=1

Xi, B̃1:k,A1:k

)
,

(28)

where the B1:k bases (referred to as the reconstruction basis) are the same sas those learned
from sparse coding while the B̃1:k bases (disaggreagtion bases) are discrimintively optimized

in order to move Â1:k close to AF
1:k, without changing these targets. For more detail regarding
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this section, see Kotler et.al. page four [1]. Here they describe that we seek bases B̃1:k such
that (ideally)

AF
1:k = arg min

A1:k≥0
F (X̄, B̃1:k,A1:k). (29)

In paper [1] it is noted that many methods can be applied to the prediction problems. They
chose a structured prediction algorithm presented in Collins 2005 [48]. Given some value of

the parameters B̃1:k, we first compute Â using equation 25. The perceptron update with a
step size α is now

B̃1:k ← B̃1:k − α
(

∆B̃1:k
F (X̄, B̃1:k,A

F
1:k)−∆B̃1:k

F (X̄, B̃1:k, Â1:k

)
(30)

or to be more explicit by defining the concatenated matrices B̃ = [B̃1 · · · B̃k],AF = [AF
1

T
· · ·AF

k

T
]

(similar for Â),

B̃←
[
B̃− α

(
(X̄− B̃Â)ÂT − (X̄− B̃AF)(AF)T

)]
+

(31)

In conjuncting with the equation above, we keep the postive values of B̃1:k and re-normalize
each column to have unit norm (step 4c in DDSC algorithm 4.5.2).

4.4 Implementation

The vast increase of interest within Machine Learning and the applications that it can bring
in the digitized aged have made it possible for many Open Source libraries used for Sparse
Coding. In this thesis Python has been used as a means of implementation. The source code
for the implemented algorithms can be found in section 7 and the mathematical notation is
found below in section 4.5. Below is a list of libraries connected to Machine Learning using
Python and the argumentation behind the libraries chosen.

• NeuroLab, Deep Learning

• Theano, Deep Learning

• Statsmodels, Statistical library

• Scikit-Learn, General Machine Learning [54]

• Librosa, Signal processing library

Neurolab and Theano are the more low-level deep learning libraries, that provide the users
with lots of options, but however needs a great deal of knowledge in both python and deep
learning. Statsmodels is a Python module that allows users to explore data, estimate statis-
tical models, and perform statistical tests. We chose to use the standard Machine Learning
library Scikit-Learn and Librosa. Scikit-Learn is the go to library when it comes to Machine
Learning with Python as it provides a whole set of constructs to build from and to test
the algorithms, as well as a vast community. The Librosa library was chosen as it exclu-
sively provides a set for signal processing methods. Although the DDSC algorithm relies on
standard methods, the libraries provide a means to proven and tested algorithms. J.Zico

26

www.scikit-learn.org
http://theremin.ucsd.edu/~bmcfee/librosadoc/index.html


Kotler et. al. explain that they had space constraints to preclude a full discussion about the
implementation details. They however present the algorithms used, as specified from Kotler
et. al. [1] the procedure of DDSC we have implemented a coordinate descent for the steps 2a
and 4a in algorithm 4.5.2 using Scikits module SparseCoder and using Librosa to decompose
for retreiving the activation matrix. They also refer to Hoyer’s paper [39] on multiplicative
non-negative matrix factorization update to solve step 2b. The algorithm is presented in 4.5.1
as non-negative matrix factorization. The step 4b in the algorithm is explained in equation
31 as a means to update the basis, and is a straight forward implementation.

4.5 Implemented Algorithms

The source code for the Non-Negative Sparse-Coding algorithm can be found in Appendix
7.2 and the source code for the Discriminative Disaggregation algorithm can be found in
Appendix 7.3.

