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Abstract

In this thesis, literature is reviewed for theory regarding elliptical copulas (Gaussian, Student’s #, and Grouped
) and methods for calibrating parametric copulas to sets of observations. Theory regarding model diagnostics
is also summarized in the thesis. Historical data of equity indices and government bond rates from several geo-
graphical regions along with U.S. corporate bond indices are used as proxies of the most significant stochastic
variables in the investment portfolio of If P&C. These historical observations are transformed into pseudo-
uniform observations, pseudo-observations, using parametric and non-parametric univariate models. The
parametric models are fitted using both maximum likelihood and least squares of the quantile function. Ellip-
tical copulas are then calibrated to the pseudo-observations using the well known methods Inference Function
for Margins (IFM) and Semi-Parametric (SP) as well as compositions of these methods and a non-parametric
estimator of Kendall’s tau.

The goodness-of-fit of the calibrated multivariate models is assessed in aspect of general dependence, tail
dependence, mean squared error as well as by using universal measures such as Akaike and Bayesian Informa-
tion Criterion, AIC and BIC. The mean squared error is computed both using the empirical joint distribution
and the empirical Kendall distribution function. General dependence is measured using the scale-invariant
measures Kendall’s tau, Spearman’s rho, and Blomqvist’s beta, while tail dependence is assessed using Krup-
skii’s tail-weighted measures of dependence (see [16]). Monte Carlo simulation is used to estimate these mea-
sures for copulas where analytical calculation is not feasible.

Gaussian copulas scored lower than Student’s ¢ and Grouped ¢ copulas in every test conducted. However,
not all test produced conclusive results. Further, the obtained values of the tail-weighted measures of depen-

dence imply a systematically lower tail dependence of Gaussian copulas compared to historical observations.






Sammanfattning

Copulas och parameterskattning i marknadsriskmodeller

I den hér uppsatsen granskas teori angdende elliptiska copulas (Gaussisk, Students ¢ och s.k. Grupperad t)
och metoder for att kalibrera parametriska copulas till stickprov av observationer. Uppsatsen summerar dven
teori kring olika metoder for att analysera och jamfora copula-modeller. Historisk data av aktieindex och stats-
obligationer fran flera olika geografiska omraden samt Amerikanska index for foretagsobligationer anvénds
for att modellera de huvudsakliga stokastiskt drivande variablerna i investeringsportfljen hos If P&C. Des-
sa historiska observationer transformeras med parametriska och icke-parametriska univariata modeller till
pseudolikformiga observationer, pseudo-observationer. De parametriska modellerna passas till data med ba-
de maximum likelihood och med minsta-kvadratpassning av kvantilfunktionen. Dérefter kalibreras elliptiska
copulas till pseudo-observationerna med de vilkdnda metoderna Inference Function for Margins (IFM) och
Semi-Parametric (SP) samt med blandningar av dessa tvd metoder och den icke-parametriska estimatorn av
Kendalls tau.

Hur vil de kalibrerade multivariata modellerna passar de historiska data utvirderas med avseende pa ge-
nerellt beroende, svansberoende, rotmedelavvikelse samt genom att anvidnda mer allména matt som Akaike
och Bayesianskt informationskriterium, AIC och BIC. Rotmedelavvikelsen rdknas ut bdde genom att anvianda
den empiriska gemensamma fordelningen och den empiriska Kendall férdelningsfunktionen. Generellt bero-
ende méts med de skalinvarianta matten Kendalls tau, Spearmans rho och Blomgvists beta, medan svansbe-
roende utviarderas med Krupskiis svansviktade beroendematt (se [16]). I de fall dar analytiska berdkningsme-
toder inte dr moijliga for copulas anvinds Monte Carlo-simulering for att skatta dessa matt.

De Gaussiska copulas gav sdmre resultat 4n Students ¢ och Grupperad ¢ copulas i varje enskilt test som
utfordes. Dock sé kan ej alla testresultat anses vara absolut definitiva. Vidare s& antyder de erhéllna virde-
na fran de svansviktade beroendematten att modellering med Gaussisk copula resulterar i systematiskt lagre

svansberoende hos modellen 4n hos de historiska observationerna.






Acknowledgements

Foremost, I would like to thank my supervisors Daniel Rufelt and Jerker Tapper of Capital Management at If
Skadeforskékring for their continuous and patient support throughout the course of my Master’s thesis. Their
immense knowledge and insightful comments helped form the scope of this thesis and assisted me at all time
during both research and writing. Without their guidance, this thesis would not have come to be.

Besides my supervisors, I would like to express my sincere gratitude to my examiner and academic advisor
Professor Henrik Hult of the Department of Mathematical Statistics of the Royal Institute of Technology. Our
vivid discussions provided the foundation from which the idea of this thesis grew into existence. I am grateful
for the time he set aside to think of wise answers to all my questions.

I would also like to thank the entire Capital Management group at If Skadeférsdkring for their warm wel-
coming of me into the team. Their enthusiasm while introducing me to the work of the group has been a
source of motivation.

Two persons within If Skadeforsdkring that deserve a special thanks are Solutions Developer Magnus Abrante
and IT Solution Responsible Kimmo Taskinen who have been consistently helping me by providing essential
computational power in the form of hardware.

My gratitude also goes to my fellow classmates and brothers in arms at the Royal Institute of Technology.
The countless hours we spent in the office, both studying and not studying, over the past five years have surely
paid off.

Finally, I would like to thank my family: my parents, brother and sister for their company and continuous

support through all these years. Without doubt, I would not be where I am now without them. Thank you.

Stockholm, March 21, 2017

Carl Ljung

ii






Contents

1 Introduction 1
1.1 If'sPortfolioandthe ESGModel . ... ... ... .. .. .. . .. . 1
1.1.1 Assumptions of Portfolio Components . . ... ... .. ... ... ... ... ... 1

1.2 ObjectiVe . . . . . . o e e 1
1.2.1 Limitations . . . . . . . o e e e e e e 2

1.3 ThesisOutline . . . . . . . . . . e e e 3
2 Mathematical Theory 4
2.1 Models for Macroeconomic Quantities . . . . .. ... ... .. ... e 4
2.1.1 EqUuity. . . .o e e e e e e 4
2.1.2 InterestRates . . . . . . . . . e e 4
2.1.3 Credit Spreads . . . . . . . v i i e e e e e e e e e 5

2.2 Probability Distributions . . . . . . . . . ... e 6
2.2.1 Univariate Distributions . . . . . . . . . ... e 6
2.2.1.1 Normal Distribution and Student’s t Distribution . . . . ... ... ... ... ... 6

2.2.1.2 Polynomial Normal Distribution . . . . .. .......... ... ... ....... 6

2.2.2 Spherical and Elliptical Distributions . . . . .. ... .. ... ... .. .. . . 7
2.2.2.1 Multivariate Normal Distribution . . .. ... ... ... ... .. .. ... ... ... 8

2.2.2.2 Multivariate Student’s t Distribution . . ... ... ... ... .. ... .. ... ... 8

2.2.3 Copula Familiesand Properties. . . . . . ... ... ... .. .. .. .. 8
2.2.3.1 Elliptical Copulas. . . . . . . . o i e e e 9

2.23.2 Groupedtcopula. . . . . ..ot e e e 11

2.2.3.3 Kendall Distribution Function . . . . .. ... ... .. ... .. ... .. .. ... 12

2.2.4 Empirical Distributions . . . . . .. .. ... e e 12
2241 EmpiricalCopulas . . . .. .. ... .. ... 13

2.2.4.2 Empirical Kendall Distribution Function . . . . . ... ..... ... ... ... ... 14

2.3 Parametric Estimators and Model Diagnostics . . . . .. ... .. ... ... .. . . o, 14
2.3.1 Maximum Likelihood Estimator (MLE) . . . ... .. ... ... ... .. .. ... ..... 15
2.3.1.1 Log-Likelihood of Univariate Distributions . . . ... ... .. ... ......... 15

2.3.1.2 CopulaLog-Likelihood . ... ... ... ... .. .. .. ... .. .. . .. ... 16

2.3.2 Least-Squares Estimator (LSE) . . . . .. ... . ... . .. e 16
2.3.3 Strengths and Shortcomings of the MLEandtheLSE . . . .. ... ... ... ...... 17
2.3.4 Dependence Measures and Non-Parametric Estimators . . . ... ............... 17
2.3.4.1 Pearson’s Product-Moment Correlation Coefficient. . . . . .. ... .. ... .... 18

2342 Kendall'sTau . . . ... .. i e 18

2343 SpearmansRho. . ... ... .. .. .. 20

2.3.4.4 BlomgvistsBeta . . .. .. ... e 21

2.3.5 Diagnostics of ParametricModels . . .. .. ... ... ... .. .. . L 22
2.3.5.1 Goodness-of-FitMeasures . . . . .. ... .. ...t 22

2.3.5.2 Diagnostics for Adequacy-of-Fit . . . . .. ... ... .. ... .. 23

2.3.6 Confidencelntervals . . . . . . . . . . . . . e 24

24 CopulaModeling . . . . . . . . e e 25
2.4.1 Calibration of Copula Model Parameters . . . . . .. .. .. ... 25
2.4.1.1 Inference Function for Margins—IFM . ... ... .. ... .. ... ......... 25

2.4.1.2 Semi-ParametricMethod—SP . . . ... ... .. .. ... .. .. ... ., 26

2.4.1.3 Advantages and Drawbacks of Composite Methods . . . ... .. ... ....... 27

2.4.2 Simulation from Joint Distributions UsingCopulas . . . . . ... .. ... ... .. ..... 27
2.4.2.1 Simulation from Elliptical Copulas . . . .. ... ... ... ... ... .. .... 28

2.4.2.2 Simulation from the Grouped tcopula . .. ... ... ... ... .. ......... 28

2.4.3 Selectionof CopulaModel. . . . . . . ... . e 28
2.4.3.1 RejectionoflnadequateModels . . . .. ... ... ... ... .. .. .. ... 29

iii



2.4.3.2 Identifying Model with Best Goodness-of-Fit . . ... ... .. ... .........

Methodology
3.1 Usage of Software and Hardware for Computations . . . . . ... ... .. .. ... ..........
3.2 Acquisition, Selection and Processing of Financial Data . . ... ... .. ... ............
321 Equity. . . . .o e
3.2.2 Five-Year Risk-Free InterestRates . . .. .. ... ... ... .. .. .. ... ... ..
3.2.3 Ten-YearCreditSpreads . . . .. ... .. ... ...
3.24 Processingof Marginal Data . . ... ... ... ... ...
3.2.4.1 Validity of IID Assumption of Marginals . .. ... ... .. .. ... .........
3.3 Estimation of Model Parameters . . . . . .. .. ... .. . . e
3.3.1 Modeling Marginal Distributions. . . . . .. ... ... ... .. .. .. .
3.3.2 Calibrating Copula Model Parameters to Pseudo-Observations . . . . . ... ... ... ...
3.4 Computation of Model Diagnostics . . . . . . .. .. . . ...

Results

4.1 Adequacy-of-Fitof CopulaModels . . . . . ... ... .. ... .. .. ..
4.1.1 Scale-invariant Dependency Measures . . . . . ... .. .. ..ttt
4.1.2 Tail-Weighted Measures of Dependence . . ... ... ..... .. .. ... .......

4.2 Goodness-of-Fitof CopulaModels . . . . . . . .. .. . e
4.2.1 MeanSquared EITOT . . . . . . . . . i i e e e e e e e e
4.2.2 Akaike and Bayesian Information Criterion . . . . . . ... ... ... ... .. ... ....

Discussion
5.1 Suggestion of Topics for FutureResearch . . . . ... .. ... ... ... .. .. ... .. ... .. ..

Figures
A.1 Scale-invariant Dependence MeasUIes . . . . . . . v o v v v v v v i ittt et e e e
A.2 Tail-weighted Dependence Coefficients . . . . . . .. ... ... . . .. .

