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Abstract

In this master thesis the risks and scenarios in the Swedish income-based pension system
are investigated. To investigate the risks one has chosen to look at a vector autoregressive
(VAR) model for three variables (AP-fund returns, average wage returns and inflation).
Bootstrap is used to simulate the VAR model. When the simulated values are received
they are put back in equations that describes real average wage return, real return from
the AP-funds, average wage and income index. Lastly the pension balance is calculated
with the simulated data.

Scenarios are created by changing one variable at the time in the VAR model. Then it is
investigated how different scenarios affect the indexation and pension balance.

The result show a cross correlation structure between average wage return and inflation
in the VAR model, but AP-fund returns can simply be modelled as an exogenous white
noise random variable. In the scenario when average wage return is altered, one can see
the largest changes in indexation and pension balance.

Keywords: Pension, VAR, Bootstrap, Scenario.



Sammanfattning

I det hédr examensarbetet ("Risker och scenarion i Sveriges inkomstgrundande allménna
pensionssystem) undersoks risker och scenarier i inkomstpensionssystemet. For att kunna
undersoka riskerna har en vector autoregressive (VAR) modell valts for tre variabler
(AP-fonds avkastning, medelinkomst avkastning och inflation). Bootstrap anvands {or att
simulera VAR modellen. Nér véirden fran simuleringarna erhallits kan dessa séttas in i
ekvationer som beskriver real medelinkomst avkastning, real avkastning fran AP-fonderna
och inkomst index. Slutligen berdknas pensionsbehallning med simulerad data.

Scenarierna utfors genom att en variabel i taget i VAR modellen stors. Sedan utreds hur
denna storning paverkar resterande parametrar som berdknas. Detta gors for olika
scenarion.

I VAR modellen finns korrelationer mellan medelinkomst avkastning och inflation, men
AP-fonds avkastning kan ses som vitt brus. De scenarier som har storst paverkan pa
indexeringen &r da medelinkomst avkastningen &ndras.
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Notation
A; Coefficient matrix for VAR(1) model where i € {1,0}.
A; Coefficient matrix for VAR(1) model where i € {1,0}.
Cij Coefficients in the VAR(1) model where i € {1,2,3} and j € {1, 2, 3}.
a; Intercept coefficients in the VAR(1) model where i € {1, 2, 3}.
b Covariance matrix for the residuals in the VAR(1) model.
AW, Average wage at time t.
CPI; CPI at time t¢.
Ty Average wage logreturns at time t.
xy Real average wage logreturns at time t.
Yt AP-funds logreturn at time t.

yi Real AP-funds logreturn at time t.

2t Inflation logreturn ¢.

€l Residuals for the Vector autoregressive model i € {1,2,3} at time ¢.
I Income index at time t.

PB; Total pension balance balances, year t.

BR; Balance ratio year ¢.

OoT; Turnover duration year t.

BF; Aggregated buffer fund (AP-funds) value year t.

By Balance index year t.

IPR, Estimated pension credit earned year .



1 Introduction

It is of interest for the Swedish pension agency to have a model that describes the risk in
the income-based pension system, the risks in this master thesis are referred to how the
pension balance is affected in different scenarios.

The Swedish pension system is a pay as you go system that entails risks with the pension
balances. To reduce the risks, the Balance ratio is introduced as a ”brake” so the
pensions are indexed in a slower rate than without the balancing. This is done to make
the system financially stable. In the article ” Temaartikel: Balanstalet -
inkomstpensionens stabila styrara?” it is stated that the Balance ratio is so far the most
stable way to reach financial stability [1]. The article further claims that if the pension
balance only was to be indexed with respect to the assets’ development, this would not be
enough to ensure financial stability.

In this master thesis one tries to find a model to the variables: real average wage return,
inflation, real return from the AP-funds, average wage and income index. The aim of the
modelling is to find a good enough model that can simulate different scenarios and see
how changes in one variable affect the other variables. When the mentioned variables
above can be simulated, the risk of the pension balance is investigated ,i.e, how does the
pension balance change during the different scenarios.

The report describes step by step how a Bootstrap procedure is performed of a VAR(1)
time series model that describes relationships (standard deviation and lag structures) of
the variables mentioned above. The advantage with bootstrap simulations is that it does
not require explicitly the distribution of the data. Bootstrap makes it possible to asses
dispersion of complicated functions of random variables [2].

The disposition of the report is as follows. First an introduction to the study is
presented, where one describes the income-based pension system, then the objective of
the study is presented. In the objectives the purpose and goal of the master thesis is
presented. After the objectives the background is presented where all the necessary
mathematical theory and some macroeconomics are explained. Then the model and the
scenario analysis are presented. Lastly the conclusion is presented where the objectives
are adressed followed by discussion about the results.

1.1 Income-based pension system

The purpose of this section is to give the reader an idea of how the different variables
introduced in the report are used to index the pension liabilities in the “inkomstpension”
and premium pension.



The income-based pension in Sweden consists of the ”inkomstpension” and the ” premium
pension”. The income-based pension system is a supposed to be a financially stable
system. This means that liabilities and assets normally change by the same amount. This
is the case for the premium pension, but the “inkomstpension“ allows for differences from
year to year.

The ”inkomstpension” is a pay-as-you go system [3]. This means that one year’s income
(pension contributions) in the system becomes the same year’s liabilities to the retired.
The differences in assets and liabilities appear when e.g. the pension contributions are a
smaller amount than the pension liabilities or when the pension contributions are larger
than the pension liabilities. The buffer fund absorbs these surpluses of the system.

The pension balances can be described by equation (1)

PRI (PBL_, + PH)Iﬁ1 x ACF; x IGF, BT, > 1 W
" |(PB], + Py x ACF; x IGF, x BT;, BT, <1

The Balance ratio BT; can be expressed as,

Pt X O_Tt + B_Ft

PB! + I?_tl x IPR;.

BTi2 =

In equation (2), B, is the balance index for year ¢ and IPRy is the estimated pension
credit earned year t.