4.5.1 Non-Negative Sparse-Coding

Algorithm 1: Non-Negative Sparse Coding

input: Solving the problem of equation 11 in the section for Non-Negative Sparse Coding,
2.3.8

Interate until convergence:
1: Set positive values for B0 and A0, and also set t = 0.
2: a) B′ = Bt − µ(BtAt −X)(At)T .

b) Set negative values of A′ to zero.
c) Rescale B′ to unit norm, and then set Bt+1 = B′.
d) At+1 = At. ∗ ((Bt+1)TA)./((Bt+1)T (Bt+1At + λ)).
e) Convergence if

∥∥At+1 −At
∥∥ < ε

f) Increment t.
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4.5.2 Discriminative Disaggregation via Sparse Coding

Algorithm 2: Discriminative Disaggregation via Sparse Coding

input: data points for each individual source Xi ∈ RT×m, i = 1 : k, regularization λ ∈ R+,
with gradient step size α ∈ R+.

Sparse coding pre-training:

1. Initalize Bi, Ai ≥ 0, scale columns Bi s.t.
∥∥∥b(j)

i

∥∥∥
2

= 1

2. For each i = 1, . . . , k, iterate until convergence:
Ai ← argminA≥0 ‖Xi −BiA‖2F + λ

∑
p,q Apq

Bi ← argminB≥0,‖b(j)‖
2
≤1 ‖Xi −BAi‖2F

Discriminative disaggregation training:
3. Set A∗1:k ← A1:k, B̂1:k ← B1:k.
4. Iterate until convergence:

Â1:k ← argminA1:k≥0 F
(
X̄, B̃1:k,A1:k

)
B̃←

[
B̃− α

(
(X̄− B̃Â)ÂT − (X̄− B̃AF)(AF)T

)]
+

∀ i, j, b
(j)
i ← b

(j)
i /

∥∥∥b(j)
i

∥∥∥
2

Given aggregated test examples X̄′

5. Â′1:k ← argminA1:k≥0 F (X̄′, B̃1:k,A1:k)

6. Predict X̂′i = BiÂ
′
i
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5 Results

This section presents the performed experiments, along with their respective results and
evaluations. We first present results based on a subset of the datasets in section 5.2. We then
present predicted energy profiles and total energy profiles for the complete dataset in section
5.2.1, we then present the same experiments done on the different datasets in section 5.2.2.
Later, in section 5.2.3 the learned basis functions are presented and discussed. Lastly, in
section 5.3 we present a quantitative evaluation by looking at the error and accuracy results.

5.1 Experimental setup

The conducted work used the data set provided by Pecan Street, and pre-processed as de-
scribed in 4.2. We look at time periods in blocks of one week and two weeks while trying to
predict the individual device consumption over the time period; given only the whole-home
signal. Imperatively, we focus on disaggregating data from homes that are absent from the
training set, where 70% were assigned as the training set and 30% as the test set; thus,
attempting to generalize over the basic category of devices, not just over different uses of
the same device in a single house. We fit the parameters λ, α for regularization and stepsize
respectively using grid search, namely by chosing the best parameters from the search of a
discrete set of empirical values.

Due to insufficient computational power, most of the tests have not been run using enough
basis functions. We have chosen to go through with the setup, as we wanted to see temporal
difference using this algorithm and not particularly wanted to perfect the setup. We chose to
select only 67 houses out of the 331 houses that could have been used for the experiment from
the set of 689 houses within the dataset. As we need to have more basis functions than the
dimensionality of the data, we have chosen to use more basis functions than houses (n > m).
We have also excluded a monthly prediction, as it would again cause computational issues.
We have however provided one 24-hour prediction with a small subset of all of the datasets
using enough basis functions to see that the algorithm can discriminate on all the datasets.