Dependence Coefficients

Supplemental Theory
C.1 Coefficientsof Tail Dependence . . . . . .. ... .. .. it

iv



List of Figures

1  Kendall’s tau for Gaussian copula with composite methods. . . . . ... ... ............. 47

2 Kendall’s tau for Gaussian copula with non-composite methods. . . . ... ... .. ... ...... 48

3 Kendall’s tau for Student’s t copula with compositemethods. . . . . ... ... ... ......... 49

4  Kendall’s tau for Student’s t copula with non-composite methods. . . . ... ... .......... 50

5 Kendall’s tau for Grouped t copula with non-composite methods. . . ... .............. 51

6  Spearman’s rho for Gaussian copula with composite methods. . . .. ... ... ... ........ 52

7  Spearman’s rho for Gaussian copula with non-composite methods. . ... ... ... ........ 53

8  Spearman’s rho for Student’s t copula with composite methods. . . ... ... ............ 54

9  Spearman’s rho for Student’s z-copula with non-composite methods. . . . ... ... ........ 55
10 Spearman’s rho for Grouped t copula with non-composite methods. . . . . . ... .. ... ... .. 56
11 Blomgyvist’s beta for Gaussian copula with composite methods. . . . . ... ... ... ........ 57
12 Blomgyvist’s beta for Gaussian copula with non-composite methods. . . . . ... ... ........ 58
13 Blomgyvist’s beta for Student’s ¢t-copula with composite methods. . . ... ... ... ........ 59
14 Blomagqyvist’s beta for Student’s t-copula with non-composite methods. . . . . . . ... ... .. ... 60
15 Blomgyvist’s beta for Grouped t copula with non-composite methods. . . . .. ... ... ...... 61
16 Lower tail-weighted dependence measure for copula models with normal MLE marginals. . ... 62
17 Lower tail-weighted dependence measure for copula models with normal LSE marginals. . . . . . 63
18 Lower tail-weighted dependence measure for copula models with Student’s t MLE marginals. . . 64
19 Lower tail-weighted dependence measure for copula models with Student’s t LSE marginals. . . . 65
20 Lower tail-weighted dependence measure for copula models with polynomial normal MLE marginals. 66
21 Lower tail-weighted dependence measure for copula models with polynomial normal LSE marginals. 67
22 Lower tail-weighted dependence measure for copula models with empirical marginals. . . . . . . 68
23 Upper tail-weighted dependence measure for copula models with normal MLE marginals. . . .. 69
24 Upper tail-weighted dependence measure for copula models with normal LSE marginals. . . . . . 70
25 Upper tail-weighted dependence measure for copula models with Student’s t MLE marginals. . . 71
26 Upper tail-weighted dependence measure for copula models with Student’s t LSE marginals. . . . 72
27 Upper tail-weighted dependence measure for copula models with polynomial normal MLE marginals. 73
28 Upper tail-weighted dependence measure for copula models with polynomial normal LSE marginals. 74
29 Upper tail-weighted dependence measure for copula models with empirical marginals. . . . . . . 75



List of Tables

2.1
3.1
3.2
3.3

3.4

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8

4.9

B.1

B.2
B.3

Explicit forms of the logarithms of copuladensities. . . ... ... . ... .. ... ... ...... 16
The five stock indices used to model equity within each considered monetary region. . ... ... 33
Government bonds included in the thesis and the source used to obtain historical data . . . . .. 33

Credit spreads indices included in the thesis along with a description of the index compositions.
Note that different rating agencies uses different labels, e.g. Moody’s BAA rating corresponds to
S&P'SBBBrating. . . . . . . ... e e e e 34
The total number of raw data points used for each macroeconomic variable. The fourth column
shows the ratio in percent between the average data points per year of each variable and the

yearly average number of working days in the US calendar from 1920 to 2016. . . . . ... ... .. 36
Kendall’s tau, percentage inside confidenceinterval . ... ... ... .. ............... 38
Spearman’s rho, percentage inside confidenceinterval . . . . .. ... .. ... ... .. ... .. .. 39
Blomgvist’s beta, percentage inside confidenceinterval . ... ... ... ... ... ......... 39
Lower tail-weighted dependence measure, percentage inside confidence interval . . . . . ... .. 40
Upper tail-weighted dependence measure, percentage inside confidence interval . . . . . ... .. 40
The mean squared error of the copula function of the all the considered copula models. Values

have been computed as the mean of 10 mean squared errorvalues. . . ... ............. 41
The mean squared error of the Kendall distribution function of the all the considered copula
models. Values have been computed as the mean of 10 mean squared error values. . . . . ... .. 41
Akaike Information Criterion of all considered copula models, except those including the grouped
rcopula. ... e 42
Bayesian Information Criterion of all considered copula models, except those including the grouped
-COPULA. . . . e e e e e 42
Kendall’s tau for the data sample of macroeconomic variables. . . ... ... ... .......... 76
Spearman’s rho for the data sample of macroeconomic variables. . . ... ... ........... 77
Blomgvist’s beta for the data sample of macroeconomic variables. . . . ... ... ... ....... 78

Vi



1 INTRODUCTION Copula Selection and Parameter Estimation in Market Risk Models

1 INTRODUCTION

In financial mathematics, multivariate distributions and dependency of assets has been of great interest. Mod-
ern history has however highlighted the importance of proper modeling of joint extreme events and distin-
guishing between linear correlation and asymptotic dependence, also referred to as tail dependence.

Over the last two decades, copula modeling has found many successful applications and has seen great
use in especially mathematical finance, where it has been used for just precisely dependence modeling of
multivariate distributions. The finesse of copulas is that they separate the specification of univariate marginal
distributions and multivariate joint distribution. Hence, rather than directly specifying a multivariate joint
distribution, a model can be constructed by specifying marginal distributions and a dependence structure, i.e.
a copula, for the marginals. The copula and marginals then imply a multivariate joint distribution.

If Group and its subentities (If Skadeforsakring, If Finland, If Estonia, If Liv) are based within countries
who applies the Solvency II directive of the European Union. Put shortly, without going into too much detail,
the Solvency II directive means that each legal entity has a capital requirement equal to the 0.5 % quantile
of the net result distribution one year into the future. This is one main reason to the interest of modelling
multivariate distributions and extreme events.

Furthermore, If Group and its subentities operate throughout the entire Scandinavian region, Finland and
the Baltic region. Likewise, the entities investments are mainly in the same regions. Consequently, If’s financial
assets are diversified over several countries and currencies. Naturally, assets in different countries and curren-
cies are not linearly correlated. However, history has proven western economies to be greatly dependent in the
case of extreme events, i.e. asymptotically dependent. Therefore, the modeling of tail dependence and the use
of copulas have earned great interest.

1.1 If’s Portfolio and the ESG Model

If’s investment portfolio consists of 10-15 % equity, such as e.g. stock shares, and 85-90 % fixed income instru-
ments, such as e.g. bonds and floating-rate notes. The majority of the assets are allocated in the Nordic region
and hence the state of the Swedish, Norwegian, and Danish economies pose as significant drivers of market
risk for If’s portfolio. Additionally, the state of the economy of the European monetary region and the US econ-
omy should be considered to be relevant risk drivers. For convenience, these risk drivers are abbreviated as
the SEK, NOK, DKK, EUR, and USD economy.

Traditionally, the Capital Management unit within If Risk Management has modeled the multivariate dis-
tribution of the portfolio assets using a Economic Scenario Generator (ESG). This model is designed to gen-
erate outcomes of the return or change in value of asset categories for several relevant monetary regions. For
example, the model is used to generate outcomes of the one-year return on equity in the Swedish market.

In general, the ESG model employs the traditionally appreciated approach of using a Gaussian copula (ex-
plained in Section 2.2.3.1) as a model for the dependence structure of the multivariate distribution of the port-
folio assets’ driving Brownian motions. However, the Gaussian copula family implies zero asymptotic tail de-
pendence (see Appendix C.1) which may result in an inadequate model in the aspect of dependence.

1.1.1 Assumptions of Portfolio Components

The stochastic behaviour of the fixed income possession of If’s portfolio can in a simple model be described
by the risk-free rate and credit spreads, where credit spread is the additional yield implied by a risky bond
compared to a risk-free bond. Further, a reasonable model for the stochastic price change of equity in separate
economies is to use stock indices consisting of stock shares that has great influence on the equity market of
each separate economy.

1.2 Objective

This thesis aims to partly review and summarize theory regarding copula model calibration and to partly apply
the theoretical methods to If’s investment portfolio. The thesis objectives can thus be formulated as below

1 (80)



1.2 Objective March 21, 2017

¢ The first objective of this thesis is to investigate methods for calibrating copula models to the driving
stochastic factors of If’s investment portfolio and methods to assess the adequacy- and goodness-of-fit
of the models.

* The second objective of this thesis is to analyze and compare a set of copula candidates for modelling
the multivariate distribution and dependence structure of the macroeconomic variables that pose as the
major risk factors for If’s investment portfolio. Additionally, the dependence structure and goodness-of-
fit of non-Gaussian copulas should be compared with the Gaussian copula, since this is the copula model
currently used in the ESG.

The considered macroeconomic variables are equity, risk-free rate, and credit spread for each of the economies
SEK, NOK, DKK, EUR, and USD. Furthermore, the general idea is to attain the first objective by reviewing
existing publications on the subject of copula modeling and summarize the relevant material along with a
mathematical background. The second objective will be achieved by calibrating copula models to authentic
market data representative for If’s investment portfolio and then analyzing the goodness-of-fit each model.

The ultimate purpose of use of the ESG is Solvency II capital requirement calculations, i.e. the multivariate
outcomes generated by the ESG are intended to be used for Monte Carlo approximation of a 99.5 % quantile.
Thus, a copula calibration method that is weighted towards the tails can seem like a sensible approach. How-
ever, for the purpose of the first objective, this thesis will focus on more widely used calibration methods and
not delve deeper into special purposed calibration criteria. No portfolio function will be specified based on the
copula and thus no risk measures, such as the 99.5 % quantile, will be computed. The author acknowledges
that this can be considered to be the ultimate purpose of a copula model in the given context, but this thesis
limits itself to merely study the calibration methodology, resulting model dependence structure and overall
model fit.

1.2.1 Limitations

The copulas considered within this thesis is limited to the Gaussian, Student’s ¢ and Grouped ¢ copula due to
their applicability in multivariate contexts, see Section 2.2.3.1. Parametric versions of copula families such as
the Archimedean copulas have in general only one or sometimes two parameters which limits the possibilities
of calibrating a high dimensional parametric model to have an adequate dependence structure. Archimedean
copulas has therefore been excluded from the studies in this thesis, but the curious reader can find more about
them in [17].

Univariate models for each of the marginal variables are limited to three parametric models and one non-
parametric model. The chosen parametric models are the Normal, Student’s ¢t and Polynomial normal distri-
bution, see Section 2.2.1, and the non-parametric model is the empirical distribution, see Section 2.2.4.

This thesis does not put a great emphasis on the process of transforming observations of the marginal
variables into supposedly i.i.d outcomes.

Frequency of Data used for Modelling As any statistician knows, having a large sample of observations pro-
vides multiple benefits almost regardless of type of study. However, the limited supply of relevant data is a
common obstacle faced when proceeding from the drawing board to the real world.

When studying financial variables as is done in this thesis, there is plenty of freedom of choice regarding
what time period be considered to be one single observation. In detail, one can choose whether to model
based on daily observations, monthly observations or yearly observations, etc. When determining what is
preferable there are two main concerns:

» Sample size Clearly, when modelling based on daily observations, history will provide larger samples of
observations than when modelling based on e.g. yearly observations.

* Purpose of Model Taking into account the actual purpose of use of the model is a sensible way to avoid
over-modelling. For example, one could imagine the price process of a certain asset to exhibit a certain
trend or large changes when making frequent observations, but when observing over longer time periods
these effects are netted out.

2 (80)



1 INTRODUCTION Copula Selection and Parameter Estimation in Market Risk Models

Evidently this is a trade-off problem with no absolute solution. One would want to set the length of the obser-
vation periods to be relevant with respect to the intended use of the model while at the same time maximizing
the number of usable historical data points.

As stated earlier, the ultimate purpose of the copula models examined is to approximate a quantile value
of the stochastic net result one year ahead. Consequently, it would be sensible for the modelling to be based
on yearly observations. However, this would yield very small samples of observations, as will be made evident
in the methodology section of this thesis. Furthermore, the quantile approximation part is not included in this
thesis. Therefore, this thesis takes the approach to study daily observations in order to maximize the amount
of usable historical data points.

1.3 Thesis Outline

The first subsequent section, Section 2, presents a mathematical background to the topics of copulas and
distribution parameter estimation. It also presents the relevant concepts of copula and dependence modeling.
Allin all, Section 2 constitutes the foundation of this thesis as it presents both background theory and applied
theory regarding copula modeling methods that are used. Thus, the advanced reader on copula theory might
find it appropriate to go directly to Section 2.4 and the modeling methods.

Furthermore, Section 3 presents data set used for copula modeling and illustrates the circumstantial details
of the application of the theory in Section 2. The results are presented in Section 4 and Section 5 concludes.

Regarding the objectives of this thesis, the results of the investigation and summarizing of copula calibra-
tion methods as well as adequacy- and goodness-of-fit tests are presented throughout Section 2 and are briefly
discussed in Section 5. Section 3 attends mainly to the second objective by presenting the circumstantial ap-
plication of the copula modeling theory in Section 2. Additionally, the results obtained through the methods
in Section 3 are presented in Section 4 and discussed in Section 5.

3 (80)
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2 MATHEMATICAL THEORY

In the first subsection below, Section 2.1, stochastic processes for the macroeconomic quantities equity, in-
terest rate, and credit spreads are presented. These mathematical models are used to demonstrate how time
series of the quantities can be transformed into time-independent series in theory.

Section 2.2 gives a rigorous theoretical background on copulas from a probability theory perspective while
Section 2.3 presents tools for fitting copula models to a set of observations and for analyzing the adequacy-
and goodness-of-fit. The somewhat more important Section 2.4 then illustrates how to apply the fitting and
analysis tools of Section 2.3 to model dependence and multivariate distributions using the copula theory of
Section 2.2.

2.1 Models for Macroeconomic Quantities
2.1.1 Equity

As an illustrative example of the equity model, take S; to be the share price of a stock at time ¢. By implement-
ing the lognormal model, the random process S; is assumed to have the dynamics of a geometric Brownian
motion, i.e.

2

dS[: l.l,+0.7 Stdt+0'StdW[ (2.1)

So =S80
where W; is a Brownian motion (see [1]). Further, by proposition 5.2 in [1], this implies that
Sp=81ettoWimWe-n), (2.2)

Since W, is a Brownian motion it follows that W, — W;_, e N(0,1), or Z; = u+ o (W; —W;_1) € N(p, cr). Conse-
quently, for the one time period return on the stock it holds that

= St :eZt
Si-1

Ry < InR;=Z7. (2.3)
In other words, the log-returns are normally distributed provided that the stock price process is a geometric
Brownian motion.