Bt :BTt X It

In equation (2) the OTy is

OT; = median[OT;_1,0T;_2, OT;_3].

BF, in equation (2) is calculated as,

BF,+ BF,_1+ BF;_»

BF; = 3

The income index I; is defined as,



AW, 4 CPIt_4)% ) CPI;_; (3)
AW, ,CPI,,’ CPL_o

Li=1Iy-

In equation (3) the CPI is consumer price index and AW, is average wage.

In equation (1) I; is the income index for year ¢, P; is the premium paid out to the
pensioners year t, ACF; is the administration cost factor for year ¢ and IGF; inheritance
gain factor for year t.

At retirement the pension for an individual’s first year is calculated as

. pPB!
pension; = ——
Here AD is the annuity divisor.
i 1,
pension, = 4 PERSON-1 T L0T6 BT, > 1 (4)
t pension,_; - Q_JWBTU BT, < 1

The pension balances depend on the income index. This index is determined from the
average change in income in Sweden in combination with the Balance ratio in years [3].
The ”inkomstpension” is affected by a number of different economic and demographic
factors. Factors that effect the income pension are employment, changes in the stock and
bond markets [3].

It is reasonable to think that the pensions should reflect the wages of the people that
work today. Therefore they are indexed as mentioned above with the income index, but if
the Balance ratio is smaller than one, the indexation is changed and the income index
becomes I; - BT, called the balance index, see equation (1). Here BT} is the Balance ratio
for year t.

The premium pension is another part of the income-based pension system that is invested
in funds. The pension balance for this can be described as

PBY = PB? - IGF; — ACy, s <t, (5)

where PB? is the pension balance for the premium pension year ¢, AC; is a
administration cost for year t. The pension for year t is calculated in the same way as the
inkomst pension.

Next year, all included smoothing disappear, including the geometric smoothing of the
income index. The balance ratio will be attenuated with factor % There will also be
some changes in how the turnover duration is calculated.



1.2 Objective

The objectives of this master thesis are to;

e Create a model that captures variance and lag structure of average wage returns,
inflation and returns from the AP-funds.

e Simulate different scenarios from this model and see how these scenarios affect
inflation, average wage return, average wage, real average wage return, AP-funds
return, real AP-funds return and income index.

e Simulate the pension balance with the result from previous simulations of inflation,
average wage return, average wage, real average wage return, AP-funds return, real
AP-funds return and income index.

To meet the objectives a VAR (Vector autoregressive model) has been used to model the
variables average wage return, return from the AP-funds and inflation. The VAR model
is estimated with real data and simulated with bootstrap. From average wage return,
return from the AP-funds and inflation it is possible to calculate real average wage
return, real return from the AP-funds, average wage and income index.

When a model has been found it is tested in four different scenarios. The first scenario is
when a constant p is added to the average wage return. The second scenario is when a
constant —u is added to the average wage return. This creates two scenarios, which
describes when average wage returns become smaller than expected or larger than
expected. The same procedure is performed on inflation and hence the third and fourth
scenarios are obtained. Another method for create scenarios is to assign a higher
probability to draw positive residuals from the residuals and lower probability to draw
negative residuals, this becomes a high scenario and the opposite conditions on the
probability becomes the low scenario.



2 Background

In this section relevant background is presented. First a mathematical background is
presented containing time series analysis, empirical distributions and bootstrapping. Next
the parameter estimation for the VAR model is described and last some basic
macroeconomics is presented.

2.1 Time series

In this section multivariate time series concepts are presented. First the definition of
times series is explained, then stationarity conditions, mean and covariance functions are
defined.

A multivariate time series z; = [z14, .., 2x¢]” is random vector consisting of k random
variables, where the index t is time. This means that there exists a probability space for
which these random variables are defined on and the observations (data) are realizations
of them [4].

A k-dimensional time series is said to be weakly stationary (in this report stationary and
weakly stationary are used as synonyms) if
Ela] = p
cov(z) = El(z — p) (2 — p)] = 2.

are constant k x 1 vector and a constant positive definite k X k matrix respectively [4].

The time series z; is said to follow a VAR (vector autoregressive) model of order p if

b
=0+ Y bz i+ e (6)

=1

In equation (21) ¢¢ is a k x 1 dimensional vector, ¢; is a k x k dimensional constant
matrix and a; is a time series with independent and identically distributed (iid) random
vectors with mean zero and covariance matrix X, [4].

To check, if the VAR process is stationary, one can calculate the eigenvalues for the
coefficient matrices. For a VAR(1) model this means solving the determinant equation:

AL, — ¢1] =0



Here one checks whether all A are smaller than 1. If this is the case the VAR(1) model is
said to be stationary.
The cross covariance matrix are defined as

Ty = cov(ze, ze-1) = E[(z — ) (201 — p)']
ElZiiZ1—1) ElZ14Z24—1) - ElZ1iZk-]
T, = . . .

ElZpiZ10-1] ElZpiZor—1] .. FElZktZri—1]

Here z; = 2y — .
From this it is natural to define the cross correlation matrix as:

p,=C7'r,c!

Here C = dig{o1, .., 01} is the diagonal matrix with standard deviations for each time
series on its diagonals.

The Ljung Boz test is a statistical test for dynamic dependence in data i.e. it tests if
there are correlations between the time lags or between different time series. The null
hypothesis and the alternative hypothesis can be written as below.

Ho: p1=...=p, =0
Hy: p; # 0 for some i € {1,..,m}.

One calculates a test statistic as in [5] or [4].

l
. 1 o
Q=T § - ltr(I‘lI‘O g,
i=1

Ql can be written in the form

1

N 1 -~ e

Q= TQZ T lblpl ! & p; lbl.
i=1

Here b is vec(p)). Here vec is the notation for vectorization of a matrix, see Appendix A.

The computed statistic is compared against x? distribution to see if the null hypothesis
can be rejected.



