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Abstract

In this thesis the use of VaR based models are investigated for the purpose of setting
margin requirements for Fixed Income portfolios. VaR based models has become one of
the standard ways for Central Counterparties to determine the margin requirements for
different types of portfolios. However there are a lot of different ways to implement a VaR
based model in practice, especially for Fixed Income portfolios. The models presented in
this thesis are based on Filtered Historical Simulation (FHS). Furthermore a model that
combines FHS with a Student’s t copula to model the correlation between instruments in
a portfolio is presented. All models are backtested using historical data dating from 1998
to 2016. The FHS models seems to produce reasonably accurate VaR estimates. However
there are other market related properties that must be fulfilled for a model to be used to
set margin requirements. These properties are investigated and discussed.
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Användningen av Value-at-Risk baserade modeller för Fixed Income
marknaden som riskmått för Central Counterparty clearing.

Sammanfattning

I denna uppsats undersöks användningen av VaR baserade modeller för att sätta marginkrav
för Fixed Income portföljer. VaR baserade modeller har blivit en standardmetod för Cen-
tral Counterparties för att räkna ut marginkrav för olika typer av portföljer. Det finns
m̊anga olika tillvägag̊angssätt för att räkna ut VaR i praktiken, speciellt för Fixed Income
portföljer. Modellerna som presenteras i den här uppsatsen är baserade p̊a Filterad His-
torisk Simulering (FHS). Dessutom presenteras en modell som kombinerar FHS med en
Student’s t copula för att modellera korrelationen mellan olika instrument. Alla modeller
backtestas p̊a historisk data fr̊an 1998 till 2016. Modellerna ger rimliga VaR skattningar
i backtesterna. Däremot finns det andra marknadsrelaterade egenskaper som en modell
m̊aste uppfylla för att kunna användas för att sätta margin. Dessa egenskaper undersöks
och diskuteras.
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1 Introduction

In this thesis the use of Value-at-Risk (VaR) based models to determine the Initial Margin
(IM) of a portfolio consisting of Fixed Income instruments is investigated. VaR is one of
the standard measures that is used to describe the risk of a portfolio. The advantages of
using VaR as a risk measure is that it is intuitively easy to understand. Determining the
VaR of a portfolio requires assumptions about the loss distribution of the portfolio, and
different assumptions will lead to different results. One of the most popular model families
is known as Filtered Historical Simulation (FHS). This method of determining VaR has
been widely studied academically, see for example [13] and [4], however it is not clear if
these models are suitable to determine the IM in a practical implementation.

The role of a central counterparty (CCP) is to ensure stability and efficiency in financial
markets. The CCP acts as an intermediary between counterparties in a financial transac-
tion and thereby makes sure that the contractual obligations of the trade is fulfilled even in
the case of default of one of the counterparties. Thus one important practice of the CCP is
to manage the risk of financial agreements between counterparties. This is done in several
ways, one of which is to require the counterparties to post margin associated with the risk
of their portfolios. The margin is calculated in a monetary measure and the counterparty
corresponding to each portfolio must provide collateral to cover the margin.

In the case that a counterparty defaults, the time that it takes to replace their portfolio
is called the liquidation period or margin period of risk. More specifically, this is the time
it takes to close out the instruments of a portfolio and to hedge the market risk. The
purpose of the IM is to protect the portfolio against the market risk during the liquidation
period.

One of the most important properties of the IM is that the model which is used should
be transparent to the members of the CCP such that the members can understand the
implications of different types of instruments on the IM of a portfolio. Furthermore the
IM should be dynamic in the sense that it adapts to current market conditions. A sudden
increase in volatility should be reflected in the IM. However it is also important that the IM
does not overly compensate for dynamic volatility since this will result in a large difference
between the IM during calm and volatile periods. The large IM:s during volatile periods
will then result in even more stress in an already stressed market and thus encourage
market instability, this is known as procyclicality. For a discussion about the procyclicality
of different IM models see [12] and [10].

In a report by ESMA (European Securities and Markets Authority) [11] it is stated that:
According to the Regulatory Technical Standards, a CCP shall ensure that its policy for se-
lecting and revising the confidence interval, the liquidation period and the look-back period
deliver forward looking, stable and prudent margin requirements that limit procyclicality
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to the extent that the soundness and financial security of the CCP is not negatively af-
fected. This shall include avoiding when possible disruptive or big step changes in margin
requirements and establishing transparent and predictable procedures for adjusting margin
requirements in response to changing market conditions.

Since the purpose of the IM is to protect the portfolio during the liquidation period the VaR
value should be determined on a time period corresponding the length of the liquidation
period. However, the available data can be used to determine intraday changes in value of
a portfolio and thus more data points will be available to determine one day VaR values.
For the purpose of investigating the different models this will increase the significance of
the results, and thus the one day VaR will be modeled in this thesis.

The amount of models that are possible to use to determine the VaR of a portfolio are
immense. Thus only a few selected models are investigated in this thesis. The choice to
investigate FHS models were made since they are widely used and have properties that
are interesting from a clearing perspective. Furthermore the accuracy of the available data
and the implications of using different valuation techniques are not explored.

It is the purpose of this thesis to investigate different models for determining the IM
of a portfolio using VaR based models. The best model to use might not be the one
that produces the best results in classical VaR backtests. It is more important that the
model is transparent and robust. Furthermore it is beneficial if the model has parameters
that intuitively describes different kinds of portfolio risk. These parameters can then be
calibrated to account for concerns about the market. Additionally the models should
comply with regulatory restrictions. Thus the implementation of the model might not
be a VaR model by definition. However the model should produce VaR values that are
reasonable in backtesting when the parameters are tuned to the available data.

In Sections 2 - 5 the necessary background knowledge and theory is presented and in
Section 6 the available data is presented. In Section 7 FHS models with different volatility
processes are backtested on portfolios consisting of a single instrument. In Section 8 the
models are extended to a portfolio level. In Section 9 possible adjustments of the model is
discussed to account for regulatory restrictions and market concerns and in Section 10 the
results are discussed.

2 Value-at-Risk

VaR is a risk measure that measures the risk of an investment at a specified confidence level
using the distribution of the potential return (loss) of the investment. If the distribution
of the potential loss L of an investment X is known, the VaR at confidence level p is
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VaRp(X) = F−1L (1− p) (1)

where F−1L is the quantile function of L. The interpretation of VaR is quite intuitive
and this is one of the strengths of using VaR as a risk measure. The formula (1) can be
interpreted as that the probability of a loss exceeding VaRp(X) is p.

There are some theoretical shortcomings of using VaR as a risk measure. Perhaps the most
important is that VaR disregards the distribution of losses greater than the VaR value, this
leads to a problem usually referred to as hiding risk in the tail.

Another shortcoming of VaR is that it is not subadditive. A risk measure ρ is subadditive
if

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) (2)

where X1 and X2 denotes two different investments. This property represents the fact that
diversification should be rewarded and it is especially important from a clearing point of
view. Since VaR is not subadditive it is theoretically possible that the VaR of a portfolio
is greater than the sum of the VaR of the individual instruments.

To account for these shortcomings, another risk measure known as Expected Shortfall (ES)
has been argued to be an improvement of VaR. The ES at confidence level p of investment
X is defined as

ESp(X) =
1

p

∫ p

0
VaRu(X)du. (3)

Intuitively, ES is the average VaR below the threshold p. Thus it resolves the problem of
hiding risk in the tail. In addition ES is subadditive.

2.1 Estimation

There are several different approaches to estimating the VaR of a portfolio including both
parametric and non-parametric approaches. An example of a parametric approach is the
Var-Covar method where the returns are assumed to have a multivariate normal distribu-
tion. The VaR can then be determined analytically from the quantile using the properties
of an elliptical distribution. This goes against many of the widely accepted stylized facts
about financial returns such as volatility clustering and fat tailedness.

