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Commodity Futures

Abstract
In recent years additional requirements have been imposed on
financial institutions, including Central Counterparty clearing
houses (CCPs), as an attempt to assess quantitative measures of
their exposure to different types of risk. One of these requirements
results in a need to perform stress tests to check the resilience in
case of a stressed market/crisis. However, financial markets develop
over time and this leads to a situation where some instruments
traded today are not present at the chosen date because they
were introduced after the considered historical event. Based on
current routines, the main goal of this thesis is to provide a more
sophisticated method to impute (fill in) historical missing data as
a preparatory work in the context of stress testing. The models
considered in this paper include two methods currently regarded
as state-of-the-art techniques, based on maximum likelihood
estimation (MLE) and multiple imputation (MI), together with a
third alternative approach involving copulas. The different methods
are applied on historical return data of commodity futures contracts
from the Nordic energy market. By using conventional error metrics,
and out-of-sample log-likelihood, the conclusion is that it is very
hard (in general) to distinguish the performance of each method, or
draw any conclusion about how good the models are in comparison
to each other. Even if the Student’s t-distribution seems (in general)
to be a more adequate assumption regarding the data compared
to the normal distribution, all the models are showing quite poor
performance. However, by analysing the conditional distributions
more thoroughly, and evaluating how well each model performs by
extracting certain quantile values, the performance of each method
is increased significantly. By comparing the different models (when
imputing more extreme quantile values) it can be concluded that
all methods produce satisfying results, even if the g-copula and
t-copula models seems to be more robust than the respective linear
models.

Keywords: Missing Data, Bayesian Statistics, Expectation Con-
ditional Maximization (ECM), Conditional Distribution, Robust
Regression, MCMC, Copulas.
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Imputation av Saknad Data
med Tillämpning p̊a

R̊avaruterminer

Sammanfattning

P̊a senare år har ytterliggare krav införts för finansiella insti-
tut (t.ex. Clearinghus) i ett försök att fastställa kvantitativa mått
p̊a deras exponering mot olika typer av risker. Ett av dessa krav
innebär att utföra stresstester för att uppskatta motst̊andskraften
under stressade marknader/kriser. Dock förändras finansiella
marknader över tiden vilket leder till att vissa instrument som
handlas idag inte fanns under den d̊avarande perioden, eftersom
de introducerades vid ett senare tillfälle. Baserat p̊a nuvarande
rutiner s̊a är målet med detta arbete att tillhandah̊alla en mer
sofistikerad metod för imputation (ifyllnad) av historisk data som
ett förberedande arbete i utförandet av stresstester. I denna rapport
implementeras tv̊a modeller som betraktas som de bäst presterande
metoderna idag, baserade p̊a maximum likelihood estimering (MLE)
och multiple imputation (MI), samt en tredje alternativ metod
som involverar copulas. Modellerna tillämpas p̊a historisk data för
terminskontrakt fr̊an den nordiska energimarkanden. Genom att
använda väl etablerade mätmetoder för att skatta noggrannheten
för respektive modell, är det väldigt sv̊art (generellt) att särskilja
prestandan för varje metod, eller att dra n̊agra slutsatser om hur
bra vaje modell är i jämförelse med varandra. Även om Students
t-fördelningen verkar (generellt) vara ett mer adekvat antagande
rörande datan i jämförelse med normalfördelningen, s̊a visar alla
modeller ganska svag prestanda vid en första anblick. Däremot,
genom att undersöka de betingade fördelningarna mer noggrant, för
att se hur väl varje modell presterar genom att extrahera specifika
kvantilvärden, kan varje metod förbättras markant. Genom att
jämföra de olika modellerna (vid imputering av mer extrema
kvantilvärden) kan slutsatsen dras att alla metoder producerar
tillfredställande resultat, även om g-copula och t-copula modellerna
verkar vara mer robusta än de motsvarande linjära modellerna.

Nyckelord: Saknad Data, Bayesiansk Statistik, Expectation Condi-
tional Maximization (ECM), Betingad Sannolikhet, Robust Regres-
sion, MCMC, Copulas.
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Chapter 1

Introduction

Missing data is a widespread concern throughout all varieties of science. Researches have for a
long time tried different ad hoc techniques to manage incomplete data sets, including omitting
the incomplete cases and filling in the missing data. The downside of most of these methods is
the requirement of a relatively strict assumption regarding the cause of the missing data, and
they are hence likely to introduce bias [10].

During the 1970s some major progress was achieved within this area with the introduction of
maximum likelihood estimation (MLE) methods and multiple imputation (MI). In 1976 Rubin [34]
introduced an approach for managing missing data in a way that remains in extensive use today.
Both the MLE and MI approach have received a lot of attention the past 40 years and are still
regarded as the current state-of-the-art techniques. In comparison with more traditional methods
MLE and MI are theoretically desirable since they require weaker assumptions, and will hence
produce more robust estimates with less bias and greater power.

To be able to reduce bias and achieve more power when dealing with missing data it is important
to know the characteristics of the missing data and its relation to the observed values. Missing
data patterns and missing data mechanisms are two useful terms regarding this matter, and
the latter is a cornerstone in Rubin’s missing data theory. A missing data pattern refers to
the way in which the data is missing and the missing data mechanism describes the relation
between the distribution of the missing data and the observed variables. In other words, the
missing data pattern describes where the gaps are located and the missing data mechanism puts
more emphasis on why or how the data is missing, even if it does not give a causal elucidation1.
A more thorough introduction to these concepts together with various examples of missing
data patterns can be found in Enders [10]. The different types of missing data mechanisms
are also explained in more detail in [34], but since they are of great importance, and form the
foundation of the assumptions made in this thesis, they are stated below as they are defined in [10].

• MCAR - The formal definition of missing completely at random (MCAR) requires
that the distribution of the missing data on a variable Y is unrelated to other
measured variables and is unrelated to the values of Y itself.

• MAR - Data are missing at random (MAR) when the distribution of the missing
data on a variable Y is related to some other measured variable (or variables) in
the analysis model but not to the values of Y itself.

• MNAR - Data are missing not at random (MNAR) when the distribution of the
missing data on a variable Y is related to the values of Y itself.

The aim of this thesis will be to analyse three different methods, and discern the approach best
suited for imputation of missing values for a specific missing data pattern. The models considered
in this paper include two techniques currently regarded as state-of-the-art methods based on
maximum likelihood estimation (MLE) and multiple imputation (MI), together with a third
alternative approach involving copulas. To asses the validity of the assumption regarding the
distribution of the missing data both a normal and a Student’s t-distribution are implemented.

1 In the sense that it does not explicitly give a more detailed explanation to the reason why the data is missing.
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All methods are applied on a real world data set and generate unbiased estimates under the
MAR assumption. The performance of the different models are assessed using conventional
error metrics: the mean square error (MSE), the mean absolute error (MAE) and out-of-sample
likelihood.

The background of this thesis, and a presentation of the problem in its real world context, is
presented in Chapter 2, followed by the most vital mathematical theory in Chapter 3. The
actual implementation of each method is described in more detail in Chapter 4. In Chapter 5
the performance of each method is presented after being applied to a real data set. Finally, the
conclusions, together with some interesting topics for future reference regarding imputation of
missing data are found in Chapter 6.
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Chapter 2

Background

2.1 The Role of a Central Counterparty Clearing House

The main responsibility of a Central Counterparty clearing house (CCP) is to ensure that all
traded contracts are being honored to maintain efficiency and stability on the financial markets.
A clearing house acts as a middle man and is the counterparty in all transactions. By taking both
long and short positions its portfolio is always perfectly balanced [26]. The essential function
of a risk management department within a CCP is to assess the risk associated with this role.
Counterparty risk is the risk when one of the participants in an agreement can not fulfill its
obligations in time of settlement, also known as default risk or credit risk. When a participant
defaults on its obligation the clearing house needs to offset its position as soon as possible to
limit its exposure to the market risk incurred.

Market risk is defined in McNeil et al. [24] as

”The risk of a change in the value of a financial position due to changes in the value of
the underlying components on which that position depends”.

The components in this definition refer to stock and bond prices, exchange rates, commodity
prices, and different types of derivative products. A technique used to analyze the exposure to
market risk during various extreme scenarios is stress testing.

2.2 Stress Testing under EMIR/ESMA
In recent years additional requirements has been imposed on financial institutions, including
CCPs, as an attempt to assess quantitative measures of their exposure to different types of risk.
The European Securities and Markets Authority (ESMA) is an independent EU authority operat-
ing to maintain and improve the stability of the European Union’s financial system by ensuring
the consistent and correct application of the EU’s Markets Infrastructure Regulation (EMIR) [11].
Nasdaq Clearing AB (Nasdaq Clearing) was approved by the Swedish Financial Supervisory
Authority (SFSA) as a CCP under EMIR the 18th of March 2014 [17]. An important role of ESMA
is to review and validate the risk models applied by the CCPs, including an annual EU-wide
stress test performed in collaboration with the the European Systemic Risk Board (ESRB) [12].

Historical stress testing supposes that historically observed price changes are used to simulate
a possible change of market value in the specified portfolio. The idea is to take extreme price
changes observed at a date of a crisis (like the default of Lehman Brothers in 2008) and apply
these changes to the current portfolio in an attempt to analyze what would be the corresponding
impact on the profit/loss distribution if it should happen again.

The simplicity of the idea has a downside which makes it difficult to implement. Financial
markets develop over time and this leads to a situation when some instruments traded today are
not present at the chosen date because they were introduced after the considered historical event.
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This thesis pays attention to the important preparatory work and analysis of the historical data
used in stress testing of a financial portfolio, and more specific, the common problem regarding
missing data.

2.3 Missing Data within Stress Testing
The lack of historical information may have an adverse effect on the parameter estimates and
power of the considered model. Hence, interpretations and conclusions based on obtained results
from the model are more likely to be erroneous. Even if stress testing is a tool used when
historical data is missing, there is a chance the magnitude and the frequency of the potential
losses are heavily underestimated when using incomplete data.

2.4 Current Routines
At the moment there are two simple methods used to manage the problem of missing data. The
missing data are either set to zero or equal to the maximum of all observed price changes for
similar instruments at the considered date.

At a first glance it may seem meaningless to impute the value zero, and at an intuitive level it
would mean the same thing as not regarding the missing cases at all. However, when considering
the distribution of relative returns of an instrument with an expected value close to zero it yields
less variability of the data. Imputation of values near the center of the distribution could there-
fore have a significant effect on the variance and the standard deviation. Hence, the covariance
and the correlations are also attenuated when the variability is reduced. Even if the data are
MCAR this approach will result in biased parameter estimates. According to Enders [10] different
studies conclude that expected value imputation is probably the least appealing approach available.

On the contrary to neglecting the missing data, by putting the missing cases equal to the
maximum of all observed price changes could lead to an overestimation of the exposure to severe
losses. The distribution becomes more skewed and parameter estimates are likely to be biased.
Current routines hence need to be replaced by a more sophisticated method to acquire more
reliable results.

2.5 Modelling Approach
The aim in this thesis is to impute missing values through the conditional distribution. This
approach retains the variability of the data and hence do not affect correlations in such extent
as the imputation by the corresponding conditional expected value. Another advantage of this
approach is that specific quantile values are tractable and can be extracted from the considered
parametric model, which is an beneficial property regarding stress testing.
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Chapter 3

Mathematical Background

This chapter will introduce the most vital mathematical theory behind the algorithms used in
this thesis. The idea is to present the theory in a framework as general as possible. Therefore,
the implementation of each method will be thoroughly described in Chapter 4.

3.1 Maximum Likelihood Estimation (MLE)

The aim of maximum likelihood estimation (MLE) is to specify a distribution that describes
the total population in a complete data set. The starting point is the corresponding probability
density function fY (y), or fY (y;θθθ), where Y = y is a realization of the random variable and θθθ is
the vector of parameter values to be estimated. Additionally, the goal of MLE is to identify the
parameter values most likely to have produced a particular sample of data, i.e the parameter
values which maximize the likelihood Li = fY (yi;θθθ). However, the algorithm requires the entire
sample to be included in the estimation, not just a single data point. The joint probability of
independent events is represented by the product of the individual likelihoods

L(θθθ; Y) = L(θθθ; y1...yN ) = f(y1...yN ;θθθ) =

N∏
i=1

fY (yi;θθθ). (3.1)

Since the product of many small numbers (Li ∈ [0, 1]) produce an even smaller number, which is
prone to rounding errors and is more difficult to work with, a more common metric to use is the
natural logarithm of Equation (3.1), i.e the log-likelihood

log
(
L(θθθ; Y)

)
=

N∑
i=0

log
(
fY (yi;θθθ)

)
.

The natural logarithm is a strictly increasing function which means

argmax
θ∈θθθ

(
L(θθθ; Y)

)
= argmax

θ∈θθθ

(
log
(
L(θθθ; Y)

))
The MLE can be obtained through an iterative process which repeatedly computes the sample
log-likelihood with different parameter values until convergence is reached. The process is usually
ended when the difference between the previous log-likelihood and the current estimation is below
a certain threshold (tolerance level), or when the process has reached a certain maximum number
of iterations. However, to calculate the MLE in a more efficient manner, the first order partial
derivative of the log-likelihood function can be used by letting

∂log
(
L(θθθ; Y)

)
∂θ

= 0,

which is then solved for every θ ∈ θθθ [10].
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3.2 Bayesian Inference
In probability theory there are two fundamentally different approaches regarding the interpreta-
tion of the set of parameters to be estimated. They consist of the Frequentist inference and the
Bayesian inference. In the Frequentist analysis approach the data is interpreted as a repeatable
random sample, and the estimated parameters to be fixed, i.e f(Y;θθθ). However, in the Bayesian
framework the data is assumed to be observed from a realized sample, and the parameters to
be estimated are referred to as random variables, i.e f(θθθ|Y = y). More specific, the Bayesian
framework consist of three essential steps

1. specify prior distributions for the included parameters

2. assign a likelihood function to include the information held by the data regarding
the different parameter values, and

3. combine the prior distributions and the likelihood to form a posterior distribution
that describes the relative probability across a range of parameter values [10].

The prior distributions are used to incorporate additional information to the model that is
not explained by the data alone. The intuition of assigning a uniform prior is hence that no
additional information is available or used. Based on the data, the likelihood function gives
information regarding the relative probability for different parameter values. Additionally, the
prior information regarding the parameters and the information attained from the data is then
used to form the posterior distribution of the parameters given the data via Bayes’ theorem, see
Equation (3.2).

f(θθθ|Y) =
f(Y|θθθ)f(θθθ)

f(Y)
(3.2)

In Equation (3.2) the parameters of interest are given by θθθ, and Y is the sample data. The
prior distribution assigned to θθθ is given by f(θθθ), the likelihood (i.e the distribution of the data
conditional on the parameter) is given by f(Y|θθθ), and the marginal distribution of the data is
given by f(Y). The posterior distribution (i.e the distribution of the parameter conditional on
the data) is then given by f(θθθ|Y). The denominator of Equation (3.2) is just a normalizing
constant used to ensure that the area under the distribution function integrates to one, in other
words

Posterior =
Likelihood · Prior

Normalizing constant
.

The shape of the posterior distribution is not affected by this constant, which often is difficult to
calculate. Hence, a more common way to express the posterior distribution is to exclude this
constant (see [10]) and write

Posterior ∝ Likelihood · Prior.

3.3 Expectation Conditional Maximization (ECM)
The MLE is an attractive tool when managing data. However, since the MLE is based on the
first derivative of the log-likelihood function for every observed event it becomes intractable when
working with missing data. Hence, another approach for the maximum likelihood estimation is
needed. The expectation conditional maximization (ECM) algorithm is an updated version of the
classical expectation maximization (EM) method first introduced by Dempster et al. (1977) [6],
and is an appealing solution to the missing data estimation problem. The ECM algorithm
functions partially under the Bayesian assumptions and will through an iterative process in-
clude the conditional probability distribution of the missing data and provide a corresponding
maximum-a-posteriori (MAP) estimate of the parameter vector θθθ, i.e the mode value from its
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posterior distribution.

The EMC is a two-step iterative estimation process. The first step is the expectation step (E-step)
and the second step is the conditional maximization step (CM-step). The E-step generates samples
of missing (or latent) data by taking expectations over complete-data conditional distributions.
Thereafter, the CM-step involves individual complete-data maximum likelihood estimation of each
parameter, by conditionally keeping the other parameters fixed. The CM-step is what separates
the original EM method from the ECM algorithm. In the EM approach the corresponding
M-step is maximizing the likelihood function with respect to all parameters at the same time.
Hence, even if the ECM method is more computer intensive in the sense of number of iterations,
the overall rate of convergence may be improved. The objective of the ECM algorithm is to
maximize the observed-data likelihood by iteratively maximizing the complete-data likelihood [25].

Consider the complete-data Y = (Yobs,Ymiss), where Yobs refers to the observed-data and
Ymiss the missing-data. By using Bayes’ theorem, see Equation (3.2), the likelihood of the
complete-data can be written as

fY (Y|θθθ) = fYobs,Ymiss(Yobs,Ymiss|θθθ) = fYmiss(Ymiss|θθθ,Yobs) · fYobs(Yobs|θθθ)

⇒ fYobs(Yobs|θθθ) =
fYobs,Ymiss(Yobs,Ymiss|θθθ)
fYmiss(Ymiss|θθθ,Yobs)

,

where fYmiss(Ymiss|θθθ,Yobs) is the conditional distribution of the missing data given the observed
data. The relation between the complete-data likelihood L(θθθ; Y) and the observed-data likelihood
L(θθθ; Yobs) is then given by

log
(
L(θθθ; Yobs)

)
= log

(
L(θθθ; Y)

)
− log

(
fYmiss(Ymiss|θθθ,Yobs)

)
. (3.3)

The E-step now yields taking the expectation of Equation (3.3) with respect to fYmiss(Ymiss|θθθ,Yobs),
i.e

log
(
L(θθθ; Yobs)

)
= Eθθθ0

[
log
(
L(θθθ; Y)

)]
− Eθθθ0

[
log
(
fYmiss(Ymiss|θθθ,Yobs)

)]
, (3.4)

for any initial value θθθ0. Since the expectation is taken with respect to the missing data Ymiss,
the left hand side is by definition deterministic and the expectation is omitted. A common ECM
notation for the expected log-likelihood (see [31]) is

Q(θθθ|θθθ0,Yobs) = Eθθθ0
[
log
(
L(θθθ; Y)

)]
. (3.5)

The consecutive CM-step then maximizes Equation (3.5) by

Q
(
θ̂θθ(m+1)

∣∣∣θ̂θθ(m),Yobs

)
= max

θθθ

[
Q
(
θθθ
∣∣∣θ̂θθ(m),Yobs

)]
. (3.6)

If θθθm =
(
θ

(1)
(m), ..., θ

(N)
(m)

)
is the parameter estimate at iteration m, m = 0, ...,M , the ECM

sequentially maximize Equation (3.5) through the following scheme

7



Q
(
θ̂

(1)
(m+1)

∣∣∣θ̂(1)
(m), ..., θ̂

(k)
(m), ..., θ̂

(N)
(m),Yobs

)
= max

θ(1)

[
Q
(
θ(1)
∣∣∣θ̂(1)

(m), ..., θ̂
(k)
(m), ..., θ̂

(N)
(m),Yobs

)]
...