2.2 Empirical distributions and quantiles

Consider samples X7, ..., X, of the iid d-dimensional random variables Xy, ..., X,, with the
unknown distribution function F(z) = P(X < x). Here X < x if and only if X; < z; for
j €{1,..,d}. One can approximate the distribution function by assigning probability
weights % to each xj, [6]. The empirical distribution F, is defined by

Fo(z) = % > Iz <)
i=1

The I is the indicator function that takes the values 1 and 0 if corresponding input
condition are true or false. The empirical distribution shall be interpreted as an outcome
of the random variable.

Fox(X) = 1 > I(X; < X).

Empirical quantiles are quantiles of the empirical distribution and defined as below

F 7 (p) = min{z : F,(z) > p}.

n

It turns out that the empirical quantile can be obtained by ordering = in decreasing order
and then picking the 2 number [n(1-p)]+1.

F N p) = Xpn(—p)+1.0-

2.3 Bootstrapping

In this section the bootstrap procedure is presented. First some explanation what
bootstrap is, then how bootstrap is applied on time series models [2].

Bootstrapping is a method to create fictive data points (resampling) from data samples,
often with simulating methods. A common use of bootstrap is to investigate different
estimates, e.g. mean values and standard deviations. The procedure is rather simple,
data is drawn with replacement from a sample to generate a new series of data [2].



Consider 1, ..., T, to be a sample from iid random variables X7, ..., X,, with the
distribution function F. Let us further consider the numerical estimate 6(x1, .., 2,) and
the similar stochastic variable é(X 1, .-y Xp), which is used to estimate the true value 6. To
generate new samples of 9(X17 .., X5,) one needs to find an estimate for the distribution F
i.e. F},. The samples simulated from F), are denoted 0* = 6(X7,.., X).

In the basic bootstrap hypothesis it is assumed that the copy F,isa good approximation
of the true distribution F [2]. For a wide class of functions S it is assumed that

S(E,) ~ S(F).

This assumption implies that the distribution of @(Xl, .y Xpn) — 0 is well approximated by
the distribution of (X}, .., X*) — 0(z1, .., ).

There are different kinds of bootstrap methods. Two of them are non-parametric and
parametric. In the non-parametric bootstrap the estimate of F' is done with an empirical
distribution. In the parametric bootstrap the estimation of F' is done for a certain
parametric family. The parameters for the parametric-family can be estimated, which
makes it possible to simulate from this parametric model [2].

When bootstrapping time series data a similar parametric and non-parametric modelling
can be used as described above [2]. The first method is one that has a parametric model
as base e.g. one find that an AR(1) model is suitable for the data. Subtracting this model
from the data points gives the residual. To get new estimates of the parameters in the
AR(1) model one can draw with replacement the residuals and create a set of new time
series. For each time series one gets a estimate of the parameters in the AR(1) model. A
disadvantage with this model is that it is heavily dependent on which time series model
that has been chosen.
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Figure 1: Left: Estimated lag coefficients from bootstrapped simulation, where empir-
ical mean is 0.78 Right: Estimated lag coefficients from bootstrapped simulation, where
empirical mean is 0.815

Figure 1 illustrates estimates of lag coefficient in an AR(1) process. The estimates are
done with parametric bootstrap for time series models. The data comes from two
simulations of an AR(1) model with lag coefficient 0.8. It can be seen that the method is
model dependent.

The second method is a non-parametric method. One divides the time series in
overlapping time blocks of a certain length. Then one draws from these blocks with
replacement. This procedure is repeated. The idea with this method is that the short
time dependence is preserved. There is a big arbitrariness in the choice of block length.
There are advantages to choose a large block size to preserve the long time dependence,
but then one underestimates the variability, but if one chooses a to small block length one
implicitly assumes a rapid decaying dependence in the time series, but get a good
variability in the simulated time series.

2.4 Parameter estimation
To estimate the parameters in the VAR model OLS is used in this report. The model is

1
Tt = a1+ C11T¢—1 + C12Yt—1 + C132¢—1 + €

2
Yt = a2 + C21Tt—1 + Co2Yt—1 + C232t—1 + €

10



3
2t = ag + €31T¢—1 + C32Yt—1 + C3321-1 + €; .

The equations above can be written in matrix notation,

[ay] 1

X9 1 X1 Y1 z1 1 €5
. cnl |

) C12 1

Tn 1z Yn—1 ZRn—1 13 €n

[as ] 2

Y2 1 = Y1 z1 2 €3
— |- . C21 + .

’ ) €22 5

Yn 1 Tp1 yn1 2n1 Co3 €n
1 as 3

z9 X1 Y1 z1 €9
. . ) . il |

: : : : 39 3

Zn 1 zp 1 Yno1 2n—1 33 €n

The vectors in the above equations can be set to,x¢, y;, z: respectively. The matrices in
the right-hand side of the above equations can be set to X and the coeflicient vectors for
each regression is called c*, ¢¥ and c®. Then the coefficients can be estimated as

&” = (X'X)"1X'x,

& = (X'X)"'Xy,

¢ = (X'X)"'X'z.

11



2.5 Macroeconomics

In this section some macro economic concepts are introduced. These are the meaning of
real, nominal, CPI, inflation, pay as you go system and funded system.

2.5.1 CPI and inflation

Consumer price index (CPI) is the most common measure of price development and is
used for measuring the inflation. The purpose of CPI is to show how consumer prices on
average change in the domestic consumption [7]. The CPI is used to calculate the
inflation. The inflation is calculated as log return, which is described in the next section.

2.5.2 Real and nominal Returns

The word nominal is an indication that something is measured in money e.g. nominal
domestic gross product (nominal GDP) [8].The term real indicates that something is
measured in the amount of goods and services that can be purchased with the income [8].

The real return for e.g. wages in Sweden gives more information about the wage growth
than the nominal return for wages. Consider the case where goods have increased very
much in price from one year to the next. If the wages increase in the same rate, a worker
cannot buy more goods for his money even though he has a larger amount of money. The
real return of wages takes the inflation into account and can be interpreted as how much
more a worker can buy for his wage from one year to the next.