An example of a non-parametric approach is the Historical Simulation where the returns
are assumed to follow the distribution of past returns. The VaR/ES is then constructed by
taking the empirical quantile of a sample of past returns. Here no assumptions are made
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about the specific distribution of the returns. The empirical quantile estimate F̂−1n,X for
the sample (X1, ..., Xn) of independent and identically distributed (IID) random variables
is

F̂−1n,X(p) = X[n(1−p)]+1,n (4)

where (X1,n, ..., Xn,n) is ordered such that X1,n ≥ ··· ≥ Xn,n and the hard brackets denotes
the floor function. Thus the empirical VaR estimate for a sample of historical ordered losses
(L1,n, ..., Ln,n) is

V̂aRp = F̂−1n,L(1− p) = L[np]+1,n. (5)

The corresponding empirical ES estimate is acquired by inserting (4) into (3) such that

ÊSp =
1

p

∫ p

0
L[nu]+1,ndu =

1

p

 [np]∑
k=1

Lk,n
n

+

(
p− [np]

n

)
L[np]+1,n

 . (6)

Note that when [np] is an integer the empirical ES estimate will simply be the average of
the [np] largest losses.

The drawback of HS is that the volatility is assumed to be constant. For financial loss
data volatility clustering can often be observed, thus the assumption that the losses are
IID does not seem to be reasonable.

3 Filtered Historical Simulation

3.1 Filtering

The assumption that the volatility is constant in a sample of financial returns can often
be rejected simply by inspection. The returns often shows properties such as volatility
clustering. When working with VaR models it is convenient to model the losses (negative
returns) and this approach will be used in this thesis. The FHS model accounts for time
dependent volatility by filtering each loss in a sample with a volatility process. The word
filtering is used by convention and refers to that the losses in a sample are scaled with
some volatility process to obtain a sample of filtered losses. Let lt and σt be the loss and
volatility process of an investment at time t respectively. The losses are then assumed to
follow the relation
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lt = σtzt (7)

where zt is the filtered loss at time t. The set of filtered losses {zt} are assumed to be
IID random variables with zero mean. The volatility process can be specified in different
ways but it should be predictable given the information Ft−1. Thus for a sample of losses
(L1, ..., LT−1) and a defined volatility process σt the filtered losses (Z1, ..., ZT−1) can be
obtained by filtering each loss with the volatility process. Since the filtered losses are
assumed to be IID the VaR at time T given the information FT−1 is

VaRT
p = σTF

−1
zT

(1− p). (8)

The quantile of zT is then estimated by the empirical quantile of the filtered losses.

In the FHS model one assumes that the losses of an investment follow a time series process
such that the volatility of the losses is allowed to be time dependent. In this thesis the
GARCH (Generalized Autoregressive Conditional Heteroscedasticity) and EWMA (Expo-
nentially Weighted Moving Average) processes are used to filter the samples. These are
two relatively simple models that have been widely studied for the purpose of modeling
financial returns. Both of these models have properties that will make the volatility process
react appropriately to changing market conditions.

3.2 GARCH

Let {zt} be a set of IID random variables with zero mean and variance 1. Then the
GARCH(1,1) process is defined as

lt = σtzt

σ2t = ω + αl2t−1 + βσ2t−1
(9)

For ω > 0 and α + β < 1 the GARCH(1,1) process is stationary. In this thesis only the
GARCH(1,1) model will be studied and it will be referred to as the GARCH process.

The parameters (ω, α, β) can be estimated using the maximum likelihood method. To
use this method distributional assumptions of {zt} must be made. In the case that {zt}
is assumed to be normally distributed the Gaussian likelihood function of the sample
(L1, .., Ln) is given by
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Ln(ω, α, β;L1, ..., Ln) =
n∏
t=1

1√
2πσ2t

exp

(
− L2

t

2σ2t

)
(10)

with σ2t given as in (9). Maximising (10) is equivalent to maximising the Gaussian log-
likelihood given by

ln(ω, α, β;Z1, ..., Zn) = −1

2

n∑
t=1

(log(2π) + log(σ2t ) +
Z2
t

2σ2t
). (11)

It is possible to assume different distributions of {zt} in which case other likelihood func-
tions are acquired. All estimation of parameters of the GARCH model used in this thesis
were performed using the rugarch package in R [5] and {zt} are assumed to have a standard
normal distribution. Note that the assumption of normality is only used in the estimation
of the parameters.

3.3 EWMA

Let {zt} be a set of IID random variables with zero mean. Then the EWMA process σ2t is
defined as

lt = σtzt

σ2t = (1− λ)l2t−1 + λσ2t−1, λ ∈ (0, 1)
(12)

Note that the EWMA process can be seen as a GARCH(1,1) process with (ω, α, β) =
(0, 1− λ, λ), however with these parameters the GARCH process is not stationary (in fact
the EWMA process is a form of Integrated-GARCH process). The EWMA process was
popularised by RiskMetrics [7]. The EWMA process can be viewed as a weighted average of
the sample variance. To demonstrate this consider the sample (L1, ..., Lt−1). The EWMA
volatility estimate can then be expressed as

σ2t =

t−1∑
i=1

αiL
2
t−i, αi = (1− λ)λi−1 (13)

With these weights equation (13) can be rewritten as
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σ2t =
t−1∑
i=2

(1− λ)λi−1L2
t−i + (1− λ)L2

t−1

= λ

t−2∑
i=1

(1− λ)λi−1L2
t−1−i + (1− λ)L2

t−1

= λσ2t−1 + (1− λ)L2
t−1.

(14)

Typical values of λ is in the range (0.90, 0.99). For these values the weights αi will be
greater for small i, thus more weight are assigned to recent observations. The advantage
of using the EWMA process as a volatility estimate in the filtering is that there is only one
parameter. Conventionally no estimation is done when using the EWMA process, instead
the value of λ is fixed to a value which is assumed to describe the properties of the sample.
Thus no estimation is required and no assumptions about the distribution of {zt} needs
to be made. From this point onward EWMA 95 and EWMA 99 will refer to an EWMA
process with λ equal to 0.95 and 0.99 respectively.

3.4 Kupiec unconditional coverage test

The Kupiec test was introduced by Kupiec in ’95 and has become a standard way of
backtesting VaR models [8]. Let {It} be a sequence of indicator variables defined as 1 if
the VaR is lower than the loss at time t (if a breach has occurred) such that

It =

{
1 if VaRt

p < Lt

0 if otherwise
(15)

By the definition of the VaR the probability of a breach should be p such that E[It] = p.
Thus we want to test the null hypothesis E[It] = p against the hypothesis E[It] 6= p. The
likelihood of the null hypothesis is

L(p; I1, ..., In) = (1− p)n0pn1 (16)

where n1 is the amount of breaches and n0 is n− n1. The likelihood under the alternative
hypothesis is

L(π; I1, ..., In) = (1− π)n0πn1 . (17)

The standard likelihood ratio then becomes
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LR = −2 log

(
L(p; I1, ..., In)

L(π̂; I1, ..., In)

)
(18)

where π̂ = n1
n is the maximum likelihood estimate of π. The LR is assumed to be a reali-

sation of a χ2 random variable with 1 degree of freedom and thus a p-value corresponding
to the rejection of the null hypothesis can be determined.

4 Copulas

Copulas are a tool for specifying the joint distribution of variables which have known
marginal distribution. Let (X1, ..., Xn) be a set of random variables with known marginal
distributions (FX1 , ..., FXn) then the purpose of a copula is to specify the joint distribution
FX1,...,Xn . Copulas are widely used to model correlations within the financial industry. One
of the benefits of using a copula is that it is easy to simulate values from a joint distri-
bution when the marginals are known. There are a lot of different copulas with different
properties and the key to using copulas is to find one that fits well with the data. The
theory of copulas rely on the probability and quantile transforms;

Definition 4.1
If X is a random variable with the continuous marginal distribution F then F (X) is uni-
formly distributed on the interval (0, 1).