Q
(
θ̂

(2)
(m+1)

∣∣∣θ̂(1)
(m+1), θ̂

(2)
(m), ..., θ̂

(k)
(m), ..., θ̂

(N)
(m),Yobs

)
= max

θ(2)

[
Q
(
θ(2)
∣∣∣θ̂(1)

(m+1), θ̂
(2)
(m)..., θ̂

(k)
(m), ..., θ̂

(N)
(m),Yobs

)]
...

Q
(
θ̂

(N)
(m+1)

∣∣∣θ̂(1)
(m+1), ..., θ̂

(k)
(m+1), ..., θ̂

(N−1)
(m+1) , θ̂

(N)
(m),Yobs

)
= max

θ(N)

[
Q
(
θ(N)

∣∣∣θ̂(1)
(m+1), ..., θ̂

(k)
(m+1), ..., θ̂

(N−1)
(m+1) , θ̂

(N)
(m),Yobs

)]
.

In other words, the ECM algorithm maximize Equation (3.5) by first maximizing with respect

to θ
(1)
(m) keeping all other parameters constant. The fundamental in the theory behind the

ECM algorithm is that the observed likelihood in Equation (3.4) is increased by maximizing
Q(θθθ|θθθ0,Yobs) in each iteration. The following theorem and proof is referred to by Robert et al.
in [31], but were first stated by Dempster et al. (1977) [6].

Theorem 3.3.1. The sequence
(
θ̂(m)

)
defined by Equation (3.6) satisfies

L
(
θ̂(m+1)

∣∣∣Yobs

)
≥ L

(
θ̂(m)

∣∣∣Yobs

)
with equality holding if and only if Q

(
θ̂(m+1)

∣∣∣θ̂(m),Yobs

)
= Q

(
θ̂(m)

∣∣∣θ̂(m),Yobs

)
.

Proof. On successive iterations, it follows from the definition of θ̂m+1 that

Q
(
θ̂(m+1)

∣∣∣θ̂(m),Yobs

)
≥ Q

(
θ̂(m)

∣∣∣θ̂(m),Yobs

)
.

Hence, if it can be showed that

Eθ̂(m)

[
log

(
fYmiss

(
Ymiss

∣∣∣θ̂(m+1),Yobs

))]
≤ Eθ̂(m)

[
log

(
fYmiss

(
Ymiss

∣∣∣θ̂(m),Yobs

))]
, (3.7)

it will follow from Equation (3.4) that the value of the likelihood is increased at each iteration.
By defining the Shannon entropy, first introduced by Shannon [36] in 1948, as

H
(
θ̂(m+1)

∣∣∣θ̂(m)

)
= −Eθ̂(m)

[
log

(
fYmiss

(
Ymiss

∣∣∣θ̂(m+1),Yobs

))]

= −
∫

Ymiss

log

(
fYmiss

(
Ymiss

∣∣∣θ̂(m+1),Yobs

))
· fYmiss

(
Ymiss

∣∣∣θ̂(m),Yobs

)
dYmiss,

and by using the Gibbs inequality2 [2]

2 For a continuous probability distribution F =
∫
fX(x)dx, and any other continuous probability distribution

Q =
∫
qX(x)dx, the Gibbs inequality states

−
∫

log
(
fX(x)

)
· fX(x)dx ≤ −

∫
log
(
qX(x)

)
· fX(x)dx,

with equality only if f = q.
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−
∫

Ymiss

log

(
fYmiss

(
Ymiss

∣∣∣θ̂(m),Yobs

))
· fYmiss

(
Ymiss

∣∣∣θ̂(m),Yobs

)
dYmiss

≤

−
∫

Ymiss

log

(
fYmiss

(
Ymiss

∣∣∣θ̂(m+1),Yobs

))
· fYmiss

(
Ymiss

∣∣∣θ̂(m),Yobs

)
dYmiss

⇒

H
(
θ̂(m)

∣∣∣θ̂(m)

)
≤ H

(
θ̂(m+1)

∣∣∣θ̂(m)

)
,

the theorem is established.

However, Theorem 3.3.1 does not confirm that the sequence θ̂(m) converges to its corresponding
MLE estimate. The following complementing theorem is given by Roberts et al. [31] to ensure
convergence to a stationary point, i.e either a local maximum or a saddle point.

Theorem 3.3.2. If the expected complete-data likelihood Q
(
θ|θ0,Yobs) is continuous in both θ

and θ0, then every limit point of an EM sequence θ̂(m) is a stationary point of L(θ|Yobs) and

L
(
θ̂(m)

∣∣∣Yobs

)
converges monotonically to L

(
θ̂
∣∣∣Yobs

)
for some stationary point θ̂.

Be aware that Theorem 3.3.2 only guarantees convergence to a stationary point and not a global
maximum. This problem can be solved by running the ECM algorithm a number of times using
different initial values [31].

In Appendix A a short example [28] of the derivation of the ECM updating formula for the one
parameter case can be found.

3.4 Regression Analysis
The basic idea of the linear regression model is to build a set of regression equations to estimate
the conditional expectation of a set of random variables Y = (Y1, ..., Yn), see Equation (3.8).

yi =

k∑
j=0

xi,jβj + ei, i = 1, ..., N. (3.8)

The predicted value yi is a realisation of the dependent random variable Yi whose value depends
on the explanatory variables (covariates) xi,j . In contrast to the observed covariates, the residuals,
ei, are random variables and are assumed to be independent between observations, and with
conditional expected value and variance

E[ei|x] = 0 and E
[
e2
i

∣∣∣x] = σ2,

where σ is typically unknown [22]. However, this representation of the residuals is under the
assumption of homoskedasticity3. This is often an unverified assumption, and in many cases
heteroskedasticity4 is a more appropriate premise [16].

To bring more power to the estimated regression model it is strongly recommended to construct
a regression equation with high correlation between the explanatory variables and the dependent
variable, but with little to none correlation among the covariates themselves. Additionally, the
presence of multicollinearity5 can otherwise induce uncertainty regarding the inference to be

3 Homoskedasticity is when E
[
e2i

∣∣∣x] = σ2, i.e the residual variance does not depend on the observation.

4 Heteroskedasticity is when E
[
e2i

∣∣∣x] = σ2
i , i.e the residual variance depends on the observation.

5 Multicollinearity arises when two or more covariates are perfectly correlated.
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made about the model, even if the phenomenon in general does not reduce power or influence
the reliability of the model [22].

However, the first covariate, xi,0, is usually set to 1. This means that the first coefficient β0, called
the intercept, in (3.8) acts as a constant term. Hence, in contrast to the other coefficients the
intercept is somewhat hard to interpret since it does not indicate how much a specific covariate
contributes to the estimation of the dependent variable. However, the intercept is essential and
is included to reduce bias by shifting the regression line, and therefore guaranteeing that the
conditional expected value of the residual is E[ei|x] = 0 [15].

3.5 Copulas

The name copula is a Latin noun that means a ”link, tie, bond” [27]. In probability theory a
copula is a function used to describe and model the relation between one-dimensional distribution
functions, when the corresponding joint distribution is intractable. The name and theory behind
copulas (in the mathematical context) was first introduced by Sklar in 1959. Still, an informative
introduction to copulas (which is some what easy to digest) can be found in Embrechts et al. [8],
in Lindskog et al. [7] and in Embrechts [9]. More extensive literature concerning this subject is
presented by Nelsen [27] and by Dall’Aglio et al. [4]. However, the theorems and corresponding
proofs behind the theory of copulas in this paper is stated as in McNeil et al. [24].

A copula is defined in McNeil et al. [24] as:

Definition 3.5.1. A d-dimensional copula is a distribution function on [0, 1]d with standard
uniform marginal distributions. The notation C(u) = C(u1, ..., ud) is reserved for the multivariate
distribution functions that are copulas. Hence C is a mapping of the form C : [0, 1]d → [0, 1], i.e.
a mapping of the unit hypercube into the unit interval. The following three properties must hold.

1. C(u1, ..., ud) is increasing in each component ui.

2. C(1, ..., 1, ui, 1, ..., 1) = ui for all i ∈ 1, ..., d, ui ∈ [0, 1].

3. For all (a1, ..., ad), (b1, ..., bd) ∈ [0, 1]d with ai ≤ bi, the following must apply

2∑
i1=1

...

2∑
id=1

(−1)i1+...+idC(u1i1 , ..., udid) ≥ 0, (3.9)

where uj1 = aj and uj2 = bj for all j ∈ 1, ..., d.

The first property is clearly required of any multivariate distribution function and the second prop-
erty is the requirement of uniform marginal distributions. The third property is less obvious, but
the so-called rectangle inequality in Equation (3.9) ensures that if the random vector (U1, ..., Ud)

′

has distribution function C, then P (a1 ≤ U1 ≤ b1, ..., ad ≤ Ud ≤ bd) is non-negative. These three
properties characterize a copula; if a function C fulfills them, then it is a copula.

Before stating the famous Sklar’s Theorem, which is of great importance in the the study of
multivariate distribution functions, the operations of probability and quantile transformation
together with the properties of generalized inverses must be introduced, see Proposition 3.5.1.
The proof and the underlying theory to Proposition 3.5.1 can be found in [24].

Proposition 3.5.1. Let G be a distribution function and let G← denote its generalized inverse,
i.e. the function G←(y) = inf{x : G(x) ≥ y}.

1. Quantile transformation. If U ∼ U(0, 1) has a standard uniform distribution,
then P (G←(U) ≤ x) = G(x).

2. Probability transformation. If Y has distribution function G, where G is a
continuous univariate distribution function, then G(Y ) ∼ U(0, 1).

10



Finally, the following theorem stated by Sklar in 1959 emphasize that all multivariate distribution
functions contain copulas, and how copulas can be used in conjunction with univariate distribution
functions to form multivariate distribution functions. The proof of the theorem can be found in
Appendix B.

Theorem 3.5.1. (Sklar 1959) Let F be a joint distribution function with margins F1, ..., Fd.
Then there exists a copula C : [0, 1]d → [0, 1] such that, for all x1, ..., xd in R̄ = [−∞,∞],

F (x1, ..., xd) = C
(
F1(x1), ..., Fd(xd)

)
(3.10)

If the margins are continuous, then C is unique; otherwise C is uniquely determined on RanF1 ×
RanF2× ...×RanFd, where RanFi = Fi

(
R̄
)

denotes the range of Fi. Conversely, if C is a copula
and F1, ..., Fd are univariate distribution functions, then the function F defined in Equation (3.10)
is a joint distribution function with margins F1, ..., Fd.

The copula of a distribution is invariant under strictly increasing transformations of the marginals.
This is a very useful property since in conjunction with Sklar’s Theorem (Theorem 3.5.1) the copula
of a distribution then becomes a very powerful and dynamic tool to represent the dependence
structure of that distribution, see Proposition 3.5.2.

Proposition 3.5.2. Let (X1, ..., Xd) be a random vector with continuous margins and copula C
and let T1, ..., Td be strictly increasing functions. Then

(
T1(X1), ..., Td(Xd)

)
also has copula C.

The proof and the underlying theory to Proposition 3.5.2 can be found in [24].

3.5.1 Elliptical Distributions

The multivariate probability distributions used to sample from the corresponding copula in this
thesis belongs to the family of elliptical distributions. The following definition, theorem and
example of the elliptical distribution is stated as in [7].

Definition 3.5.2. If X is a d-dimensional random vector and, for some µ ∈ Rd and some d× d
non-negative definite, symmetric matrix Σ, the characteristic function ϕX−µ(t) of X − µ is a
function of the quadratic form tTΣt, ϕX−µ(t) = φ(tTΣt), then X has an elliptical distribution
with parameters µ, Σ and φ, and is denoted X ∼ Ed(µ,Σ, φ).

Remark. If d = 1, the class of elliptical distributions coincides with the class of one-dimensional
symmetric distributions. A function φ is called a characteristic generator.

Theorem 3.5.2. X ∼ Ed(µ,Σ, φ) with rank(Σ) = k if and only if there exist a random variable
R ≥ 0 independent of U, a k-dimensional random vector uniformly distributed on the unit
hypersphere z ∈ Rk|zT z = 1, and an d× k matrix A with AAT = Σ, such that

X
d
= µ+RAU.

Example 3.5.1. Let X ∼ Nd(0, Id). Since the components Xi ∼ N (0, 1), i = 1, ..., d, are

independent and the characteristic function of Xi is exp
(
− t2i

2

)
, the characteristic function of X

is

exp

(
− 1

2

(
t21 + · · ·+ td2

))
= exp

(
− 1

2
tT t

)
.

From Theorem 3.5.2 it then follows that X ∼ Ed(0, Id, φ), where φ(u) = exp
(
− u

2

)
.
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Chapter 4

Methodology

In this chapter the mathematical theory from Chapter 3 is implemented in three different
methods for imputation of missing data. More information regarding the underlying data and
the corresponding results are presented in Chapter 5 where they are put in the context of the
solution of a real world problem.

4.1 Stochastic Regression Imputation
Stochastic regression is, as the name implies, an evolved version of the ordinary regression analysis.
In resemblance with the expected value imputation, described in Chapter 2, ordinary regression
imputation also suffers from lost variability and is therefore likely to induce bias. Stochastic
regression modelling effectively restores this variability in the data by adding a random variable
to the regression equation

ŷi =

k∑
j=0

xi,j β̂j + zi, i = 1, ..., N, (4.1)

where ŷi is the estimate of the predicted variable, xi,j is the known covariate, β̂j is the corres-
ponding parameter estimate and zi is the added noise variable. The matrix representation of
Equation (4.1) is given by

Ŷ = Xβ̂ββ + z, (4.2)

where

Ŷ =

 ŷ1

...
ŷN

 , X =

1 x1,1 . . . x1,j . . . x1,k

...
...

. . .
...

. . .
...

1 xN,1 . . . xN,j . . . xN,k

 , β̂ββ =

β̂0

...

β̂k

 , and z =

 z1

...
zN

 .
The coefficients in Equation (4.2) are estimated using the ECM algorithm, which is introduced
in Chapter 3. In contrast to the widespread use of the Ordinary Least Squares (OLS) method,
the ECM algorithm make use of information attained from the missing data in the estimation
process.

Two different assumptions regarding the distribution of the data is used during the estimation and
imputation phases. First a normality assumption is applied by regarding the data as realisations
from a normal distribution as in Enders (2010) [10]. However, since the data is known to be
heavy tailed, this procedure is further developed by also implementing the assumption that the
data belongs to a Student’s t-distribution (t-distribution).

The parameters are estimated using a full Bayesian implementation of the ECM algorithm. In
other words, the posterior distribution is derived by specifying prior distributions for the model
parameters and assigning a likelihood function for the data as in Section 3.2. However, to make
the derivation easier to follow the likelihood function is first assigned to the data, and then the
prior distributions are specified for each parameter.
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4.1.1 The Likelihood Function

Consider the complete d-variate data vector yi. Next, the assumption that the complete data
belongs to a multivariate t-distribution

yi|ν,βββ,ΨΨΨ ∼ t(ν,Xi,0:kβββ,ΨΨΨ) (4.3)

fyi(yi|ν,βββ,ΨΨΨ) ∝ |ΨΨΨ| 12
(

1 +
1

ν
(yi −Xi,0:kβββ)′ΨΨΨ(yi −Xi,0:kβββ)

)− ν+d2

,

with shape matrix6 ΨΨΨ, is applied by using a mixture of normal distributions together with a
prior distribution of an auxiliary weight parameter wi. More specific, the corresponding prior
distribution of the weight vector and the normal mixture assigned to the observations are given
by

wi|ν ∼ Gamma
(ν

2
,
ν

2

)
=

(
ν
2

)( ν2 )

Γ
(
ν
2

) (wi)
ν
2−1e−

ν
2wi (4.4)

fwi(wi|ν) ∝ (wi)
ν
2−1e−

ν
2wi

and

yi|ν,βββ,ΨΨΨ, wi ∼ N
(
Xi,0:kβββ, (wiΨΨΨ)−1

)
=
|wiΨΨΨ|

1
2

√
2π

e−
wi
2 (yi−Xi,0:kβββ)′ΨΨΨ(yi−Xi,0:kβββ)

fyi(yi|ν,βββ,ΨΨΨ, wi) ∝ |wiΨΨΨ|
1
2 e−

wi
2 (yi−Xi,0:kβββ)′ΨΨΨ(yi−Xi,0:kβββ),

where | · | is the determinant and Γ(·) is the Gamma function. If the N × d vector Y =[
y1, ...,yi, ...,yN

]′
of observations is assumed to be conditionally independent, the total likeli-

hood is

fY(Y|ν,βββ,ΨΨΨ,ωωω) =

N∏
i=1

fyi(yi|ν,βββ,ΨΨΨ, wi)

∝ |ΨΨΨ|N2 ·
N∏
i=1

(wi)
d
2 · e− 1

2

∑N
i=1 wi(yi−Xi,0:kβββ)′ΨΨΨ(yi−Xi,0:kβββ).

In consistency with Section 3.2 the sign ∝ means ”proportional to” and indicates that some
normalizing constants have been omitted [30].

4.1.2 The Prior Distribution

The parameter βββ is assigned a uniform prior distribution (see [23]) given by

βββ ∝ constant.