When modelling e.g. historical share prices it can be helpful to consider returns of share
prices. The returns can usually be considered weakly dependent and close to identical
distributed [6]. Equation (7) is used to calculate real returns [8].

1 + nominal interest rate = (1 + real interest rate)(1 + inflation rate). (7)

If log returns are used one can rewrite equation (7) as

7Y = In(1 + nominal interest rate)
r® =1In(1 + real interest rate)

rI = In(1 + inflation rate).

In(1 + nominal interest rate) = In(1 + real interest rate) + In(1 + inflation rate)  (8)

This yields:

12



=Nl (9)

The Swedish “inkomstpension” can be described as a pay as you go system which means
that this years income becomes this years payments to the pensioners [8]. An alternative
to the pay as you go system is a fully funded system where one saves money and receives
that money when it is time for the first pension payment [8].

13



3 Model

To fulfill the objectives of the thesis, a VAR model is fitted to the variables, average wage
return x¢, returns from the AP-funds y; and inflation z;. When a model is found it is
simulated using bootstrap and new values are received. The values are put back in the
dependent variables real average wage return zj, average wage AW, real returns from the
AP-funds y; and income index I;. The standard deviation is calculated in each time step
for the dependent variables.

Data input VAR(1) model Output
oy ) Bootstrap [ 7| e 2¥
.« resampling. . AW,
® 2 LA

o [;

Figure 2: Flow chart illustrates the input and output of the model. Here x; is average
wage return, y; is AP-funds return, z; inflation, x} is the real average wage return, AW, is
average wage, y; is real return from the AP-funds and I; is the income index.

3.1 VAR and bootstrap

The model procedure is a bootstrap scheme that is similar to the scheme found in [9].
The procedure includes 4 steps that are described below.

(1) First one estimate the VAR(1) model from ¢, y; and z;. Here ¢t € {1,..,n}.

X, = Ao+ A1 X1 + &.

Where,
1
xy a c11 ci2 ci3 €
_ P i s |2
Xi=|yl|, Ao=|az|, A1 =|co c2o ca3|, & = |€
-3
2 as €31 €32 €33 €

The estimation is performed with the VAR function in R, which calculates the
constants in the VAR model with ordinary least squares (OLS). The residuals are
calculated with the following equation.

14



& =Xy — (Ao + A1X;-1)

If a process €; is uncorrelated in each time step, then every € has covariance matrix
¥ and & is referred to as white noise [5].

The next step in the procedure is to draw with replacement from the residuals €.
This is done by simulating a uniform distribution U(1,n — 1) and letting

uw € {1,..,n — 1} be the outcomes of the distribution (there exists n — 1 residuals
from a VAR(1) model if ¢t € {1,...,n}). Hence for each draw the residual €}, is
obtained. Note that by the definition of uniform distribution each residual is drawn
with the same probability.

When the residuals have been drawn new points can be calculated. Note that ¢; is
our start value and hence it is always the same but for t € {2,..,n} a new residual is
drawn and a new point is calculated.

X;=Ag+ A X | +é. (10)

When this is done for all ¢ new /10 /11 can be estimated.

The VAR model is now complete and it is possible to simulate values for z, y; and
z¢. The crucial part is to put the simulated values back in our directly dependent
variables CPI;, AW, and I;. Then the variance is calculated on these variables.

To check how good our coefficient estimates are, confidence intervals are calculated.
This is done with a chosen confidence level ¢ = 0.05 on the empirical quantiles of
cach element in the coefficient matrices Ag and Aj.

The confidence intervals are calculated using equation (11) from [6]
Taq = (aobs + Rin(144) /241, obs + Rina—q)/2141,8)- (11)

Here a is the true values of our coefficients, aqps is the estimated value from z;, y;
and 2z, q is the confidence level and R;f = Gops — a;f. The R* vector is sorted in
decreasing order i.e. RT)N > RE’N > R;’;N > ...R}k\,’N. Then one choose the element
[N(14+¢)/2]+ 1 and [N(1 —¢q)/2] + 1 in the R* vector. Here the [] bracket denote
the floor function.

15



Next, the variables real return from the AP-funds, real average wage return, average wage
and income index are calculated from the simulated values in the equation (10). Let real
returns from the AP-funds be denoted by y; then

Yir = Yit — Zit- (12)

s

Here i € {1,..,m} is an index for each simulation, there are m simulations. Similarly the
real average wage return zj is calculated.

xf,t =Tit — Zig- (13)

The average wage AW, is calculated as

AVV;f‘J6 = AW;fjtfl et (14)
Here the start value is AW;_19g7 used for simulation of the years 1967-2013.

Finally the income index [}, is calculated from CPI, values and average wages
CPI}; = CPL;,_; - €. (15)

Here CPI;—19¢7 is the start value used for simulation of the years 1967-2013.

AW}, CPT;, 4 1 CPI,

1
I =1, .- R T 10
it = dig—1 (ij7t74 CPI;‘yt,l) CPL},_, 1o

Next the standard deviation is calculated for real return from the AP-funds, real average
wage return, average wage and income index. The calculations are the same for every
parameter therefore it is only shown for Yiy

n—1

1 n
Ot = Z(yzr,t — )?
i=1
where p is

1 n
Mt = Ezyz’t
i=1



3.2 Scenario analysis
3.2.1 Scenario drift

To investigate different scenarios, a drift is added to the variables average wage return
and inflation.

Consider the data set X = [x¢, yt, 2¢] here X is a 3 X n matrix with the data as columns
where ¢t € {1,,,n}. In the first scenario, a drift u is added to the variable z;. Hence the
data set can be written as X = [u + Inx1 + @, Yt, 2¢), where, I»1 is a row vector of ones.
This procedure is done to create a low and high scenario for average wage where

@ = —0.07 for the low scenario and p = 0.07 for the high scenario.

This procedure is repeated for inflation and hence X = [x4, s, it - Inx1 + 2¢] is generated
for the same values of . This creates high and low values for inflation.