Moreover, if the current time is denoted by 0 and S_,, S—,+1,...,S-1, So is assumed to be a time series of
historical prices from the n previous equally spaced points in time, then (2.2) indicates a strong dependence
between the data points. The returns, on the other hand, are independent and equally distributed if 1 and o
are time-invariant and if the non-overlapping increments of the process W; are independent (the latter con-
dition follows if W; is a Brownian motion). In terms of Z; this translates to Z; having a time-independent
distribution. These model assumptions are supported by the claim in [12] that historical return series usually
only are weakly dependent and can be assumed to be independent and identically distributed.

In reality however, the normality of Z; proves to be a crude assumption. Hence, the distribution of Z; is
not limited to the normal distribution in this thesis.

Conclusively, by this model the future returns have the same distribution as the historical returns and the
observed returns are then representative for the outcome of Rj, the return for the next time period.

2.1.2 Interest Rates

Let p,(T) denote the price of a zero-coupon bond at time ¢ with maturity at time T. If r{ (T) denotes the
continuously compounded risk-free rate at time ¢ with maturity at time T and r;(T) denotes the annually
compounded risk-free rate at time ¢ with maturity at time T, then

pe(T) = o= I F69)ds _ —ri((T-1) _ L+ 7, (1)~ TD 2.4)
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where ¢ and T are measured in years. Further, let T); = T — ¢ denote the time to maturity of a zero-coupon
bond at time #, then the zero-coupon bond price at time ¢ can be expressed with Tj; as a parameter, i.e.
p: (Ta) = e 1T Now, consider the price of a bond at time ¢ with maturity at time T, i.e. p;(Ty), and
the price of a bond at time ¢ — 1 with maturity at time T —1, i.e. p; (T»). Then, the change in market price of a
Ty-bond is

_ p(ITm) — o (rE (T =rE (Ta) Ty

-1
= o (T = Zt:=T—MlnR;:rf(TM)—rtc_l(TM).
t—1

Thus, studying the distribution of the log-returns is equivalent to studying the distribution of the change in the
continuously compounded risk-free rate, when considering zero-coupon bonds. Further, this is approximately
true also if the annually compounded risk-free rate is used. By employing Taylor expansion, one obtains

1+71:(Ty)

_ pe(Tn)
! 1+ 741 (Tny)

"~ pee1 (Tw) -

147 (Tap) )‘TM
1+re1(Thm)

-1
Zt = T—lIlRt :ln(

) =1 (Tpm) =121 (Tm) . (2.5)
M

The validity of this linear approximation clearly depends on the length of the time periods. For example, if ¢ is
measured in days and R; is the daily change in price of a zero-coupon bond which matures in Tj; days, then
the change in price can be assumed to be small and consequently the linear approximation above is justified.

As in the case of equity, the time series of the process Z; will be assumed to be independent and identically
distributed. This means that the observed changes in the risk-free rate are assumed to be representative for
the future changes in the risk-free rate.

2.1.3 Credit Spreads

Consider a corporate bond with time to maturity Tj; and price process c¢; (Tys). A corporate bond carries a
certain credit risk in the form of counterparty default risk but does in turn generally give a yield to maturity
higher than the risk-free rate. The amount of which the yield of a corporate bond exceeds the risk-free rate is
referred to as the credit spread and will be denoted s; (Tys). The price process c; (Tys) can now be formulated
as

¢ (Tpg) = e~ Ui T — (1 4 (Typ) + 5, (Tap)) ™™™

where s{ is the continuously compounded credit spread and s; is the annually compounded credit spread. By
operations similar to the preceding sections, one can derive

o CIM) o (rf T ST =1 (a5, (Tan) T 2.6)
cr-1(Tn)
-1
> Z;:= T InR;+ (r{ (Tasp) = ri_y (Tan)) = $¢ (Tang) — 85—y (Tnr) 2.7

Let #f =0 (..., re o (Tag), ri_y (Tan), 1y (Ty), i.e. Ff is the sigma-algebra generated by the random variables
.y rtc_2 (T, rtc_1 (Tr), rtc (Tnp) (the reader is referred to [1] for more information about sigma-algebras). Then,
the process of Z;|.% is a process driven only by the stochastics of the changes in the credit spread. In other
words, provided that the risk rate is known up to the considered time, the distribution of Z; depends solely on
the stochastics of s7 (T) — s7_; (Tar).

Furthermore, using a similar argument to the one in the preceding section, an expression for Z; using
the annually compounded credit spread can be obtained. By linear approximation, Z; can be expressed as
the negative change in the credit spread. Hence, under the assumption that the credit spread changes are
independent for non-overlapping time periods and constitute a process with stationary distribution, the ob-
servations of Z; will be outcomes of independent and identically distributed variables. Thus, the historical
outcomes of Z; will be representative for future changes in the credit spread.
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2.2 Probability Distributions

The use of copulas allows for marginal distributions and joint distribution to be specified separately. More
specifically, when modeling a multivariate joint distribution using copulas, the marginals are specified indi-
vidually and a copula is used to set the dependence between the marginals. Thereby, this section presents
theory regarding univariate and multivariate distributions as well as copulas.

An important family of distribution in mathematical finance and quantitative risk analysis is the family of
elliptical distributions. These distributions pose good applicability in problems in high dimensions. Conse-
quently, this section focuses on the family of elliptical distributions and two its more famous members, namely
the normal distribution and Student’s ¢ distribution.

2.2.1 Univariate Distributions

Generally, financial returns distributions are heavy-tailed and slightly skewed, i.e. asymmetric. Consequently,
these are the features that a parametric marginal model should capture.

Three univariate distributions and their characteristics are presented in this section: the normal, Student’s
t, and polynomial normal distribution. For the purpose of providing a thorough theoretical background, the
distribution and density functions of the normal distribution and Student’s t- distribution is defined in this
section. The more exotic polynomial normal distribution, which allows both heavy tails and skewness, is pre-
sented with a shorter derivation.

2.2.1.1 Normal Distribution and Student’s t Distribution A random variable Z is said to be standard nor-
mally distributed, N (0, 1), if its density function, f7 is of the form
1 <2
7(2)=——=e 2
I V2n
The corresponding distribution function is denoted ®. Moreover, if X = u+ 0 Z, then X has a general normal
distribution with mean u and variance o, which is denoted N (i, o). The density function of X is then

=:p(2). (2.8)

fx(x) = - e 22 . (2.9)

The distribution function of X can be expressed using the standard normal distribution function as Fx (x) =
®((x—p) /o). The normal distribution has neither heavy tails or asymmetric shape and is thereby a poor
candidate in theory, as mentioned in the preceding section. However, it is included to pose as a benchmark.

Furthermore, if Y = u+ 0/v/S, Z, where the random variable S, has a )(z—distribution with mean p, scale
parameter o and v degrees of freedom, then Y has a Student’s ¢ distribution with v degrees of freedom. The
density function of Y is then

v+1

fr(y)= rég?)m (1 + (yv_cr’;)z)_ (2.10)

General Student’s ¢ distribution is denoted ¢ (u,o,v). When p =0 and o = 1, the distribution is referred to as
standard Student’s ¢ distribution and the corresponding distribution function is denoted as ¢,. It follows that
ifYe t(,u, o, v), then Var[Y] = o2v/ (v—2) and consequently (Y - y) /o has standard Student’s ¢ distribution
with variance v/ (v —2).

2.2.1.2 Polynomial Normal Distribution In this thesis, the polynomial normal (PN) distribution model is
limited in several ways in order to fit the intended application. The construction of our polynomial normal
model relies heavily on Proposition 6.3 in [12], cited below.

Proposition 2.1. If g:R — R is a non-decreasing and left continuous function, then, for any random variable

Z, it holds that F,, (p) = g (F;' (p)), forall p € (0, 1).
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The reader is referred to [12] for a proof of the proposition. Now, the approach - evidently inspired by
[12] - is to model the random variable under study as a polynomial of a standard normal random variable,
ie. Z = g(Y) where Y is standard normally distributed. Then, if g is a non-decreasing and left continuous
function, it follows from Proposition 2.1 that F,' (p) = g (F;' (p)) = (@' (p)). In other words, the quantile
function of Z is a function of the standard normal quantile function.

Furthermore, if g is chosen as a polynomial of odd degree, then, provided a sufficient coefficient constraint,
g is both non-decreasing and continuous. Hence, g is set as

g(:0) =00 +01y+0:y* +05y°, (2.11)

where 0 = [0y,01,02,05]T. Here, it is possible to have higher order terms in the model, however, it would
increase the complexity of the model since more parameters would be included. A polynomial degree of three
thus provides a sufficient model while preserving simplicity (a polynomial degree of one would imply that Z is
normally distributed with mean 8, and standard deviation 6, and is thereby not considered).

Provided the constraints 65 = 0 and g’ (y;0) = 0, g is non-decreasing and by Proposition 2.1 it holds that

7' (p) = Fylyg) (P) =00 +0:107" (p) + 0207 (p)* +0507" (p)*. (2.12)

Moreover, by noticing that g’ (;8) = 61 + 262y + 303 y* has a global minimum if 65 > 0, the constraint g’ (y;0) =
0 can be equivalently formulated as g’ (y*;0) = 0 and 65 = 0, where y* = argmin{g’(y;0)}. Due to the con-
straint 03 = 0, g’ (y;0) is convex and it follows that y* is the solution to g” (y;0) =0, i.e. y* = -0,/ (363). Thus,
g'(y*;0) = 0is equivalent to 30,03 — 65 = 0.

Further, g (y;0) is strictly increasing if g’ (y;68) > 0, which translates into 36,03 — 65 > 0. If g (y;0) is strictly
increasing, then

Fz(x)=P(g(V;0)<x)=P(Y<g '(x;0) =0(g ' (;0),

since Y has standard normal distribution. By the chain rule and the inverse function theorem, the density
function of Z is

¢(g7! (x;0)

_i -1, — -1, i -1, —
f20 =2 (@g x0)) =g~ (x0) T (g™ (60)) = e gy

Here g~! (x;0) is defined as the real root of the polynomial g (y;68) - x, which, since g (y; ) is strictly increasing,
will be unique.
Furthermore, due to the symmetry of the standard normal distribution it follows that

E[Z1=E[g(Y;0)] =060 +0-. (2.13)
Moreover, this yields that Var [Z] = E[ Z%] ~E[Z]? = E[ Z?] - 0y — 02)*, where E [ 2] = 03 + (20002 + 6?) E[ Y?] +
(20,05 +9§)[E[Y4] +6§[E[Y6]. Thereby, since E[Y?] = 1, E[Y*] = 3, and E[y®] = 15, the variance of Z is ob-

tained as

Var[Z] = 0% + 265 + 60103 + 1503 (2.14)

2.2.2 Spherical and Elliptical Distributions

A random vector Z has a spherical distribution if its distribution is invariant under rotatios and reflections, i.e.
its distribution is spherically symmetric. Mathematically, this implies that Z has a spherical distribution if

0Z 4 Z, for every orthogonal matrix O. (2.15)

Two examples of spherical distributions are d-dimensional standard normal distribution (Z € N (0,I), and
independent components) and d-dimensional standard normal variance mixture (WZ where Z is standard
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normal and independent of W which is a non-negative random variable).
A random vector Y has an elliptical distribution if it holds that

YZpu+AZ (2.16)

where Z is spherically distributed. Then, u is the location vector and AA” = X is called the dispersion ma-
trix. Further, the correlation (see Section 2.3.4.1 for correlation) matrix, R, can be derived from the dispersion
matrix through
z ..
Rij= —— (2.17)

T ERT,

Moreover, if E [|Y|2] < 0o, then the covariance of Y exists finitely and it follows that the dispersion matrix is
equal to a positive real constant times Cov[Y]. Additionally, the correlations in (2.17) are equivalent to (2.53).

2.2.2.1 Multivariate Normal Distribution IfZe N;(0,I), then Y in (2.16) has multivariate normal distribu-
tion, i.e. Y€ Ny (p, 2). It follows that the density of Y is

1

vV em4|z|

where || is the determinant of Z. Further, this implies that the joint distribution function of Y is

eXP(—l(Y—ﬂ)TZ_I (Y—ﬂ)) (2.18)

f(y) = 2

(—% (x-p)' = (X_ﬂ))dxl---dxd (2.19)

R ( ) 1 f)’l f}’d
YY) = —— exp
Vemd|z it It

2.2.2.2 Multivariate Student’s t Distribution An important variant of (2.16) presented in [12] is the normal
variance mixture distribution of random vectors with stochastic representation

Y=p+WAZ

where Z € N, (0,I) and W is a non-negative random variable independent of Z. By setting W 4 V/vIS,, where
Sy € Xz (v), the resulting distribution of Y is a multivariate Student’s ¢ distribution with v degrees of freedom,
denoted t,4 (1, Z,v).

In [21], the joint density function of Y € 7, (g, =, v) formulated as

+d —vid
LGS y-m'z'y-n) "’
f(y) = 1+ , (2.20)
r'(3)y@v?z|
where |Z| is the determinant of Z. Further, this implies that the joint distribution function of Y is

T vid y ¥, _ Tzfl _ _%

Fy(Y)=#fl...fd(1+(x “) (x ”)) dx...dx, 2.21)
L(3) @izt I v

2.2.3 Copula Families and Properties

Copulas provide a method of introducing a dependence structure to the components of a random vector with
known univariate marginal distribution. As the name implies, the marginal distribution functions are "cou-
pled" to the multivariate joint distribution function using the copula function. The introduction of copulas do,
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however, require understanding of two transformations called the probability and the quantile transform and,
hence, Proposition 6.1 in [12] will be cited here.

Proposition 2.2. Let F be a distribution function on R. Then:
(i) u<F (x)ifandonlyif F! (u) < x.
(i) IfFis continuous, then F (F~! (u)) = u.
(iii) (Quantile transform) IfU is U (0,1)-distributed, then P (F~! (U) < x) = F (x).