5.2 Evaluation of algorithm

Here we will present the results qualitively obtained by the method. First we begin by showing
the predictions on a small subset of the data (30 houses), to see that the algorithm can actually
discriminate the appliances at hand for all of the datasets that will be investigated. Then we
proceed with the weekly prediction shown in figure 12, which shows the true energy consumed
for a week, along with the energy consumption predicted by the algorithms. Next we present
the results for a two week prediction, shown in figure 13. The figures also show two pie charts
presenting the percentage use of each appliance, one of which is the true usage and the other
shows the predicted usage. Furthermore we show the results obtained when splitting the
dataset into two components, one containing the data from weekdays and one consisting out
of only hourly readings from weekends.
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T =24 hours and m =30 houses and n =250 basis functions

Week

Weekdays

30



Weekends

Figure 11: The figure shows the true usage (blue) and predicted energy consumption (red)
of all of the appliances for all datasets. The left hand plot shows the whole dataset used in
predicting the 24 hours. The middle plot shows the weekdays dataset being predicted for 24
hours and the right hand plot shows the prediction for the weekend dataset.

In all the cases the algorithm has found basis functions and activations to represent an energy
consumption profile of all of the appliances. This goes to show that the implementation of
the algorithm has been successful and that the algorithms do serve their purpose, more on
the evaluation on the different algorithms is done further down in section 5.3. Interesting to
note is that the algorithm has found some of the energy profiles of some appliances. Looking
at the plot to the bottom left we see that the prediction has actually been proved to be
almost in line with the true profile for 10 of the data points (10 hours). We can also see that
the algorithm can output completely different profiles by looking at the refrigerator for the
weekdays dataset compared to that of the air-condition profile for the week dataset.
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5.2.1 Results from the complete dataset

T =168 hours and m =67 houses and n =80 basis functions

Figure 12: Example of one house true energy profile and the predicted energy profile over
a one week time period. The plot to the left shows true and predicted energy profiles. The
plot to the right shows a pie chart of the total percentage that each appliance true usage and
predicted usage.

In most cases, the predicted values are quite poor, and the overall accuracy was 0.29, by the
definition in equation 32. It seems as though the algorithm has not gotten any type of pattern
but rather unique constant energy consumption for each appliance. Both the dishwasher and
the refrigerator have a consistent shape of being volatile and almost like noise. One thing
to note is the shape of the predicted usage of other appliances, this shape is highly complex
due to its peak like behavior and is one shape that is hard to try to learn without using
methods such as sparse coding which says that the algorithm can be used for predicting the
shapes. Although it has overestimated the usage of other appliances as we can see in the pie
charts. However it has completely not learnt that air or furnace has not been used at all,
which is a failure in the results, and only the refrigerator has roughly the same amount of
percentage usage as the true usage. The ”other” appliances can be seen as a good result when
representing a complex structure such as a dishwasher usage we have captured the structure
of a ”on” and ”off” behavior, even though we did not use enough basis functions, we can still
represent a structure like it. It is however not a good result when predicting each appliance
as well as the overall energy usage. It heavily overestimates the usage of ”other” appliances
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as well as assumes a significant higher consumption on both the ”other” appliances and the
dishwasher.

T =360 hours and m =67 houses and n =144 basis functions

Figure 13: Example of one house true energy profile and the predicted energy profile over
a two week time period. The plot to the left shows true and predicted energy profiles. The
plot to the right shows a piechart of the total percentage that each appliance true usage and
predicted usage.

When the algorithm was tested on a two week set of hourly readings, the results were again
poor and had a overall accuracy rate of 0.21. The house shows in the plot to the left of
the figure 13 has minimal consumption of the dishwasher and refrigerator, but it is visually
hard to see as the predicted values are of a magnitude higher. The predicted shapes of the
dishwasher and the refrigerator look more or less as a Brownian motion, same as for the
prediction of one-week of data but here the predicted values are significantly higher. This
behavior could come from the DDSC algorithm where we discriminate the whole signal, and
the norm of the activations during this algorithm spikes significantly high, up to 25 000 from
a mere 2211, as shown in figure 17. This could be that the algorithm overestimates the whole
home usage and therefore predicts a higher consumption of the appliances. Furthermore, is
that the basis functions are trained to represent the activations trained during this algorithm
and that these overestimate some appliances like the dishwasher and the refrigerator seem to
have, in both the case for the weekly predictions and of the two week predictions. We can see
that all of the appliances are overestimated in their power consumption usage. However, when
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comparing the predictions for the two tests (week and two weeks) we see that in the later case
we see that most of the appliances have been overestimated but in the first case we see that
the ”other” appliances have been heavily overestimated while both the air and the furnace
have been predicted to not be in use at all. This could say that the algorithm can make a
better prediction for more appliances when used on a larger dataset. When looking at the
pie chart, representing the total percentage use of the predicted versus the true usage, we see
from both of the tests, the refrigerator has had the best predicted values. This is probably due
to the nature of a refrigerator having a consistent shape, rather than most energy consuming
appliance, that have an ”on” and ”off” behavior.
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5.2.2 Results from weekdays and weekend hourly readings