The variable y; (AP-funds return) is not investigated as the other two variables since it
can be described as white noise.

When this procedure has been performed the steps under section VAR bootstrap are
repeated to see how the coefficient estimates vary when the altered data is used to
estimate the new model.

Two scenarios are investigate for the variables average wage return and inflation in the
VAR model, to see how these scenarios affect the output of equations (13), (14) ,(16),
(15), i.e. how does the coefficients in the VAR model change according to the changes in
input data and how income index, real average wage return and average wage change
during the scenarios.

3.2.2 Scenario probability

Another method to obtain high and low scenarios is to sort the residuals in a negative
and a positive part and use equation (17).

Ag+ AX, Ay <
Xt:{ 0+ t—-1t€, P<mMm (17)

Ao+ AXy 1 +€, p>p1
In equation (17) ej‘ are the positive residuals and €, negative residuals. p are random

samples from the uniform distribution U(0,1) and p; € [0,1] is a constant by design. If
p1 = 0.3 then it is more likely that one draw negative residuals than positive residuals see
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(18), this creates the low scenario. The high scenario is created by simply switch the
inequalities see equation (19)

Ap+AX; 1+ €, p<03

X, = t (18)
Ag+ AX; 1+ €, P> 0.3
Ag+ AX; 1+ €, p>03

X, = t (19)
Ay +AXy_1+€, p<03
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4 Results scenario analysis

Below are the results of the modelling presented. For the VAR model to be of any use in
the scenario analysis one need to find at least one non-diagonal coefficient in the matrix
of coefficients to be non zero. If all the non-diagonal coefficients are zero then the
processes can be modelled as three univariate time series i.e. a change in one parameter
does not affect the other parameters.

First the data used for modeling is presented, then the VAR model followed by results
form scenarios analysis and lastly everything is put together to analyse the effect on the
pension balance.

4.1 Data

In this section data for the modelling is presented. The raw data has been collected from
”Statistiska centralbyran” (SCB) [10] and [7] and the Pension agency [11] and [12]. The
data consists of average wages, CPI and returns from the AP-funds. By using the raw
data income index is calculated with (16) and pension balance is calculated with (1). The
time period for which the data were selected is 1967-2013. The reason for choosing this
time period was that for certain years before 1967 the average wage was replaced with
median wage that seemed like a poor substitute for the average.

The CPI data used has a reference year, which is the year 1914, and therefore prices are
compared to that year with the reference value 100.
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Figure 3: Inflation calculated using CPI from SCB.

Figure 3 shows a time series for inflation which is calculated as log returns of CPI.

The average wage is defined as total earned income for residents in Sweden from the first
of januari to the 31 december the same year. All income classes are included in the data
even persons who have a zero income. The pension agency does not use average wage
when they calculate the parameters mention above, instead they use PGI (pensionable
income). When the average of PGI is calculated it excludes persons who have a zero
income. Hence the PGI is greater than average income. All calculations in this report are
done with average income from SCB. Before 1991 capital income was included in the
calculations this is not included after 1991.
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Compare PGI to average wage from SCB
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Figure 4: The red line is the average wage from SCB and the blue line is average PGI
from the pension agency.

Note that the average wage is smaller than the pensionable income, which can bee seen in
Figure 4.
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Average income
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Figure 5: Average income from SCB ( years 1967-2013).

Figure 5 shows the average income in Sweden for the years 1967-2013. The data has been
collected from SCB as described above. The average wage for year t will be denoted as
AW,.

Returns from AP-funds in units of percent are received from the pension agency,
calculated as the net yield divided by fund capital and half of ”flow” (i.e. fees and other
income are subtracted with expenses) [11]. To make this data consistent with the average
wage returns and inflation, log returns are calculated. Finally the real AP-fund returns
are obtained with the following equation

Yi =Yt — % (20)

Here y; is the real return form the AP-funds, y; is the return from the AP-funds and 2 is
the inflation. Real returns from the AP-funds for the considered observation period is
shown in Figure 6.
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Real returns from the AP funds
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Figure 6: The real return from the AP funds for the years 1967-2013.

4.2 Vector autoregressive model

When one fits the VAR(1) model with OLS to the data set x; (average wage return), y;
(AP-funds return) and z; (inflation) the model below is obtained.

4 0.01 0.74 0.05 0.00] [z, e
Xi= |y | = [0.07] + [=0.25 0.02 0.42| |ys_1| + |€ (21)
2t 0.0 0.50 0.03 0.50] |21 €}

The following cross correlation were obtained from the data sets.

1.00  —0.02 0.76
po= |—0.02 1.00 001 (22)
0.76  0.01 1.00

0.71 0.11 0.53
py = 004 003 0.11 (23)
0.79 0.07 0.80
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l Q) |df p-value
1.00 | 4.13 | 9.00 | 0.90
2.00 | 14.72 | 18.00 | 0.68
3.00 | 20.87 | 27.00 | 0.79
4.00 | 22.28 | 36.00 | 0.96
5.00 | 36.76 | 45.00 | 0.80
6.00 | 45.09 | 54.00 | 0.80
7.00 | 47.94 | 63.00 | 0.92
8.00 | 52.26 | 72.00 | 0.96
9.00 | 64.01 | 81.00 | 0.92
10.00 | 76.81 | 90.00 | 0.84

Table 1: The table shows results of testing the residuals from the fitted VAR(1) model
with a Ljung-Box test.

It can be seen in Table 1 that all p-values are high which indicate that the null
hypothesis that residuals are not white noise cannot be rejected.

The covariance matrix for the residual can be seen in equation (24). The covariance
values are small, approximately zero, between the residuals from the VAR model.

0.001 0.000 0.000
$ = {0.000 0.006 0.000 (24)
0.000 0.000 0.000

Figures, 7-10 are created from simulations of equation 21.
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Resampling of real AP-funds return sd of simulations of real AP-funds return
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Figure 7: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real return
from the AP-funds.
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Figure 8: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviation for each time step in the bootstrapped resampling procedure of real average wage
returns.
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Average wage sd of simulations of Average wage
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Figure 9: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviation for each time step in the bootstrapped resampling procedure of average wage.