(iv) (Probability transform) If X has distribution function F, then F (X) is U (0, 1)-distributed if and only if F
is continuous. O

The reader is encouraged to read section 6.2 in [12] for a complete proof. The resulting conclusion of the

quantile and probability transform, however, can be equivalently formulated as F y(d) 4 X and F (X) 4 U
respectively.

Consider a random vector X = [X},..., X;]7 with known marginal distribution functions Fj, .., F4, then its
joint distribution function is

KX =PXj=x,..Xg=xq). (2.22)

However, by the quantile transform and property (i) of Proposition 2.2 it holds that P (X; < x1,..., Xz < xg4) =
P(F{' (U < X1, F; 1 (Ug) < xq) =P (U1 < Fy (x1),..., Ug < F4 (x4)), where Uy, ..., Uy are uniformly distributed
on (0,1). Consequently, (2.22) can be formulated as a joint distribution function of uniform random variables,
ie.

Fxx) =PU = Fi(x1),...,Ug < Fq (xa)) := C(F1 (x1), ..., Fq (xq)) . (2.23)

The joint distribution function C (uy, ..., u4) of arandom vector U whose components are uniformly distributed
on (0,1) is called a copula function. Conversely, and more practically, we can express the vector X as X =
[Fy1U) ,...,F;l (Ua)] T where U = [Uj,...,U,]” has the joint distribution function C (uy, ..., ug). Evidently, X
will inherit the dependence structure of U and the choice of copula for X is equivalent with the choice of how
to model U.

A more formal description of the nature of copulas is in [17] given by Sklar’s theorem, which is presented
below.

Theorem 2.3. Sklar’s theorem. LetX = [Xj,..., X4] be a random vector with joint distribution function Fx and
marginals F, ..., Fy. Then there exists a d-dimensional copula C such that for allx = [xy, ..., Xq] in [—oo,oo]d,

Fx (x) = C(F1(x1),....,Fq(xq)). (2.24)

If Fy,...,Fy are all continuous, then C is unique; otherwise, C is uniquely determined on the image room of
Fy,...,Fgq. Conversely, if C is a d-dimensional copula and F,, ..., F; are univariate distribution functions, then the
function Fx, defined as above, is a d-dimensional multivariate distribution function with marginals Fy, ..., Fg.

Commonly;, if (2.24) holds true, then X is said to have the copula C. Furthermore, if Fi, ..., F; are continuous,
then, by the probability transform and Sklar’s theorem, it holds that

C) =Fx(F;' (w),... F; ' (ug)) (2.25)

2.2.3.1 Elliptical Copulas In the case of elliptical copulas, the vector U is modeled using a direct application
of the probability transform. Note that, for any random vector Y = [Y7,..., Y;]T with continuous marginals
Hi,..., Hy, it holds that

d

U=(U,..Ug)" S (H (W1),..., Hy (Yp)I T (2.26)
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Inserting (2.26) into (2.23) and applying property (i) of Proposition 2.2 yields that
Fx(®) =P (Y1 < H{ ' (F (x1)), ..., Ya < Hy' (Fq (x@))) = Fy (Hy ' (Fy (x1)), ..o, Hy ' (Fa (%)) (2.27)

where Fy is the joint distribution function of the vector Y. This result implies that the joint distribution of X
can be specified by the choice of the marginals Hj, ..., H; of Y. Further, formulated using the copula function,
this relation takes the form

C(w) =P (Hy (V) < 1, ..., Hy (Ya) < ug) = Fy (H; ' (wy), ..., Hy' (ug)) (2.28)

Gaussian copula One important elliptical copula is the Gaussian copula and is obtained by setting Y to
have d-dimensional normal distribution, with standard normal components and linear correlation matrix R.
Then H; (x) = ® (x), fori =1,...,d, and (2.28) simplifies into

{8 ) = g (@7 (uy), .., 0 (ug), (2.29)

where @g is the joint distribution function of Y. The function Cg @ is called a Gaussian copula. Furthermore,
by (2.19), the above equation can be formulated as

1

c{{“ (w) = —ESTR s) dsi...dsg.

ol (uy) L(uq)
[ e
v 2m)?|R]

As outlined in [14], the copula density can be obtained through application of the inverse function theorem as

e (@7 (1), @71 (1)
M, ¢ (@ ()

By using (2.8) and (2.18), the Gaussian copula density can be expressed as

R () =

1 1
exp[--y’ R'-Dy (2.30)
VIR 2

wherey = [d)‘l (uy),..., d 1 (ud)] and I is the identity matrix. As explained in Appendix C.1, the Gaussian cop-
ula implies no asymptotic tail dependence.

g (w) =

Student’s t-copula The Student’s ¢ copula can be derived in a similar manner of that of the Gaussian cop-
ula. Let Y have d-dimensional t-distribution with v degrees of freedom, standard t-distributed components
and linear correlation matrix R. Then H; (x) = ¢, (x), for i = 1,...,d, and (2.28) simplifies into

Clpw = tde (6, )y £ (wa), (2.31)

where tf RIS the joint distribution function of Y. The function Cj RIS called a t-copula. Moreover, by (2.21), the
above equation can be formulated as

v+d

L
+ $1...484,
T (%)@ R v

v+d
2

CyrW) =
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and as is stated in [5], the corresponding copula density function is

d d i =
F(v+d F(12_/) -1 Hk:l (1+7)
cypW) = Y (2.32)

PSR () )

v

where yi = t;l (up) andy = [t;l U1) ey t;l (ud)]. Unlike the Gaussian copula, the Student’s ¢ copula do imply
asymptotic tail dependence, with coefficients of tail dependence given by (C.3).

2.2.3.2 Groupedtcopula The grouped ¢ copulais a generalization, introduced in [5], of which the Student’s
t copula is a special case. The derivation of the grouped ¢ copula presented in this thesis should be considered
a short summary and the reader is directed to [5] for a more thorough presentation. The grouped ¢ copula is
not a perfectly elliptical copula, although it has approximately elliptical properties in some contexts.

LetZ € Ny (0,R), where R is an arbitrary linear correlation matrix, be independent of U, which is uniformly
distributed on (0,1). Further, let W, € y2 and let G, be the distribution function of \/¥/W,, i.e. Gy (x) =
P (\/TWV < x). Next, partition the sequence S = {1,..., J} into 1 < m < J subsets of sizes s, ..., S;; and denote the
distinct subsets as Sy, ..., S;;. Introduce the functions Sy (ng), for n =1,..., s and k = 1,..., m, such that

Sk (ng) = The ni:th member of subset Sy.

Moreover, let Ry = G;kl (U) - then, by the quantile transform, Ry 4 VVi! Wy, —for k=1,..,m. Thereby, if Y is
defined as

T
Y=|Ri1Zs,q), '--rRlzsl(Sl)’RZZSQ(I)r--'!Rk—lZSk,l(sk,l)’RkZSk(l)’""RkZSk(sk)""’RmZSm(Sm)] , (2.33)

then the random vector [Y,..., Yy, | T - [R1Zs,(1), - R1Zs,(sp)] T has an s;-dimensional t-distribution with v;

T
degrees of freedom. Further, the vector [ Yy 4. +s,+15- Yo 45045041 | T - [RkHZSkH(l)y---)Rk+lzsk+l(sk+1)] has
an s -dimensional t-distribution with v, degrees of freedom, for k = 1, ..., m—1. Finally, if F} is the distribu-
tion function of Yy, for k =1,...,J, and Hj,..., Hy are some arbitrary continuous strictly increasing distribution
functions, then

X=[H (Fy (W), ..., H  (Fr (V7))
_ _ _ _ _ T
= [H! (1, (Yl))’---vHsll (t, (YSJ)vHsllﬂ (tv, (Y51+1))""’HS11+82 (v, (Ysy45,)) s Hy v, (7))]

is a generalization of the model using a Student’s ¢ copula. Here, the m different subsets of the components
are allowed to have different degrees of freedom parameter. The copula of X is called a grouped ¢ copula.
With m =1, the sequence {1, ..., J} is partitioned into only one subset, i.e. there is no real partitioning, and the
Student’s ¢ copula is obtained. Lastly, the grouped ¢ copula function is

CoR @) =P (ty, (Y1) < Hy (U1) s by, (Ys) < Hy, () tvy (Yoy41) < Hyp1 (1 1) 0 By (Y1) < Hy ' (wg)) (2.34)

Note that this implies that each group within the grouped ¢ copula has a regular Student’s ¢ copula.

The Group Specific Random Variable R  As visible in (2.33), each group share a common Ry variable and
since Ry = G,, kl (U) this introduces a dependency between all elements of the random vector Y. Unlike the
Student’s ¢ copula, the R variable is scaled using a different v for each group. Further, by its definition the
random variable Ry has distribution function G,, (x) =P (\/TWV < x). However, given this, it is not an easy
task to compute Ry = G;kl (U). Proposition 6.4 in [12] useful for this task and is therefore cited below.
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Proposition 2.4. For any random variable X

Fx(p)=-Fx' ((1-p)+)

for all p € (0,1), where Fi' ((1-p)+) = lime|o F' (1 - p+€). In particular, if Fx is continuous and strictly
increasing, then

F_x(p)=-Fx' (1-p).
O

For a proof of this proposition, the reader is directed to [12]. Moreover, set g (x;v) = VVv/ x, then g is a strictly
decreasing and strictly positive of x. Conversely, —g is a strictly increasing function and it is thus possible to
reformulate G, ! using Proposition 2.1 and 2.4. First, note that |/v/ W,, = g(Wy,;vk) and therefore

G;kl (u) = F;(lka;vk) (w).

Due to g being a continuous strictly positive function and W,, being a continuous random variable, it follows
that F is continuous and strictly increasing. Then, for all u € (0,1) , Proposition 2.4 yields that
Glw=rF} (w)=-F! (1-u)
k g(vaWk) —g(va:Vk)

Further, since —g is strictly increasing, Proposition 2.1 yields that

Vi

G, (w=-F" _
v () Fl (1-u)
Vi

= o FY (1= wyvs) =
—g(va;vk] 1-w g(FWVk (1-w 'Vk)
Finally, since the random variable Ry is defined as Ry = G;kl (U) where U is uniformly distributed on (0, 1), it
follows that

Vi

—_— 2.35
F;Vik 1-0) (239

Ry =G, (U)=

where vak is the distribution function of W, € )(% .

2.2.3.3 Kendall Distribution Function Consider a multivariate uniform (0,1) random vector [Uj,...,Uy]
with joint distribution function C and let V = C (U, ..., Uy). Then, the Kendall distribution function is defined
as

K@) =P(V=v). (2.36)

If the vector [Uj,...,U;] had been one-dimensional —i.e. d =1 -, then it would follow from the probability
transform that V has uniform (0, 1) distribution, under the assumption that C is continuous. This result does
however not hold in higher dimensions. Nevertheless, the Kendall distribution function provides useful in
multidimensional copula analysis, since it describes the distribution of V.

2.2.4 Empirical Distributions

When modeling using historical data, a convenient approach is to fit a parametric model. This however in-
troduces the risk of model misspecification. A robust alternative approach, presented in [12], is to use non-
parametric estimators, so called empirical distributions. In this section, the theory in [12] is outlined for uni-
and multivariate distributions and also expanded to comprise copulas and the Kendall distribution function.
Consider a set of n independent and identically distributed d-dimensional random vectors Xj, ..., X, with
a common unknown distribution function F (x) = P (X < xy,..., X4 < x4). Then, the empirical distribution of
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the random sample {X, ..., X} is
1 n
Fux®=—> 1X;<x), (2.37)
i=1

where 1 is an indicator function (equal to unity if the logical statement is true and otherwise equal to zero). The
function (2.37) is a discontinuous step-function with step-length 1/n and range [0, 1] Here F;, x is random due
to the underlying sample being random. Thus, provided a sample of observations xy, ...,x, ofX;, i = 1,..., i, the
empirical distribution function is obtained as

1 n
F0=— Y 1(x; <x) (2.38)
i=1

and is an outcome of F,, x. Further, F), is a distribution function in the sense that it is not random.

In the case when d = 1, i.e. when X is univariate, the quantile function corresponding to F,, is the empirical
quantile function and is given as

F1 (p) =min{x: F, (x) = p}

In [12], itis shown that if the sample {xy, ..., x,,} is ordered such that x ;, < --- < x;,;, then the empirical quantile
function is

FI;I (P) = X[npl,n

where [x] is the smallest integer larger than x.

2.2.4.1 Empirical Copulas Consider the empirical distribution function (2.38) and note that the steps will
occur exactly at the points where [x3, ..., x4] = [xly,-,...,xd,,‘] for i = 1,...,n. Thereby, the range of (2.38) is
Ran (F,) ={0,Fy1, ..., Fn,n} where

Fnj=Fy (xl'j, ...,xdyj) = ]l(xlyi S X1jrenXdi S xdyj) . (2.39)

S|
M

Under the assumption that the components of X have continuous univariate distribution functions Fi, ..., Fg,
the empirical copula function can be determined by implementing (2.25) as

n

Y 1(x1i < Fh ) e Xai < Ff (ug) (2.40)

1
Cn (W) = Fp (Fy ' (W), Ef (ug) = -
i=1

where uy = Fi (xx), k =1,...,d, i.e. the sample of observations transformed by the probability transform in
Proposition 2.1. These transformed observations are commonly called pseudo-observations. Further, C, and
F, evidently have identical range since C,, ; = Fy,;, i = 1,..., n, where

1w, < Uy, jy oo Uqi < Uqg,j) s (2.41)

S|
™=

Cn,j =Cy (ul,j,..., ud,j) =

i=1

and (w17, .., ug,i| = [F1 (x1,1) - Fa (xa,i)] for i = 1,..., n. The set of points where the steps occurs for F,, and C,,
respectively, say Sr, and Sc,, are not identical, instead, they are related through the non-decreasing transform
T (y1,-v¥a) = [F1(y1) . Fa(va)] such that S¢, = {T x) | x€ Sg,}. In other words, S, = {x;}/", and Sc, =
{u;}?_,, where w; = [uyi, ..., g, ].