168 hours and 67 basis functions 360 hours and 144 basis functions

Weekday dataset

Weekend dataset

Figure 14: Prediction of the weekday (top plots) and weekend (bottom plots) dataset.

The figure 14 shows that the predictions have not been successful when it comes to the datasets
of weekdays and weekends. It has predicted that only a few appliances use energy. The only
successful prediction is the dataset of weekdays for predicting two weeks of consumption. One
thing to note is that the prediction of the air-condition for this dataset is the best prediction
of all of the tests. It follows the consumption fairly well, and could be a consequence of the
usage of air-condition being more homogenous during weekdays than during a whole week.
The weekend dataset has the worst prediction of all the datasets, it also preferred to choose
one appliance when predicting for two weeks as the week dataset. The prediction failure for
the split datasets could be a result of a diminishing of training data, as the splitting of the
dataset also made the training set smaller which could be the cause of the bad predictions.
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5.2.3 Basis functions

In addition to the disaggregation results themselves, sparse coding representations of the
different device types are interesting in their own right, as they give a good intuition about
how the different devices are typically used. The figure 15 shows a graphical representation of
the learned basis functions. In each plot, the gray scale image on the right shows an intensity
map of all bases functions learned for that device category, where each column in the image
corresponds to a learned basis.

Figure 15: Example basis functions learned from one device. The plots to the left shows
seven example bases, while the image to the right shows all learned basis functions.

The plots to the left shows seven examples of basis function for each of the devices. By
interpreting the basis functions one can see that refrigerator has a more continuous function
applied to it, in contrast to the dishwasher, which has a peak attached to it. This indicates that
the functions have captured behaviors, such as ”on” and ”off” of the refrigerator compared
to both the furnace and refrigerator, which in turn we assume do not have ”on” and ”off”
behavior. Kotler et. al. [1] also got basis functions more peaked for refrigerator, which
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indicate that the basis functions are reasonably representative. They have more heavily
peaked functions, which could be from their intense training. It can be said about the furnace,
which has some basis that have a peak, which could correspond to a use of the furnace for a
temporarily heating of the household. The magnitude of the refrigerator is lower than that
of a dishwasher, which says that we have also captured the intensity of power consumption.

The right plots show that the refrigerator is ”on” most of the time but with low power as we
can see that the plot has mostly grey and some black in it. We can see that the dishwasher has
peaked behavior in that some of the basis are almost pure white and some are black. We find
interesting behaviors in the representations of the furnace as some of the basis fucntions really
do look the same indicating that some furnaces behave similar and in similar magnitude.

5.3 Quantitative evaluation of the Disaggregation

There are a number of components to the final algorithm, and in this section we present
quantitative results that evaluate the performance of each of these different algorithms. The
most natural metric for evaluating disaggregation performance is the disaggregation error
in equation 27, i.e. the overlap of the pie charts of true and predicted percentage energy
consumption shown in the figures 12, 13. While many of the arguments can be put into the
temporal difference, we show that the algorithm has not been able to find a local optimum
either by not having a parameter search or training data have not been sufficient. Moreover,
the average disaggregation error presented in equation 32 is not a particularly intuitive metric,
and so we also evaluate a total time period accuracy of the prediction system, defined formally
as

Accuracy :=

∑
i,q min

{∑
p(Xi)pq,

∑
p(Bi, Âi)pq

}
∑
p,q X̄ip,q

(32)

Despite the complex definition, this quantity simply captures the average amount of energy
predicted correctly over the time period (i.e., the overlap between the actual and predicted
energy).
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Figure 16: Evolution of the training accuracy and error for the DDSC updates. The figure
shows the best prediction of all the runs of the algorithm.