Income index sd of simulations of income index
(= o
(= S
w (3]
s —
@ s |
o | 2
5 ¥
©°
£ (=]
2 51 : P8
g
£ g | /
o™
e /’/)/ 2
8 Pl
i ‘4—’/ ////
o - < —
T T T T T T T T T 1
1970 1980 1990 2000 2010 1970 1980 1980 2000 2010
Years Years

Figure 10: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviation for each time step in the bootstrapped resampling procedure of income index.
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4.3 Uncertainty in coefficient estimation

In the previous section "model” it is described in step (4) how the uncertainty in the
coefficient estimates are investigated. The result is that returns from the AP-fund can be
modelled as a random walk.

Coefficient I I,

ay -0.02 0.02
as 0.00 0.12
as -0.03 0.00
c11 049 1.13
Co1 -1.36 1.03
C31 0.26 0.76
c12 -0.05 0.17
C22 -0.21 0.34
c32 -0.04 0.11
C13 -0.28 0.32
C23 -0.65 1.57
C33 0.32 0.77

Table 2: The table shows confidence intervals calculated as described under ”model” step
(4) with average wage return, AP-funds return and inflation. The data are for the years
1967-2013.

From Table 2 it can be seen that on a 95% confidence level the following system of time
series can be obtained.

1

Ty = C11%¢—1 t+ €
2
Yt = €

2 =311 + 3321 + €.
Let us note that the system can be written in triangular from

3
2t = €3324—1 + C31T¢—1 + €

1
Ty = C11T¢—1 + €

2
Yt = € -

Which associates the recursive modeling ideas in econometrics by Herman Wold.
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4.4 Scenarios with drift

4.4.1 Low average wage returns

In the scenario low average wage return, a drift u = —0.07 is added to log returns of
average wage. The scenario generates equation (25). The following VAR model is

contained

Ty —0.01 0.74 0.05 0.00
Xi= |yl =006 | +]|-0.25 0.02 0.42
2t 0.03 0.50 0.03 0.50
Coefficients I I,

a; -0.03 0.01

az -0.02 0.12

a3 0.01 0.04

ci1 050 1.13

C21 —1.49 088

C31 0.19 0.73

c12 -0.06 0.17

coo -0.21 0.32

czo -0.04 0.12

C13 -0.27 0.32

co3 -0.63 1.66

c33  0.34 0.80

Tt—1
Yt—1
Zt—1

+

1
€t
€

3
€t

(25)

Table 3: Confidence interval for the scenario low wage. A drift of u = —0.07 is added to
the log returns of average wage from the years 1967-2013.

Figure 11-14 are obtained from simulations of equation (25).
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Resampling of real AP-funds return sd of simulations of real AP-funds return
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Figure 11: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
AP-funds return.
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Figure 12: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
wage return.
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Figure 13: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line), the values are in 1000 SEK.
Right: Plot shows standard deviations from each time step in the bootstrapped resampling
procedure of real average wage return.
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Figure 14: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average

wage return.
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4.4.2 High average wage returns

In the scenario High average wage return, a drift ;4 = 0.07 is added to log returns of
average wage.

Ty 0.03 0.74 0.05 0.00] [z el
X;=|y| =1009 | +[-025 0.02 042 |y—1| + eg (26)
2 —0.04 0.50 0.03 0.50| |z, e

Coefficients I; I,
ap -0.01 0.06
ar -0.17 0.13
az -0.07 -0.01
C11 0.45 1.08
co1 -1.06 1.66
c31 021 0.71

ci2 -0.01 0.15
C292 —015 069
c3o2 -0.02 0.10
ci3 -0.27  0.30
co3 -0.97  1.67
c33 034 0.79

Table 4: Confidence interval for the scenario low wage. A drift of u = 0.07 is added to
the log returns of average wage from the years 1967-2013.

Figures 15-18 are obtained from simulations of equation (26).
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Resampling of real AP-funds return sd of simulations of real AP-funds return
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Figure 15: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
AP-funds return.
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Figure 16: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
wage returns.
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Average wage sd of simulations of Average wage
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Figure 17: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line), the values are in 1000 SEK.
Right: Plot shows standard deviations from each time step in the bootstrapped resampling
procedure of real average wages.
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Figure 18: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
income index
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4.4.3 Low inflation

In the scenario low inflation a drift 4 = —0.07 is added to log returns of inflation.
Ty 0.01 0.74 0.05 0.00] [z €
Xi= |y| =010 | + [-0.25 0.02 0.42| |y_1]| + |€ (27)
2 —0.04 0.50 0.03 0.50| |z €

Coefficients I I,
a; -0.02 0.04
az -0.07 0.16
az -0.06 -0.02
C11 0.45 1.08
C21 -1.12 1.71
C31 0.20 0.72
ci2 -0.01 0.15
C29 0.14 0.70
c3o2 -0.02 0.10
C13 -0.27 0.30
co3 -0.82 1.82
cz3  0.33  0.76

Table 5: Confidence interval for the scenario low wage. A drift of y = —0.07 is added to
the log returns of inflation from the years 1967-2013.

Figures 19-22 are obtained from simulations of equation (27).
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Resampling of real AP-funds return sd of simulations of real AP-funds return
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Figure 19: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
AP-funds return.
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Figure 20: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
wage return.
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Average wage sd of simulations of Average wage
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Figure 21: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line), the values are in 1000 SEK.
Right: Plot shows standard deviations from each time step in the bootstrapped resampling
procedure of average wage.
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Figure 22: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of income index.
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4.4.4 High inflation

In the scenario high inflation a drift 4 = 0.07 is added to log returns of inflation.