Moreover, since C,, and F;, have identical range, estimating C by C,, on the set Sc, is equivalent to estimat-
ing Fx by F;, on the set SF,.
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2.2.4.2 Empirical Kendall Distribution Function Assume that u; = [ul,i, .y ud_,-], i=1,...,n,is asample of
observations from a known copula C. Then, a sample vy, ..., v, of observations of the random variable V =
C(Uy,...,Uy) can be computed in two different ways depending on the premises. If the copula C and have a
simple explicit form, then the observations vy, ..., v, can be computed analytically as

vi=C(wy), i=1,..,n,

or numerically by approximating the simple explicit form of C in case C cannot be computed analytically.
On the other hand, if the copula C is known but do not have a simple explicit form, then 1y, ..., v, can be
approximated by Monte Carlo simulation and the empirical copula function (2.40). Then,

1 AL * *
Vi =Cp(u;) = — > ]l(ul’j S Uiy Uy S udy,-)
j=1

where uf, .., w}, is a simulated sample from the copula C and preferably m >> n. This yields, as in shown in
[7], a non-parametric estimator of the Kendall distribution function given by

n
Kn(v):%Z]l(v,-s v). (2.42)
i=1

Similarly to the empirical functions discussed in the preceding section, this is a discontinuous step-function
with step-length 1/7n and range [0, 1]. Further, the steps occur exactlywhen v = v;, i = 1,..., n, and consequently
the range of (2.42) is Ran (K;) = {0, K1, .., K, n} where

1 n
Kp,j =K (Cp,j) _EZ (Cni<Cnj). (2.43)

In the case where the copula C is known, a sample of the variable V can be constructed from the observed
sample without estimation. An example is when outcomes are simulated from a copula whose Kendall distri-
bution function does not have an explicit form.

Ifx;, i =1,...,nis the observed data and u; = T (x;) is the transformation by marginal distribution functions
as defined in the preceding section, then the corresponding sample of the random variable V is v; = C (u;),
i =1,...,n. The Kendall distribution function can then be estimated on the sample v;, i = 1,...,m, as

n
K,f(v)z%Z]l(visv), (2.44)
i=1

and, using notation similar to (2.43), the non-zero points in the range of K,g are denoted

1 n
Krf,jZKrg(VjF;Zl(vz’Sl/j)- (2.45)

2.3 Parametric Estimators and Model Diagnostics

This section presents different methods of finding the best fit of parametric models to a given set of data.
Obviously, there is no universal definition of "best fit" which justifies the use of different estimators. Two
categories of methods of fitting parametric models by estimating parameters are considered in this thesis, and
consequently presented in this section, namely: Maximum Likelihood and Least-Squares. Moreover, non-
parametric estimators of certain dependence measures are presented in Section 2.3.4. These estimators are
mainly used to assist numerical optimization and asses the obtained models. Section 2.3.6 presents methods
for construction of approximate confidence intervals of estimated parameters.
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2.3.1 Maximum Likelihood Estimator (MLE)

If f is the joint density of a parametric model of X = [Xj, ..., X1, with parameters 8, then, provided a sample
X; = [xl-yl, ey x,-yd], i =1,...,n, ofindependent observations of X, the likelihood function is defined as

n
ZO) =[] fx;0). (2.46)
i=1

Moreover, the maximum likelihood estimate of @, here denoted as 0 MLE, is the value for which .Z (0) attains
its maximum value. More concisely, 81 can be expressed as

Onrp = argmax{.Z (0)}. (2.47)
0
However, it is easier to use the logarithm of (2.46) since the product of densities then turns into a sum. The

maximum of the likelihood and the log-likelihood function will coincide since the logarithm is a monotone
increasing function. In explicit form, the log-likelihood function is

n
In.Z6)=) Inf(x;0). (2.48)
i=1

The asymptotic normality of /7 (é mre — 0) is established under sufficient regularity conditions in [20]. Specif-
ically, /(6 prE — ) is normally distributed with zero mean and finite variance as n tends to infinity.

2.3.1.1 Log-Likelihood of Univariate Distributions For the univariate distributions in Section 2.2.1, the
log-likelihood functions can easily be derived from the distribution density functions. Additionally, an analytic
expression of the maximum likelihood estimator can be obtained when considering the normal distribution.

Let x1,..., x;, be observations from a N (,u, U)—distribution, then (2.9) yields that (2.48) takes the form
1 n
lnf ;1, Z—Z —nln(ox/Zﬂ).

Since 0 < f(x;p4,0) < 0o, Vx and limy—_+o f (x;11,0) = 0, the log-likelihood attains its maximum value at an
inner extreme point. Setting the gradient of the log-likelihood function to zero yields

where x = n~! Z;‘zl x; is the arithmetic mean of the observations. When considering the Student’s ¢ distribu-
tion, with density function given by (2.10), the log-likelihood function (2.48) is obtained as

In.& (u,o,v)= n(lnF(VTH) —lnl“(g) ~In(o vn)) - VTH i_illn(l + %) .
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Consequently, the partial derivatives of the log-likelihood function are

oln.Z(u,o,v
# 1)2—2
ou i=1vo?+ (x; — )

oIn.Z (u, 2
ng(uo,v) _ ((V+UZ (xi — ) z—")
ey i=1vo?+ (x; —p)

oln.Z (u,0,v) _ E(W(V_H)_w(v)__) %i

2 2
v+1) (x; —p) —ln(1+(xl_u) )
ov 2 2 2 v

vo?

v2a2+v(x;i— p)

where v (x) is the digamma function, defined as ¥ (x) := 4 InT (x) = I’ (x) /T (x). Finding the roots of the
partial derivatives above is a non-trivial task and hence the maximum likelihood estimators are best found
using numerical optimization methods.

2.3.1.2 CopulaLog-Likelihood This section presents a summary of the log-likelihood functions of the cop-
ulas considered in Section 2.2.3. In Table 2.1, the logarithm of the copula density function are presented. As
visible in (2.48), the log-likelihood is obtained by summation of the logarithmic densities. Note that the density
function of the grouped ¢ copula is not explicitly stated. Due to the complex structure of the grouped ¢ copula,
the density function is considered beyond the scope of this thesis. Instead, the fact that the copula margins
have regular Student’s ¢ copulas will be utilized when estimating the parameters of the grouped ¢ copula, as
recommended in [5].

Table 2.1: Explicit forms of the logarithms of copula densities.

Copula ‘ Inc(u;;0) ‘ Comment

Gaussian —3InRI- 3y (R -1)y; Vik =01 (k)

T 2 TRy,
Student’s t ln((r ) V”Z (1+y’—f)—%ln(l+¥) Vik =t (wi)

As a consequence of the extensiveness of the copula log-likelihood functions, analytic expressions of the
maximum likelihood estimator (2.47) or the gradient are not derived.

2.3.2 Least-Squares Estimator (LSE)

Consider a sample of independent observations, xi, ..., X;, of the random variable X. If F (-;0) is a parametric
model of the distribution function of X with parameter 6, then the quadratic quantile sum function 249 is
implicitly defined in [12] as

1 n—i+1 2
270)=Y (xﬁ”’ -F! (—;0)) , (2.49)
i1 n+1
where xi”), x%”) is the ordered sample of observations, i.e. the empirical quantiles. The least-squares esti-

mate of @, here denoted as 5275  is the value for which 249 () attains its minimum value. More concisely, 0 LSE
can be expressed as

07y =argmin {27 6)} (2.50)
6

Problem arises when the multivariate case is considered, since no inverse exist for multivariate distribution
functions. However, [21] uses a similar quadratic sum function which is applicable in higher dimensions. It
is identical to (2.49) in all aspects except that it implements the empirical and parametric joint distribution
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function instead of the empirical and parametric quantile function. Provided a sample of independent ob-
servations X; = [X;j1,..., Xj 4], i = 1,...,n, of the random vector X = [Xj, ..., X4], the quadratic distribution sum
function 2¢4/ is defined as

2°U (@)=Y (F, (%) - F(x;;@)? = Y (Cpi = F (%33 @))°
i=1 i=1

where the last equality follows from the conclusions of Section 2.2.4.1. Further, by Sklar’s Theorem in Section
2.2.3, it follows that F (x;;&) = C(Fy (xi1;m;), - Fa (Xi,a;m4);0), where Fy (511),...,Fa(n4) are parametric
marginals of X and 0 is the parameter of the copula model. The equation above can then be rephrased as

n
2% (1),...14,0) = Y (Cni = C(F1 (x1,;m1) o Fa (x1,0514)0))° (2.51)
i=1

With = [an, .y 115, BT] T, the least-squares estimate fi‘;é of { using (2.51) can more concisely be expressed as
=cd .
Cisg = argmln{c@“if (C)} (2.52)
g

Additionally, it should be mentioned that [21] investigated several minimum-distance estimators for paramet-
ric copula models and found little difference in the qualities of the estimators. Clearly, there are more than
one way to measure distance in a multidimensional vector space. Using the L,-norm is one way, and leads to
the minimum-distance estimator being equal to the least-squares estimator above. In the light of the results
of [21], and in order to preserve simplicity, only the L,-norm will be considered in this thesis.

2.3.3 Strengths and Shortcomings of the MLE and the LSE

In [21] it is shown that the MLE outmatches every considered minimum-distance estimator (of which the LSE
is one) in aspect of bias, efficiency and computational complexity when estimating parametric copulas. This
study was however carried out for bivariate copulas and consequently in a low-dimensional context.

As stated by [13], the surface of the log-likelihood relatively flat in the neighbourhood of its maximum.
Thus, if in a context with several varying parameters, then a numerical optimizer with a finite tolerance might
fail to find a good parametrization since several parameter combination yield a close-to-optimal log-likelihood
value. One consequence highlighted in [12] is that the ML estimates are sensitive to variations in the data. Con-
sider for example the Student’s ¢ distribution, where both the scale parameter o and the degrees of freedom pa-
rameter v affects the heaviness of the tails. Hence, parameter combinations may exist that yield log-likelihoods
values close to that of the ML estimates.

2.3.4 Dependence Measures and Non-Parametric Estimators

In the context of copula analysis, the property of invariance to scaling through strictly increasing functions
possessed by several dependence measures should be highlighted. This property, here referred to as scale-
invariance, is defined in Definition 2.5 in a way similar to as in [14].

Definition 2.5. A measure 0 is scale-invariant if it is invariant under strictly increasing transforms, i.e. if
6 (Y1,Y2) =06 (hy (Y1), hy (Y2)), where hy and h; are strictly increasing functions.

Consider a random vector X = [X}, ..., X4] with copula C and a random vector U = [U}, ..., U] with joint
distribution function C. It then follows from Proposition 2.2 and Sklar’s theorem that § (X;, X;) = 6 (U;, U;j),
i,j =1,..,d, if the marginal distribution functions of X are strictly increasing. Concisely, a scale-invariant
measure 0 is a direct property of the dependence structure of a random vector, i.e. it is independent of the
marginal distributions of the vector.

Furthermore, if Y is elliptically distributed with continuous strictly increasing marginal distribution func-
tions, then (2.26) holds and it follows that 6 (X;, X;) =6 (U;, U;) =6 (Y3, Y;), for i, j = 1,...,d.
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2.3.4.1 Pearson’s Product-Moment Correlation Coefficient Pearson’s product-moment correlation coeffi-
cient, often referred to as simply the coefficient of linear correlation, is a measure of linear correlation between
two random variables. For a random vector X = [X}, ..., X4, it is defined as

Cov[Xj, Xj]

,/Var[Xj]Var[Xj]'

provided that X has finite covariance, i.e. E [IX |2] < oco. In case the covariance does not exist finitely for an
elliptical distribution, the linear correlation can be defined through (2.17). Further, the correlation matrix R
of the random vectors X is then such that (R);; = p; j = p (X,-,X j). The coefficient of linear correlation is not a
scale-invariant measure. Moreover, given a sample of identically distributed random vectors Xy = [ Xy ¢, X2k,
k=1,...,, n, the coefficient of linear correlation can be estimated using the estimator

(2.53)

p (X X)) =

Yro (X —X1) (Xox — Xa)

p= n —\Zwn =2
VIR, Xk %) Tp, (e~ X2)

(2.54)

where X;, i = 1,2, is the sample mean.

2.3.4.2 Kendall'sTau Kendall’s tau is a coefficient measuring forms of dependence known as bivariate con-
cordance and discordance. Concordance refers to a monotone, not necessarily linear, relationship, where an
increase in one variable can be associated with an increase in the other variable. Obviously, discordance refers
to the inverse relationship. In [11], Kendall’s tau is defined as in the following definition

Definition 2.6. For a pair of random variables Xj, X», Kendall’s tau is defined as
7(X1,X2) =P((X1 - X7) (X2 — X3) >0) - P((X1 - X7) (X2 — X3) <0), (2.55)

where [X], X;] is an independent copy of [X1, X>].

Note that this is the probability of concordant pairs minus the probability of discordant pairs. Further,
Kendall’s tau is a scale-invariant measure and is therefore useful when studying copulas as is made evident by
the following two propositions.