Figure 16 shows the disaggregation performance for the DDSC algorithm 4.5.2. It presents
the disaggregation error from equation 27 on the left y-axis and the accuracy given in equation
32 on the right y-axis. Furthermore a linear regression has been done for both the error and
accuracy. We note that the accuracy is around 35% following the fitted line when the 100:th
iteration has been done. From the figure we see that for each iteration, the algorithm has
difficulty finding an optimal path towards a minimization as seen by the volatile behavior of
both the error and accuracy. However, fitting a curve to the values, we see that the accuracy
has a positive slope although with regards to a high variance for curve fitting, the plot shows
that we cannot fully rely on the implementation due to its behavior. Investigating this further,
we took a look at the activation and basis norms of the algorithm. This yielded the following
figure.
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Figure 17: Evolution of the Activation and Basis norms for the DDSC updates. The norm
of the Activations are seen on the left y-axis and the left y-axis is the Basis norm.

The NNSC algorithm trains its activations separately for all of the appliances and yielded
a norm of 2211 cumulatively for all of the appliances. We can see from the plot that when
we start the DDSC algorithm the activation norms go from 2211 to around 25 000, which
is probably due to the activations trying to adapt to the whole home energy consumption,
which is vastly larger than each appliance. Interesting to note is that the basis norm slightly
increases with each iteration, while the activations oscillate around 25 000. The activations
trained are not used for the predicting the values for a new dataset, from this iteration we
only take out the basis matrix which seems to have adapted itself by changing from a norm
of 0.925 to 0.94.

39



6 Conclusions and Open Questions

This section discusses and concludes the results from section 5.2 given by this paper, in
sections 6.1-6.4. We also present future research and improvements in section 6.5.

6.1 Energy Disaggregation results

The disaggregation algorithm has shown to be implemented correctly but used with caution
with regards to data, parameters and computational power. The algorithm has an overall
accuracy of around 25% by the equation 32. This would however say that we have a good
accuracy compared to what the energy profiles show in the figures in section 5.2. Most of
the predicted energy profiles for larger datasets are heavily overestimated in their energy
consumption. Moreover, the results for a week and two weeks have shown not to provide
accurate results given that we use lesser basis functions than the models suggest. They might
be improved by providing the algorithm with computational power and thereby use sufficient
basis functions as shown in the results in the beginning of section 5.2. Here we used roughly 10
times the amount of basis functions compared to the dimensions of the data, which provided
more accurate results. The algorithm can surely be improved with computational power by
providing the algorithm with more samples (houses), in the results provided in this thesis we
had to even cut a good amount of good data to be able to run the algorithm, the dataset that
Pecan Street [47] really provided, was an extensive amount of data, we discuss more on that
in section 6.3.

The algorithm shown to be good at producing complex structures, such as a dishwasher being
”on” and ”off” during a certain time period, as shown in the figures for the basis functions
15, it can also be shown in the prediction for the air-condition in figure 11. However, it was
not accurate at which of the appliances that were being used, the algorithm seemed to infer
that one appliance stood for most of the energy consumption, which was false for most of
the data. It also highly overestimated the power consumption of all of the appliances. This
could be a fault in the DDSC algorithm implemented as shown in the evaluation of the norms
during the training. The norm of the activations seemed to react heavily for the whole home
energy usage and might have provided the algorithm with an overestimation of the energy
consumption for all of the appliances.