T 0.01 0.74  0.05 0.00] [2—1 €
X;= |y | = |0.04] + =025 0.02 0.42] |y_1| + |€ (28)
2 0.03 0.50 0.03 0.50] |21 €

Coefficients I I,
a; -0.02 0.03
az -0.14 0.09
as 0.00 0.04
C11 0.45 1.08
C21 -1.16 1.66
C31 0.18 0.70
C12 -0.01 0.15
c2  0.15 0.68
C32 -0.02 0.10
ci3 -0.31 0.32
ce3 -0.78 1.65
C33 0.33 0.79

Table 6: Confidence interval for the scenario low wage. A drift of u = —0.07 is added to
the log returns of inflation from the years 1967-2013.

Figures 23-26 are obtained from simulations of equation (28).
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Resampling of real AP-funds return sd of simulations of real AP-funds return
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Figure 23: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
AP-funds return.
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Figure 24: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
wage returns.
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Average wage sd of simulations of Average wage
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Figure 25: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line), the values are in 1000 SEK.
Right: Plot shows standard deviations from each time step in the bootstrapped resampling
procedure of average wages.

Income index sd of simulations of income index
L= o
o (=
™~ o~
8
w
[=)
(=) B2
2 2
>
2 o
£ 27
E o E ‘8' B
= /-
g /
2 — /
g e _— 8 1
g — '——:)”’ g
- ,.-—//&_7_7_ o "//
o - - o —
T T T T T T T T T 1
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
Years Years

Figure 26: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
income index.
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4.5 Scenarios with probability

In this section the results of the second scenario method is presented, where the residuals
have been split up into a negative and positive part.

Ay + AX,_ + p<03

X, — o+ t—1+ € LIRS (29)
Ag+ AXi 1 +€, p>03

In (29) one can see that it is more likely to choose a negative value than a positive value

because p € U(0,1) where U denotes the uniform distribution. Hence this gives the low
scenarios and if the inequalities are changed, i.e.,

(30)

X, - Ag+AX;_1+€t, p>03
T\ A0+ AX e, p<03

the high scenarios are received.

4.5.1 Low average wage returns

In this scenario one has sorted the residuals from the log returns of average wage into a
positive and a negative part, and it is more likely to draw a negative residual than a
positive residual as described above.

Figures 27-30 are obtained from simulations of equation (29) when the residuals from
average wage are sorted.
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Resampling of real AP-funds return sd of simulations of real AP-funds return
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Figure 27: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
AP-funds return.
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Figure 28: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
wage return.
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Average wage sd of simulations of Average wage
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Figure 29: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line), the values are in 1000 SEK.
Right: Plot shows standard deviations from each time step in the bootstrapped resampling
procedure of real average wage return.
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Figure 30: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
wage return.
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4.5.2 High average wage returns

In the scenario one has sorted the residuals from the log returns of average wage into a
positive and a negative part, and it is more likely to draw a positive residual than a
negative residual the opposite of the low scenario case.

Figures 31-34 are obtained from simulations of equation (30) when the residuals from
average wage are sorted.
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Figure 31: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
AP-funds return.
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Resampling of real wage return sd of simulations of real wage return
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Figure 32: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
wage return.
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Figure 33: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line), the values are in 1000 SEK.
Right: Plot shows standard deviations from each time step in the bootstrapped resampling
procedure of real average wage return.
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Income index sd of simulations of income index
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Figure 34: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
wage return.

4.5.3 Low inflation

In the scenario one has sorted the residuals from the log returns of inflation into a
positive and a negative part, and it is more likely to draw a negative residual than a
positive residual.

Figures 35-38 are obtained from simulations of equation (29) when the residuals from
inflation are sorted.
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Resampling of real AP-funds return sd of simulations of real AP-funds return
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Figure 35: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
AP-funds return.
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Figure 36: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
wage return.
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Average wage sd of simulations of Average wage
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Figure 37: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line), the values are in 1000 SEK.
Right: Plot shows standard deviations from each time step in the bootstrapped resampling
procedure of real average wage return.
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Figure 38: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line), the values are in 1000 SEK.
Right: Plot shows standard deviations from each time step in the bootstrapped resampling
procedure of real average wage return.
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4.5.4 High inflation

In the scenario one has sorted the residuals from the log returns of inflation into a
positive and a negative part, and it is more likely to draw a positive residual than a
negative residual as described above.

Figures 39-42 are obtained from simulations of equation (30) when the residuals from
inflation are sorted.
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Figure 39: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
AP-funds return.
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Resampling of real wage return sd of simulations of real wage return

© | e |
o o
o | ©
o o 4
<
- T A —
57 1 2
e ) =a T
5 o | W\/\ M\I N\/‘/\_/\,\A/— 3
H ‘\\ V "‘WJ 3 |
g ;. - T T < /
o e
q’ - o
Lo (=]
. o 4
T T T T T T < T T T T 1
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
Years Years

Figure 40: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
wage return.
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Figure 41: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line), the values are in 1000 SEK.
Right: Plot shows standard deviations from each time step in the bootstrapped resampling
procedure of real average wage return.
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Income index sd of simulations of income index
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Figure 42: Left: Plot shows the 5% largest values (red line), the mean values (green line),
the 5% smallest values (blue line) and the data (black line). Right: Plot shows standard
deviations from each time step in the bootstrapped resampling procedure of real average
wage return.

5 Results pension balance

To get a better understanding of what the risks are in the pension system the pension
balance, see equation (1) is calculated for the years 1970-2013 (the years that it is
possible calculate income index). The pension balance is approximated using equation
(31) from [13]. The balance ratio is not considered (it is considered in [13]) see equation
(31). It is assumed that 16% of the average wages are the premiums. The maximum
premium is 7.5 income bases (inkomstbasbelopp) for respective year and the product
ACF; x IGF; =~ 1. Since the second scenario model (scenario with probability) gave less
extreme scenarios it is chosen to be presented here.

I
PB! = (PB!_, + Pt)I—t x ACF; x IGF, (31)
t—1
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Pension balance sd of pension balance
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Figure 43: Left: Plot shows the 5% largest values (red line), the mean values (green
line), the 5% smallest values and (blue line), the values are in 1000 SEK. Right: Plot
shows standard deviations from each time step in the bootstrapped resampling procedure
of real average wage return.