Proposition 2.7. Let U be a random vector whose components are uniformly distributed on [0,1]. IfU has joint
distribution C and the joint marginal distribution of the components U; and U is denoted C; j for i, j € {1,...,d},
then

7(U;, Uj) =4E[C; ; (U, Uj)] -1 (2.56)

O

For a proof, the reader is referred to [14]. Note that since Kendall’s tau is scale-invariant the proposition
above is applicable whenever a random vector with copula C is studied.

Proposition 2.8. IfX has d-dimensional elliptical distribution such that X; and X; have linear correlation
coefficient p;,j fori, j €{1,...,d}, then

2
T(X;, X)) = ;arcsin (0ij)- (2.57)

O

A proof of the proposition can be found in [12]. The above proposition together with the property of scale-
invariance of Kendall’s tau means that for any random vector X with elliptical copula C, there is a unique
relationship between Kendall’s tau of the components of X and the correlation matrix of the copula C. Fur-
thermore, it is shown in [5] that equation (2.57) is approximately true for a random vector X with a grouped ¢
copula C. This relation is formulated mathematically in the lemma below.
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Lemma 2.9. IfX is a d-dimensional random vector with a copula C such that C is a grouped t copula with
correlation coefficients p;, j for i, j € {1,...,d}, then

2
T(X;, Xj) = ;arcsm(p,-,j). (2.58)

Note that in the lemma above, p; ; is taken to be the correlation coefficients of the copula and not neces-
sarily the correlations coefficients of the random vector X.

Provided a sample of identically distributed random vectors Xy = [XL o Xo, k] ,k=1,...,n, Kendall’s tau can
be estimated through
-1
n

7= Y sign((Xn,j— X1,k) (Xz,j — Xok)) - (2.59)
2 j<k

This estimator can in several special cases provide useful when estimating other coefficients. As an example,
by (2.57), an estimator of the linear coefficient of correlation of an elliptically distributed bivariate random
vector is

~ (T

p=sin (ET) . (2.60)

Moreover, as is outlined in [14], the process n~! (7 — 7) is asymptotically normal as n — oo with zero mean and
variance given through

lim nVar[7] = 16[ , (C (w1, uz) + C (w1, u))* dC (uy, ug) — 4 (1 + 1) (2.61)
- [0,1]

where C denotes a survival copula defined as C (u1,..., ug) = P(Uy > uy,...,Ug > up), where Uy, ..., Uy are uni-
formly distributed on [0, 1] and have joint distribution function C. Note that since Kendall’s tau is a function
of two random variables, the copulas in (2.61) are bivariate. Moreover, it is generally true that the copula of
[Xi, X;], i,j=1,...d belong to the same family as the copula of [ X, ..., X4].

Alarge-sample estimator of the variance of n™! (7 — 1) can be constructed using the empirical copula func-
tion in Section 2.2.4.1. With C,,; defined as in (2.41) and C,, ; defined analogous for the survival copula, the
integral in (2.61) can for large n be approximated as

12 _
Y (Cj+Cnj)’.

f (C(r, uz) + C (wr, 1)) dC (ur, up) = ~
(0,112 nio
Now, let V,, denote the arithmetic mean of Cnjj=1,.,n,ie. V,=n"! Z;.l:l Cy,j. It then follows from (2.56)

that
o - 2 a2
T=4Vy,-1 = 4(7T+1)"=64V,.
Hence, if the asymptotic variance of n~! (¥ — 1) is denoted v?, then the large-sample estimator, 72, of v is

n
)3
j=1

vV =

2_16
n4

(Cnj+Cnj)? —417,3] (2.62)
As is shown in [7], the arithmetic mean of Cn,j, j=1,.,n,isalso V,, which can be used to show that (2.62) is
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equivalent to the large-sample estimator in Proposition 3.1 in [7]. Further, (2.62) yields that
n@T-1)

4\/27:1 [(Cay+ ) -47]

~AsN(0,1) (2.63)

where AsN abbreviates asymptotically normal.

2.3.4.3 Spearman’s Rho The dependence measure known as Spearman’s rho — or Spearman’s rank correla-
tion - is, just like Kendall’s tau, based on concordance and discordance. In [17], Spearman’s rho is defined as
in the following definition.

Definition 2.10. Consider a random vector [X;, X»]. Spearman’s rho is then defined as
ps(X1,X2) =3 (P((X1 - X7) (X2 - X3) >0)-P((X1 — X7) (X2 — X3) <0)), (2.64)
where [X{, X;| and [X], X}/ | are independent copies of [X;, Xa].

In words, Spearman’s rho is the difference in probability of concordance and discordance for the two vec-
tors [X1, X>] and [X], X} ], i.e., two vectors with identical marginal distributions but where one has indepen-
dent components. Additionally, Spearman’s rho is a scale-invariant measure (see [14]). By using the probability
transform in proposition 2.2 Spearman’s rho can be expressed as in the proposition below.

Proposition 2.11. If[X;, X»] is a continuous random vector with marginal distributions Fy and F», then
ps (X1, X2) = 12E[U1 U] -3, (2.65)

where U1 = F1 (Xl) and U2 = F2 (Xg)
O

A derivation of (2.65) can be found in [17]. Further, the random variables U; and U in (2.65) are sometimes
referred to as the distribution (or population) grades. The more commonly known concept of sample ranks,
explained below, is the sample analogy of grades.

Unlike Kendall’s tau, Spearman’s rho is not invariant in the class of elliptical distributions, as is shown in
[11]. However, under the more specific assumption that X is normally distributed, an explicit expression exists.
The expression is given by the following proposition, found and proved in [11].

Proposition 2.12. LetXe€ Ny (p,X), whereX;;,%j ;>0 fori,j€{l,..,d}. Then

PLj ) (2.66)

ps(Xi, Xj) = 8 arcsin (—
b4 2
where p; ; is the linear correlation coefficient.
O

In [14], a time efficient sample estimator is introduced using the concept of ranks. Provided a sample of
identically distributed random vectors X;. = [ Xj x, X2.], k = 1,..., i, the sample ranks R} i, R x| are such that
Ry i = i if Xj i is the ith smallest element among Xj 1,...,Xi,, and Ry ;. = j if X, i is the jth smallest element
among Xy 1, ..., X2 ,. Under the assumption that there are no ties in the sample, the estimator of (2.64) is

i Rea Rea = n(%51)°
n(n?+1)/12

s = (2.67)

When studying continuous random variables, such as e.g. financial log-returns, the probability of two obser-
vations being identical is in theory equal to zero. Hence, the assumption of no ties within the sample ranks is
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justified. Furthermore, the process n~! (ﬁs -p3 ) is asymptotically normal with zero mean as n tends to infinity.
In [14], the asymptotic variance is given by

r}i_r}gonVar[ﬁg] = 144[{0 - (uruz + g1 (1) +g2(u2)) dcC (uy,uz) -9(p 5+3) (2.68)

1

g (ul)—fo C(w,y)dy,
1

gz(uz)=f0 C(x,up)dx,

where C denotes the survival copula, mentioned in the preceding section. In analogy to the approach in the
previous section, a large-sample estimator of the variance of n~! (Bs— ps) can be constructed using the em-
pirical copula function in Section 2.2.4.1. Consider a sample [ul,k, uzyk], k =1,...,n, of observations from the
unknown copula C. Then, let g x and &, ;. be defined as

. 1 & 1
== Col(uiuzj)=—
nj=1 J
N 1 1
gz,k——Z ul]’uzk__z
n : ]‘

™=

1w, > Uk, Un,i > Us, )

S

1

I
—
I

™M=

]l(ulyl- > Uy j,Upi > ugyk) .

:

1

Il
i
Il

For large n, itholds that g1 (u1,x) = 81,k and g2 (4,k) = &,x- The procedure of computing g; x and g> i for every
k =1,..., nresults in a triple sum over the sample size which may cause computational inconvenience.The
numerical computations can be simplified by noting that

N 1 non 10 1 n
1L,k — o 1,i 1,k> 42,i 2 - 1,i 1,k) = 2,1 2,
81,k = 2 lt i > UL, U2i> U ] = " lt i>Uu k n ll > U J
j=1li=1 l:l ]:1

n
Z ult>u1k)Fnu2(u21)

i=1

ml»—*

where F, ,, (u) = n‘lz;‘:ll(u > uy ;). Note here that F, ,, does not depend on the value of k and conse-
quently this coefficient only needs to be computed once for each g1 1, ..., 81,,- The terms g» ¢, k =1,...,n can be
simplified in a similar manner. Furthermore, taking the empirical estimator of (2.65) yields

2

12 N 122 »

ps=— Z U klUzk—3 = (Ps+3)2 =— (Z Ml,kuz,k) .
n =1 ne \k=1

Hence, if the asymptotic variance of n~! (Bs—ps) is denoted w?, then its large-sample estimator i? is ob-
tained as

2 122 n 2 9 n 2
7y (Z (ur,ktiz,k+ 81k + 82k)” — ;( ul,kuz,k) ) (2.69)
k=1 k=1
A standardized approximately asymptotic normal expression can then be derived from n™! (ps — ps) as
n(ps-p)

12\/2221 (k2 + 8+ 8ok)” = 2 (T2, unktiok)

~AsN(0,1). (2.70)

2.3.4.4 Blomgqyvist’s Beta The dependence measure known as Blomqvist’s Beta — or the medial correlation
coefficient —is defined as the difference in probability of concordance and discordance and is a scale-invariant
measure (see [14]). In contrast to Kendall’s tau and Spearman’s rho though, Blomgqvist’s beta is defined using a
bivariate random vector and the component medians of the vector. The definition is given below.
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Definition 2.13. If [X7, X»] is a random vector, then Blomgqvist’s beta is defined as
B(X1,X2) =P((X1—X1) (X2 —X2) >0) - P((X; — %1) (X2 — X2) <0). (2.71)
where X; is the median of X; and %, is the median of X,.

In [14], the most efficient sample estimator is claimed to be

~ 2 n+1 n+1
ﬁ—;Z]l((Rk'l— 5 )(Rk,z— 5 )20)—1 (2.72)

where the sample ranks Ry, Ry » of [Xk,l, Xk,z], k=1,...,n, are defined as in the preceding section.

For elliptical distributions, the median equals the mean due to symmetry which results in Blomqvist’s beta
being equal to Kendall’s tau. Furthermore, the process /7 (3 — B) is asymptotically normal with zero mean
and asymptotic variance 1 — 8 as n — oo. This yields that

M ~AsN(0,1) (2.73)

\1-p?

2.3.5 Diagnostics of Parametric Models

Suppose that estimates have been obtained under the maximum likelihood and least-squares criterion re-
spectively for various parametric models. The problem then remains to decide which model bears the greatest
resemblance to the data.

This section presents procedures and methods for assessing the Adequacy- and Goodness-of-fit for copula
models. Section 2.3.5.1 presents numerical measures for assessing how good a model fits a certain set of data.
The measures presented are however relative measures; when considering several models, the measures en-
able comparison of the goodness-of-fit of the models and thus provide a criterion for selecting the best model.
However, the measures do not address the problem as to whether any one model fits the data set sufficiently
good or not.

Section 2.3.5.2 presents methods for assessing whether or not the model adequately approximates the de-
pendence of the data set by analyzing dependence measures. Additionally, statistics for copula hypothesis
tests are introduced. The statistics are used to test the hypothesis implied by a certain model selection.

2.3.5.1 Goodness-of-Fit Measures This section presents three distinct criteria for measuring the goodness-
of-fit of a model: Mean squared error, Akaike information criterion (AIC) and Bayesian information criterion
(BIC). Mean squared error simply measures the deviations between the observed data and the model while AIC
and BIC measures the likelihood of the observations under the model and penalize complexity. Given a set of
plausible models, these measures can be used to internally rank the models by how good they fit a certain data
set.

Mean Squared Error Model selection using the mean squared error as a criterion means selecting the
model with the smallest sum of squared deviations from the observations. When fitting probabilistic models,
there are several approaches to define the deviations of the model from the observed data. One way is to
define the model deviations as the difference of the model quantiles and the empirical quantiles. Then the
mean squared error is simply the function (2.49) divided by the sample size, i.e.

MSEY = %e@q @), (2.74)

where 8 is a vector of the model parameters. Similarly to (2.49), this is only applicable for univariate models.
Just as in Section 2.3.2, the joint distribution function can instead be considered in higher dimensions and the
joint distribution can in turn be expressed using the corresponding copula. Defining the model deviations as
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the difference of the parametric copula function and the empirical copula function, the mean squared error of
the model is

MSE®/ = %chf @), (2.75)

where 2°4f is as in (2.51) and f is a vector of the model parameters. For most copula families, the copula
function of the parametric copula in (2.51) cannot easily be computed analytically and is hence preferably
approximated using Monte Carlo methods.

Another measure used for assessing goodness-of-fit is the mean squared error of the Kendall distribution
function, used in [6]. This is however done for bivariate Archimedean copulas where the analytic form of
the Kendall distribution function is well known. Deriving an explicit expression for the Kendall distribution
function for copulas in general proves to be hard and a more fruitful approach is to resort to Monte Carlo
approximation. A mean squared error goodness-of-fit measure can then be defined as

1 n
MSE* = — 3" (Kyi - K (Cui))’, (2.76)
i=1

where K, ; is estimated from the sample data by (2.43), K¢ is estimated as in (2.44) and is evaluated over the
range of the empirical copula of the sample data.