6.2 Algorithm

The algorithm provided in Kotler et.al in [1] was cumbersome to implement. They provide
a section with model implementation but state that they have precluded the details due to
space constraints. Thankfully Scikit-learn [54] has been a source to go to for help regarding
implementing such an algorithm, such as the DDSC. The algorithm also has some parameter
choices, which was fitted using grid-search, this was however not implemented and could
provide the algorithm with better results. They did not state explicitly which parameters
they used for disaggregation which would have made the implementation easier, see section
6.5.1 below for more thought on the parameters for the algorithm. The overestimation of the
energy consumption might have been avoided by implementing the extension presented below
in section 6.2.1.
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6.2.1 Extensions

Here we present the extension proposed by Kotler et.al. [1] to modify the standard Sparse
Coding formulation. This could be implemented into the model, which was said to increase
accuracy by 1.3% when using both of the extensions, more detail explanations are in their
paper [1] page five.

Total energy priors. Kotler et. al. mention that the Sparse Coding model presented does
not take into consideration the different power consumptions that the appliances might have.
They could take similar shapes such as dishwasher and refrigerator into the same category
while they might have totally different power consumption while operating. In summary, this
extension penalizes the deviation between a device and its mean total energy. [1]

FTEP (X̄,B1:k,A1:k) = F (X̄,B1:kA1:k) + λTEP

k∑
i=1

∥∥µi1T − 1TBiAi

∥∥2
2

where 1 denotes a vector of ones of the appropriate size, and µi = 1
m1TXi denotes the average

total energy of device class i.

Group Lasso. Since energy consumption exhibit some sparsity at the device level (zero
energy consumption, or not being monitored in the home), Kotler et.al. encourage a grouping
effect to the activations. This could have prevented the algorithm for prioritizing one appliance
across all of the other appliances. To achieve extension, one can employ the group Lasso
algorithm [49],

FGL(X̄,B1:k,A1:k) = F (X̄,B1:kA1:k) + λGL

k∑
i=1

m∑
j=1

∥∥∥a(j)
i

∥∥∥
2

They also present Shift Invariant Sparse Coding, which they say could not capture the
information wanted. [1]

6.3 Dataset

The dataset needed a lot of preparation to be able to even come remotely close to being a full
dataset. Kotler et.al. did not address if they spent time on data pre-processing any of the data
which seems almost unreasonable for their amount of data. Furthermore, the assumptions
made in the data pre-processing for this thesis, presented in detail in section 4.2 have made an
impact on the results and Kotler et.al. do not present any of these assumptions that must have
been made to be able to work with that amount of data. The dataset used in this thesis has
not been validated via a cross-validation, which could improve the algorithm slightly. In this
thesis data from the Pecan Street was shown to represent a Weibull distribution which could
be used for a generalization of the energy consumption in the area around Pecan Street or used
for disaggregation based on distributional disaggregation, such as Semi-Markov models [50].

6.4 Temporal difference

This thesis has shown that trying to train the algorithm by exploiting temporal difference
has not been proven useful. The conclusion drawn from this is that one should use, as much
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data as available as Sparse Coding needs enough data for it to provide a good representation
of the profiles. Training data for other appliances other than that of Pecan Street are scarce
and hard to come by, which indicates that we need to use the data that is available.

6.5 Future research

Here we present future research that might come to help with DDSC algorithm or provide
insight into the field of energy disaggregation as a whole.

6.5.1 Hyper-parameter Optimization

The type of hyper-parameter controls the capacity of a model, i.e., how flexible the model is,
how many degrees of freedom it has in fitting the data. Proper control of model capacity can
prevent overfitting, which happens when the model is too flexible, and the training process
adapts too much to the training data, thereby losing predictive accuracy on new test data.
So a proper setting of the hyper-parameters is important [51].