Figure 43 shows the pension balance from simulated data. One can see that there is a big
standard deviation which seems to increase with respect to time.
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Figure 44: Left: Plot shows the 5% largest values (red line), the mean values (green
line), the 5% smallest values and (blue line), the values are in 1000 SEK. Right: Plot
shows standard deviations from each time step in the bootstrapped resampling procedure
of real average wage return.

Figure 44 shows the pension balance from simulated data when the scenario low inflation
with probability is used. One can see that the standard deviation is smaller than than
from simulations with the original data.
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Figure 45: Left: Plot shows the 5% largest values (red line), the mean values (green
line), the 5% smallest values and (blue line), the values are in 1000 SEK. Right: Plot
shows standard deviations from each time step in the bootstrapped resampling procedure
of real average wage return.

Figure 45 shows the pension balance from simulated data when the scenario high
inflation with probability is used. One can see that the standard deviation is much larger
than from simulations with the original data.
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Figure 46: Left: Plot shows the 5% largest values (red line), the mean values (green
line), the 5% smallest values and (blue line), the values are in 1000 SEK. Right: Plot
shows standard deviations from each time step in the bootstrapped resampling procedure
of real average wage return.

Figure 46 illustrates the pension balance from simulated data when the scenario low
average wage with probability is used. One can see that the standard deviation is much
smaller than from simulations with the original data.
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Figure 47: Left: Plot shows the 5% largest values (red line), the mean values (green
line), the 5% smallest values and (blue line), the values are in 1000 SEK. Right: Plot
shows standard deviations from each time step in the bootstrapped resampling procedure
of real average wage return.

Figure 47 shows the pension balance from simulated data when the scenario high wage
with probability is used. One can see that the standard deviation is much larger than
from simulations with the original data.
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6 Conclusion

The investigation of lag, variance and correlation structures between the input variables
are presented in the results. It can be seen in equation (22) that there are correlations
between average wage return and inflation, but small correlation between average wage
return and the AP-funds return. Equation (22) also suggest small correlation between
AP-funds return and inflation.

From the VAR(1) model one can conclude that inflation depends on average wage and
itself at one time lag. The model also show that average wage depends on itself at one
time lag. It could also be seen that the returns from the AP-funds does not depend on
either inflation, average wage return or itself.

When the simulated parameters are put back in the equations (16), (12), (13) and (14),

the return variables seem to have a stable constant standard deviation, see figures 7 and
8. However, the results suggest that average wage and income index have an increasing

standard deviation, see figures 9 and 10.

When the model is tested in different scenarios for the parameter average wage return tab
3 and 4 show that ag (intercept for inflation) becomes significant from zero. For the case
low average wage return az becomes positive and for the other case high average wage
return ag becomes negative. The other coefficients are unchanged.

When the model is tested in different scenarios for the variable inflation as becomes
negative for the scenario low inflation and zero for high inflation, see Table 6 and 5

The largest variation in income index seems to depend mostly on changes in average wage
returns, see Figure 14 and Figure 18 for high and low scenario on average wage return.
The scenarios for inflation do not seem to affect the income index as much as the average
wage return scenarios, see figures 22 and 26.

In the variables real average wage return and real return form the AP-funds one can see
changes in figures 11, 15, 19, 23, 13, 33, 21 and 24. Low inflation generates a higher real
average wage return and high inflation generate a low real average wage return and
similar for the real AP-funds return.

The second scenario method (scenario with probability) reveal similar results as the first
scenario method (adding a drift), but not as extreme as when adding a drift compare
figures 33 and 17.

One can see that the pension balance is affected in a similar way as income index,
pension balance is mostly affected by the change in average wage see figure 47 and 46

56



7 Discussion

The results of the estimated VAR(1) model seems satisfying at first, but when looking at
the confidence intervals for the estimated coefficients it can be seen that 8 of the 12
coefficients are not significantly separated from zero. If this is the case then the model is
not very useful. From the scenario analysis one can see how real average wage returns
and inflation depend on each other. The analysis shows drastic changes in income index
and average income in scenarios high and low average wage return.

A reason why a change in the average wages affect the income index more than a change
in inflation is that the VAR model suggests that inflation deepens on average wage
returns but that average wage returns does not depend on inflation.

It is a challenge to model data over a 46 year time period because so much has happened
under this time e.g. financial crises, negative repo rate. The large variations in the model
is probably caused of large variations in the data

To make the model more realistic one could consider a VAR model that describes average
wages, inflation and AP funds return better than the VAR model used in this master
thesis. A suggested further research is to include demographic factors in the model, i.e.
age structures.
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Appendices

A Algebra

In this section some Algebra concepts are presented. These concepts are the eigenvalues
of a matrix, the vectorization of a matrix and the Kronecker product of two matrices.

Let A be a scalar number real or complex and b be a m x 1 vector. If equation (32) holds,
A is called the eigenvalue of A and b is the corresponding eigenvector.

Ab = \b (32)

There are m eigenvalues and m eigenvectors for a m X m matrix A [4]. Now some useful
vector and matrix notations are defined. The vectorization of a matrix A = [ay, .., a,]
where a; for ¢ € {1,...,n} is m x 1 is called vec(A4) and has the dimension mn x 1

a)
vec(A) =

an

The Kronecker product for two matrices A,uzxn and Cpxq is defined as

alylc CLQC N aLnC

a271(3 a2 2 N al,nc
A®C= . : .

am1C am2C ... 4mnC

The resulting matrix has dimension mp x ngq.
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B Ordinary least squares
Let us consider the model
Y=X(+e
Here Y is an n x 1 matrix and X is n x (k + 1) matrix and e is a n X 1 matrix. From [14]

the estimate B of B that minimises the sum of squares é7'é = |¢| is received from the
normal equations.

Hence

[ is the OLS estimate of j3.
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