If U is uniformly distributed on (0, 1) and G is any distribution function, then G−1(U) has
distribution function G.

Using these properties it is possible to specify a joint distribution of (X1, ..., Xn) with a
certain dependence structure by specifying a distribution of a set of dependent uniform

(0, 1) variables (U1, ..., Un). Since Xi
d
= F−1Xi

(Ui), i ∈ {1, ..., n} the marginals will be the

same for (X1, ..., Xn) and (F−1X1
(U1), ..., F

−1
Xn

(Un)) but the correlation will be ”inherited”
from the uniform variables. In a Student’s t copula the uniform variables are distributed
as


U1

U2
...
Un

 d
=


t−1ν (Z1)
t−1ν (Z2)

...
t−1ν (Zn)

 (19)

where (Z1, ..., Zn)T have a multivariate Student’s t distribution with ν degrees of freedom
and correlation matrix R and t−1ν denotes the quantile function of the Student’s t distri-
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bution with ν degrees of freedom. The density function fν,R of the multivariate Student’s
t distribution with ν degrees of freedom and correlation matrix R is given by

fν,R(x) =
Γ
(
ν+n
2

)
Γ
(
ν
2

)
νn/2πn/2

|R|−1/2
(

1 +
1

ν
xTR−1x

)−(ν+n)/2
. (20)

Let FU1,...,Un denote the joint distribution function of (U1, ..., Un) then

FU1,...,Un(FX1(x1), ..., FXn(xn)) = P(U1 ≤ FX1(x1), ..., Un ≤ FXn(xn))

= P(F−1X1
(U1) ≤ x1, ..., F−1Xn

(Un) ≤ xn)

= FX1,...,Xn(x1, ..., xn)

(21)

The distribution function C = FU1,...,Un of a random vector (U1, ..., Un) is called a copula.
Thus the Student’s t copula with ν degrees of freedom and correlation matrix R is

Ctν,R(u1, ..., un) = tν,R(t−1ν (u1), ..., t
−1
ν (un)). (22)

As seen in equation (19) simulating from a Student’s t copula is easily done by simulating
from a multivariate Student’s t distribution and then transforming the resulting variables
appropriately.

The density of the Student’s t copula can be derived from (22) and (20) to be

c(u1, ..., un) =
Γ
(
ν+n
2

)
Γ
(
ν
2

)n−1 (
1 + xTR−1x

ν

)− ν+n
2

|R|1/2Γ
(
ν+1
2

)n∏n
j=1

(
1 +

x2j
ν

)− ν+1
2

(23)

where x = (t−1ν (u1), ..., t
−1
ν (un)). For a more thorough analysis of the properties of the

Student’s t copula see for example [9].

4.1 Kendall’s Tau

Kendall’s tau is a measure of correlation that is convenient when working with copulas. It
is defined for the vector (X1, X2) as

τ(X1, X2) = P((X1 −X ′1)(X2 −X ′2) > 0)− P((X1 −X ′1)(X2 −X ′2) < 0) (24)
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where (X ′1, X
′
2) is an independent copy of (X1, X2). Given a sample {X1, ...,Xn}, Xi =

(Xi,1, Xi,2) of IID random variables the sample estimate of Kendall’s tau is

τ̂ =

(
n

2

)−1∑
j<k

sign ((Xj,1 −Xk,1)(Xj,2 −Xk,2)) (25)

where sign(x) is equal to 0 for x = 0 and x
|x| otherwise. Furthermore if the Xk are elliptically

distributed then the linear correlation parameter can be estimated as

ρ̂ = sin
(π

2
τ̂
)
. (26)

The advantage of using Kendall’s tau is to measure correlation is that it is invariant to
strictly increasing transformations such that if f and g are continuous and strictly increas-
ing functions then τ(f(X1), g(X2)) = τ(X1, X2). Thus if (U1, U2) has a Student’s t copula
such that

(
U1

U2

)
=

(
tν(Z1)
tν(Z2)

)
(27)

where (Z1, Z2) has a multivariate t distribution then τ(U1, U2) = τ(Z1, Z2). The correlation
between Z1 and Z2 is defined in the correlation matrix of the multivariate t distribution,
and since the multivariate t is an elliptic distribution the correlation used in the correlation
matrix can be estimated through (25) and (26).

4.2 Pseudo maximum likelihood estimation of the t copula

Here the pseudo maximum likelihood estimation of the parameters (ν,R) of a Student’s t
copula is explained. Given a set of observations (u1, ...,um) where uk = (u1,k, ..., un,k), k ∈
{1, ...m} the correlation parameters in the correlation matrix R can be estimated through
using (26). The resulting estimate R̂ is not guaranteed to be positive definite, however the
matrix may be adjusted using some method to find a positive definite matrix that is close
to the estimated. Then the only parameter that needs to be estimated is the degrees of
freedom ν. This is done by maximum likelihood such that

ν̂ = argmaxν

(
m∑
i=1

log(c(uk, ν, R̂))

)
(28)

where c is defined in (23).
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This method of estimating the parameters of a Student’s t copula is convenient since it is
fast, even for high dimensions. A pure maximum likelihood estimate where ν and R are
maximised simultaneously is a lot slower and not realistic in high dimensions.

5 Fixed income

In this section the notation and assumptions used to value certain interest rate derivatives
in the fixed income market will be presented. Here fixed income instruments refers to
instruments which are dependent on the interest rate structure of the market. The valu-
ation is done by replicating the cash flows of the corresponding instruments using simple
discounting techniques. There is no correct way of determining the present value of fixed
income instruments, different models will yield different values, it should be mentioned
however that more sophisticated models exist (see for example [14]). For the purpose of
this model the interesting part is the change in values corresponding to changing market
conditions and not the values themselves. The values will be used to construct a set of
characteristic instruments which are supposed to describe some of the common instruments
cleared at NASDAQ.

5.1 Discounting cash flows

The value of having one SEK today is not always the same as having one SEK tomorrow or
in one year. The valuation of future cash flows is known as discounting. Here a cash flow
is a known amount of money to be exchanged at a specified future time, and discounting
refers to the relationship between the value of money at two different times.

Definition 5.1
The discount function d(t, T ) determines the value at time t of having one SEK at time T .
It holds for all times t that d(t, t) = 1.

Thus the discount function can be used to determine the present value of future cash flows.
A zero coupon bond is an example of a contract where a fixed cash flow is to be exchanged
at a future date. The holder of a zero coupon bond is guaranteed to receive the face value
N at a future time T . The value Πzcb at time t of a zero coupon bond with maturity T
and face value N can be determined using the discount function to be

Πzcb(t;T,N) = d(t, T )N. (29)

In this type of contract there is a risk that the issuer of the bond defaults and thus is not
able to pay out the money it owes. This type of risk is known as credit risk. The markets
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view of the risk of a zero coupon bond can be determined from the market price of the
bond, if the bond is considered risky the market price will be lower than if the bond is
considered safe. From equation (29) it can be seen that this also reflects directly on the
discount function. Thus different discount functions are used to discount different types
of instruments. To derive the discount curve d(0, T ), T ≥ 0 (the value today of having
one SEK at time T ) a set of instruments with different maturities are assumed to have
the same underlying risk. The discount curve is then bootstrapped using some method to
determine the continuous discount curve. An example of this is the treasury curve, here a
set of bonds issued by the government are assumed to have the same risk. The discount
curve is then determined using the market prices of these bonds.

The notation Π(t) is used in this thesis to denote the net present value of cash flows to
be received in the future. From this point onward contract specific parameters such as the
maturity T and face value N in the zero coupon bond case will not be explicitly stated as
arguments to simplify the notation.