There exists algorithms for defining the hyper-parameters of the model, one being that of
Sequential Model-based Global Optimization (SMBO). These algorithms have been used in
applications where evaluation of the fitness function is expensive. In an application where the
true fitness function f : X → R is costly to evaluate, model-based algorithms approximate
f with a surrogate that is cheaper to evaluate [51]. There also exits ”The Gaussian Process
Approach”, Tree-structured Parzen Estimator Approach (TPE), Random Search for Hyper-
Parameter Optimization in DBNs (deep-belief-networks) and Sequential Search for Hyper-
Parameter Optimization in DBNs. The latter of the two could prove to be valuable for
methods just like the DDSC algorithm for providing the algorithm with the correct hyper-
parameters for the model [51].

6.5.2 Autoencoders

Most Deep Learning systems heavily use unlabeled as well as labeled data. Large amounts
of unlabeled data (Millions of pictures, gigabytes of text, tons of hours of voice) are used
for feature learning mainly through deep autoencoders. The output of this phase is a high
level abstraction of the data. The recent development with using autoencoders by Google in
2012, where even Andrew Yg. contributed to the work. There an unsupervised deep learning
approach was used, trained it with Millions of YouTube images and the final neurons could
recognize faces, cars, and cats. So for this network you just need to map the neurons to the
labels you like to have, e.g. this is a face, a car, a cat. [52] The large amount of unlabeled
data that makes up the energy sector makes deep learning approaches so strong.

6.5.3 Block Coordinate Update

Regularized block multiconvex optimization presented in 2013 by Yangyang Xu and Wotao
Yin [8], is an interesting approach, where the feasible set and objective function are generally
non-convex but convex in each block of variables. It also accepts non-convex blocks and
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requires these blocks to be updated by proximal minimization. Compared to the existing state-
of-the-art algorithms, the proposed algorithm demonstrate superior performance in both speed
and solution quality. This work could pose to be the next approach to energy disaggregation.

6.5.4 Dropout

Dropout, by Hinton et al. [53], in 2014, is perhaps the biggest invention in the field of neural
networks in recent years. It addresses the main problem in machine learning that is overfitting.
It does so by “dropping out” some unit activations in a given layer that is setting them to zero.
Thus it prevents co-adaptation of units and can also be seen as a method of assembling many
networks sharing the same weights. For each training example a different set of units to drop is
randomly chosen. The dropout procedure can also be applied to the input layer by randomly
deleting some of the input-vector components typically an input component is deleted with a
smaller probability. Dropout has been reported to yield remarkable improvements on several
difficult problems, for instance in speech and image recognition and hopefully could provide
a means to remove overfitting in energy disaggregation as well. [53]

6.6 Final words, Open questions

One interesting take that was discussed during this thesis was the precision of the algorithms
for energy disaggregation. If we would be able to disaggregate with an accuracy of over 90%,
how would the public react with privacy issues? Would people want to provide their energy
usage and if so, how much can be attained by the utility companies?
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7 Appendix

7.1 Source Code for Utility Functions

1 ################################################################

2 def _initialization(self):

3 a = np.random.random((self.n,self.m))

4 b = np.random.random((self.T,self.n))

5 b /= sum(b)

6 return a,b

7

8 #################################################################

9 def pre_training(self,x):

10 A_list,B_list = self.nnsc(x)

11 return A_list,B_list

12

13 ################################################################

14 @staticmethod

15 def _pos_constraint(a):

16 indices = np.where(a < 0.0)

17 a[indices] = 0.0

18 return a

19 ##################################################################

20 def predict(self,A,B):

21 x = map(lambda x,y: x.dot(y),B,A)

22 return x

23 ##################################################################

24 def F(self,x,B,x_train=None,A=None,rp_tep=False,rp_gl=False):

25 ’’’

26 input is lists of the elements

27 output list of elements

28 ’’’

29 # 4b

30 B = np.asarray(B)

31 A = np.asarray(A)

32 coder = SparseCoder(dictionary=B.T,

33 transform_alpha=self.rp, transform_algorithm=’lasso_cd’)

34 comps, acts = librosa.decompose.decompose(x,transformer=coder)

35 acts = self._pos_constraint(acts)