The specified joint prior distribution for the parameter ΨΨΨ is given by an uninformative version of
the inverse Wishart distribution with density

ΨΨΨ ∼ |ΛΛΛ| ν2
2
ν·d
2 Γd

(
ν
2

) |ΨΨΨ|− ν+d+1
2 e−

1
2 tr
(
ΛΛΛΨΨΨ−1

)
,

ΨΨΨ ∝ |ΨΨΨ|−
ν+d+1

2 e−
1
2 tr
(
ΛΛΛΨΨΨ−1

)
, (4.5)

6 The relation between the MAP estimate of the shape matrix and the covariance matrix is for the normal

distribution given by Σ̂ = Ψ̂ΨΨ
−1

, and for the t-distribution Σ̂ = ν
ν−2

Ψ̂ΨΨ
−1

, (ν > 2).

13



where Γd
(
ν
2

)
is the multivariate gamma function and tr(·) is the trace 7. In this case the word

uninformative means that no initial assumptions regarding the distribution of ΨΨΨ are applied. More
specific, setting ν = 0 and Λ = 0 in Equation (4.5) is akin to say that no additional information
regarding the distribution is used [10]. This means that the improper8 prior distribution of
ΨΨΨ (see [30]) is proportional to

fΨΨΨ(ΨΨΨ) ∝ |ΨΨΨ|−
d+1
2 .

4.1.3 The Posterior Distribution

By using Bayes’ theorem (see Equation (3.2)) and assuming that ωωω,βββ,ΨΨΨ are a-priori independent
finally gives the posterior distribution

fν,βββ,ΨΨΨ,ωωω(ν,βββ,ΨΨΨ,ωωω|Y) ∝ fY(Y|ν,βββ,ΨΨΨ,ωωω) · fβββ(βββ) · fΨΨΨ(ΨΨΨ) · fωωω(ωωω|ν)

∝ |ΨΨΨ|
N−d−1

2

N∏
i=1

(wi)
d+ν
2 −1e−

1
2

∑N
i=1 wi

(
(yi−Xi,0:kβββ)′ΨΨΨ(yi−Xi,0:kβββ)+ν

)
(4.6)

Given the full posterior distribution in Equation (4.6), the posterior conditional distribution for
each parameter can be derived.

The posterior distribution of the weights, conditional on (Y, ν,βββ,ΨΨΨ), is attained by omitting
everything in Equation (4.6) not depending on ωωω, i.e

fωωω(ωωω|Y, ν,βββ,ΨΨΨ) ∝
N∏
i=1

(wi)
d+ν
2 −1 · e−

1
2

∑N
i=1 wi

(
(yi−Xi,0:kβββ)′ΨΨΨ(yi−Xi,0:kβββ)+ν

)
. (4.7)

By inspection, the Equation (4.7) is proportional to the closed form expression of the gamma
distribution (see Equation (4.4)), hence

wi|yi, ν,βββ,ΨΨΨ ∼ Gamma
(
d+ ν

2
,

(yi −Xi,0:kβββ)′ΨΨΨ(yi −Xi,0:kβββ) + ν

2

)
fωωω(ωωω|Y, ν,βββ,ΨΨΨ) =

N∏
i=1

f(wi|yi, ν,βββ,ΨΨΨ).

The corresponding conditional expectation of the weights is then given by

E
[
wi
∣∣yi, ν,βββ,ΨΨΨ] =

d+ ν

(yi −Xi,0:kβββ)′ΨΨΨ(yi −Xi,0:kβββ) + ν
. (4.8)

Continuing with the posterior conditional distribution of the shape matrix ΨΨΨ, and comparing
Equation (4.6) with the Wishart distribution

|ΨΨΨ| ν−d−1
2 e−

1
2 tr
(
ΛΛΛ−1ΨΨΨ

)
2
ν·d
2 |ΛΛΛ| ν2 Γd

(
ν
2

) ,

gives

7 The trace of an n× n square matrix A is defined to be the sum of the elements on the main diagonal of A, i.e
tr(A) = a11 + a22 + ...+ ann =

∑n
i=1 aii

8 Improper in the sense that it does not integrate to 1.
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ΨΨΨ|Y, ν,βββ,ωωω ∼Wishart(Λ−1, N)

fΨΨΨ(ΨΨΨ|Y, ν,βββ,ωωω) ∝ |ΨΨΨ|
N−d−1

2 · e− 1
2 tr(ΨΨΨΛ),

where

N∑
i=1

wi(yi −Xi,0:kβββ)ΨΨΨ(yi −Xi,0:kβββ)′ = tr(ΨΨΨΛΛΛ)

and

Λ =

N∑
i=1

wi(yi −Xi:kβββ)(yi −Xi,0:kβββ)′.

The MAP estimate of the posterior conditional distribution of the shape matrix ΨΨΨ is then given
by

mode(ΨΨΨ|Y, ν,βββ,ωωω) = (N − d− 1) ·Λ−1, (4.9)

for N > d − 1. Finally, by examining Equation (4.6) it can be seen that the posterior condi-
tional distribution of the coefficient vector βββ is normal (see [30]), and the MAP estimate is given by

mode(βββ|Y, ν,ΨΨΨ,ωωω) =

(
N∑
i=1

wi(Xi,0:k)′ΨΨΨXi,0:k

)−1 N∑
i=1

wi(Xi,0:k)′ΨΨΨyi. (4.10)

4.1.4 Imputation Procedure

The iterative ECM method is used to attain the MAP estimates of the corresponding posterior
conditional distributions. However, until now the estimation of the degrees of freedom parameter,
ν, has not been considered. In comparison with the other parameters the estimation of the
degrees of freedom parameter, ν, is a bit more tedious.

Estimation of the Degrees of Freedom Parameter, ν

Given the marginal distribution of the observed weights (see Equation (4.4)) the corresponding
log-likelihood of ν, ignoring constants, is given by

LGamma(ν|ωωω) ∝ −N · ln
(

Γ

(
ν

2

))
+
N · ν

2
· ln
(
ν

2

)
+
ν

2
·
N∑
i=1

(
ln(wi)− wi

)
. (4.11)

However, the representation in Equation (4.11) is assuming that the weights, wi, are known.
Hence, when the weights are unknown the last term in Equation (4.11) is replaced by its
conditional expectation, i.e by

E

[
N∑
i=1

(
ln(wi)− wi

)
|Y, ν,βββ,ΨΨΨ

]
= φ

(
d+ ν

2

)
− ln

(
d+ ν

2

)

+

N∑
i=1

(
ln
(
E
[
wi
∣∣Y, ν,βββ,ΨΨΨ

])
− E

[
wi
∣∣Y, ν,βββ,ΨΨΨ

])
,

where φ(·) is the digamma function9 and E
[
wi
∣∣Y, ν,βββ,ΨΨΨ

]
is given by Equation (4.8).

9 The digamma function is defined as φ(x) =
dln
(
Γ(x)

)
dx

.
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The degrees of freedom parameter is then attained by maximizing Equation (4.11) with respect
to ν. In other words, at iteration (m+ 1) of the ECM algorithm the value of ν is obtained by
finding the solution to the following equation

0 =− φ
(
ν

2

)
+ ln

(
ν

2

)
+ 1 + φ

(
d+ ν(m)

2

)
− ln

(
d+ ν(m)

2

)

+
1

N

N∑
i=1

(
ln
(
w

(m)
i

)
− w(m)

i

)
. (4.12)

The solution to Equation (4.12) can be found by a one-dimensional search using a half interval
method. In this thesis Equation (4.12) is solved using the MATLAB function Bisection [3], see
also [1] for more information. Additionally, for a more thorough derivation of Equation (4.12)
see [23].

Treating Missing Values

Until now, the missing data Ymiss in Y =
(
Yobs,Ymiss

)
has not been covered in the estimation

process. In the parameter estimation process the missing data is temporary filled in using the
conditional expectation

E[Ymiss|Yobs = yobs] = Xβββ −ΣΣΣYobs,YmissΣΣΣ
−1
Yobs,Ymiss

(yobs −Xβββ),

and then the conditional covariance of Ymiss|Yobs = yobs is updated via

ΣΣΣYmiss|Yobs=yobs = ΣΣΣYmiss
−ΣΣΣYobs,Ymiss

ΣΣΣ−1
Yobs,Yobs

ΣΣΣYmiss,Yobs
.

Implementing the ECM Algorithm

Consider a N ×d vector y = (yobs,ymiss), where N = (Nobs, Nmiss) is the number of observation
and missing values in y. The ECM algorithm is then used to obtain the MAP estimates of each
parameter, see Algorithm (1). The E-step corresponds to Equation (4.8) and the CM-steps to
Equations (4.9), (4.10) and (4.12).
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Algorithm 1: The ECM Algorithm

1: Initialize ymiss ← 0, ΨΨΨ
(0)
obs ← I, ΨΨΨ(0) =

(
ΨΨΨ

(0)
obs, ΨΨΨ

(0)
miss

)
, ωωω(0) ← 1 and ν(0) ← 4.

2: while
∣∣βββ(m+1) − βββ(m)

∣∣ ≥ tolerance do

3: βββ(m+1) ←
(∑N

i=1 w
(m)
i yi(Xi,0:k)

′
ΨΨΨ(m)Xi,0:k

)−1∑N
i=1 w

(m)
i (Xi,0:k)ΨΨΨ(m)yi

4: Λ(m+1) ←
∑N
i=1 w

(m)
i

(
yi −Xi,0:kβββ

(m+1)
)(

yi −Xi,0:kβββ
(m+1)

)′
5: ΨΨΨ(m+1) ← (N − d− 1)

(
Λ(m+1)

)−1

6: Solve for ν:

0 =− φ
(
ν

2

)
+ ln

(
ν

2

)
+ 1 + φ

(
d+ ν(m)

2

)

− ln

(
d+ ν(m)

2

)
+

1

N

N∑
i=1

[
ln
(
w

(m)
i

)
− w(m)

i

]

7: Set ν(m+1) = ν
8: for i = 1 to N do
9: w

(m+1)
i ← d+ν(m+1)

ν(m+1)+(yi−Xi,0:kβββ(m+1))′ΨΨΨ(m+1)(yi−Xi,0:kβββ(m+1))

10: end for
11: Treating missing values
12: for i = 1 to Nmiss do

13: y
(m+1)
miss,i = Xi,0:kβββ

(m+1) −
(
ΨΨΨ

(m+1)
obs,miss

)−1

ΨΨΨ
(m+1)
obs,obs

(
yobs,i −Xi,0:kβββ

(m+1)
)

14: end for

15:

(
ΨΨΨ

(m+1)
miss|obs

)−1

←
(
ΨΨΨ

(m+1)
miss

)−1

−
(
ΨΨΨ

(m+1)
obs,miss

)−1

ΨΨΨ
(m+1)
obs,obs

(
ΨΨΨ

(m+1)
miss,obs

)−1

16: Set ΨΨΨ
(m+1)
miss ←ΨΨΨ

(m+1)
miss|obs

17: Set ΨΨΨ(m+1) ←
(
ΨΨΨ

(m+1)
obs ,ΨΨΨ

(m+1)
miss

)
18: end while

The MAP estimate for the normal regression, i.e letting ν →∞, is obtained by neglecting the
weight update in lines 8-10. The ECM routine described above is implemented through an
updated version of the MATLAB function, mvsregress [30]. In the original version of mvsregress
the degrees of freedom, ν, is assumed to be known, and the function hence exclude the estimation
in line 6 in Algorithm 1.

The estimated coefficients in Equation (4.1) and the degrees of freedom parameter, with different
amount of missing data (NaN), can be found in Table 4.1.

Normal distribution
NaN β0 β1 β2 ν

0 0.0205 0.5744 0.5394 ∞
3 0.0217 0.5741 0.5401 ∞
10 0.0197 0.5734 0.5412 ∞
25 0.0213 0.5723 0.5401 ∞
50 0.0337 0.5563 0.5501 ∞
100 0.0088 0.5426 0.5598 ∞
150 0.0171 0.5370 0.5579 ∞
250 0.0193 0.5342 0.5851 ∞

Student’s t-distribution
NaN β0 β1 β2 ν

0 0.0153 0.5949 0.5058 2.8947
3 0.0164 0.5944 0.5068 2.9135
10 0.0140 0.5933 0.5088 2.9328
25 0.0135 0.5917 0.5074 2.9705
50 0.0162 0.5813 0.5173 3.3667
100 0.0106 0.5724 0.5253 5.0469
150 0.0127 0.5585 0.5394 6.2348
250 0.0191 0.5494 0.5636 9.3356

Table 4.1: Estimated parameter values for the normal distribution assumption and the Student’s
t-distribution with different amount of missing data (NaN).
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The predicted values are now computed using Equation (4.1) together with the parameter
estimates from Table 4.1. The random noise variable zi is then added to every output to restore
variability to the imputed data. In the first model the noise term is assumed to have a normal
distribution with zero mean and a corresponding residual variance. In the model where the data
is assumed to be heavy tailed the noise is generated by the t-distribution with zero mean and
corresponding residual variance and degree of freedom, i.e

zi ∼ N
(
0,ΨΨΨ−1

)
zi ∼ t

(
ν, 0,

ν

ν − 2
ΨΨΨ−1

)
.
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4.2 Multiple Imputation (MI)

Multiple imputation (MI) is an alternative to maximum likelihood estimation (MLE) and is the
other method currently regarded as a state-of-the-art missing data technique [10]. The MI method
tends to produce similar analysis results as the MLE approach if the imputation model contains
the same variables as the subsequent analysis model. However, in the case when additional
variables are used that are not included in the subsequent analysis the two approaches may
provide different estimates, standard errors, or both. However, the main difference between the
methods is that the analysis from the MI approach does not depend solely on one imputed set of
missing values but of several augmented chains. For more information regarding the advantages
and disadvantages of the two methods please see [10]. The imputation approach outlined in
this section functions under the same assumption as in Section 4.1, i.e. that the data is missing
at random (MAR). In line with Section 4.1 both a normal distribution and a t-distribution is
assigned to the data. To attain the corresponding t-distribution, the approach used in Section 4.1,
is also applied here.

MI is actually a broad term and include a variety of underlying imputation techniques, each
superior depending on the current missing data pattern and mechanism assumption. A multiple
imputation analysis consists of three distinct steps common to all multiple imputation procedures:

• The imputation phase

• The analysis phase

• The pooling phase

In the imputation phase the underlying algorithm is used to estimate a multiple set of predicted
values for each missing data point. In other words, a multiple set of parallel series are generated
for each set of missing data. The underlying MI procedure used in this thesis is an iterative version
of the stochastic regression imputation technique from Section 4.1. However, the mathematical
principle behind the update of the parameter estimates rely heavily on Bayesian methodology.
The goal of the analysis phase is, as its name implies, to individually analyze the filled-in
data sets and estimate the corresponding parameters. With exception of the initial step, this
amounts to sequentially applying the same statistical procedures as if the data had been complete.
Additionally, the analysis phase should hence produce a parameter estimate for each imputed
parallel set of values from the imputation phase. The purpose of the final step, the pooling phase,
is to estimate a single set of results by combining all the estimated parameters.

4.2.1 The Imputation Phase

The imputation phase is a data augmentation algorithm consisting of a two-step procedure, the
actual imputation step (I-step) and the posterior step (P-step). The I-step uses the stochastic
regression imputation technique from Section 4.1 to fill-in the set of missing values. More specific,
the I-step uses an estimate of the mean vector and covariance matrix to construct a set of
regression equations to predict the missing values using the observed covariates.

The objective of the imputation phase is to generate a large number κ of complete data sets of
length N = Nobs +Nmiss, each of which contains augmented chains of length Nmiss of unique
estimates of the missing values, see Table 4.2. To be able to attain these unique imputations, new
estimates of the regression coefficients are required for each I-step. The purpose of the P-step is
therefore to draw new candidates of the mean vector and covariance matrix from the respective
posterior distribution. The imputation step is hence an iterative process which alternates between
the I-step and the P-step.
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Y ∗κ,1 . . . Y ∗κ,Nobs Y ∗κ,Nobs+1 . . . Y ∗κ,Nobs+Nmiss
Y ∗κ−1,1 . . . Y ∗κ−1,Nobs

Y ∗κ−1,Nobs+1 . . . Y ∗κ−1,Nobs+Nmiss
...

...
...

...
...

...
Y ∗2,1 . . . Y ∗2,Nobs Y ∗2,Nobs+1 . . . Y ∗2,Nobs+Nmiss
Y ∗1,1 . . . Y ∗1,Nobs Y ∗1,Nobs+1 . . . Y ∗1,Nobs+Nmiss

Table 4.2: An overview of the κ number of complete data sets of length N = Nobs + Nmiss, each of
which contains augmented chains of length Nmiss of unique estimates of the missing values.

The I-Step

As described above, the purpose of the I-step is to construct a set of regression equations from
an estimate of the mean vector and the covariance matrix. Since the procedure is an iterative
process alternating between the I-step and the P-step, the first iteration requires an initial
estimate of the mean vector and the covariance matrix. Typically, a good starting point is to
use the estimated parameters from the ECM algorithm used in Section 4.1. From these initial
parameters estimates a first set of missing values are predicted from the observed covariates by
using stochastic regression imputation. In other words, the initial phase of the I-step produces a
first set of complete data, which the rest of the analysis is based upon.

Since the data is assigned a mixture of normal distributions together with an auxiliary weight
variable, wi, the corresponding unbiased10 Monte Carlo integration estimate of the expected
value and covariance of the complete data is given by

µ̂Y =
1

N

N∑
i=1

wiyi (4.13)

and

ˆCov(Y,Xj) =
1

N − 1

N∑
i=1

wi(yi − µ̂Y)(xi,j − µ̂Xj
). (4.14)

The value of the auxiliary weight parameter wi is attained together with the initial parameter
estimates using the ECM algorithm. Note that under the normal assumption the weight wi = 1,
which is consistent with Section 4.1.

Given the estimated regression equation

Ŷ = Xβ̂ββ + z,

where

Ŷ =

 ŷ1

...
ŷN

 , X =

1 x1,1 . . . x1,j . . . x1,k

...
...

. . .
...

. . .
...

1 xN,1 . . . xN,j . . . xN,k

 =
[
1 X1 . . . Xk . . . Xk

]
,

β̂ββ =

β̂0

...