5.2 Compounding

Compounding determines how interest rates are accumulated over time. The compound-
ing types that will be used in this thesis are simple and yearly compounding. Simple
compounding means that interest are accumulated as a linear function of time such that
the interest gathered between time T1 and T2 are

rs(T1, T2)(T2 − T1), T2 > T1 (30)

where rs is the simple interest rate. The relation between a simple rate and the corre-
sponding discount function is

1 + rs(T1, T2) =
1

d(T1, T2)
. (31)

Yearly compounding means that interest are gathered yearly such that the interest gathered
between time T1 and T2 is

(1 + ry(T1, T2))
T2−T1 − 1, T2 > T1 (32)

where T1 and T2 are measured in years and ry is the yearly compounded interest rate.
The relation between a yearly compounded rate and the corresponding discount function
is

(1 + ry(T1, T2))
T2−T1 =

1

d(T1, T2)
. (33)
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5.3 LIBOR type forward rates

LIBOR is short for London Interbank Offered Rate and it is the average rate that the
leading London banks use to borrow money from each other. The concept of this rate has
extended to other countries and currencies. In the Swedish market the STIBOR (Stockholm
Interbank Offered Rate) is used as a reference rate for different types of interest rate
derivatives. LIBOR type rates are simple rates and the present rates for different maturities
can directly be observed in the market.

Since the STIBOR is associated with cash flows between banks the rate can be used to
determine the discount function corresponding to a loan between banks. Using prices
of interest rate derivatives with the STIBOR as a reference rate the discount function
corresponding to the risk between the Stockholm banks that are used to determine the
STIBOR can be determined. The cash flows of some contracts are determined by what
the STIBOR rate will be at a future time i.e. the forward STIBOR rate. The forward
STIBOR rate is not known at the inception of a contract and thus in valuation it has to
be estimated.

The implied forward STIBOR rate contracted at time t for the period between T1 and T2
is defined as

L(t;T1, T2) =
d(t, T1)− d(t, T2)

(T2 − T1)d(t, T2)
. (34)

5.4 Forward rate agreements

A Forward Rate Agreement (FRA) is an agreement between two counterparties to exchange
an amount corresponding to a fictitious loan initiated at a future date T1 with maturity
at T2 (T1 < T2). The rate of the loan is the difference between a fixed rate and the future
value of a floating rate that corresponds to the forward rate between time T1 and T2. The
fixed rate is agreed upon between the counterparties at the start of the contract.

The FRA contracts cleared in SEK at NASDAQ uses the 3MSTIBOR as the floating rate
(the ”3M” in the name implies that it is a three month forward rate). The present value
ΠFRA of a FRA contract with fixed rate R and notional N is

ΠFRA(t) = SN
(
R− L(t, T1, T2)

)
(T2 − T1)d(t, T2) (35)

where S is the side of the contract (1 it the FRA is bought and -1 if the FRA is sold).
Using equation (34) this can be rewritten as
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ΠFRA(t) = SN
(
(R(T2 − T1)− 1)d(t, T2)− d(t, T1)

)
. (36)

5.5 Interest rate swaps

An interest rate swap can be seen as a chain of FRAs. A fixed rate is agreed upon and the
difference between the fixed and a floating rate is exchanged a number of times until expiry
of the swap. The swaps treated in this report will have a constant fixed rate throughout
the lifespan of the swap and the floating rate will again be the 3MSTIBOR. The fixed
rate is exchanged once a year and the floating rate is exchanged quarterly. The present
value Πswap of an interest rate swap with fixed rate R and notional N where the floating
payments are exchanged at (T1, ..., Tn) and the fixed payments are exchanged at (S1, ..., Sm)
is

Πswap(t) = SN

( m∑
j=1

R(Sj − Sj−1)d(t, Sj)

−R0(T1 − t)d(t, T1)−
n∑
i=2

L(t, Ti−1, Ti)(Ti − Ti−1))d(t, Ti)

) (37)

where S0 = t. Here R0 is the first floating rate, this is known at time t and thus does not
need to be estimated. From this points onwards the contract specific parameters will not
be stated to simplify notation. By inserting (34) in (37) we get

Πswap(t) = SN

( m∑
j=1

R(Sj − Sj−1))d(t, Sj)

−R0(T1 − t)d(t, T1)−
n∑
i=2

(d(t, Ti−1)− d(t, Ti))

) (38)

and notice that the sum of the floating rates is a telescopic sum and therefore cancels out.
The final equation therefore becomes

Πswap(t) = SN

( m∑
j=1

R(Sj − Sj−1)d(t, Sj)− (1 +R0(T1 − t))d(t, T1)− d(t, Tn)

)
(39)
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In the case that T1−t is equivalent to three months, i.e. that there is three months until the
first floating payment, the value of R0 is equivalent to L(t; t, T1). Since the fixed payments
are yearly we get that Sj − Sj−1 = 1 for j ∈ (1, ...,m). Using this the equation can be
simplified further to get

Πswap(t) = SN

( m∑
j=1

Rd(t, Sj)− 1 + d(t, Tn)

)
. (40)

5.6 Bond Forwards

A bond forward contract is an agreement where the holder of the contract is obligated to
buy a coupon bond at a future settlement date. The price of the coupon bond to be bought
is agreed upon at the inception of the contract. The underlying coupon bond is exchanged
at the settlement time.

A coupon bond is similar to a zero coupon bond in that at the maturity T the holder of
the contract is guaranteed the cash flow corresponding to the notional N of the bond. In
a coupon bond the holder is also guaranteed coupon payments at certain times during the
lifespan of the bond. The coupon is often quoted as a percentage of the notional. The value
of a coupon bond with notional N and constant coupon c paid out at times (T1, ..., Tn = T )
is

Πcb(t) = N

(
n∑
i=1

cd(t, Ti) + d(t, Tn)

)
(41)

If coupon payments are made yearly for n years such that Ti − Ti−1 = 1 then the value of
the bond can be expressed using the yearly compounded interest rate corresponding to the
discount function as

Πcb(t) = N

(
n∑
i=1

c

(1 + ri)i
+

1

(1 + ri)n

)
(42)

with the notation ri = r(t, Ti).

The yield of a coupon bond is acquired by replacing ri in equation (42) with a constant
value y. Thus the yield y of a coupon bond is the value that solves the equation

Πcb(t) = N

(
n∑
i=1

c

(1 + y)i
+

1

(1 + y)n

)
. (43)
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The sum in (43) can be rewritten using the properties of a geometric sum to get

Πcb(t) = N

(
c

1 + y

(
1− (1 + y)−n

y(1 + y)−1

)
+

1

(1 + y)n

)
=

N

(1 + y)n

(
c

y
((1 + y)n − 1) + 1

) (44)

The price of the bond forward contract is quoted in the yield of the underlying coupon
bond at the settlement time Ts. The amount paid at settlement for the underlying coupon
bond with a fixed yield R is therefore

N

(1 +R)n

( c
R

((1 +R)n − 1) + 1
)

(45)

and the market value of the bond at time Ts is obtained using the usual discounting of
cash flows as

(
n∑
i=1

cd(Ts, Ti) + d(Ts, Tn)

)
(46)

where (T1, .., Tn) is the times at which coupons are paid. The final value Πbf of a bond
forward contract X with contracted rate R, nominal value N and constant coupon c with
coupons paid out yearly can now be computed using (45) and (46) to be

Πbf (t) = SN

((
n∑
i=1

cd(t, Ti) + d(t, Tn)

)
− 1

(1 +R)n

( c
R

((1 +R)n − 1) + 1
)
d(t, Ts)

)
.