36

37

38 return acts
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7.2 Source Code for Non-Negative Sparse Coding

1 ################################################################

2 def NonNegativeSparseCoding(self,appliances):

3 ’’’

4 Method as in NNSC from nonnegative sparse coding finland.

5 from P.Hoyer

6 TODO : (ericle@kth.se)

7 ’’’

8 epsilon = 0.01

9 A_list = []

10 B_list = []

11 for x in appliances:

12 A,B = self._initialization()

13 Ap = A

14 Bp = B

15 Ap1 = Ap

16 Bp1 = Bp

17 t = 0

18 change = 1

19 while t <= self.steps and self.epsilon <= change:

20 # 2a

21 Bp = Bp - self.alpha*np.dot((np.dot(Bp,Ap) - x),Ap.T)

22 # 2b

23 Bp = self._pos_constraint(Bp)

24 # 2c

25 Bp /= sum(Bp)

26 # element wise division

27 dot2 = np.divide(np.dot(Bp.T,x),(np.dot(np.dot(Bp.T,Bp),Ap) + self.rp))

28 # 2d

29 Ap = np.multiply(Ap,dot2)

30

31 change = np.linalg.norm(Ap - Ap1)

32 Ap1 = Ap

33 Bp1 = Bp

34 t += 1

35

36 print "Gone through one appliance"

37 A_list.append(Ap)

38 B_list.append(Bp)

39

40 return A_list,B_list

41 ################################################################
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7.3 Source Code for Discriminative Disaggregation

1 #################################################################

2 def DiscriminativeDisaggregation(self,x,B,A):

3 ’’’

4 Taking the parameters as x_train_use and discriminate over the

5 entire region

6 ’’’

7 A_star = np.vstack(A)

8 B_cat = np.hstack(B)

9 change = 1

10 t = 0

11 x_train_sum = self.train_set.values()

12 while t <= self.steps and self.epsilon <= change:

13 B_cat_p = B_cat

14 # 4a

15 acts = self.F(x,B_cat,A=A_star)

16 # 4b

17 B_cat = (B_cat-self.alpha*((x-B_cat.dot(acts))

18 .dot(acts.T) - (x-B_cat.dot(A_star)).dot(A_star.T)))

19 # 4c

20 # scale columns s.t. b_i^(j) = 1

21 B_cat = self._pos_constraint(B_cat)

22 B_cat /= sum(B_cat)

23

24 change = np.linalg.norm(B_cat - B_cat_p)

25 t += 1

26 print "DD change is %f and step is %d" %(change,t)

27

28 return B_cat

29 #################################################################

49


	Introduction
	Purpose
	Thesis outline

	Preliminaries
	Optimization
	Cost function

	Machine Learning
	Dimensionalty Reduction
	Deep Learning

	Artificial Neural Networks
	Perceptron
	Autoencoder
	Sparse Coding and the connection to Neural Networks
	Local Codes
	Dense Distributed Codes
	Sparse Codes
	Sparse Coding
	Non-Negative Sparse Coding


	Problem Definition
	Solution

	Fabrication
	Dataset
	Data pre-processing
	Discriminative Disaggregation via Sparse Coding
	Structured prediction for Discriminative Disaggregation Sparse Coding

	Implementation
	Implemented Algorithms
	Non-Negative Sparse-Coding
	Discriminative Disaggregation via Sparse Coding


	Results
	Experimental setup
	Evaluation of algorithm
	Results from the complete dataset
	Results from weekdays and weekend hourly readings
	Basis functions

	Quantitative evaluation of the Disaggregation

	Conclusions and Open Questions
	Energy Disaggregation results
	Algorithm
	Extensions

	Dataset
	Temporal difference
	Future research
	Hyper-parameter Optimization
	Autoencoders
	Block Coordinate Update
	Dropout

	Final words, Open questions

	References
	Appendix
	Source Code for Utility Functions
	Source Code for Non-Negative Sparse Coding
	Source Code for Discriminative Disaggregation