β̂k

 , and z =

 z1

...
zN

 ,
10 Unbiased in the sense that µ̂(·) = 1

N

∑N
i=1(·)→ E[·] as N →∞.
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then the corresponding mean vector and covariance matrix is

µ̂µµ =


µ̂Y

µ̂X1

...
µ̂Xk

 , Σ̂ΣΣ =


ˆCov(Y,Y) ˆCov(Y,X1) . . . ˆCov(Y,Xk)
ˆCov(X1,Y) ˆCov(X1,X1) . . . ˆCov(X1,Xk)

...
...

. . .
...

ˆCov(Xk,Y) ˆCov(Xk,X1) . . . ˆCov(Xk,Xk)

 .

By using Equation (4.13) and (4.14) the regression coefficients are calculated by solving the
following set of equations

ˆCov(Y,Xi) =

k∑
j=1

β̂j · ˆCov(Xj ,Xi).

and

β̂0 = µ̂Y − µ̂µµX1:k
β̂ββ1:k,

or by using the subvector and submatrix of the mean vector and covariance matrix

β̂ββ1:k =


ˆCov(X1,X1) . . . ˆCov(X1,Xk)

...
. . .

...
ˆCov(Xk,X1) . . . ˆCov(Xk,Xk)


−1 

ˆCov(Y,X1)
...

ˆCov(Y,Xk)


and

β̂0 = µ̂Y − µ̂µµX1:k
β̂ββ1:k.

The P-Step

In this step a new set of mean values and covariances are generated from the respective posterior
distribution. From Section 4.1 it is known that the posterior distribution of the shape matrix ΨΨΨ is

ΨΨΨ ∼Wishart(ΛΛΛ−1, N),

where ΛΛΛ = (N−d−1)ΣΣΣ. If a random matrix has a Wishart distribution with parameters ΛΛΛ−1 and
N , then the inverse of that random matrix has an inverse Wishart distribution with parameters
ΛΛΛ and N . Hence, the posterior distribution of the covariance matrix ΣΣΣ is given by

ΣΣΣ∗ ∼Wishart−1(Λ̂ΛΛ, N),

where the * denotes that the parameter is generated through simulation from the posterior
distribution. From Equation (4.6) it can be seen that the posterior distribution of the expected
value is multivariate normal, i.e

µµµ∗ ∼MN
(
µ̂µµ, (N − d− 1)−1ΣΣΣ∗

)
.

The alternating steps of the method is presented in a more concise and perspicuous manner in
Algorithm 2 below.
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Algorithm 2: The Data Augmentation Algorithm of Multiple Imputation

1: Initialize β̂ββ
(0)
,w and ν via Algorithm 1.

2: Estimate Ŷ = Xβ̂ββ
(0)

3: ΨΨΨ(t) ← (N − d− 1)

(∑N
i=1 wi

(
yi −Xi,0:kβββ

(t)
)(

yi −Xi,0:kβββ
(t)
)′)−1

4: Draw z∗ ∼ N

(
0,

(
Ψ̂ΨΨ

(0)
)−1

)
or z∗ ∼ t

(
ν, 0, ν

ν−2

(
Ψ̂ΨΨ

(0)
)−1

)
5: Set Ŷ(0) = Xβ̂ββ

(0)
+ z∗

6: Estimate µ̂µµ and Σ̂ΣΣ
7: for t = 1 to T do
8: Set Λ̂ΛΛ = (N − d− 1)Σ̂ΣΣ

9: Draw ΣΣΣ∗(t) ∼Wishart−1(Λ̂ΛΛ, N)
10: Draw µµµ∗(t) ∼MN

(
µ̂µµ, (N − d− 1)−1ΣΣΣ∗(t)

)
11: Compute β̂ββ

(t)

1:k using ΣΣΣ∗(t)

12: Compute β̂
(t)
0 using µµµ∗(t)

13: Estimate Ŷ = Xβ̂ββ
(t)

14: ΨΨΨ(t) ← (N − d− 1)

(∑N
i=1 wi

(
yi −Xi,0:kβββ

(t)
)(

yi −Xi,0:kβββ
(t)
)′)−1

15: Draw z∗ ∼ N

(
0,

(
Ψ̂ΨΨ

(t)
)−1

)
or z∗ ∼ t

(
ν, 0, ν

ν−2

(
Ψ̂ΨΨ

(t)
)−1

)
16: Set Ŷ(t) = Xβ̂ββ

(t)
+ z∗

17: Estimate µ̂µµ and Σ̂ΣΣ
18: end for

Initial I-Step

P-Step

I-Step

Convergence

The data augmentation algorithm used in the imputation phase belongs to a family of Markov
Chain Monte Carlo (MCMC) procedures. The objective of a MCMC algorithm is to generate
random draws from a distribution. By iteratively alternating between the I-step and the P-step,
and sequentially generating new samples, a so-called data augmentation chain is created:

Y∗1 , θθθ
∗
1,Y

∗
2 , θθθ
∗
2,Y

∗
3 , θθθ
∗
3, . . . ,Y

∗
t , θθθ
∗
t , . . . ,Y

∗
T , θθθ
∗
T ,

where Y∗t represents the imputed values at I-step t, and θθθ∗t contains the generated parameter
values at P-step t. Note that the length of the total number of generated complete sets, T , is
much greater than the final number of unique independent complete sets, κ.

In contrast to maximum likelihood based algorithms which reach convergence when the parameter
estimates do not change over consecutive iterations, data augmentation converges when the
distributions become stationary11. The complexity of this definition is due to the fact that each
step in the data augmentation chain is dependent on the former step. Hence, even if the data
augmentation chain appears to be sequentially increased by random samples, the dependence
between each I-step and P-step induces a correlation between the simulated parameters from
consecutive P-steps. Additionally, analyzing data sets from consecutive I-steps inherit the same
problem and is therefore also inappropriate. Consequently, to be able to generate a multiple
of independent copies of the missing data it is essential to ensure when the data augmentation

11 Stationary in the sense that the expected value and variance do not change over time, i.e there is no visible
trend present.
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chain has reached stationarity.

Monitoring the evolution of the chain over a large number of cycles is one way to accomplish this.
In Figure 4.1-4.4 the first 200 iterations of the data augmentation chain of the expected values
and the elements of the covariance matrix can be seen for the case with the greatest amount of
missing values (in this case NaN=250). The horizontal line represents the corresponding mean of
the total chain of T = 10, 000 iterations.
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Figure 4.1: The evolution of the data augmentation chain for the first 200 sampled expected values
under the normal assumption.
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Figure 4.2: The evolution of the data augmentation chain for the first 200 sampled elements of the
covariance matrix under the normal assumption.
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Figure 4.3: The evolution of the data augmentation chain for the first 200 sampled expected values
under the Student’s t model.
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Figure 4.4: The evolution of the data augmentation chain for the first 200 sampled elements of the
covariance matrix under the Student’s t model.

In Figure 4.1-4.4 there is no visible long-term trends, and the parameters evolve in a seemingly
random fashion. The absence of trend is an ideal situation and suggests that the parameters
almost instantly converges to a stable distribution.

Another important diagnostic tool for assessing convergence is the auto-correlation function which
quantifies the magnitude and duration of the induced dependency. The Pearson correlation is used
to measure the k -lag auto-correlation between sets of parameter values separated by k iterations
in the data augmentation chain. In Figure 4.5-4.8 the sample auto-correlation of the complete
data augmentation chain of the expected values and elements of the covariance matrix can be seen.
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Figure 4.5: The auto-correlation function (acf) of the complete data augmentation chain for the sampled
expected values under the normal distribution.
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Figure 4.6: The auto-correlation function (acf) of the complete data augmentation chain for the sampled
elements of the covariance matrix under the normal assumption.
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Figure 4.7: The auto-correlation function (acf) of the complete data augmentation chain for the sampled
expected values under the Student’s t model.
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Figure 4.8: The auto-correlation function (acf) of the complete data augmentation chain for the sampled
elements of the covariance matrix under the Student’s t model.

In Figure 4.5-4.8 the auto-correlation plots of the different parameters confirm the behavior in
Figure 4.1-4.4. The auto-correlation drops to within sampling error of zero almost immediately.
This suggests that the distribution of the parameters becomes stable after a very small number
of iterations.
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Final Set of Imputations

As stated earlier, the main goal of the imputation phase is to generate a large number κ of
complete data sets, each of which contains unique estimates of the missing values. After analyzing
the complete data augmentation chains there are two approaches for attaining the final set
of independent imputations, κ, namely by sequential and parallel sampling. Sequential data
augmentation chains refers to saving and analysing the data sets at regular intervals, e.g. every
20th I-step. Parallel data augmentation chains are generated by sampling several chains and save
and analyse the imputed data at the final I-step. In this thesis the final set of imputations are
generated by using sequential sampling. To be certain that the data augmentation chain has
reached stationarity the generated samples are saved and analyzed every 100th I-step. Hence, a
total of T = 10, 000 iterations are required to attain κ = 100 imputed samples for each missing
value.

4.2.2 The Analysis Phase

In the analysis phase the κ data sets are analyzed using the same procedure as if the data
had been complete. This phase is in a way integrated in Algorithm 2, and the mean vector
and covariance matrix of the corresponding κ final complete data sets are saved and analyzed.
The regression coefficients are then computed through these κ sets of independently sampled
parameters and are combined to a single estimate in the subsequent pooling phase.

4.2.3 The Pooling Phase

In the final step of the MI procedure the κ estimates of each parameter from the analysis phase
are pooled into a single point estimate. In contrast to the ECM algorithm in Section 4.1 the
MI approach relies on the results from multiple estimates rather than a single data set. In 1987
Rubin [35] defined the MI point estimate as the arithmetic mean value of the κ independent
estimates

θ̄ =
1

κ

κ∑
i=1

θ̂i,

where θ̂i is the parameter estimate from data set i and θ̄ is the pooled estimate [10]. In Figure 4.9-
4.10, 10, 000 samples generated from the corresponding posterior distribution of each regression
coefficient are plotted in a histogram with a fitted normal distribution and Student’s t-distribution.
Additionally, in Table 4.3 the pooled estimates of the regression coefficients are listed for different
amount of missing data (NaN).
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Figure 4.9: A histogram of 10,000 sampled regression coefficients under the normal assumption with a
fitted normal distribution.
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Figure 4.10: A histogram of 10,000 sampled regression coefficients under the Student’s t model with a
fitted Student’s t-distribution.

Normal distribution
NaN β0 β1 β2 ν

3 0.0216 0.5719 0.5425 ∞
10 0.0205 0.5746 0.5399 ∞
25 0.0200 0.5720 0.5402 ∞
50 0.0376 0.5552 0.5520 ∞
100 0.0077 0.5438 0.5584 ∞
150 0.0177 0.5369 0.5580 ∞
250 0.0184 0.5349 0.5836 ∞

Student’s t-distribution
NaN β0 β1 β2 ν

3 0.0173 0.5954 0.5055 2.9135
10 0.0130 0.5929 0.5091 2.9328
25 0.0097 0.5929 0.5063 2.9705
50 0.0186 0.5807 0.5169 3.3667
100 0.0097 0.5726 0.5242 5.0469
150 0.0123 0.5579 0.5387 6.2348
250 0.0164 0.5479 0.5661 9.3356

Table 4.3: The pooled parameter values for the normal distribution assumption and the Student’s
t-distribution with different amount of missing data (NaN).

The predicted values are now computed using Equation (4.1) together with the parameter
estimates from Table 4.1. The random noise variable zi is then added to every output to restore
variability to the imputed data. In the first model the noise term is assumed to have a normal
distribution with zero mean and a corresponding residual variance. In the model where the data
is assumed to be heavy tailed the noise is generated by the t-distribution with zero mean and
corresponding residual variance and degree of freedom, i.e

zi ∼ N
(
0,ΨΨΨ−1

)
zi ∼ t

(
ν, 0,

ν

ν − 2
ΨΨΨ−1

)
.
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4.3 A Copula Approach
The use of copulas has become very popular over the years since they offer a dynamic way to
model the dependence structure between random variables. It is an appealing approach since the
marginal behavior of each random variable and the joint dependent structure can be modelled
separately. This gives the opportunity to a custom made modeling approach for each problem.
Although the use of copulas to model the dependence structure between random variables has
increased (especially in finance), the literature regarding copulas in the context of missing data is
very limited. The earliest articles found concerning this topic is the imputation of missing data
by using the Gaussian copula (g-copula) by Käärik (2005) [19] and Käärik (2006) [20]. This work
is developed further by Friedman et al. (2009) [13] and Friedman et al. (2012) [14], where the
Student’s t-copula (t-copula), among other models (including the Gaussian copula), are applied
to heavy tailed data.

In consistency with Section 4.1-4.2, both a normal assumption and heavy tailed model is applied
to the data in this section. The construction of the dependence structure used in this thesis stems
from the definition of a copula as a multivariate distribution function defined on the d-dimensional
unit cube [0, 1]d, with uniformly distributed marginals [7]. In line with the assumptions regarding
the data, a multivariate normal distribution and a multivariate t-distribution is used to generate
samples from the corresponding copula. Both these distributions belong to the family of elliptical
distributions, and the corresponding copulas are hence referred to as elliptical copulas, see
Definition 3.5.2. Elliptical distributions are easy to simulate from and this helpful property
is inherited by the elliptical copulas through Sklar’s theorem (see, Theorem 3.5.1) [7], even if
elliptical copulas in general do not have simple closed forms [24].

Copulas are usually used to model the dependence structure between marginal distributions when
the corresponding joint distribution function is intractable. However, in this thesis copulas are
used to model the dependency of conditional distribution functions directly, without the use of
Bayes’ theorem, see Section 3.3. The following feature of the (t-copula) is stated in Demarta and
McNeil (2004) [5]:

”If a random vector Y has the t-copula Ctν,P and univariate t margins with the same
degree of freedom parameter ν, then it has a multivariate t-distribution with ν degrees
of freedom. If, however, Equation (3.10) is used to combine any other set of univariate
distribution functions using the t-copula we obtain multivariate distribution functions F
which have been termed meta-t-distribution functions”.

The modelling approach is based on known results regarding the Arellano-Valle and Bolfarine’s
generalized t-distribution first given by Kots and Nadarajah (2004) [21], but is here applied as
in [13] and [14], see Definition 4.3.1.

Definition 4.3.1. A d-dimensional random vector Y = (Y1, ..., Yd)
′ is said to have an Arellano-

Valle and Bolfarine’s generalized t-distribution with degrees of freedom ν, mean vector m, and
symmetric positive definite d× d covariance matrix, R, and additional parameter λ > 0 if it can
be represented via

Y = m + V
1
2 G, (4.15)

where V has the inverse gamma distribution given by the probability density function

fV (v) =

(
λ
2

) ν
2

Γ
(
ν
2

)(1

v

) ν
2 +1

exp

(
− λ

2v

)
, v > 0

and G ∼ N(0,R) is distributed independently of V. A common notation for the distribution of
Y is Y ∼ t(m,R, λ, ν), and the probability density function of Y is denoted by t(y; m,R, λ, ν).
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Note that the matrix, R, is the covariance of the normally distributed variable G, and not the
t-distributed random variable Y.

Proposition 4.3.1. If Y ∼ t(y; m,R, λ, ν), then

µY = m, ν > 1

Cov(Y) = ΣΣΣ =
λ

ν − 2
R, ν > 2. (4.16)

Definition 4.3.2. In the special case λ = ν, the generalized t-distribution reduces to the (usual)
multivariate t-distribution with mean m, degrees of freedom ν, and dependence structure matrix,
R.

In the parameter estimation of the corresponding copula, the (usual) multivariate t-distribution is
used. However, as to be seen, the conditional distributions of (usual) multivariate t-distributions
are, in general, not usual but generalized t-distributions [13] [14].

Consider the d-dimensional t-distributed random variable Y with degrees of freedom ν and let

Y =

[
Y1

Y2

]
, with sizes

[
d1 × 1

(d− d1)× 1

]
,

m =

[
m1

m2

]
, with sizes

[
d1 × 1

(d− d1)× 1

]
,

and

ΣΣΣ =

[
ΣΣΣ11 ΣΣΣ12

ΣΣΣ21 ΣΣΣ22

]
, with sizes

[
d1 × d1 d1 × (d− d1)

(d− d1)× d1 (d− d1)× (d− d1)

]
,

then Proposition 4.3.2 holds.

Proposition 4.3.2. The marginal density function of Y1 is given by

f(y1) =
Γ
(
ν+d1

2

)
(πλ)

d1
2 Γ
(
ν
2

)
|R11|

1
2

(
1 +

1

λ
(y1 −m1)′R−1

11 (y1 −m1)

)− ν+d12

,

i.e. Y1 ∼ t(m1,R11, λ, ν).

Now, let the corresponding conditional expectation, mY1|Y2=y2
, conditional covariance, ΣΣΣY1|Y2=y2

,
and extra degrees of freedom parameter qY1|Y2=y2

be defined as
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mY1|Y2=y2
= m1 + ΣΣΣ12ΣΣΣ−1

22 (y2 −m2), (4.17)

ΣΣΣY1|Y2=y2
= ΣΣΣ11 −ΣΣΣ12ΣΣΣ−1

22 ΣΣΣ21, and (4.18)

qY1|Y2=y2
= (y2 −m2)′ΣΣΣ−1

22 (y2 −m2).

The first step in computing ΣΣΣ12ΣΣΣ−1
22 and ΣΣΣ11 −ΣΣΣ12ΣΣΣ−1

22 ΣΣΣ21 in Equation (4.17) and (4.18) is to
invert the matrix ΣΣΣ via

ΣΣΣ−1 = ΨΨΨ =

[
ΨΨΨ11 ΨΨΨ12

ΨΨΨ21 ΨΨΨ22

]
=

[
(ΣΣΣ11 −ΣΣΣ12ΣΣΣ−1

22 ΣΣΣ21)−1 −(ΣΣΣ11 −ΣΣΣ12ΣΣΣ−1
22 ΣΣΣ21)−1ΣΣΣ12ΣΣΣ−1

22

−(ΣΣΣ22 −ΣΣΣ21ΣΣΣ−1
11 ΣΣΣ12)−1ΣΣΣ21ΣΣΣ−1

11 (ΣΣΣ22 −ΣΣΣ21ΣΣΣ−1
11 ΣΣΣ12)−1

]
,

and then calculate

−ΨΨΨ−1
11 ΨΨΨ12 = (−(ΣΣΣ11 −ΣΣΣ12ΣΣΣ−1

22 ΣΣΣ21))(−(ΣΣΣ11 −ΣΣΣ12ΣΣΣ−1
22 ΣΣΣ21)−1)︸ ︷︷ ︸

I

ΣΣΣ12ΣΣΣ−1
22 = ΣΣΣ12ΣΣΣ−1

22

ΨΨΨ−1
11 = ΣΣΣ11 −ΣΣΣ12ΣΣΣ−1

22 ΣΣΣ21,

where I is the identity matrix [33].