(47)

6 Data

The available data are historical discount curves corresponding to the risk of STIBOR
SWAPs, Swedish Government Bonds and Statshypotek Bonds1. The curves corresponding
to each set of instruments will hereby be referred to as the swap curve, treasury curve
and mortgage curve respectively. The curves were bootstrapped using historical prices

1The Statshypotek Bonds are issued by Statshypotek AB and are covered by mortgage lending.
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and cubic splines. The data ranges from 1998 to 2016 with a total of 4510 data points
(approximately 250 data points per year). Thus for each date in the data set there are
three curves corresponding to the interest rate term structure of that date. The longest
maturity available for the swap, treasury and mortgage curve were 10, 10.5 and 2.5 years
respectively. The curves corresponding to the last date of the data set are shown in Figure
1. The plots of the historical data are shown in Figures 20, 21 and 22. The swap curve
corresponds to the risk of the STIBOR and the FRAs and swaps will be valued against
this curve. The bond forward contracts are valued against the curve corresponding to the
underlying deliverable bond such that bond forwards on treasury bonds are valued on the
treasury curve and bond forwards on mortgage bonds are valued against the mortgage
curve.

Figure 1: Swap, mortgage and treasury curve at 2015-12-30. Note that the curves are
larger than 1 for short maturities, this is a consequence of negative interest rates.

6.1 Characteristic instruments

To investigate the FHS model on a realistic portfolio a set of characteristic instruments were
defined. The fixed rates of the instruments were set such that the value of the instrument
at the last corresponding curve were close to zero and the notional value were set to 106.
For the Bond Forward contracts the coupon of the underlying bond were set to 0.06. The
characteristic instruments were;

1. Sell side FRA with 3 months to settlement (3x3 FRA).

2. Sell side swap with 6 months to maturity (6M SWAP).
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3. Sell side swap with 10 years to maturity (10Y SWAP).

4. Buy side Treasury Bond Forward with 6 months to settlement, the underlying bond
has a 10 year maturity (0.5x10Y T-BF).

5. Buy side Mortgage Bond Forward with 6 months to settlement, the underlying bond
has a 2 year maturity (0.5x2Y M-BF).

The value of each instrument defined above depends on their corresponding discount curve
at a set of maturities (T1, ..., Tm). Let dki , k ∈ {1, ..., n+ 1}, i ∈ {1, ...,m} denote the value
of d(0, Ti) for the curve corresponding to date k. The relative change in the discount factor
with maturity Ti between two days were then calculated as

δki =
dk+1
i − dki
dki

, i ∈ {1, ...,m}, k ∈ {1, ..., n}. (48)

These changes in the discount factors were then applied to the last curve such that

d̄ki = dm+1
i (1 + δki ). (49)

Further let Πp = Πp(T1, ..., Tm; d1, ..., dm) denote the value of the characteristic instrument
number p as defined previously. The scenarios for each instrument were created by valuing
the instrument using the discount factors d̄ki such that

Πk
p = Πk

p(T1, ..., Tm; d̄k1, ..., d̄
k
m), k ∈ {1, ..., n}. (50)

Thus a sample of size n for each instrument were created by valuing the instrument using
discount factors created by multiplying historical changes in the discount factors with
the latest discount factor. A sample of absolute losses for each instrument can now be
determined as

Lkp = Πk
p − Π̂p (51)

where Π̂p denotes the value of instrument p at the last curve. The losses acquired using this
model is shown in Figure 2. In the plot the loss for each date corresponds to how the value
of the instrument would change if the historic relative discount factors of that date were
applied to the last curve. Here it can clearly be seen that the volatility of the instruments
seems to be time dependent. For example the fluctuations during the financial crisis of
’08 can be seen to be a larger than ”normal”, especially for the instruments with short
maturity. Furthermore one can observe large spikes in all of the samples. It is interesting
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to try to connect those spikes to global events, for example there is a large spike in the
loss samples for the 3x3 FRA and the 6M SWAP at 2001-09-17, this spike is likely related
to the 9/11 attacks in New York. It is probably possible to explain a lot of the other
fluctuations observed in the samples. In Figure 23 the filtering of the 3x3 FRA loss sample
using an EWMA 95 volatility process is illustrated and the properties of the distribution
of the filtered losses are shown.

Figure 2: The losses of each characteristic instruments when historical relative changes in
the discount factors were applied to the last discount curve. The x-axis corresponds to the
date at which the historical relative changes occured.

6.2 Independence of the filtered losses

In this section the assumption that the filtered losses are IID is investigated using the
properties of stationary time series. For a more information about time series and station-
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arity see for example [2]. The autocorrelation function (ACF) can be used to determine
if there is any correlation between the lags of a sample. The ACF ρ of a stationary time
series {Xt} is defined as

ρ(h) =
Cov(Xt, Xt+h)

Var(Xt)
(52)

where h is the lag. If {Xt} is IID the ACF will be 1 for h = 0 and 0 for h 6= 0. The
sample ACF can be used to investigate whether a sample appears to be IID by plotting it,
loosely speaking the assumption that the sample is IID can not be rejected if the sample
ACF is reasonably close to 0 for h 6= 0. The sample ACF of the characteristic instruments
are shown in Figure 24. Here it can be seen that the values are reasonable close to zero,
however the results are not perfect. For the 3x3 FRA there seems to be a weak positive
autocorrelation for the first ≈ 20 lags and for the 6M SWAP and the BF contracts there
seems to be a relevant autocorrelation for the first lag. To remedy this it is possible to
include an ARMA mean process in the filtering. However this might lead to over fitting
historical data. In this thesis the losses for all instruments are assumed to have zero mean
as shown in equation (7).

The ACF of the squared sample can be used to investigate if there appears to be any
volatility clustering since large values for lags h 6= 0 implies that there are correlation
between X2

t and X2
t+h. The ACF of the squared sample for the characteristic instruments

are shown in Figure 25. In Figures 26, 27 and 28 the ACF of the squared filtered losses
obtained by filtering using GARCH, EWMA 95 and EWMA 99 volatility processes are
presented. Here it can be seen that the volatility clustering is reduced significantly by
filtering the losses. The GARCH and EWMA 95 processes seems to produce similar results
while the EWMA 99 process seems to be a worse fit with the data (larger values of the
ACF for h 6= 0).

7 Single instrument model

7.1 Backtesting

In this section the focus is to backtest different VaR models on portfolios consisting of a
single instrument. In an implementation it might be better to use ES as the risk measure
however the results from backtesting VaR are more intuitive, thus it will be easier to inter-
pret the different models with VaR as the risk measure. To backtest the VaR methodologies
described in Section 3 a lookback length l were selected such that the VaR at time t were
determined by the loss sample (Lt−l−1, ..., Lt−1). Since the loss sample for each instrument
is of size n = 4509 the amount of VaR values that can be calculated with the lookback
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length l is then n− l. To determine the one day VaR at time t ∈ {l+1, ..., n} using the FHS
model with EWMA and GARCH volatility estimates the following steps were made

• Filter the loss sample (Lt−l−1, ..., Lt−1) using a GARCH or EWMA filter to obtain a
set of filtered losses (Z1, ..., Zl).

• Order the filtered losses such that Z1,l ≥ · · · ≥ Zl,l.

• Determine the empirical quantile estimate of the filtered losses using (4).

• The VaR at time t is then VaRt
p = σtF̂

−1
l,Z (1− p) = σtZ[np]+1,n

In the HS approach no filtering were made. The results of performing this backtest with
l = 2500 (10 year lookback period) and p = 0.01 are shown in Figures 3, 4, 5, 6 and 7. In
Figure 8 the comparison between VaR and ES for the EWMA 95 model and characteristic
instrument one is shown. It is obvious from the figures that the HS method does not react
appropriately to increases in volatility, this is partly because of the long lokback sample.
The GARCH and EWMA 95 models performed very similar for all portfolios based on the
figures. The procyclicality of the FHS models can also be seen as when the portfolios start
to show volatile behaviour the VaR increases drastically. In Table 7.1 the breaches of each
model for the different instruments and the corresponding Kupiec test p-value are shown.
Here it can be seen that the only model that can be rejected at any relevant confidence
level is the HS model. Since there are 2009 VaR predictions in each sample and the VaR is
calculated with p = 0.01 the expected number of breaches is 20. Even though the EWMA
95, EWMA 99 and GARCH models seems to produce good results it should be noted that
these models generally exceeds the expected amount of breaches in this backtest. The
parameter λ of the EWMA model also seems to control the procyclicality in the sense that
an increased λ will lead to slower changes in the VaR.