In most cases, it is necessary to determine the copula function or Kendall distribution function by Monte
Carlo approximation. The mean squared error measure is thus stochastic since the simulation step of Monte
Carlo approximation introduces randomness. One way of producing a more robust measure is to repeat the
Monte Carlo procedure to obtain a sample of (2.75) or (2.76) and compute the mean value. Mathematically,
the procedure is to compute

1 N
MSE = — )" MSE;. 2.77)
Nizl

This operation reduces the standard deviation by a factor of approximately 1/N. How large N is required
to be for a sufficiently robust measure clearly depends on the number of simulations used for Monte Carlo
approximation.

Akaike and Bayesian Information Criteria Both the Akaike information criterion (AIC) and Bayesian in-
formation criterion (BIC) are based on rewarding high likelihood while penalizing complexity, where com-
plexity is taken to be the number of model parameters. If 0 is vector of the parameters of the model, 7, is the
number of parameters and 7 is the sample size used to estimate the parameters, then AIC and BIC are defined
as

AIC=-2In.Z (8) +2n,, (2.78)
BIC = —2In.% (8) + nyInn. (2.79)

In AIC, the sample size is not taken into consideration, whereas the complexity penalization in BIC propor-
tional to the logarithm of the sample size. Using this definition, models with low AIC and BIC values are
preferable.

2.3.5.2 Diagnostics for Adequacy-of-Fit When assessing the adequacy of fit of a copula model it is of par-
ticular interest to study the dependence structure of the model and and its sensitivity to the tail behavior of
the data. A procedure that focuses on these characteristics of the model is suggested in [14].

The scale-invariant dependence measures of Section 2.3.4 provide a simple method to compare the gen-
eral dependence structure of the model and of the data. By comparing empirical estimates with model values
of the dependence measures it is possible to evaluate whether the dependence allowed within the model ad-
equately approximates the dependence observed in the data. More specifically, provided a sufficiently large
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sample, the asymptotic distributions (2.63), (2.70), and (2.73) can be used to approximate confidence intervals
of Kendall’s tau, Spearman’s rho, and Blomgqyvist’s beta of the observed data. It is then easy to evaluate whether
the corresponding model values falls within the intervals or not.

Tail-Weighted Measures of Dependence To assess if a copula model adequately approximates the tail
dependence of a set of data requires more complex measures. One example of such measures are the tail-
weighted measures of dependence presented in [16], defined as

o1 (U1, Uz; a(), p) = Cor

a(l U) (1 U)‘U<pU<p
- ——|Ui<p U2
p p

ou (U1, Uz;a(), p) = Cor

a(Ul 1) (U2 1)‘U >p,Us>p
- = ) - - 1 »y U2 )
p p

where af(-) : [0,1] — (0,00) is a continuous function, 0 < p <1/2 and [u;, U»] is a random uniform (0, 1) vector
with joint distribution function C. Additionally, Cor [+, -] denotes the Pearson’s product-moment correlation in
Section 2.3.4.1.

Further, [14] suggests a choice of a(-) and p that provides useful in the application of assessing tail depen-
dence of a copula model. Let C; ; be the bivariate copula marginal distribution of a d-dimensional copula and
set a(x;r) = x" and p = 1/2. Then, the tail-weighted measures of dependence are obtained as

1
or(U;,Uj;r) = Cor Ui<3Uj<3 (2.80)

a-20y",(1-2U;)"

1
ou (Ui, Uj;r) = Cor Ui >3, Uj> (2.81)

QU;-1",(2U;-1)"

where U;, U; are the components corresponding to the marginal C; ;. For convenience, ¢r and py will be
referred to as the lower and upper tail-weighted dependence coefficient respectively. It is suggested in [14]
that r equal to 5 or 6 is a good choice that balances variability and capability to discriminate tail dependence
from intermediate tail dependence.

The distribution of the linear coefficient of correlation depends on the distribution of the underlying ran-
dom variables, and is non-trivial for any distribution but the normal distribution. Hence, the distributions
of (2.80) and (2.81) have to be approximated through Monte Carlo methods for the purpose of constructing
confidence intervals.

2.3.6 Confidence Intervals

Let 8,, be arandom variable such thatlim,_.,8, € N (8,0), i.e. 0, is asymptotically N (6, 0) as n — oo. Then, if
0, is an observation of 8,,, an approximate confidence interval for 6 with significance level « is

I=0,+0'1-a)5 (2.82)

where G is the large-sample estimator of the asymptotic variance of 9,,.

Monte Carlo Approximation by Bootstrap Consider the observations x, ..., X, of independent and iden-
tically distributed random variables Xj, ..., X;, with unknown univariate distribution F. Suppose that the sought
quantity 8 depends on the distribution F, i.e. 8 = 0 (F). Let 0 be the estimator of 8 on the random variables
X1,.., X, and let 8,p5 = 0 (F,,) be the point estimate based on the sample xi,...,x;. Then, the problem here
is that the sample x, ..., X, is sufficient to obtain B,ps, but the approximation of a confidence interval for
requires knowledge of the distribution of 0.

One approach to approximate the confidence interval is to use Monte Carlo approximation which means
that the distribution of 8 is approximated as the empirical distribution of the sample 0%, .. 6* for some large
N. This, however, requires a method such as the Bootstrap method to create 9*, k=1,...,N. Below, the Monte
Carlo and Bootstrap procedure for confidence interval approximation from [12] is presented step-by-step. For

24 (80)



2 MATHEMATICAL THEORY Copula Selection and Parameter Estimation in Market Risk Models

notational clarity, let 50;,5 denote the point estimate of 6 on the original sample xj, ..., x; and let 6* be the
estimator of 6 on the samples created by bootstrapping, i.e. 0,’;, k=1,.., N, are outcomes of 6*.

(i) Foreach k€ {1,..., N}, draw uniformly with replacement »n elements from the sample x, ..., X, to obtain
the sample {Xl* w ., X (M} and denote the corresponding empirical distribution function F,, W
(ii) Compute the estimates 5; =0 (F,’f(k)) and the residuals R} = Opps — 5,: fork=1,..,N.

(iii) Approximate a confidence interval for 8 with significance level a by

Tp = [Bobs + Rivaszr v Oobs + Riva_aim | (2.83)
where R\ <--- < Ry  is the ordered sample of residuals Ry, k = 1,..., N and [y] is the smallest integer
larger than y.

The assumption within this procedure is that the distributions of 0 — 0 and 8, — 0* are approximately equal.
This assumption is true if the bootstrap resampling is successful, which requires a sufficiently large n. For a

large n, ,ps ~ 0 and if N is also large then o* g 6. Amore thorough explanation of the validity of (2.83) can be
found in Section 7.5.2 in [12].

2.4 CopulaModeling

The construction of a copula model, i.e. fitting a copula to a set of data, involves several steps which can be
described using the theory in Section 2.2 and 2.3. In Section 2.4.1, the procedures used to calibrate the copula
parameters are presented. Section 2.4.2 illustrates how to generate random variables from a certain copula.
Simulation from copulas is necessary for the Monte Carlo approximation required in the implementation of
several of the diagnostic methods in Section 2.3.5. Further, Section 2.4.3 presents a summary of how to com-
pare and select models using these methods.

2.4.1 Calibration of Copula Model Parameters

Consider a parametric copula model of the joint distribution of a random vector X = [X, ..., Xj4]
Fx (@) = C(Fy (x15my) -, Fa (xa34)30),

where 1,,...,m,; are the parameters of the marginal models Fj, ..., Fy, @ is the copula parameter. The joint dis-
tribution function parameter e is merely present to emphasize that the final purpose of the copula modeling
is a parametric model of a multivariate distribution. Further, let x; = [xl,,-,...,xd, ,-], i=1,...,n, be asample of
observations of X. Then, the aim is to estimate the parameters 7, ..., 4,0 from the observationsx;, i = 1,...,n.
Evidently, this estimation procedure is likely to comprise a large number of parameters and hence several esti-
mation methods have been discussed in literature such as e.g. [10], [8], [15], and [14]. Two of the methods are
presented in the subsections below.

2.4.1.1 Inference Function for Margins—IFM A two-stage estimation method that has been used frequently
over the last two decades is the method commonly referred to as Inference Function for Margins (IFM). This
method separates the estimation of the marginal parameters from the estimation of the copula parameters.
The method is described in a step-by-step manner below.

1. For each univariate marginal distribution, estimate the model parameters 5;, j = 1,...,d, by ] pJ=
1,...,d, using either maximum likelihood (2.47) or least-squares of the quantile function (2.49).

2. Obtain an estimate, 8, of by maximizing the IFM-log-likelihood function of the copula C, i.e. maximize

n
In.%:(0) = Z lnc(F1 (xlyi;ﬁl) yen Fg (xd’l-;ﬁd) ;0)
i=1
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where the marginal function parameters are held fix. Here ¢ denotes the density function of the copula.
Note that this it not the true log-likelihood of the copula since the marginal parameters are fixed as 7j It
j =1,...,d, which is why the function is referred to as the IFM-log-likelihood function.

Under a reasonable set of regularity conditions, it holds that \/n (@ —0) is asymptotically normal with zero
mean; see [15].

Composite IFM - CIFM In the case when the model copula C is elliptical, the second step described above
can by executed in a different manner. If C is elliptical, then some or all components of 6 can be obtained using
(2.60). If C is Gaussian, then 0 is the correlation matrix and all components can be obtained using (2.60). If C
is a Student’s ¢ copula, then all components but one of 8 can be obtained through (2.60). The remaining com-
ponent, the degrees of freedom parameter v, is then preferably obtained by maximum likelihood estimation
with all the other components held fixed, as is suggested in [5]. Formally, ¥ is obtained by maximizing

n
InZe ) =Y Inc(F (x1,55%) - Fa (Xa,574) ;R V) (2.84)
im1

where R is the estimate of R using (2.60).
This method is referred to as Composite Inference Function for Margins (CIFM) since it is a composition of
(2.60) and the IFM method.

2.4.1.2 Semi-Parametric Method — SP A possible shortcoming of the IFM method is the inevitable risk
of inconsistency due to miss-specification. The IFM method requires d parametric marginal models and
one parametric copula model to be chosen appropriately and [15] shows that miss-specification of just one
marginal can have severe effects on the estimation of the copula parameters.

Another two-stage estimation method is introduced in [8] and is referred to as the Semi-Parametric Method
(SP). Unlike the IFM method, the SP method does not require specification of the marginal distributions, in-
stead they are estimated by their empirical distribution function (2.38). The method is described in a step-by-
step manner below.

1. For each univariate marginal distribution, compute the empirical distribution function F; , as (2.38).

2. Obtain an estimate, 8, of @ by maximizing the SP-log-likelihood function of the copula C, i.e. maximize

n
InZc0) =) Inc(Fi,(x1,),.Fa (x4,);0)
i=1

where ¢ denotes the density function of the copula. Note that this it not the true log-likelihood of the
copula since the marginal distribution functions have been replaced by the empirical marginal distribu-
tion functions, which is why the function is referred to as the SP-log-likelihood function.

In (8] it is shown that /72 (0 — 6}) is asymptotically N (0, v?), Vk, for some v?. Further, a consistent estimator
of v is given in Section 3 of [8]. Moreover, the results of [15] suggest that the SP method should be preferred over
IFM in most practical situations due to its robustness against miss-specification of the marginal distributions.

Composite SP — CSP  Similarly to CIFM, a composite estimation method can be constructed to replace
the second step in the SP method if the model copula is elliptical. In the case when C is elliptical, some or all of
the components of 8 can be estimated by (2.60). If C is Gaussian, then  is the correlation matrix and all of its
components can be obtained using (2.60). If C is a Student’s ¢ copula, then all components but one of 8 can be
obtained through (2.60). Just as for CIFM, the degrees of freedom parameter v is then obtained by maximum
likelihood with all other components of 8 held fixed. Formally, ¥ is obtained by maximizing

n
In%c )= Inc(Fypn(x1,i)se0 Fan (%a,i); R V) (2.85)
i=1
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where R is the estimate of R using (2.60).
Analogous to the case of CIFM, this method is referred to as Composite Semi-Parametric Method (CSP)
since it is a composition of (2.60) and the SP method.

2.4.1.3 Advantages and Drawbacks of Composite Methods If provided with pseudo-observations u;, i =
1,...n, then there is no difference between the IFM and SP methods for parameter calibration, i.e. there is no
difference when the marginal models are disregarded. Hence, the four calibration methods in Section 2.4.1
(IFM, CIFM, SP, and CSP) will be referred to as composite methods (CIFM, CSP) and non-composite methods
(IFM, SP) from here on.

When fitting a Student’s ¢ copula to the set of observations, then the composite methods will prevent the
ambiguity of the MLE described in 2.3.3. In a context of a large number of free parameters, such as calibration
of high dimensional elliptical copulas, the possible inaccuracy of MLE due to a "flat" maximum is more pal-
pable. In CIFM and CSP, the copula correlation matrix is set correspond the dependence structure in the set
of observations as estimated by (2.60). When fitting a Gaussian copula using CIFM or CSP, the procedure does
not require any specification or estimation of the marginal distribution since Kendall’s tau is scale-invariant.

In [5], the grouped ¢ copula is fitted using composite methods. Further, the ML estimation of the degrees
of freedom parameters is done separately for each group. When considering the grouped ¢ copula, an IFM or
SP approach may not be feasible due to the copula density function being non-trivial. By the same argument,
applying (2.84) or (2.85) on the entire copula to simultaneously estimate the degrees of freedom parameter
of every group may not be possible. Hence, the composite methods with separate optimization of (2.84) and
(2.85) are the only implementable methods among the copula calibration methods illustrated above. One
evident drawback of the separated ML estimation is that the group specific random variables R;, ..., R;;; in (2.33)
are by definition not independent.