Proposition 4.3.3. The conditional density function of Y1, given Y2, is

Y1|Y2 = y2 ∼ t
(
mY1|Y2=y2

,RY1|Y2=y2
, λ+ qY1|Y2=y2

, ν + (d− d1)
)
.

Based on the Proposition 4.3.2-4.3.3 of a generalized t-distribution, the conditional density is
extracted directly, which make these distributions very convenient to work with. However, under
the assumption λ = ν the conditional distribution can be expressed as an (usual) multivariate
t-distribution by rescaling the conditional covariance as follows

Y1|Y2 = y2 ∼ t
(

mY1|Y2=y2
,
ν + qY1|Y2=y2

ν + (d− d1)
·RY1|Y2=y2

, ν + (d− d1)

)
. (4.19)

Additionally, for a thorough derivation and presentation of the multivariate and conditional
Student’s t-distribution please see Roth (2013) [32].

The copula approach in this thesis uses the same estimation technique as in [13] [14], i.e. by
starting with raw data, the approach is to
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1. estimate marginal (univariate) probability distribution functions for each variable
separately

2. transform the data to a space referred to as the working space

3. estimate the conditional distribution of generalized t-distributed random vectors in
the working space

4. compute the conditional probability distribution on the raw variable space.

More specific, suppose that there are N observations of d random variables on the raw variable
space Y = Rd. Assume, for the moment, that the degrees of freedom, ν, of a (usual) multivariate
t-distribution is known. The first step in the estimation of the conditional distribution of the
raw variables is to estimate the univariate cumulative distribution function (cdf), Fj , for each
variable in the raw space. Additionally, as in [13] and [14] the family of Johnson SU distributions
is used to model the marginal characteristics of the raw data. This is a four-parameter family of
distributions suited to fit normally distributed data as well as heavy tailed data. In contrast to [13]
and [14] the marginal distributions of the data are fitted using the Johnson Curve Toolbox [18].
The univariate distributions are then used to map each observation to a point in U = [0, 1]d, by
using the probability transformation ui,j = Fj(yi,j), see Proposition 3.5.1, for i = 1, .., N and
j = 1, ..., d. Let Tν be the univariate cdf of a t random variable with ν degrees of freedom. By
making use of the inverse function, T−1

ν (ui,j), each value ui,j ∈ U is transformed to a point in
the working space wi,j ∈ W, i.e

Y Fj , j=1,...,d−−−−−−−−→ U T−1
ν−−−→W. (4.20)

The distribution in the working space is then estimated via a (usual) multivariate t-distribution,
i.e letting λ = ν. Note, that the procedure above is assuming complete data. However, the
estimation approach is exactly the same when dealing with incomplete data.

4.3.1 Copula Estimation

This subsection describes in more detail the techniques used to estimate the parameters of the
copulas, including the degrees of freedom ν and covariance matrix ΣΣΣ. As described above, the
first step is to estimate the marginal distributions of the considered variables. Even if some of
the variables have missing values the marginal distributions are estimated using the existing data.
The data is then transformed to the working space using the inverse of a univariate Student’s
t cumulative distribution function (t-cdf) with ν degrees of freedom, see the transformation in
Equation (4.20). Until now, the parameter, ν has been assumed to be known. In [13] and [14]
the method of k-fold cross validation is used to estimate the degrees of freedom parameter, ν, in
the set, {3, 10, 20,∞} of parameter values. However, this method is considered to be less suitable
when the range of possible parameter values is more narrow. In this thesis, the data is known to
be heavy tailed, and the question is rather which value the degrees of freedom should be assigned
in the set, {3, 4, 5,∞}. Note, for the case when ν = ∞, the normal assumption regarding the
data is applied. The problem of choosing the parameter becomes more obvious when it is time to
estimate the degrees of freedom of the (usual) multivariate t-distribution in the common working
space. The estimated degrees of freedom parameter in the working space should coincide with
the one in the transformation when using the inverse of the t-cdf in the former step. The method
used to estimate the parameter, ν, in this thesis is to initially use each of the values in the
subset {3, 4, 5} separately in the transformation to the working space. After all observations
have been transformed it is time to estimate the corresponding degrees of freedom of the (usual)
multivariate distribution function on the working space.

Estimation of the parameters ν and ΣΣΣ

Before the parameters, ν and ΣΣΣ can be estimated on the common working space the variables
with missing observations must be augmented. In [13] and [14] the regularized EM method, based
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on ridge regression, is used to temporarily fill in the missing values of the considered random
variable to form complete data sets. However, in this thesis the stochastic regression imputation
method, from Section 4.1, is used to temporarily construct complete data sets on the working
space, see Algorithm 1. The covariance matrix, Σ, is then computed on the working space data
by using Equation (4.14), where the corresponding weights are attained from the ECM algorithm.

Finally, armed with complete data it is time to continue the estimation of the degrees of free-
dom parameter, ν. In this thesis the degree of freedom parameter of the (usual) multivariate
t-distribution is estimated using the maximum likelihood estimation algorithm12. There is a
problem of determining, ν, since the estimate of this parameter should also be used in the
transformation to the working space via T−1

ν . The method is hence to use each of the values
of ν in the subset {3, 4, 5} and see how much the parameter estimate of the degrees of freedom
parameter of the (usual) multivariate t-distribution varies. In Table 4.4 it can be seen how the final
number of degrees of freedom of the (usual) multivariate t-distribution is affected by the initial
assumption regarding the degrees of freedom in the transformation, T−1

ν , when ν ∈ {3, 4, 5}, and
with different amount of missing data (NaN). Here νMLE denotes the final maximum likelihood
estimation of the degrees of freedom of the (usual) multivariate t-distribution on the working space.

T−1
3 T−1

4 T−1
5 NaN

νMLE 5.4202 5.4202 5.4202 0
νMLE 5.4148 5.4236 5.4040 3
νMLE 5.4159 5.4352 5.4361 10
νMLE 5.4690 5.3632 5.3720 25
νMLE 5.3241 5.1620 5.0132 50
νMLE 5.8079 6.4288 6.8772 100
νMLE 5.8712 6.5297 5.7734 150
νMLE 4.6699 6.2609 6.4192 250

Table 4.4: Overview of the effect on νMLE by assigning different values of ν during the transformation
via T−1

ν with different amount of missing data (NaN).

Remember, the parameter ν depends on the underlying data which is temporarily filled in using
the stochastic regression imputation method in Section 4.1. However, it is considered to work
as an indicator of which value of the degrees of freedom is best suited to be assigned to the
corresponding copula. In this thesis the degrees of freedom is set to ν = 5 for all cases of missing
data. Note, as stated earlier, even if the (usual) multivariate t-distribution is used to estimate
the dependence structure in the working space, the final conditional distribution of the (usual)
multivariate t-distribution is in fact a generalized t-distribution.

4.3.2 Copula Simulation

In the copula estimation procedure the stochastic regression imputation method is used to
temporarily fill in the missing values in the working space. In this section the complete data
sets are obtained, containing both the observed values and the augmented set of imputed values
sampled from the corresponding conditional distribution.

The goal is first to generate samples from the estimated copula on the working space, i.e
Equation (4.19). This is made possible by using the representation in Equation (4.15). Note, in
the copula estimation ΣΣΣ was computed, and not R. However, R is obtained from the relation in
Equation (4.16) as follows

ΣΣΣ =
ν

ν − 2
R→ R =

ν − 2

ν
ΣΣΣ.

12 Here the function, copulafit, in MATLAB is used to calculate the maximum likelihood estimation (MLE) of ν.
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Under the normal assumption (i.e letting ν →∞) the covariance matrix ΣΣΣ is equal to R. The
generated samples on the working space are then transformed back to the raw data space.

Consider a N × d dimensional vector Y and a Nmiss × 1 dimensional vector of missing values
Ymiss. In Algorithm 3 is the simulation procedure presented when the data is assumed to be
heavy tailed. The expectation, m·, and covariance, Σ, are computed using Equation (4.13) and
Equation (4.14) in Section 4.2. Additionally, the normal assumption regarding the data is applied
by letting ν →∞.

Algorithm 3: Copula Simulation

1: for j = 1 to d do
2: Set Fj(Yj) = Uj

3: Set Wj = T−1
ν (Uj)

4: end for
5: Use Algorithm 1 in Section 4.1 to construct complete data sets on W
6: Estimate m and ΣΣΣ on W
7: for i = 1 to Nmiss do
8: Set m1(wi,2) = m1 + ΣΣΣ12ΣΣΣ−1

22 (wi,2 −m2)
9: Set q(wi,2) = (wi,2 −m2)ΣΣΣ−1

22 (wi,2 −m2)

10: Set RW1|W2=wi,2
= ν+(d−d1)−2

ν+(d−d1) (ΣΣΣ11 −ΣΣΣ12ΣΣΣ−1
22 ΣΣΣ21)

11: Generate Gi ∼ N
((

ν+qW1|W2=w2

ν+(d−d1) ·RW1|W2=wi,2

)
, 1

)
12: Generate 1

Vi
∼ Gamma

(
ν + (d− d1), ν + (d− d1)

)
13: Set Wi = m1(wi,2) + V

1
2
i Gi

14: Set Ui = Tν(Wi)
15: Set Ymiss,i = F−1(Ui)
16: end for
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Chapter 5

Results

In this chapter the performance of each model is evaluated after being applied to a real data set.
The data is provided by NASDAQ and consist of 4 years of daily relative returns13 of monthly,
quarterly and yearly commodity futures contracts from the Nordic Power market, with 2 month
to maturity. The actual time period stretches between the 3rd of January 2008 and the 5th of
July 2012. The relative returns are turned into percentage returns for numerical stability (i.e the
relative returns are multiplied by 100).

The model setup has been to impute the missing return values of the quarterly futures contract
conditioned upon the returns of the corresponding monthly and yearly futures contracts. The
data was split into two sets, one set used to estimate the models and a second out-of-sample set
used to evaluate the performance of each model. The missing data was planned to be missing
in a uniform monotone pattern for the cases of (0, 3, 10, 25, 50, 100, 150, 250) removed values.
In other words, known data for the quarterly futures contract are removed in a cumulative
manner where the data in the case of 3 missing values are also missing in the case of 10 missing
values, and so on. Since the different imputation procedures are to be used in the preparatory
work of stress testing, the considered data range has intentionally been chosen because of the
increased volatility during this time period. Additionally, since the data is assumed to be miss-
ing during the crisis, the data is removed from 2008 and forward, and not from 2012 and backward.

Each model has separately been tested by assuming a normal distribution, and a more heavy
tailed assumption by also assigning a Student’s t-distribution for the data. In this chapter the
performance of each model is evaluated by calculating the Mean Absolute Error (MAE), the Root
Mean Square Error (RMSE) and the out-of-sample log-likelihood. The MAE and the RMSE
measure are defined as follows

Mean Absolute Error =
1

Nmiss

Nmiss∑
i=1

∣∣∣Y io−o−s − Y ipre∣∣∣
Root Mean Square Error =

√√√√ 1

Nmiss

Nmiss∑
i=1

(
Y io−o−s − Y ipre

)2

,

where Y io−o−s is the observed out-of-sample value and Y ipre the corresponding predicted value.
Both the MAE and the RMSE are two accuracy measures. The MAE, as its name indicates,
measures the absolute distance to the true value and weights all errors equally. In contrast, the
RMSE is obtained by taking the square root of the Mean Square Error (MSE). The MSE is
defined as the second moment of the errors and is given by

MSE =
1

Nmiss

Nmiss∑
i=1

(
Y io−o−s − Y ipre

)2

= V ar
[
Y io−o−s − Y ipre

]
+

(
Bias

(
Y io−o−s − Y ipre

))2

.

13 The relative returns are calculated as
Vt+1−Vt

Vt
, where Vt is the value at time t.
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Additionally, if the bias is zero the MSE is equal to the variance of the error, and thus the RMSE
is equal to the standard deviation. Hence, the RMSE is preferred to the MSE as it is on the
same scale as the data. For more information regarding error metrics see [37].

In Figure 5.1-5.2 and in Table 5.1-5.2 the calculated MAE and RMSE for each method can be
seen, where ”SR” and ”MI” stands for ”Stochastic Regression” and ”Multiple Imputation”. Since
the MAE and the RMSE is calculated after generating predicted values from the corresponding
conditional distribution, and both are very sensitive when used on small samples (typically
Nmiss < 100), these error metrics have been averaged over 100 iterations for a more clear
interpretation.
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Figure 5.1: The Mean Absolute Error (MAE) for each model with different amount of missing
data (NaN).

Mean Absolute Error (MAE)
NaN 3 10 25 50 100 150 250
SR:normal 0.8130 0.9199 0.8878 1.1041 1.3073 1.2177 1.0360
SR:Student’s t 0.7388 0.8352 0.8354 1.0378 1.2851 1.1879 1.0078
MI:normal 0.7900 0.9162 0.8838 1.1094 1.3211 1.2143 1.0371
MI:Student’s t 0.7987 0.8789 0.8265 1.0391 1.2876 1.1749 1.0075
g-cop 0.7699 0.8989 0.8495 1.0742 1.3453 1.2512 1.0445
t-cop 0.5977 0.7157 0.6986 0.9195 1.2601 1.1816 1.0178

Table 5.1: The Mean Absolute Error (MAE) for each model with different amount of missing data (NaN).
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Figure 5.2: The Root Mean Square Error (RMSE) for each model with different amount of missing
data (NaN).

Root Mean Square Error (RMSE)
NaN 3 10 25 50 100 150 250
SR:normal 0.9336 1.1233 1.1093 1.4988 1.7774 1.6385 1.4121
SR:Student’s t 0.9025 1.0629 1.0889 1.4754 1.7632 1.6134 1.3900
MI:normal 0.9224 1.1392 1.0984 1.5157 1.7894 1.6346 1.4131
MI:Student’s t 0.9948 1.1311 1.1033 1.4685 1.7511 1.5962 1.3879
g-cop 0.9170 1.0954 1.0527 1.4879 1.8404 1.7185 1.4527
t-cop 0.7183 0.8822 0.8705 1.3129 1.7382 1.6095 1.4052

Table 5.2: The Root Mean Square Error (RMSE) for each model with different amount of missing
data (NaN).
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To test how well the models conform/fit the out-of-sample data, the out-of-sample log-likelihood
for each model is calculated. The out-of-sample log-likelihood measures how well each model
is able to predict the ith observation. The likelihood functions of the stochastic regression and
the multiple imputation model is given by Equation 4.3, where the normal case is implemented
by letting ν → ∞. However, the likelihood for the copulas are not as easy to compute since
a transformation from the working space W back to the raw variable space Y is required, see
Proposition C.1 in Appendix C.

The out-of-sample log-likelihood for each model with different amount of missing data can be
seen in Table 5.3.

Out-of-sample log-likelihood
NaN 3 10 25 50 100 150 250
SR:normal -2.9991 -11.9770 -28.0976 -97.1829 -336.5288 -448.7840 -571.0222
SR:Student’s t -2.6538 -12.2629 -28.7245 -76.2985 -228.2967 -325.0647 -449.6862
MI:normal -3.0054 -11.9641 -28.1054 -97.4623 -336.0377 -448.8132 -570.5890
MI:Student’s t -2.6512 -12.2703 -28.7040 -76.4121 -228.3159 -325.2982 -450.3115
g-cop -3.0067 -11.8347 -27.1434 -74.7699 -281.6717 -392.1448 -488.9255
t-cop -2.9745 -13.6448 -32.2567 -88.7305 -221.7049 -335.5773 -433.8382

Table 5.3: The out-of-sample log-likelihood for each model with different amount of missing data (NaN).

Based on these metrics it is very hard to distinguish the performance of each method, or draw
any conclusion about how good the models are in comparison to each other. Even if the Student’s
t-distribution seems (in general) to be a more adequate assumption regarding the data compared
to the normal distribution (see Figure 5.1-5.2, Table 5.1-5.2 and Table 5.3), all the models are
showing quite poor performance. However, this may not come as a surprise since they are
implemented on very volatile data. Note that the accuracy of each method based on the MAE,
RMSE and the out-of-sample log-likelihood when the models are applied on more stable data can
be viewed in Appendix E. The results from using more stable data are included to emphasize that
the performance of each model is very data dependent/sensitive. Moreover, even if the conditional
distribution is used, and the data is strongly correlated, the conditional data does not have the
same impact during a stressed market as it would during a more stable market. Therefore a more
thorough analysis of the conditional distributions is required to be able to say more about the
accuracy of each method. The idea is to look deeper into the tails and see how well each model
performs by extracting certain quantile values from the respective conditional distribution. In
other words, by considering the set of quantiles, α = {0.001, 0.005, 0.05, 0.5, 0.95, 0.995, 0.999},
more extreme values can be imputed. Also, to investigate how sensitive each model is this
approach is implemented by using two different scenarios, and is applied on the most volatile
consecutive sequence of values in the out-of-sample data. The specific period stretches between
the 3rd of March in 2008 back to the 25th of Feburary 2008. In the first scenario all the data back
until the 4th of March in 2008 is used to calibrate each model. In the second scenario 250 values
after the 3rd of March in 2008 are assumed to be missing (removed). In Table 5.4-5.21 the values
from the most volatile period in the out-of-sample set can be seen together with the conditional
values14 and the corresponding estimated quantile values for α = {0.05, 0.5, 0.95} for each method.
The absolute error15 (distance) between the true value and the estimated value together with the
percentage error16 is also presented for the two different scenarios described above. The imputed
values for the more extreme quantiles in the set α = {0.001, 0.005, 0.995, 0.999} can be seen in
Table D.1-D.24 in Appendix D.

14 Month denotes the corresponding relative returns for the monthly future contracts, and Year the yearly future
contracts.