HS EWMA 95 EWMA 99 GARCH
# p-value # p-value # p-value # p-value

3x3 FRA 28 0.09412 25 0.28888 21 0.83949 22 0.67316

6M SWAP 39 0.00017 24 0.39496 23 0.52361 23 0.52361

10Y SWAP 21 0.83948 22 0.67316 22 0.67316 23 0.52361

0.5x10Y T-BF 41 0.00004 22 0.67316 26 0.20490 25 0.28888

0.5x2Y M-BF 8 0.00203 19 0.80518 19 0.80518 19 0.80518

Table 1: The # denotes the amount of breaches and the p-value is the Kupiec p-value.

7.2 Discussion

The EWMA model is a relatively simple model for estimating the volatility. However the
difference between the EWMA model with λ = 0.95 and the GARCH model seems to
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Figure 3: Comparison of different VaR models for characteristic instrument 1.

be small for all the characteristic instruments. Furthermore the GARCH model is a lot
more computationally intensive than the EWMA model. Another benefit of the EWMA
model is that it will produce transparent and intuitive results for all samples since the
value of lambda is defined beforehand. The main drawback of the FHS models seems to
be that extreme profits and losses will drastically increase the VaR. In some cases the VaR
increases by as much as 400% from one day to the next, this is not reasonable and should
be remedied in an implementation.

There are a lot of other models in the GARCH family such as EGARCH and GJR-GARCH
and it is also possible to use an ARMA process to describe the mean of the losses in
combination with these volatility processes. The use of other GARCH type models can be
motivated by that the standard GARCH model does not capture asymmetry, a large loss
affects the volatility estimate exactly the same as a large return. These models however
introduce additional parameters to the filtering which further complicates the model. The
parameters also becomes more difficult to estimate and problems such as convergence issues
and over fitting might appear. It is also possible to use a more sophisticated estimate of
the quantile such as one relying on Extreme Value Theory (EVT).

In this thesis the filtering is applied to the absolute losses of the instruments. Another
approach is to apply the filtering on the discount curves before the valuation is done to
produce a set of filtered returns of the discount factors. An example of this would be to
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Figure 4: Comparison of different VaR models for characteristic instrument 2.

filter the relative changes in the discount factors as defined in equation (48) such that for
a sample of m + 1 historical curves and a set of fixed maturities (T1, ..., Tn) the delta is
defined as δki = σki z

k
i , k ∈ {1, ..., n}, i ∈ {1, ...,m}. The filtered relative changes are

then applied to the last discount factors using the volatility estimates at time m + 1 to
produce a set of m scenarios where the portfolio is valued using the discount factors

d̄ki = dm+1
i (1 +

σm+1
i

σki
zki ). (53)

If a portfolio depends on the discount function at a lot of maturities filtering must then
be done for each maturity which can be very computationally intensive. It is also possible
to fix a set of maturities for a given curve, filter the discount factors at these maturities,
apply them on the latest curve and then use some interpolation technique to produce a
discount function for each historic scenario i ∈ {1, ...,m}.

Furthermore the choice of how the returns are modeled is also interesting. It is possible
to model the absolute returns, relative returns or log returns when filtering the changes in
discount factors. When filtering the losses of the instruments this is not as straightforward
since the instruments can have zero and negative values, in this thesis the absolute losses
were therefore used. It is also possible to filter the spot rates corresponding to the discount
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Figure 5: Comparison of different VaR models for characteristic instrument 3.

factors since they have a one to one relationship.

A summary of different modeling choices one has to make when implementing a FHS model
is presented below. Not all of these modeling choices were investigated in this thesis.

• What type of volatility estimate to use (EWMA, GARCH, EGARCH, GJR-GARCH
etc.) and how to determine the corresponding parameters.

• Filter the losses or the discount factors/spot rates.

• Length of lookback period.

• VaR or ES and the corresponding value of p.

• How to estimate the quantiles.
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Figure 6: Comparison of different VaR models for characteristic instrument 4.

Figure 7: Comparison of different VaR models for characteristic instrument 5.
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Figure 8: Comparison between VaR and ES with EWMA 95 filter for characteristic instru-
ment 1.
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8 Correlation model

When determining the IM of a portfolio a very important aspect is how to treat correlation
between instruments. If two instruments seems to be correlated it could be reasonable to
lower the IM of a portfolio consisting of these two instruments. To illustrate this consider
a portfolio consisting of the characteristic instruments 3 and 4 as defined previously (Sell
position in a 10Y swap and Buy position in 0.5x10Y T-BF). The aggregated losses of these
instruments are shown in Figure 9. The portfolio consisting of instrument 3 + instrument
4 seems to be well hedged in the sense that the average intraday returns and losses are
reduced significantly in size as a result of the correlation. If one calculates the VaR for
each instrument separately and aggregates the VaR values the portfolio VaR will be a lot
higher than necessary. Another approach is to aggregate the losses of each instruments
and then determine the VaR of the aggregated portfolio. This approach will be referred to
as aggregated VaR. The differences between these two approaches are shown in Figure 10.
It is clear from the figure that it is reasonable to ”give” correlation between instruments
when determining the IM. However the approach where one simply aggregates the losses
of the whole portfolio and then determines the VaR could be dangerous to use from the
perspective of a CCP since there is no control of any correlation and a sudden ”correlation
break” where the correlation between some instruments change drastically will have severe
effects on the produced VaR values. In a practical setting it is convenient to have control of
the correlation between the instruments for example by having a parameter that describes
it. In a practical implementation it is then possible to tweak these parameters, the resulting
model will then not be a VaR measure but the result might be useful to determine the
IM. It is the purpose of this section to describe a model that parametrises the correlation
between the instruments.

In this section only the EWMA 95 model will be used to estimate the volatility since it
produced reasonable results in the single instrument case and since it is significantly faster
than the GARCH model.

8.1 Model

The model used to test the copula approach to determine the correlation between instru-
ments is to filter the loss sample for each instrument and then assume that the filtered
losses has a Student’s t copula distribution such that

l1,t = σ1,tz1,t
...

lm,t = σm,tzm,t

(54)
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Figure 9: Upper plots shows the losses of characteristic instruments 3 and 4. The lower
left plot shows the losses of instrument 3 + instrument 4 (hedged portfolio) and the lower
right shows the losses of instrument 3 - instrument 4 (directed portfolio).

where σi,j is an EWMA 95 process corresponding to the losses of instrument i and zi,t, i ∈
{1, ...,m} are assumed to have a t copula. The empirical quantile were used to convert
the uniform copula variables to the simulated filtered losses. The quantile of the joint
distribution specified by the t copula is not available, to determine the VaR a Monte Carlo
simulation method were used. To determine the VaR at time t each loss sample were first
filtered using the EWMA 95 process, then the copula were fitted to the sample of filtered
losses. The copula were then used to simulate a set of filtered losses which were then
multiplied with their corresponding predicted volatility and aggregated to create a sample
of simulated portfolio losses. The VaR were then determined by taking the appropriate
quantile of the simulated sample.
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Figure 10: The portfolio consisting of characteristic instrument 3 + 4. The red line shows
the EWMA 95 VaR of the aggregated portfolio losses and the blue line shows the aggregated
EWMA 95 VaR of each instrument separately.