15 |∆| = |Yo−o−s − Ypre|.
16 ∆% =

Yo−o−s−Ypre
Yo−o−s

.
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SR:normal, α = 0.95
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -4.4107 5.9769 0.5754 -4.5136 5.8740 0.5655
2008-02-29 -4.8392 0 -5.9767 -1.3406 4.6361 0.7757 -1.4499 4.5268 0.7574
2008-02-28 0.4615 0.3806 1.3294 1.8233 0.4939 -0.3716 1.5231 0.1937 -0.1457
2008-02-27 7.4380 2.5366 7.4603 6.8969 0.5634 0.0755 6.4223 1.0380 0.1391
2008-02-26 -6.3467 -2.6591 -7.6246 -3.6420 3.9826 0.5223 -3.8158 3.8089 0.4995
2008-02-25 -7.7143 -0.5666 -8.2100 -3.2545 4.9554 0.6036 -3.2771 4.9329 0.6008

Table 5.4: An overview of the values from the most volatile period in the out-of-sample set together with
the conditional values, and the corresponding estimated quantile values for α = 0.95 for the SR:normal
method. The absolute error (distance) between the true value and the estimated value together with the

percentage error is also presented for two different scenarios.

SR:normal, α = 0.5
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -5.7323 4.6553 0.4482 -5.5538 4.8338 0.4653
2008-02-29 -4.8392 0 -5.9767 -2.6622 3.3145 0.5546 -2.4902 3.4865 0.5834
2008-02-28 0.4615 0.3806 1.3294 0.5017 0.8277 0.6226 0.4828 0.8466 0.6368
2008-02-27 7.4380 2.5366 7.4603 5.5753 1.8850 0.2527 5.3821 2.0782 0.2786
2008-02-26 -6.3467 -2.6591 -7.6246 -4.9636 2.6610 0.3490 -4.8560 2.7687 0.3631
2008-02-25 -7.7143 -0.5666 -8.2100 -4.5761 3.6338 0.4426 -4.3173 3.8926 0.4741

Table 5.5: An overview of the values from the most volatile period in the out-of-sample set together with
the conditional values, and the corresponding estimated quantile values for α = 0.5 for the SR:normal
method. The absolute error (distance) between the true value and the estimated value together with the

percentage error is also presented for two different scenarios.

SR:normal, α = 0.05
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -7.0539 3.3337 0.3209 -6.5940 3.7936 0.3652
2008-02-29 -4.8392 0 -5.9767 -3.9838 1.9929 0.3334 -3.5304 2.4463 0.4093
2008-02-28 0.4615 0.3806 1.3294 -0.8199 2.1493 1.6167 -0.5574 1.8868 1.4193
2008-02-27 7.4380 2.5366 7.4603 4.2537 3.2066 0.4298 4.3419 3.1184 0.4180
2008-02-26 -6.3467 -2.6591 -7.6246 -6.2852 1.3394 0.1757 -5.8962 1.7284 0.2267
2008-02-25 -7.7143 -0.5666 -8.2100 -5.8977 2.3122 0.2816 -5.3575 2.8524 0.3474

Table 5.6: An overview of the values from the most volatile period in the out-of-sample set together with
the conditional values, and the corresponding estimated quantile values for α = 0.05 for the SR:normal
method. The absolute error (distance) between the true value and the estimated value together with the

percentage error is also presented for two different scenarios.
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SR:Student’s t, α = 0.95
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -4.6754 5.7122 0.5499 -4.6151 5.7724 0.5557
2008-02-29 -4.8392 0 -5.9767 -1.6094 4.3673 0.7307 -1.5601 4.4165 0.7390
2008-02-28 0.4615 0.3806 1.3294 1.6782 0.3488 -0.2624 1.4767 0.1473 -0.1108
2008-02-27 7.4380 2.5366 7.4603 6.8586 0.6018 0.0807 6.4262 1.0341 0.1386
2008-02-26 -6.3467 -2.6591 -7.6246 -3.8597 3.7650 0.4938 -3.8921 3.7325 0.4895
2008-02-25 -7.7143 -0.5666 -8.2100 -3.5783 4.6317 0.5642 -3.4146 4.7954 0.5841

Table 5.7: An overview of the values from the most volatile period in the out-of-sample set together with
the conditional values, and the corresponding estimated quantile values for α = 0.95 for the SR:Student’s
t method. The absolute error (distance) between the true value and the estimated value together with

the percentage error is also presented for two different scenarios.

SR:Student’s t, α = 0.5
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -5.8722 4.5154 0.4347 -5.6107 4.7769 0.4599
2008-02-29 -4.8392 0 -5.9767 -2.8062 3.1705 0.5305 -2.5557 3.4210 0.5724
2008-02-28 0.4615 0.3806 1.3294 0.4814 0.8480 0.6379 0.4811 0.8483 0.6381
2008-02-27 7.4380 2.5366 7.4603 5.6618 1.7985 0.2411 5.4307 2.0296 0.2721
2008-02-26 -6.3467 -2.6591 -7.6246 -5.0564 2.5682 0.3368 -4.8877 2.7370 0.3590
2008-02-25 -7.7143 -0.5666 -8.2100 -4.7751 3.4349 0.4184 -4.4101 3.7998 0.4628

Table 5.8: An overview of the values from the most volatile period in the out-of-sample set together with
the conditional values, and the corresponding estimated quantile values for α = 0.5 for the SR:Student’s
t method. The absolute error (distance) between the true value and the estimated value together with

the percentage error is also presented for two different scenarios.

SR:Student’s t, α = 0.05
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -7.0690 3.3186 0.3195 -6.6062 3.7814 0.3640
2008-02-29 -4.8392 0 -5.9767 -4.0030 1.9737 0.3302 -3.5512 2.4255 0.4058
2008-02-28 0.4615 0.3806 1.3294 -0.7153 2.0447 1.5381 -0.5144 1.8438 1.3869
2008-02-27 7.4380 2.5366 7.4603 4.4650 2.9953 0.4015 4.4352 3.0251 0.4055
2008-02-26 -6.3467 -2.6591 -7.6246 -6.2532 1.3714 0.1799 -5.8832 1.7414 0.2284
2008-02-25 -7.7143 -0.5666 -8.2100 -5.9719 2.2381 0.2726 -5.4057 2.8043 0.3416

Table 5.9: An overview of the values from the most volatile period in the out-of-sample set together with
the conditional values, and the corresponding estimated quantile values for α = 0.05 for the SR:Student’s
t method. The absolute error (distance) between the true value and the estimated value together with

the percentage error is also presented for two different scenarios.
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MI:normal, α = 0.95
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -4.4163 5.9713 0.5748 -4.4920 5.8956 0.5676
2008-02-29 -4.8392 0 -5.9767 -1.3384 4.6382 0.7761 -1.4267 4.5500 0.7613
2008-02-28 0.4615 0.3806 1.3294 1.8261 0.4967 -0.3736 1.5293 0.1999 -0.1503
2008-02-27 7.4380 2.5366 7.4603 6.9058 0.5545 0.0743 6.4146 1.0457 0.1402
2008-02-26 -6.3467 -2.6591 -7.6246 -3.6485 3.9762 0.5215 -3.8008 3.8238 0.5015
2008-02-25 -7.7143 -0.5666 -8.2100 -3.2539 4.9560 0.6037 -3.2465 4.9635 0.6046

Table 5.10: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.95 for the
MI:normal method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

MI:normal, α = 0.5
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -5.7180 4.6696 0.4495 -5.5226 4.8650 0.4684
2008-02-29 -4.8392 0 -5.9767 -2.6501 3.3266 0.5566 -2.4619 3.5148 0.5881
2008-02-28 0.4615 0.3806 1.3294 0.5071 0.8223 0.6186 0.4927 0.8367 0.6294
2008-02-27 7.4380 2.5366 7.4603 5.5730 1.8873 0.2530 5.3735 2.0868 0.2797
2008-02-26 -6.3467 -2.6591 -7.6246 -4.9515 2.6731 0.3506 -4.8313 2.7934 0.3664
2008-02-25 -7.7143 -0.5666 -8.2100 -4.5607 3.6493 0.4445 -4.2803 3.9297 0.4786

Table 5.11: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.5 for the MI:normal
method. The absolute error (distance) between the true value and the estimated value together with the

percentage error is also presented for two different scenarios.

MI:normal, α = 0.05
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -7.0585 3.3291 0.3205 -6.5621 3.8255 0.3683
2008-02-29 -4.8392 0 -5.9767 -3.9866 1.9901 0.3330 -3.5017 2.4749 0.4141
2008-02-28 0.4615 0.3806 1.3294 -0.8206 2.1500 1.6173 -0.5511 1.8805 1.4146
2008-02-27 7.4380 2.5366 7.4603 4.2561 3.2042 0.4295 4.3258 3.1345 0.4202
2008-02-26 -6.3467 -2.6591 -7.6246 -6.2892 1.3354 0.1751 -5.8722 1.7524 0.2298
2008-02-25 -7.7143 -0.5666 -8.2100 -5.9018 2.3081 0.2811 -5.3183 2.8916 0.3522

Table 5.12: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.05 for the
MI:normal method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.
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MI:Student’s t, α = 0.95
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -2.9315 7.4561 0.7178 -4.5888 5.7988 0.5582
2008-02-29 -4.8392 0 -5.9767 0.1342 6.1108 1.0224 -1.6037 4.3729 0.7317
2008-02-28 0.4615 0.3806 1.3294 3.4165 2.0871 -1.5700 1.4619 0.1325 -0.0997
2008-02-27 7.4380 2.5366 7.4603 8.5919 1.1316 -0.1517 6.3855 1.0748 0.1441
2008-02-26 -6.3467 -2.6591 -7.6246 -2.1177 5.5070 0.7223 -3.8454 3.7792 0.4957
2008-02-25 -7.7143 -0.5666 -8.2100 -1.8323 6.3777 0.7768 -3.4599 4.7500 0.5786

Table 5.13: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.95 for the
MI:Student’s t method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

MI:Student’s t, α = 0.5
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -5.8754 4.5122 0.4344 -5.5796 4.8080 0.4629
2008-02-29 -4.8392 0 -5.9767 -2.8076 3.1691 0.5302 -2.5964 3.3802 0.5656
2008-02-28 0.4615 0.3806 1.3294 0.4820 0.8473 0.6374 0.4614 0.8680 0.6530
2008-02-27 7.4380 2.5366 7.4603 5.6655 1.7948 0.2406 5.3766 2.0837 0.2793
2008-02-26 -6.3467 -2.6591 -7.6246 -5.0591 2.5655 0.3365 -4.8389 2.7857 0.3654
2008-02-25 -7.7143 -0.5666 -8.2100 -4.7776 3.4323 0.4181 -4.4488 3.7612 0.4581

Table 5.14: An overview of the values from the most volatile period in the out-of-sample set together with
the conditional values, and the corresponding estimated quantile values for α = 0.5 for the MI:Student’s
t method. The absolute error (distance) between the true value and the estimated value together with

the percentage error is also presented for two different scenarios.

MI:Student’s t, α = 0.05
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -7.0711 3.3165 0.3193 -6.5805 3.8071 0.3665
2008-02-29 -4.8392 0 -5.9767 -4.0036 1.9730 0.3301 -3.5949 2.3818 0.3985
2008-02-28 0.4615 0.3806 1.3294 -0.7149 2.0443 1.5378 -0.5379 1.8673 1.4047
2008-02-27 7.4380 2.5366 7.4603 4.4674 2.9929 0.4012 4.3783 3.0820 0.4131
2008-02-26 -6.3467 -2.6591 -7.6246 -6.2551 1.3695 0.1796 -5.8404 1.7842 0.2340
2008-02-25 -7.7143 -0.5666 -8.2100 -5.9732 2.2367 0.2724 -5.4472 2.7628 0.3365

Table 5.15: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.05 for the
MI:Student’s t method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.
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g-cop, α = 0.95
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -4.2304 6.1572 0.5927 -4.3909 5.9967 0.5773
2008-02-29 -4.8392 0 -5.9767 -1.4468 4.5299 0.7579 -1.4808 4.4959 0.7522
2008-02-28 0.4615 0.3806 1.3294 1.7823 0.4529 0.3407 1.4994 0.1700 0.1279
2008-02-27 7.4380 2.5366 7.4603 7.3363 0.1241 0.0166 6.7530 0.7073 0.0948
2008-02-26 -6.3467 -2.6591 -7.6246 -3.6314 3.9932 0.5237 -3.7924 3.8322 0.5026
2008-02-25 -7.7143 -0.5666 -8.2100 -3.0412 5.1687 0.6296 -3.0559 5.1541 0.6278

Table 5.16: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.95 for the g-copula
method. The absolute error (distance) between the true value and the estimated value together with the

percentage error is also presented for two different scenarios.

g-cop, α = 0.5
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -5.7383 4.6493 0.4476 -5.7453 4.6423 0.4469
2008-02-29 -4.8392 0 -5.9767 -2.6817 3.2950 0.5513 -2.5241 3.4526 0.5777
2008-02-28 0.4615 0.3806 1.3294 0.5522 0.7772 0.5846 0.5399 0.7895 0.5939
2008-02-27 7.4380 2.5366 7.4603 5.5107 1.9497 0.2613 5.2722 2.1881 0.2933
2008-02-26 -6.3467 -2.6591 -7.6246 -5.0631 2.5615 0.3359 -5.0473 2.5774 0.3380
2008-02-25 -7.7143 -0.5666 -8.2100 -4.4069 3.8030 0.4632 -4.2660 3.9440 0.4804

Table 5.17: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.5 for the g-copula
method. The absolute error (distance) between the true value and the estimated value together with the

percentage error is also presented for two different scenarios.

g-cop, α = 0.05
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -7.4611 2.9265 0.2817 -7.3039 3.0837 0.2969
2008-02-29 -4.8392 0 -5.9767 -4.0092 1.9675 0.3292 -3.6225 2.3542 0.3939
2008-02-28 0.4615 0.3806 1.3294 -0.6387 1.9681 1.4805 -0.3821 1.7115 1.2874
2008-02-27 7.4380 2.5366 7.4603 3.9256 3.5348 0.4738 4.0158 3.4445 0.4617
2008-02-26 -6.3467 -2.6591 -7.6246 -6.6826 0.9420 0.1236 -6.4893 1.1353 0.1489
2008-02-25 -7.7143 -0.5666 -8.2100 -5.9350 2.2750 0.2771 -5.5921 2.6179 0.3189

Table 5.18: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.05 for the g-copula
method. The absolute error (distance) between the true value and the estimated value together with the

percentage error is also presented for two different scenarios.
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t-cop, α = 0.95
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -4.9212 5.4664 0.5262 -4.3924 5.9952 0.5772
2008-02-29 -4.8392 0 -5.9767 -2.0292 3.9474 0.6605 -1.4568 4.5199 0.7563
2008-02-28 0.4615 0.3806 1.3294 1.2423 0.0871 0.0655 1.5377 0.2083 0.1567
2008-02-27 7.4380 2.5366 7.4603 6.2975 1.1628 0.1559 6.1186 1.3417 0.1798
2008-02-26 -6.3467 -2.6591 -7.6246 -4.2011 3.4236 0.4490 -3.7665 3.8582 0.5060
2008-02-25 -7.7143 -0.5666 -8.2100 -3.9074 4.3025 0.5241 -3.2295 4.9805 0.6066

Table 5.19: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.95 for the t-copula
method. The absolute error (distance) between the true value and the estimated value together with the

percentage error is also presented for two different scenarios.

t-cop, α = 0.5
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -5.8175 4.5701 0.4400 -5.7156 4.6720 0.4498
2008-02-29 -4.8392 0 -5.9767 -2.9775 2.9991 0.5018 -2.8468 3.1299 0.5237
2008-02-28 0.4615 0.3806 1.3294 0.5076 0.8217 0.6181 0.5080 0.8214 0.6179
2008-02-27 7.4380 2.5366 7.4603 5.4621 1.9982 0.2678 5.1876 2.2727 0.3046
2008-02-26 -6.3467 -2.6591 -7.6246 -5.0123 2.6124 0.3426 -4.9805 2.6441 0.3468
2008-02-25 -7.7143 -0.5666 -8.2100 -4.9899 3.2201 0.3922 -4.8050 3.4049 0.4147

Table 5.20: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.5 for the t-copula
method. The absolute error (distance) between the true value and the estimated value together with the

percentage error is also presented for two different scenarios.

t-cop, α = 0.05
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -6.6062 3.7814 0.3640 -6.7073 3.6803 0.3543
2008-02-29 -4.8392 0 -5.9767 -3.8308 2.1459 0.3590 -4.0086 1.9681 0.3293
2008-02-28 0.4615 0.3806 1.3294 -0.2210 1.5504 1.1662 -0.5444 1.8738 1.4095
2008-02-27 7.4380 2.5366 7.4603 4.5426 2.9178 0.3911 3.9672 3.4931 0.4682
2008-02-26 -6.3467 -2.6591 -7.6246 -5.7389 1.8857 0.2473 -5.8987 1.7260 0.2264
2008-02-25 -7.7143 -0.5666 -8.2100 -5.9278 2.2821 0.2780 -6.0259 2.1840 0.2660

Table 5.21: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.05 for the t-copula
method. The absolute error (distance) between the true value and the estimated value together with the

percentage error is also presented for two different scenarios.
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By investigating Table 5.4-5.21 and Table D.1-D.24, it can be seen that the performance of
each method can be significantly increased by imputing more extreme quantile values. By
letting the median (α = 0.5) of the corresponding conditional distribution be a representative for
the standard method (where samples are randomly drawn from the corresponding conditional
distribution), the standard method can be compared with the approach of imputing more extreme
quantile values. In Figure 5.1-5.2 and Table 5.1-5.2 it can be seen that the standard method is
insufficient when applied on more volatile data. However, the standard approach can be used
to compute a first estimate of the final imputed value. This value can then be substituted by
lower extreme values (α = 0.05) or higher extreme values (α = 0.95) depending on whether the
corresponding conditional values are greater or smaller then this first estimate. In other words,
the results in Table 5.4-5.21 and Table D.1-D.24 indicate that it is required to extract lower
quantile values if the median value is greater than the corresponding Monthly future value, and
vice versa. Even if there is an obvious trend in the results the dependence structure regarding
the conditional values, quantile values and median values is very vague and requires to be more
thoroughly analyzed before any real conclusions can be made.

Additionally, by calculating the absolute difference between the percentage error (∆%) for
Nmiss = 0 and Nmiss = 250 it can be concluded that the g-copula and t-copula models are more
robust than the respective linear models, see Table 5.22.

|∆%Nmiss=0 −∆%Nmiss=250|
α 0.999 0.995 0.95 0.5 0.05 0.005 0.001 Average
SR:normal 0.1150 0.0944 0.0572 0.0219 0.0744 0.1116 0.1322 0.1011
SR:Student’s t 0.6452 0.2646 0.0413 0.0275 0.0655 0.2988 0.6794 0.2889
MI:normal 0.1131 0.0917 0.0554 0.0230 0.0778 0.1167 0.1363 0.0877
MI:Student’s t 0.5839 0.2670 0.4402 0.0312 0.0632 0.2927 0.6725 0.3358
g-cop 0.1178 0.1041 0.0558 0.0146 0.0587 0.0912 0.1193 0.0802
t-cop 0.2348 0.1862 0.0669 0.0159 0.0655 0.1371 0.1739 0.1257

Table 5.22: The mean absolute difference (MD) between the percentage error (∆%) for Nmiss = 0 and
Nmiss = 250.

Although the more heavy tailed assumption in general seems to be more accurate (see Figure 5.1-
5.2 and Table 5.1-5.2), using the g-copula and impute values from the extreme quantile α = 0.0001
seems to give very satisfying results, see Table 5.23.

g-cop, α = 0.0001
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -10.0661 0.3215 0.0309 -9.7969 0.5907 0.0569
2008-02-29 -4.8392 0 -5.9767 -5.9064 0.0702 0.0118 -5.2828 0.6939 0.1161
2008-02-28 0.4615 0.3806 1.3294 -2.1607 3.4901 2.6253 -1.6686 2.9980 2.2552
2008-02-27 7.4380 2.5366 7.4603 2.1809 5.2794 0.7077 2.4865 4.9738 0.6667
2008-02-26 -6.3467 -2.6591 -7.6246 -9.1100 1.4854 0.1948 -8.8006 1.1760 0.1542
2008-02-25 -7.7143 -0.5666 -8.2100 -8.2017 0.0083 0.0010 -7.6464 0.5636 0.0686

Table 5.23: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.0001 for the
g-copula method. The absolute error (distance) between the true value and the estimated value together

with the percentage error is also presented for two different scenarios.
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Chapter 6

Conclusions

In this thesis three different methods have been investigated for imputation of missing data
concerning commodity futures returns in the context of the preparatory work regarding stress
testing. To retain the variability of the data the chosen approach has been to impute historical
return data by the conditional distribution rather than the conditional expectation. This approach
also has the advantage that certain extreme quantile values can be extracted from each parametric
model, and used in different stress testing scenarios.

The two first models implemented in this paper are currently regarded as state-of-the-art tech-
niques for managing missing data. The first method, Stochastic Regression Imputation, uses a
Bayesian approach to find the corresponding MAP-estimate of the coefficients in the regression
equation. The second model, Multiple Imputation (MI), uses a full17 implementation of the
Bayesian theory, and by simulation generates new covariances and mean values used to con-
struct multiple sets of augmented data chains. Although the first and second approach tend
to produce similar results when the regression equations includes the same variables, the latter
has the advantage of not depending solely on one imputed value for each missing data event.
The third alternative method implemented in this thesis is based on elliptical copulas and the
beneficial properties of the Arellano-Valle and Bolfarine’s generalized t-distribution [21]. In
contrast to the first two approaches the marginal distribution of each random variable is mod-
elled separately, and the dependence structure is applied in a non-linear manner in the third model.

The characteristics of the data is known to be non-normal. However, both a normal distribution
and a more heavy tailed assumption, in form of a t-distribution, has been assigned to the missing
data to study the validity of the model assumptions for each method separately. However, it is
well known that the normal assumption is a very naive approach since it does not regard any
possible tail dependence. This means that the probability that two random variables simultan-
eously attain extreme values is zero, even if the variables are correlated. In contrast, the tail
dependence under the t-distribution increases with correlation, and decreases when the number
of degrees of freedom increases. However, to attain the accuracy of each method more thoroughly
some conventional error metrics like the Mean Absolute Error, Root Mean Square Error and
out-of-sample log-likelihood are used.

Based on these metrics it is very hard to distinguish the performance of each method, or draw any
conclusion about how good the models are in comparison to each other. Even if the Student’s t-
distribution seems (in general) to be a more adequate assumption regarding the data compared to
the normal distribution (see Figure 5.1-5.2, Table 5.1-5.2 and Table 5.3), all the models are show-
ing quite poor performance. However, by analyzing the conditional distributions more thoroughly,
i.e. by looking deeper into the tails and extracting more extreme quantile values the performance
of each method is increased significantly. Additionally, by calculating the absolute difference
between the percentage error (∆%) for Nmiss = 0 and Nmiss = 250 it can be concluded that
the g-copula and t-copula models are more robust than the respective linear models, see Table 5.22.

Note, even if the results in Table 5.4-5.21, Table 5.23 and Table D.1-D.24 show very good
performance the models are calibrated when the true data is known. Hence, these results are

17 In the sense that the distribution of each parameter is considered and not only a single estimate.
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just presented to show that the models can actually perform very well if the distributions are
more thoroughly investigated. Therefore, an important and interesting topic for future studies
would be to investigate how sensitive the conditional distributions are, concerning the conditional
data, to see how far into the tails it is required to go before any reasonable results can be obtained.

Moreover, the aim of this thesis has been to provide a more sophisticated method used to impute
missing historical data in the preparatory work of portfolio stress testing. However, the methods
used are only implemented on one type of data and missing data pattern. Hence, in the future it
would be interesting to apply these methods on a broader set of data/financial instruments, and
in a context where the missing data is missing in a non-monotone univariate pattern.

Finally, a natural way of proceeding this work would be to investigate the influence these
imputation methods have on the profit and loss distribution compared to current routines. In
other words, it would be interesting to see how the expected future losses and the amount of
capital needed to be secured is affected when these new tractable methods are implemented in
the context of portfolio stress testing.
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Appendix A

The following example is taken from [28] and explicitly show how the posterior conditional
distribution, used in the ECM algorithm for the case with one parameter, is derived.

Example A.1. A latent data model comprises N independent observations (Yi)
N
i=1 of a random

variable

Y ∼ Exp(X) = xe−xy, y ≥ 0,

where the intensity X is unobserved and itself exponentially distributed, i.e.,

X ∼ Exp(λ) = λe−λx, x ≥ 0.

The parameter λ is unknown. For all the observations (Yi)
N
i=1 the corresponding latent variables

(Xi)
N
i=1 are mutually independent (otherwise the observations would not be independent).

(a) Compute the conditional distribution of X given Y .

Answer: Write

f(x|y) ∝ f(y, x) = f(y|x)f(x) = xe−xyλe−λx ∝ xe−x(y+λ),

from which can be concluded that

X|Y = y ∼ Gamma(2, y + λ),

where

Gamma(k, µ) =
µk

Γ(k)
xk−1e−µx,

and Γ is the gamma function.

(b) Derive the ECM-updating formula for the unknown parameter λ based on the N observations.

Answer: For this model, the complete data likelihood w.r.t. λ is, as the pairs {(Xi, Yi)}Ni=1 are
independent, given by

fλ(x1:N , y1:N ) =

N∏
i=1

fλ(xi, yi) = λNe−
∑N
i=1 xi(yi+λ)

N∏
i=1

xi,

yielding the complete data log-likelihood

log
(
fλ(x1:N , y1:N )

) c.
= N log(λ)− λ

N∑
i=1

xi,

where
c.
= means that the equality holds up to a constant that does not depend on λ. This yields

the ECM intermediate quantity

Qλm(λ) = Eλm
[
log
(
fλ(X1:N , Y1:N )

)
|Y1:N

] c.
= N log(λ)− λ

N∑
i=1

Eλm
[
Xi|Yi

]
.
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For X ∼ Gamma(k, µ) it holds that E[X] = k
µ , which implies that

Em
[
Xi|Yi

]
=

2

Yi + λm
,

providing

Qλm(λ)
c.
= N log(λ)− 2λ

N∑
i=1

1

Yi + λm
.

Finally, in the M-step, Qλm(λ) is maximized w.r.t. λ:

dQλm(λ)

dλ
=
N

λ
− 2

N∑
i=1

1

Yi + λm
= 0⇔ λ =

N

2
∑N
i=1

1
Yi+λm

.

This yields the ECM updating formula

λm+1 =
N

2
∑N
i=1

1
Yi+λm

for λ.
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Appendix B

The proof to Theorem 3.5.1 (Sklar 1959 ).

Proof. This proof is restricted to prove the existence and uniqueness of a copula in the case
when F1, ..., Fd are continuous and the converse statement in its general form. For a full proof
see Nelsen [27]. For any x1, ..., xd in R̄ = [−∞,∞], if X has distribution function F , then
P (F (X) ≤ F (x)) = P (X ≤ x), hence

F (x1, ..., xd) = P
(
F1(X1) ≤ F1(x1), ..., Fd(Xd) ≤ Fd(xd)).

Since F1, ..., Fd are continuous, Proposition 3.5.1 and Definition 3.5.1 imply that the distribution
function of

(
F1(X1), ..., Fd(Xd)

)
is a copula, which is denoted by C, and thus the identity

in Equation (3.10) obtained. If Equation (3.10) is evaluated at the arguments xi = F←i (ui),
0 ≤ ui ≤ 1, i = 1, ..., d, and use Fi

(
F←i (ui)

)
= ui, the following is obtained

C(u1, ..., ud) = F (F←1 (u1), ..., F←d (ud)),

which gives an explicit representation of C in terms of F and its margins, and thus shows
uniqueness. For the converse statement assume that C is a copula and that F1, ..., Fd are
univariate distribution functions. A random vector with distribution function as in Equa-
tion (3.10) is then constructed by taking U to be a random vector with distribution function
C and setting X :=

(
F←1 (U1), ..., F←d (Ud)

)
. By using the fact that if F is right-continuous, i.e.

Fi(xi) ≥ yi ⇐⇒ F←i (yi) ≤ xi, it is finally verified that

P (X1 ≤ x1, ..., Xd ≤ xd) = P (F←1 (U1) ≤ x1, ..., F
←
d (Ud) ≤ xd)

= P (U1 ≤ F1(x1), ..., Ud ≤ Fd(xd))
= C(F1(x1), ..., Fd(xd)).
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Appendix C

Proposition C.1. Let W(Y) denote the vector with ith component

Wi(Yi) = T−1
ν

(
Fi(Yi)

)
,

and let
∣∣∂W
∂Y

∣∣ denote the determinant of the Jacobian matrix associated with the transforma-
tion (4.20). Then the conditional distribution on the raw variables is given by

fY(Y1|Y2) = fW
(
W1(Y1)|W2(Y2)

)∣∣∣∣∂W1

∂Y1

∣∣∣∣,
where

∂W1

∂Y1
(y1) =

f1(y1)

tν
(
T−1
ν

(
F1(y1)

)) .
Given fY(Y1|Y2), it is easy to extract the conditional distribution for any particular component,
say the jth component y1,j , of Y1, given Y2. The distribution of y1,j , given Y2, is then given by

fY(y1,j |Y2) = fW
(
w1,j(y1,j)|W2(Y2)

)∣∣∣∣∣ f1(y1,j)

tν
(
T−1
ν

(
F1(y1,j)

)) ∣∣∣∣∣
For a full proof of Proposition C.1 please see [13] and [14].
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Appendix D

In Table D.1-D.24 the values from the most volatile period in the out-of-sample set can be
seen together with the conditional values and the corresponding estimated quantile values for
α = {0.001, 0.005, 0.995, 0.999} for each method.

SR:normal, α = 0.999
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -3.2494 7.1382 0.6872 -3.5995 6.7881 0.6535
2008-02-29 -4.8392 0 -5.9767 -0.1792 5.7974 0.9700 -0.5358 5.4408 0.9103
2008-02-28 0.4615 0.3806 1.3294 2.9847 1.6553 -1.2451 2.4371 1.1077 -0.8333
2008-02-27 7.4380 2.5366 7.4603 8.0582 0.5979 -0.0801 7.3364 0.1239 0.0166
2008-02-26 -6.3467 -2.6591 -7.6246 -2.4807 5.1439 0.6746 -2.9017 4.7230 0.6194
2008-02-25 -7.7143 -0.5666 -8.2100 -2.0932 6.1168 0.7450 -2.3630 5.8469 0.7122

Table D.1: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.999 for the
SR:normal method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

SR:normal, α = 0.995
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -3.6627 6.7249 0.6474 -3.9248 6.4628 0.6222
2008-02-29 -4.8392 0 -5.9767 -0.5925 5.3841 0.9009 -0.8612 5.1155 0.8559
2008-02-28 0.4615 0.3806 1.3294 2.5713 1.2420 -0.9342 2.1118 0.7824 -0.5886
2008-02-27 7.4380 2.5366 7.4603 7.6449 0.1846 -0.0247 7.0111 0.4492 0.0602
2008-02-26 -6.3467 -2.6591 -7.6246 -2.8940 4.7306 0.6204 -3.2270 4.3976 0.5768
2008-02-25 -7.7143 -0.5666 -8.2100 -2.5065 5.7034 0.6947 -2.6883 5.5216 0.6726

Table D.2: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.995 for the
SR:normal method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.
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SR:normal, α = 0.005
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -7.8019 2.5857 0.2489 -7.1828 3.2048 0.3085
2008-02-29 -4.8392 0 -5.9767 -4.7318 1.2449 0.2083 -4.1191 1.8575 0.3108
2008-02-28 0.4615 0.3806 1.3294 -1.5679 2.8973 2.1794 -1.1462 2.4756 1.8622
2008-02-27 7.4380 2.5366 7.4603 3.5057 3.9546 0.5301 3.7531 3.7072 0.4969
2008-02-26 -6.3467 -2.6591 -7.6246 -7.0332 0.5914 0.0776 -6.4850 1.1397 0.1495
2008-02-25 -7.7143 -0.5666 -8.2100 -6.6457 1.5642 0.1905 -5.9463 2.2636 0.2757

Table D.3: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.005 for the
SR:normal method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

SR:normal, α = 0.001
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -8.2152 2.1724 0.2091 -7.5081 2.8795 0.2772
2008-02-29 -4.8392 0 -5.9767 -5.1451 0.8316 0.1391 -4.4445 1.5322 0.2564
2008-02-28 0.4615 0.3806 1.3294 -1.9812 3.3106 2.4903 -1.4715 2.8009 2.1069
2008-02-27 7.4380 2.5366 7.4603 3.0924 4.3679 0.5855 3.4278 4.0325 0.5405
2008-02-26 -6.3467 -2.6591 -7.6246 -7.4465 0.1781 0.0234 -6.8103 0.8143 0.1068
2008-02-25 -7.7143 -0.5666 -8.2100 -7.0591 1.1509 0.1402 -6.2716 1.9383 0.2361

Table D.4: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.001 for the
SR:normal method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

SR:Student’s t, α = 0.999
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -0.7847 9.6029 0.9245 -3.3557 7.0319 0.6769
2008-02-29 -4.8392 0 -5.9767 2.2813 8.2580 1.3817 -0.3007 5.6759 0.9497
2008-02-28 0.4615 0.3806 1.3294 5.5690 4.2396 -3.1891 2.7361 1.4067 -1.0581
2008-02-27 7.4380 2.5366 7.4603 10.7493 3.2890 -0.4409 7.6856 0.2253 -0.0302
2008-02-26 -6.3467 -2.6591 -7.6246 0.0311 7.6557 1.0041 -2.6327 4.9919 0.6547
2008-02-25 -7.7143 -0.5666 -8.2100 0.3125 8.5224 1.0381 -2.1552 6.0548 0.7375

Table D.5: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.999 for the
SR:Student’s t method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.
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SR:Student’s t, α = 0.995
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -2.9356 7.4520 0.7174 -3.8788 6.5088 0.6266
2008-02-29 -4.8392 0 -5.9767 0.1304 6.1071 1.0218 -0.8238 5.1529 0.8622
2008-02-28 0.4615 0.3806 1.3294 3.4181 2.0887 -1.5712 2.2130 0.8836 -0.6647
2008-02-27 7.4380 2.5366 7.4603 8.5984 1.1381 -0.1526 7.1626 0.2978 0.0399
2008-02-26 -6.3467 -2.6591 -7.6246 -2.1198 5.5048 0.7220 -3.1558 4.4688 0.5861
2008-02-25 -7.7143 -0.5666 -8.2100 -1.8384 6.3715 0.7761 -2.6783 5.5317 0.6738

Table D.6: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.995 for the
SR:Student’s t method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

SR:Student’s t, α = 0.005
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -8.8089 1.5787 0.1520 -7.3425 3.0451 0.2931
2008-02-29 -4.8392 0 -5.9767 -5.7428 0.2338 0.0391 -4.2875 1.6891 0.2826
2008-02-28 0.4615 0.3806 1.3294 -2.4552 3.7846 2.8469 -1.2507 2.5801 1.9408
2008-02-27 7.4380 2.5366 7.4603 2.7251 4.7352 0.6347 3.6989 3.7615 0.5042
2008-02-26 -6.3467 -2.6591 -7.6246 -7.9931 0.3684 -0.0483 -6.6195 1.0051 0.1318
2008-02-25 -7.7143 -0.5666 -8.2100 -7.7117 0.4982 0.0607 -6.1420 2.0680 0.2519

Table D.7: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.005 for the
SR:Student’s t method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

SR:Student’s t, α = 0.001
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -10.9598 0.5722 -0.0551 -7.8656 2.5220 0.2428
2008-02-29 -4.8392 0 -5.9767 -7.8937 1.9171 -0.3208 -4.8106 1.1661 0.1951
2008-02-28 0.4615 0.3806 1.3294 -4.6061 5.9355 4.4648 -1.7738 3.1032 2.3343
2008-02-27 7.4380 2.5366 7.4603 0.5742 6.8861 0.9230 3.1758 4.2845 0.5743
2008-02-26 -6.3467 -2.6591 -7.6246 -10.1440 2.5193 -0.3304 -7.1426 0.4820 0.0632
2008-02-25 -7.7143 -0.5666 -8.2100 -9.8626 1.6527 -0.2013 -6.6651 1.5449 0.1882