8.2 Correlation model example 1

To illustrate the correlation model consider again the portfolio consisting of characteristic
instruments 3 and 4. Both of these instruments are exposed to long term interest rate
structure, however they are valued against different curves. In Figure 9 it can be seen that
these instruments are strongly correlated which implies that the long term movements of
the swap and treasury curves are correlated. To measure this correlation the loss sample
of each instrument were filtered using an EWMA 95 process and then the Kendall’s tau
were estimated for each t using the filtered losses in a one year lookback window. The
result is shown in Figure 11. Here it can clearly be seen that the correlation is very strong
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between the instruments. However during the financial crisis of ’08 there is a correlation
break where the estimate of Kendall’s tau suddenly increases to approximately −0.5 which
is almost half of the ”normal” value. The result of the correlation break is also evident in
the loss sample as the average returns and losses starts to increase in size.

Figure 11: The aggregated losses of the portfolio as well as the one year lookback estimated
Kendall’s tau of the filtered losses. The values of Kendall’s tau can be read using the values
on the right axis.

In Figure 12 the filtered returns of the instruments are compared with those simulated from
a Student’s t copula estimated from the returns. The plots looks similar which indicates
that the t copula is a good fit with the data. In Figure 13 the copula model is compared
to the aggregated model using the EWMA 95 volatility filtering. The backtesting is once
again done with a 10 year lookback and p = 0.01. The copula parameters were estimated
every 50 time steps to increase computation speed since the estimated parameters were
assumed to change slowly. The filtered losses were simulated 10000 times for each time
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step using the copula model. The amount of breaches for the copula and aggregated VaR
were 23 and 22 respectively (expected amount of breaches is 20).

It should be noted that there are no exponential weighing for the correlation matrix since
the correlation is assumed to be constant using the copula model. Thus it will react slow
to potential correlation breaks. For example to determine the correlation matrix at Jan
1’st 2009 the losses during 2008 will only be 10% of the sample since the lookback period
is 10 years.

Figure 12: The left plot shows the filtered historical losses of instrument 3 and 4 and the
right plot shows the filtered losses simulated from a t copula.

8.3 Correlation model example 2

The portfolio investigated here will consist of;

• 40 units of characteristic instrument 1,

• -20 units of characteristic instrument 2,

• 1 units of characteristic instrument 3,

• 1 units of characteristic instrument 4,

• 4 units of characteristic instrument 5.

Here the weights of each instrument were selected such that the average losses and returns
were of similar size. Figure 14 shows the filtered losses of each instrument plotted against
each other. Here we see that the instruments valued on the swap curve with short maturity
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Figure 13: The red line is the VaR obtained by simulating from a t copula. The blue line
is the VaR obtained by aggregating the losses of the instruments and then filtering. For
both methods the EWMA 95 volatility estimates were used.

(1 and 2) seems to be strongly correlated with each other but not with the other instru-
ments. Furthermore all other instruments (3, 4 and 5) show signs of correlation with each
other. In Figure 15 the t copula VaR is compared to the aggregated VaR for the portfolio.
All filtering is once again done with the EWMA 95 model. The amount of breaches is 12
for the t copula VaR and 16 for the aggregated VaR. This should be compared with the
expected amount of breaches which is 20.

Note that the 3x4 simulated correlation in Figure 14 does not seem to be as accurate as
the one in Figure 9. This is because the degree of freedom parameter of the copula is
optimized to be a good fit with all of the pairs and not only with respect to the 3x4 pair.
Thus when the dimension of the copula is increased the model accuracy of individual pairs
are decreased.

8.4 Correlation model example 3

In the example portfolio discussed in the previous section some of the instruments showed
strong negative correlation which indicates that the portfolio is well hedged. In this example
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Figure 14: Filtered losses of each characteristic instrument against each other. The 10
upper plots are the real values and the 10 lower plots are the corresponding simulated
values.

the sign of some instruments will be changed to illustrate what happens when the portfolio
is directed. The portfolio is now consisting of;

• 40 units of characteristic instrument 1,

• 20 units of characteristic instrument 2,

• -1 units of characteristic instrument 3,

• 1 units of characteristic instrument 4,

• 4 units of characteristic instrument 5.
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Figure 15: Copula VaR compared with aggregated VaR.

In Figure 16 the same results as in 15 is shown but for the new portfolio. The amount
of breaches is 27 for the t copula VaR and 26 for the aggregated VaR. This should be
compared with the expected amount of breaches which is 20.

8.5 Correlation model discussion

The FHS approach to determining the VaR of a portfolio seems to produce reasonable
results for the purpose of determining the IM of a portfolio. The benefits of the model is
that the results are intuitive and relatively simple to understand. However if one were to
simply aggregate the losses of an entire portfolio and then use FHS there is no protection
against correlation breaks between instruments which could have a great impact on the
potential losses of the portfolio. Furthermore there are no parameters or results of the
aggregated model that one can interpret to understand the correlation effects on the VaR
of a portfolio. As a CCP it is essential that these properties are well understood. The lack
of control over the correlation is a major drawback of the aggregated VaR model. The
advantage of the copula approach is that correlation can be given between instruments or
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Figure 16: Different copula models compared with the aggregated VaR.

risk groups in a controlled setting. For example it is possible to fix the correlation matrix
to a stressed correlation matrix, such as one with the worst possible correlations for each
instrument based on historical data.

It is also possible to combine the aggregated and copula models by dividing instruments
into risk groups. Then the losses of the instruments in a certain risk group is aggregated
before the copula model is applied. The advantage of this would be that the dimension of
the copula can be decreased. Then full correlation is given within the same risk group and
correlation determined by the correlation matrix of the copula is used to give correlation
between the risk groups. It seems reasonable to group instruments that are valued on the
same curve and are exposed to the same maturities, such as characteristic instruments 1 and
2 defined previously. Both these instruments are exposed to short maturities on the swap
curve, and a correlation break between those instruments would loosely speaking imply
unrealistic changes in the curvature of the swap curve. It is likely that the dimension of
the copula could be reduced significantly without loosing control of the correlation between
instruments by grouping instruments that have similar exposure on the same curve.

This method of dividing a portfolio into risk groups are also possible to use for the aggre-
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gated model, then the losses of instruments within each risk group are aggregated and a
VaR is determined for each risk group. The VaR values for the risk groups are then ag-
gregated to determine the portfolio VaR. Using this approach no correlation will be given
between instruments in different risk groups and full correlation will be given between risk
groups.

Since different instruments can have different correlation structure the copula model used
were restricted to elliptic copulas. Thus the copulas considered were Gaussian (Normal)
and Student’s t copulas. The reason that the Student’s t copula was selected over the
Gaussian copula was made partly by observing the plots of filtered losses simulated from
the corresponding copula where the Student’ t copula seemed to be a better fit with the
data, especially in the relevant areas corresponding to extreme losses. Furthermore the
results of the copula model in the backtesting were reasonable.

In this thesis the backtesting only tests the copula approach in max 5 dimensions. The
implications of increasing the dimension even further are not investigated here. Although
the pseudo MLE estimation procedure for the parameters should perform reasonable as the
dimensions increase. The estimation comes down to estimating Kendall’s tau for each pair
of variables which can be done O(n log n) [3] and finally estimating the degrees of freedom
which is a simple one dimensional optimization problem. A problem that will arise by
increasing the dimension is that the degree of freedom parameter ν of the Student’s t copula
will limit the dependence structure between individual variables since different pairs will
likely have different optimal values of ν. A topic for further research could be to modify the
t copula as specified in this thesis to have individual degree of freedom parameters for each
dimension. It could also be interesting to investigate the use of vine copulas. Furthermore
the amount of simulations required to get stable VaR estimates using the copula model
were not explored.