Table D.8: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.001 for the
SR:Student’s t method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.
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MI:normal, α = 0.999
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -3.2495 7.1381 0.6872 -3.5800 6.8076 0.6554
2008-02-29 -4.8392 0 -5.9767 -0.1810 5.7957 0.9697 -0.5149 5.4618 0.9139
2008-02-28 0.4615 0.3806 1.3294 2.9865 1.6571 -1.2465 2.4420 1.1126 -0.8369
2008-02-27 7.4380 2.5366 7.4603 8.0620 0.6017 -0.0807 7.3281 0.1322 0.0177
2008-02-26 -6.3467 -2.6591 -7.6246 -2.4792 5.1455 0.6748 -2.8884 4.7362 0.6212
2008-02-25 -7.7143 -0.5666 -8.2100 -2.0963 6.1137 0.7447 -2.3351 5.8749 0.7156

Table D.9: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.999 for the
MI:normal method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

MI:normal, α = 0.995
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -3.6621 6.7255 0.6475 -3.8955 6.4921 0.6250
2008-02-29 -4.8392 0 -5.9767 -0.5880 5.3886 0.9016 -0.8298 5.1469 0.8612
2008-02-28 0.4615 0.3806 1.3294 2.5753 1.2459 -0.9372 2.1213 0.7919 -0.5957
2008-02-27 7.4380 2.5366 7.4603 7.6512 0.1909 -0.0256 7.0026 0.4577 0.0613
2008-02-26 -6.3467 -2.6591 -7.6246 -2.8942 4.7304 0.6204 -3.2063 4.4184 0.5795
2008-02-25 -7.7143 -0.5666 -8.2100 -2.5024 5.7076 0.6952 -2.6474 5.5625 0.6775

Table D.10: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.995 for the
MI:normal method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

MI:normal, α = 0.005
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -7.8047 2.5829 0.2487 -7.1525 3.2351 0.3114
2008-02-29 -4.8392 0 -5.9767 -4.7424 1.2343 0.2065 -4.0895 1.8872 0.3158
2008-02-28 0.4615 0.3806 1.3294 -1.5728 2.9022 2.1831 -1.1354 2.4648 1.8541
2008-02-27 7.4380 2.5366 7.4603 3.5000 3.9603 0.5308 3.7466 3.7137 0.4978
2008-02-26 -6.3467 -2.6591 -7.6246 -7.0328 0.5918 0.0776 -6.4617 1.1629 0.1525
2008-02-25 -7.7143 -0.5666 -8.2100 -6.6576 1.5524 0.1891 -5.9080 2.3020 0.2804

Table D.11: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.005 for the
MI:normal method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.
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MI:normal, α = 0.001
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -8.2223 2.1652 0.2084 -7.4848 2.9028 0.2794
2008-02-29 -4.8392 0 -5.9767 -5.1545 0.8222 0.1376 -4.4170 1.5597 0.2610
2008-02-28 0.4615 0.3806 1.3294 -1.9843 3.3137 2.4927 -1.4638 2.7932 2.1011
2008-02-27 7.4380 2.5366 7.4603 3.0931 4.3672 0.5854 3.4210 4.0393 0.5414
2008-02-26 -6.3467 -2.6591 -7.6246 -7.4510 0.1737 0.0228 -6.7950 0.8296 0.1088
2008-02-25 -7.7143 -0.5666 -8.2100 -7.0709 1.1390 0.1387 -6.2359 1.9740 0.2404

Table D.12: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.001 for the
MI:normal method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

MI:Student’s t, α = 0.999
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -0.7908 9.5968 0.9239 -3.3153 7.0723 0.6808
2008-02-29 -4.8392 0 -5.9767 2.2760 8.2527 1.3808 -0.3314 5.6452 0.9445
2008-02-28 0.4615 0.3806 1.3294 5.5668 4.2374 -3.1875 2.7279 1.3985 -1.0520
2008-02-27 7.4380 2.5366 7.4603 3.0931 4.3672 0.5854 3.4210 4.0393 0.5414
2008-02-26 -6.3467 -2.6591 -7.6246 0.0261 7.6507 1.0034 -2.5741 5.0505 0.6624
2008-02-25 -7.7143 -0.5666 -8.2100 0.3056 8.5155 1.0372 -2.1846 6.0254 0.7339

Table D.13: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.999 for the
MI:Student’s t method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

MI:Student’s t, α = 0.995
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -2.9315 7.4561 0.7178 -3.8397 6.5479 0.6304
2008-02-29 -4.8392 0 -5.9767 0.1342 6.1108 1.0224 -0.8546 5.1221 0.8570
2008-02-28 0.4615 0.3806 1.3294 3.4165 2.0871 -1.5700 2.1993 0.8699 -0.6543
2008-02-27 7.4380 2.5366 7.4603 8.5919 1.1316 -0.1517 7.1124 0.3479 0.0466
2008-02-26 -6.3467 -2.6591 -7.6246 -2.1177 5.5070 0.7223 -3.1008 4.5239 0.5933
2008-02-25 -7.7143 -0.5666 -8.2100 -1.8323 6.3777 0.7768 -2.7055 5.5044 0.6705

Table D.14: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.995 for the
MI:Student’s t method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.
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MI:Student’s t, α = 0.005
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -8.8020 1.5856 0.1526 -7.3144 3.0732 0.2959
2008-02-29 -4.8392 0 -5.9767 -5.7352 0.2415 0.0404 -4.3320 1.6447 0.2752
2008-02-28 0.4615 0.3806 1.3294 -2.4542 3.7836 2.8461 -1.2776 2.6070 1.9611
2008-02-27 7.4380 2.5366 7.4603 2.7207 4.7396 0.6353 3.6339 3.8264 0.5129
2008-02-26 -6.3467 -2.6591 -7.6246 -7.9888 0.3642 -0.0478 -6.5748 1.0498 0.1377
2008-02-25 -7.7143 -0.5666 -8.2100 -7.7012 0.5087 0.0620 -6.1826 2.0273 0.2469

Table D.15: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.005 for the
MI:Student’s t method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

MI:Student’s t, α = 0.001
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -10.9567 0.5691 -0.0548 -7.8535 2.5341 0.2440
2008-02-29 -4.8392 0 -5.9767 -7.8957 1.9190 -0.3211 -4.8696 1.1070 0.1852
2008-02-28 0.4615 0.3806 1.3294 -4.6070 5.9364 4.4655 -1.8041 3.1335 2.3571
2008-02-27 7.4380 2.5366 7.4603 0.5706 6.8897 0.9235 3.1185 4.3418 0.5820
2008-02-26 -6.3467 -2.6591 -7.6246 -10.1399 2.5152 -0.3299 -7.1100 0.5147 0.0675
2008-02-25 -7.7143 -0.5666 -8.2100 -9.8642 1.6542 -0.2015 -6.7256 1.4844 0.1808

Table D.16: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.001 for the
MI:Student’s t method. The absolute error (distance) between the true value and the estimated value

together with the percentage error is also presented for two different scenarios.

g-cop, α = 0.999
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -3.0274 7.3602 0.7086 -3.3603 7.0273 0.6765
2008-02-29 -4.8392 0 -5.9767 -0.3955 5.5811 0.9338 -0.6462 5.3305 0.8919
2008-02-28 0.4615 0.3806 1.3294 2.9383 1.6089 1.2103 2.3652 1.0358 0.7791
2008-02-27 7.4380 2.5366 7.4603 9.1939 1.7336 0.2324 8.2151 0.7548 0.1012
2008-02-26 -6.3467 -2.6591 -7.6246 -2.4748 5.1498 0.6754 -2.8218 4.8028 0.6299
2008-02-25 -7.7143 -0.5666 -8.2100 -1.9276 6.2823 0.7652 -2.1309 6.0791 0.7405

Table D.17: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.999 for the
g-copula method. The absolute error (distance) between the true value and the estimated value together

with the percentage error is also presented for two different scenarios.
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g-cop, α = 0.995
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -3.4290 6.9586 0.6699 -3.7541 6.6335 0.6386
2008-02-29 -4.8392 0 -5.9767 -0.7563 5.2204 0.8735 -0.9942 4.9825 0.8337
2008-02-28 0.4615 0.3806 1.3294 2.5219 1.1925 0.8970 2.0280 0.6986 0.5255
2008-02-27 7.4380 2.5366 7.4603 8.4985 1.0382 0.1392 7.6473 0.1870 0.0251
2008-02-26 -6.3467 -2.6591 -7.6246 -2.8642 4.7604 0.6243 -3.1820 4.4427 0.5827
2008-02-25 -7.7143 -0.5666 -8.2100 -2.3016 5.9083 0.7197 -2.5178 5.6922 0.6933

Table D.18: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.995 for the
g-copula method. The absolute error (distance) between the true value and the estimated value together

with the percentage error is also presented for two different scenarios.

g-cop, α = 0.005
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -8.6685 1.7191 0.1655 -8.2964 2.0912 0.2013
2008-02-29 -4.8392 0 -5.9767 -4.8883 1.0884 0.1821 -4.3007 1.6760 0.2804
2008-02-28 0.4615 0.3806 1.3294 -1.3326 2.6619 2.0024 -0.9202 2.2496 1.6922
2008-02-27 7.4380 2.5366 7.4603 3.1298 4.3305 0.5805 3.3406 4.1197 0.5522
2008-02-26 -6.3467 -2.6591 -7.6246 -7.7988 0.1741 0.0228 -7.4075 0.2171 0.028
2008-02-25 -7.7143 -0.5666 -8.2100 -6.9938 1.2161 0.1481 -6.4244 1.7856 0.2175

Table D.19: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.005 for the
g-copula method. The absolute error (distance) between the true value and the estimated value together

with the percentage error is also presented for two different scenarios.

g-cop, α = 0.001
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -9.2252 1.1624 0.1119 -8.7791 1.6085 0.1549
2008-02-29 -4.8392 0 -5.9767 -5.3029 0.6737 0.1127 -4.6234 1.3532 0.2264
2008-02-28 0.4615 0.3806 1.3294 -1.6993 3.0287 2.2783 -1.1991 2.5285 1.9020
2008-02-27 7.4380 2.5366 7.4603 2.6755 4.7849 0.6414 2.9850 4.4753 0.5999
2008-02-26 -6.3467 -2.6591 -7.6246 -8.3305 0.7058 0.0926 -7.8680 0.2433 0.0319
2008-02-25 -7.7143 -0.5666 -8.2100 -7.4705 0.7395 0.0901 -6.8082 1.4017 0.1707

Table D.20: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.001 for the
g-copula method. The absolute error (distance) between the true value and the estimated value together

with the percentage error is also presented for two different scenarios.
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t-cop, α = 0.999
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -3.4317 6.9559 0.6696 -2.0144 8.3732 0.8061
2008-02-29 -4.8392 0 -5.9767 -0.5387 5.4379 0.9099 0.8110 6.7877 1.1357
2008-02-28 0.4615 0.3806 1.3294 2.3205 0.9911 0.7455 3.1877 1.8583 1.3978
2008-02-27 7.4380 2.5366 7.4603 7.4587 0.0016 0.0002 7.6590 0.1987 0.0266
2008-02-26 -6.3467 -2.6591 -7.6246 -2.8736 4.7510 0.6231 -1.5943 6.0303 0.7909
2008-02-25 -7.7143 -0.5666 -8.2100 -2.1065 6.1035 0.7434 -0.4631 7.7468 0.9436

Table D.21: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.999 for the
t-copula method. The absolute error (distance) between the true value and the estimated value together

with the percentage error is also presented for two different scenarios.

t-cop, α = 0.995
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -4.0660 6.3216 0.6086 -2.9376 7.4500 0.7172
2008-02-29 -4.8392 0 -5.9767 -1.1605 4.8162 0.8058 -0.0045 5.9722 0.9992
2008-02-28 0.4615 0.3806 1.3294 1.8980 0.5686 0.4277 2.5748 1.2454 0.9369
2008-02-27 7.4380 2.5366 7.4603 7.0302 0.4301 0.0577 7.0842 0.3761 0.0504
2008-02-26 -6.3467 -2.6591 -7.6246 -3.4305 4.1942 0.5501 -2.4498 5.1748 0.6787
2008-02-25 -7.7143 -0.5666 -8.2100 -2.8775 5.3325 0.6495 -1.4824 6.7275 0.8194

Table D.22: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.995 for the
t-copula method. The absolute error (distance) between the true value and the estimated value together

with the percentage error is also presented for two different scenarios.

t-cop, α = 0.005
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -7.2424 3.1452 0.3028 -7.5755 2.8121 0.2707
2008-02-29 -4.8392 0 -5.9767 -4.5235 1.4531 0.2431 -4.9661 1.0106 0.1691
2008-02-28 0.4615 0.3806 1.3294 -0.8312 2.1605 1.6252 -1.4892 2.8186 2.1202
2008-02-27 7.4380 2.5366 7.4603 3.7367 3.7236 0.4991 2.7895 4.6708 0.6261
2008-02-26 -6.3467 -2.6591 -7.6246 -6.3278 1.2969 0.1701 -6.7285 0.8962 0.1175
2008-02-25 -7.7143 -0.5666 -8.2100 -6.6755 1.5345 0.1869 -7.0169 1.1930 0.1453

Table D.23: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.005 for the
t-copula method. The absolute error (distance) between the true value and the estimated value together

with the percentage error is also presented for two different scenarios.
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t-cop, α = 0.001
Nmiss = 0 Nmiss = 250

Date Monthly Yearly Yo−o−s Ypre |∆| ∆% Ypre |∆| ∆%
2008-03-03 -7.9176 -2.4645 -10.3876 -7.7172 2.6704 0.2571 -8.1221 2.2655 0.2181
2008-02-29 -4.8392 0 -5.9767 -5.0440 0.9326 0.1560 -5.6073 0.3694 0.0618
2008-02-28 0.4615 0.3806 1.3294 -1.3195 2.6489 1.9926 -2.1577 3.4871 2.6231
2008-02-27 7.4380 2.5366 7.4603 3.0303 4.4300 0.5938 1.8021 5.6582 0.7584
2008-02-26 -6.3467 -2.6591 -7.6246 -6.7714 0.8532 0.1119 -7.2429 0.3817 0.0501
2008-02-25 -7.7143 -0.5666 -8.2100 -7.2278 0.9822 0.1196 -7.6668 0.5432 0.0662

Table D.24: An overview of the values from the most volatile period in the out-of-sample set together
with the conditional values, and the corresponding estimated quantile values for α = 0.001 for the
t-copula method. The absolute error (distance) between the true value and the estimated value together

with the percentage error is also presented for two different scenarios.
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Appendix E

In Figure E.1-E.2 and in Table E.1-E.2 the calculated MAE and RMSE for each method can
be seen when the models are applied on more stable data. Since the MAE and the RMSE is
calculated after generating predicted values from the corresponding conditional distribution, and
both is very sensitive when used on small samples (typically Nmiss < 100), these error metrics
have been averaged over 100 iterations for a more distinguishable interpretation.
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Figure E.1: The Mean Absolute Error (MAE) for each model with different amount of missing
data (NaN).

Mean Absolute Error (MAE)
NaN 3 10 25 50 100 150 250
SR:normal 0.6475 0.6310 0.6675 0.6954 0.6846 0.7243 0.7632
SR:Student’s t 0.6337 0.5828 0.5643 0.6336 0.6056 0.6593 0.6763
MI:normal 0.6264 0.6331 0.6486 0.6891 0.6851 0.7289 0.7612
MI:Student’s t 0.6479 0.5743 0.5479 0.6178 0.6081 0.6651 0.6802
g-cop 0.5588 0.5613 0.5736 0.6343 0.6211 0.6635 0.7033
t-cop 0.4169 0.3306 0.3600 0.4425 0.4588 0.5803 0.5695

Table E.1: The Mean Absolute Error (MAE) for each model with different amount of missing data (NaN).
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Figure E.2: The Root Mean Square Error (RMSE) for each model with different amount of missing
data (NaN).

Root Mean Square Error (RMSE)
NaN 3 10 25 50 100 150 250
SR:normal 0.7517 0.7667 0.8150 0.8749 0.8592 0.9126 0.9613
SR:Student’s t 0.7583 0.8166 0.8023 0.9380 0.8611 0.9410 0.9257
MI:normal 0.7148 0.7724 0.8035 0.8634 0.8600 0.9181 0.9586
MI:Student’s t 0.7673 0.7749 0.7646 0.8768 0.8740 0.9410 0.9337
g-cop 0.6504 0.6925 0.7138 0.8142 0.7911 0.8514 0.8927
t-cop 0.4893 0.4144 0.4655 0.5915 0.6028 0.7622 0.7428

Table E.2: The Root Mean Square Error (RMSE) for each model with different amount of missing
data (NaN).
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The out-of-sample log-likelihood for each model with different amount of missing data can be
seen in Table E.3.

Out-of-sample log-likelihood
NaN 3 10 25 50 100 150 250
SR:normal -2.2510 -7.0579 -17.8985 -39.8011 -77.6194 -127.7380 -227.6115
SR:Student’s t -1.6950 -3.8313 -9.9953 -29.2104 -53.2038 -101.5000 -192.0945
MI:normal -2.2520 -7.0597 -17.8979 -39.8081 -77.5979 -127.7068 -227.6826
MI:Student’s t -1.6967 -3.8322 -10.0025 -29.3128 -53.2682 -101.3712 -192.1108
g-cop -1.9771 -5.5584 -14.1795 -34.2358 -64.3550 -110.2361 -201.2402
t-cop -1.2434 -0.9233 -4.0002 -20.4623 -30.6634 -80.5289 -177.2783

Table E.3: The out-of-sample log-likelihood for each model with different amount of missing data (NaN).

The performance, based on these metrics, shows that the alternative t-copula method outperforms
the more established methods when the models are applied on less volatile data. The distribution
of the error is less bias and has lower variance compared to the more established methods (see
Figure E.1 and E.2). Additionally, the out-of-sample log-likelihood is greater (less negative), for
all cases of missing data, which indicates that the alternative t-copula model conforms much
more efficiently to the out of sample data (see Table E.3).
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