The advantage of the copula approach is that correlation can be given between instruments
in a controlled setting. Even though the model uses parameters to describe the correlation
it produces results that are similar to the aggregated VaR model. Contrary to the aggregate
model the copula model is easily manipulated to account for scenarios such as correlation
breaks. The parameters of the copula model are fairly intuitive in the sense that the impli-
cations on the VaR of increasing/decreasing a parameter is easily understood. However, a
drawback of using the copula approach is that it will reduce the transparency and intuition
of the model for people who are not familiar with the concept of copulas.
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9 Possible model adjustments

9.1 Procyclicality

The volatility estimate is the largest source of procyclicality in the model. Since all the
volatility models discussed are proportional to the square of the previous loss a large loss
will result in a significant increase in the predicted volatility. It can be seen in Figures 3,
4, 5, 6 and 7 that the EWMA 99 model appears to be less procyclical than the GARCH
and EWMA 95 models. However the EWMA 99 model seems to be worse than the other
models in reducing the volatility clustering of the losses as can be seen in Section 6.2. It is
possible to decrease the procyclicality by selecting a larger λ for the EWMA model but in
doing so the model will be a worse fit with the data and it might be wiser to decrease the
procyclicality by other methods.

Figure 17: Result of weighing the predicted volatility with a stressed volatility to decrease
the procyclicality for characteristic instrument 1.
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There are a lot of possible ad-hoc approaches that can be used to decrease the procyclicality
of the model. In the ESMA report [11] three options on how the IM model can be adjusted
is presented;

• The CCP shall apply a margin buffer at least equal to 25% of the calculated mar-
gins which it allows to be temporarily exhausted in periods, where calculated margin
requirements are rising significantly.

• The CCP shall assign at least 25% weight to stressed observations in the look-back
period calculated in accordance with Article 26.

• The CCP shall ensure that its margin requirements are not lower than those that
would be calculated using volatility estimated over a 10 year historical look-back period.

The first option is straightforward but the other two options can be interpreted in different
ways. One way to interpret the second option is to weigh the prediction volatility used
to determine the VaR with a volatility estimate from a period of stress. Note that only
the prediction volatility is weighted and that the volatility used to filter the losses stay the
same. Here the prediction volatility refers to σT in equation (8). In Figure 17 the results
of this for characteristic instrument 1 is shown. Here the prediction volatility is weighted
as

σt = (1− w)σet + wσs (55)

where w ∈ [0, 1] is the weight, σet is the standard EWMA prediction volatility and σst is the
unweighted sample standard deviation estimate during the stress period of ’08. The results
of applying this technique to the copula model is shown in Figure 18 (the portfolio is the
one described in Section 8.2). These results shows that this type of model adjustment can
be used to decrease the procyclicality of the VaR estimate.

The third option can be interpreted as that the VaR should be set as max(VaRHS ,VaRFHS)
where VaRHS is the ordinary 10 year HS VaR and VaRFHS is determined by one of the
FHS VaR models. Consider the maximum of the different FHS VaR models and the HS
VaR in Figures 3, 4, 5, 6 and 7.

Furthermore some protection should be provided against sudden extreme losses or returns
since these will drastically increase the predicted volatility and thus the VaR estimates. It
is not reasonable for the IM of a portfolio to increase by 400% between two days which
is the case for some backtests. A limit on the maximum allowed increase of the volatility
between two days is one simple way to account for this.
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Figure 18: Result of weighing the predicted volatility with a stressed volatility to decrease
the procyclicality for the portfolio described in Section 8.2.

9.2 Correlation

Consider Figure 11 where the one year lookback estimate of Kendall’s tau is shown. In
Figure 19 the results of fixing the copula parameters for all VaR estimates to those esti-
mated using losses during ’08 for the portfolio defined in Section 8.2 are shown. The result
suggests that the stressed copula parameters increases the VaR of the portfolio which is
expected. This reflects the fact that the correlation given between instruments can be ma-
nipulated in an intuitive way using the copula model to protect a portfolio against potential
correlation breaks.

It should be noted that using correlation from periods of stress will not always increase the
VaR. In the example presented here the VaR is increased since the correlation parameter
were significantly higher during the stress period.
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Figure 19: Comparison between using estimated copula parameters (red line) and fixed
parameters estimated during ’08 (blue line).

10 Conclusions

In this thesis the problems of using a VaR based model for determining the IM of a
Fixed Income portfolio are investigated. Some important issues are discussed and explored.
Furthermore some models are defined and backtested using historical data.

There are a lot of different issues one has to deal with when implementing a VaR model for
determining the IM of Fixed Income portfolios. The main problems one has to face when
implementing FHS model for fixed income can be summarized as;
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• How to bootstrap the curves.

• What model should be used to determine the value of the instruments.

• What variable should be filtered (sample of losses or a selected risk factor, eg. dis-
count factors or spot rates).

• What time series should be used to perform the filtering.

• How to model the effects of correlation within a portfolio.

• How the model should be adjusted to account for regulations and market concerns.

In this thesis some models has been investigated and tested to illustrate their properties.
The bootstrapping of the curves and effects of using different valuation models has not been
investigated. The main conclusions one can draw from the results is that filtering seems
to be necessary to account for volatility clustering. Both the GARCH and EWMA models
seems to be reasonable models to capture this phenomenon. These models performed
reasonable in the backtests and are easily adjusted to account for procyclicality. However,
extreme losses and returns during calm periods will drastically increase the VaR estimate
the following day and appropriate measures should be taken to prevent extreme VaR shocks.
The main issue of using FHS models to determine the IM of a portfolio is to achieve an
appropriate trade off between reacting to changing volatility and procyclicality, and care
is needed to calibrate the model to accomplish this.

It is also important to understand how correlation is given between instruments and that
this is done in a controlled manner. For the small size portfolio examples illustrated in this
thesis the Student’s t copula performed reasonable for this purpose. The main drawback of
this model is that the degree of freedom parameter of the copula limits the accuracy of the
fit between individuals pairs when the dimension is increased. Furthermore the model is
not as transparent and intuitive as the aggregated FHS model. There are a lot of different
types of copulas that could be interesting to investigate further such as the Student’s t
copula with individual degrees of freedom or different types of vine copulas.

The figures from the backtests comparing copula VaR with aggregated Var suggests that
the dynamics of the two models seems to behave similarly. This implies that the accuracy
lost from the parametrization of the correlation in the copula model is relatively small. The
benefits of using the copula model is that the parameters of the copula can be interpreted
and adjusted to account for market concerns. An example of this is to fix each correlation
parameter in the correlation matrix of the copula to a stressed parameter.

In this thesis only five different instruments are used to backtest the different models. The
only instrument classes that are considered are FRAs, swaps and bond forwards. To extend
the models to general fixed income portfolios the models should be backtested using a more
general set of instruments and portfolios. Additionally great care needs to be taken when
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selecting and calibrating the parameters of the model such that the implications of different
market scenarios are well understood.

A model for determining the IM of a portfolio should be robust, transparent and it should
not encourage market instability. The general concept of using FHS in combination with
a copula seems to be a reasonable model for determining the IM under these restrictions.
Even though one is not familiar with the concept of copulas the model provides intuitive
parameters that can be tuned to account for market related concerns such as correlation
breaks and procyclicality.
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A Appendix

Figure 20: Historical swap curves.

Figure 21: Historical government curves.
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Figure 22: Historical mortgage curves.
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Figure 23: Properties of the 3x3 FRA sample. Upper left plot shows the losses and the
red line shows the volatility process. The upper right plot shows the corresponding filtered
losses. The lower left plot shows the normal QQ plot of the filtered losses and the lower
right plot shows the right tail of the empirical cdf of the filtered losses. The filtering were
done using an EWMA 95 process.
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Figure 24: Sample ACF of the losses of the characteristic instruments.

Figure 25: Squared ACF of the losses of the characteristic instruments.
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Figure 26: Squared ACF of the filtered losses of the characteristic instruments using a
GARCH filter.

Figure 27: Squared ACF of the filtered losses of the characteristic instruments using a
EWMA 95 filter.
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Figure 28: Squared ACF of the filtered losses of the characteristic instruments using a
EWMA 99 filter.
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