Remedy for Indefinite Correlation Matrices In high-dimensional contexts, in the sense that the num-
ber of marginals is high, the estimator (2.60) may yield indefinite correlation matrices. The problem is most
commonly that the obtained correlation matrix has one negative eigenvalue very close to zero. Evidently, this
is a major drawback since true correlation matrices are positive semidefinite by definition. A remedy to this
shortcoming is presented in [19], where a method called the eigenvalue method for modifying estimated cor-
relation matrices to ensure positive semidefiniteness is illustrated. In this method, the negative eigenvalues
of the correlation matrix is replaced by small positive numbers. On a further note, positive semidefinite cor-
relation matrices are necessary for any application of maximum likelihood on Gaussian or Student’s ¢ copulas
since the likelihood function contains the inverse of the correlation matrix.

When the IFM- or SP-log-likelihood functions are maximized using a numerical optimizer, practical prob-
lems can occur as the optimizer passes an indefinite correlation matrix while iterating. Obviously, each corre-
lation parameter should be constrained such that p; ; € [-1,1], Vi, j. Further, constraints for the correlation
matrix to be positive definite is required for the log-likelihood to be defined on the entire domain. This second
constraint is however by far more complicated to implement. In practice, an easier solution to redefine the
log-likelihood functions of the Gaussian and Student’s ¢ copulas to yield sub-maximal function values when
the inputted correlation matrix is not positive semidefinite.

2.4.2 Simulation from Joint Distributions Using Copulas

The main steps when simulating from a joint distribution through a copula are significantly different depend-
ing on copula family. In general, the method is to draw a sample from the copula and then transform the
sample using the quantile transform to obtain a sample from the sought joint distribution.

Suppose the aim is to simulate a sample from the joint distribution Fx, where X has marginals Fj, ..., F; and
copula C. Then, as was shown intially in Section 2.2.3, it holds that

X=[F'),... F; (U)]

where U has distribution function C and uniform (0, 1) components. Thus, ifa sample from the copula C can be
simulated, then a sample from Fx can be obtained. However, for many applications it is sufficient to simulate
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a uniform sample from the copula itself. For example, if the aim is to implement Monte Carlo approximation
of scale-invariant measures, then it is sufficient to work with samples from the copula function C.

2.4.2.1 Simulation from Elliptical Copulas In Section 2.2.3.1 it was shown that the copula function C of
elliptical copulas is (2.28) and that the random vector U with joint distribution function C can be formulated
as (2.26). Thereby, a sample of the copula C can be obtained by first simulating from the elliptical distribution
of Y and then transforming using the marginal distribution functions of Y. More concise, the procedure is to:

1. Simulate Y from the elliptical distribution Fy

2. Set Uy = Hy (Yy)

3. Set Xi = Fi ' (Ug)
Above, the third step is excluded in case the aim is to simulate a uniform sample from the copula C.

Gaussian Copula Simulations from a Gaussian copula with correlation matrix R are obtained if the distri-
bution of Y is set to be multivariate standard normal with correlation matrixR, i.e. Y € N, (0, R). In this case, the

multivariate distribution function in step one above is Fy (y) = (Dl‘{ (v) and its univariate marginal distribution
functions are Hy (y) = ®(y) for every k.

Student’s t-Copula Simulations from a Student’s ¢ copula with correlation matrix R and degrees of free-
dom v are obtained if the distribution of Y is set to be multivariate standard Student’s ¢ with correlation matrix
R and degrees of freedom v, i.e. Y € #; (0,R,v). In this case, the multivariate distribution function in step one
above is Fy (y) = tﬁ g (v) and its univariate marginal distribution functions are H (y) = t, (y) for every k.

2.4.2.2 Simulation from the Grouped t copula The procedure of simulating from the grouped ¢ copula is
similar to that of elliptical copula but do require some extra steps due to the grouping. A concise step-by-
step description of how to simulate a uniform (0, 1) random vector V from a grouped ¢ copula with correlation
matrix R is presented in [5].

1. Simulate Z from Nj (0,R)
2. Simulate U, independently from Z, from the uniform distribution on (0, 1)
3. Set Ry =G, ! (U) for k= 1,..., m by using (2.35)

4. Obtain the J-dimensional random vector Y by (2.33)

o

. Set Vi = Fj (Yi) where Fy is the distribution function of Y, for k =1,...,J, i.e. Fy =t,, for ke {1,..., 51},
Fr=ty, forke{s; +1,..,5 + s}, etc

To obtain a sample with arbitrary marginal distributions, the random variables Vi, k = 1,..., J, are simply trans-
formed using the quantile transform and some arbitrary continuous strictly increasing distribution functions
H,...,Hj.

2.4.3 Selection of Copula Model

This thesis presents a methodology for finding the best copula model for a set of observations consisting of
two steps: first reject all inadequate models and then find model with the best goodness-of-fit. The first step,
rejection of inadequate models, is given a more conceptual presentation since the methods necessary for sig-
nificant hypothesis testing require immense computational power. Thus, this thesis will study and implement
these methods in small scale and then argue that the same methodology can be repeated in larger scale to at-
tain significant results. Both steps are executed using the dependence measures in Section 2.3.4 and the model
diagnostics in Section 2.3.5.
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It is perhaps enlightening to state a clear definition of what is meant by a ’copula model’ before proceed-
ing. Henceforth, a copula model of the multivariate joint distribution of a data set is defined to consist of the
following components:

1. Model for marginal distributions

2. Estimator type for marginal models
3. Copula family

4. Estimator type for the copula

Here, "model for marginal distributions" refers to both parametric (normal, Student’s ¢, polynomial normal)
distribution models and the non-parametric model using the empirical distribution. The estimator types for
marginal models considered is this thesis are MLE and LSE for parametric marginal models and the empirical
distribution function for the non-parametric marginal model. The three families of copulas included are the
Gaussian copula, Student’s ¢ copula, and the grouped ¢ copula. Both composite and non-composite estima-
tion methods are used for all types of copulas except the grouped ¢ copula, for which only composite methods
are used. Copula models will thus be categorized based on these four components.

One could consider the two-step approach assessing adequacy- and goodness-of-fit for each of the models
for the marginal distributions before proceeding to constructing multivariate models using copulas. This ap-
proach is, however, not embraced in the analysis within this thesis. Instead, the fit of the copula model — which
by the definition above includes marginal models - is assessed as a whole. The motivation for this is that the
relevance is in the fit of the entire model rather than the individual fit of its components.

Deducing adequacy through dependence measures and hypothesis tests. Identifying the most appropriate
model by comparative measures such as MSE, AIC and BIC.

2.4.3.1 Rejection ofInadequate Models This section mainly aims to summarize the application of the adequacy-
of-fit assessment methods of Section 2.3.5.2 that utilize dependence measures. As an act of environmental
friendliness, the method applications are presented briefly in step-by-step guides.

Assessing Adequacy of Overall Dependence

1. For the set of observations, estimate Kendall’s tau, Spearman’s rho, and Blomqvist’s beta through (2.59),
(2.67), and (2.72) and their respective asymptotic variances by (2.62), (2.69), and (2.73). Use the point
estimates and their respective estimated asymptotic variances to compute approximate confidence in-
tervals. The precision of the large-sample estimators for the asymptotic variances clearly depends on
the size of the set of observations.

2. For each considered copula model, compute Kendall’s tau, Spearman’s rho, and Blomqvist’s beta. If no
analytic expression exists for one or more of the dependence measures, simulate a large uniform sam-
ple from the copula model and estimate the sought dependence measure. Provided that the simulated
sample is large, confidence intervals of the estimates can be omitted as they will be of negligible width.

3. Check whether or not the estimates from step two are within the corresponding confidence intervals
from step one. If for one copula model many estimates fall outside their intervals, then the copula model
should be deemed to inadequately capture the overall dependence structure of the set of observations.

If a significance level of 5 % is employed, then there is an approximately 95 % probability that the confidence
intervals obtained through step one will encompass the true values of the dependence measures. Conversely,
if the copula model calibration methods are unbiased, then the estimates in step three would be encompassed
by the confidence intervals with a probability of approximately 95 %. Note however that this only holds true
for each pair-wise estimate individually since the values of Kendall’s tau, Spearman’s rho and Blomqvist’s beta
are not independent for different pairs of marginals.
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Assessing Adequacy of Tail Dependence

1. For each considered combination of marginal models and estimator of marginal models, transform the
set of observations into pseudo-uniform observations by using the probability transform in Proposition
2.1. For each obtained set of pseudo-uniform observations, estimate the upper and lower tail-weighted
dependence coefficients in (2.80) and (2.81).

2. For each set of pseudo-uniform observations, use the Monte Carlo and bootstrap method in Section
2.3.6 to approximate confidence intervals for the upper and lower tail-weighted dependence coefficients
through (2.83).

3. For each considered copula model, simulate a large uniform sample from the copula model and estimate
the upper and lower tail-weighted dependence coefficients in (2.80) and (2.81). Provided that the sim-
ulated sample is large, confidence intervals of the estimates can be omitted as they will be of negligible
width.

4. Check whether or not the estimates from step three are within the corresponding confidence intervals.
If for one copula model many estimates fall outside their intervals, then the copula model should be
deemed to inadequately capture the tail dependence in the set of observations.

If a significance level of 5 % is employed, then there is an approximately 95 % probability that the confidence
intervals obtained through step one will encompass the true values of the dependence measures. Conversely,
if the copula model calibration methods are unbiased, then the estimates in step three would be encompassed
by the confidence intervals with a probability of approximately 95 %.

As a comment on the last step in both of the assessment methods above, it should be stated that this
rejection criterion has not been developed into full scientific elegance. Though this method one will only
obtain a single model estimate of each dependence measure for each variable pair. A more robust approach
would be to approximate the distributions of the dependence measure estimates of the parametric copula
model by a double bootstrap method analogous to the ones described in [10] and then assess whether or
not it is probable that the dependence measure estimates on the data set of observations are probable to be
outcomes of the corresponding approximate distributions. This approach is however considered to be beyond
the scope of this thesis, but its implementation in future studies is encouraged by the author.

Without a sample of model estimates of each dependence measure for each variable pair, statistical con-
clusions regarding model rejection using the confidence intervals cannot be made. Double bootstrap would
be one way to attain this. However, even without double bootstrap the test results can be used to compare the
models internally.

2.4.3.2 Identifying Model with Best Goodness-of-Fit Provided a set of adequate copula models, the dis-
tinct measures of goodness-of-fit are used to deduce which model provides the best fit. The goodness-of-fit
measures used to assess copula models are:

* Mean-squared error using the copula function, (2.75)

¢ Mean-squared error using the Kendall distribution function, (2.76)
¢ Akaike information criterion, (2.78)

¢ Bayesian information criterion, (2.79)

Among the Gaussian, Student’s ¢, and grouped ¢ copula, only the Gaussian copula distribution function can be
approximated from its analytic formulation. For the others, Monte Carlo approximation is used to approximate
the copula function when computing (2.75). In detail, a large sample is simulated from the copula and then
the copula function is approximated by the empirical copula function (2.40) on the simulated sample. Further,
the Kendall distribution function lack an explicit expression for all three copulas mentioned above. Therefore,
the approach of (2.77) is preferable for both (2.75) and (2.76) to reduce the randomness of the Monte Carlo
approximations.
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These measures provide means for comparison, however, they all measure different model qualities and
the model choice is clearly not necessarily unambiguous. The key is to consult the goodness-of-fit measures
with the intended use of the copula model in mind.
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3 METHODOLOGY

The subsequent four subsections concisely presents the application of the theory in Section 2, the real world
data used for model calibration and assessment, and the computational details of this project.

3.1 Usage of Software and Hardware for Computations

All simulations and numerical computations have been executed using the software RStudio. Further, the
optimization of log-likelihood functions and quadratic sum functions (for the purpose of least-squares) has
been done using the optim numerical optimizer.

If Skadeforsikring has provided a virtual server which has been utilized for computations during the entire
course of the thesis. The server used eight cores but was temporarily scaled up to 16 cores for some of the
heavier computations. The functionality of the package parallel for RStudio was implemented in order to
enable the use of multiple processor cores.

3.2 Acquisition, Selection and Processing of Financial Data

In summary, the studies in this thesis will employ time series data from 16 macroeconomic variables of which
five are stock indices, five are government bond implied five-year zero rates, and six are U.S. credit spread
indices for various ratings. All time series data considered are with daily observation frequency, which justifies
the linear approximations of asset returns in Section 2.1. The details of each variable are presented in the
following subsections.

It should be mentioned that it is not an obvious choice to use daily observations. As was mentioned in
Section 1, using daily observations results in historical data yielding a larger sample of observations which
leads to more robust statistical methods such as parameter estimation. Just to present one example where
daily observations might pose a poor choice, suppose that the volatility of daily log-returns of e.g. an equity
index is high but the volatile movement tend to net out over time so that the volatility of monthly log-returns
would be lower. Suppose further that one wants to estimate the return distribution of the equity index one
month ahead in time. Then, a model based on constructing the monthly return distribution by estimating
the daily return distribution and generating a month’s worth of daily returns would infer a higher volatility
than what can be historically observed. The high model volatility can then be considered a consequence of
over-modelling.

On the other side, if the I.1.D. assumption holds true for daily log-returns, then it follows that it is true for
log-returns of any positive integer number of days, e.g. months, quarters, or years. Alas, the .I.D assumption is
only an assumption and rarely completely true. Thus, at the end of the day the choice of observation frequency
comes down to finding a frequency that maximizes the "trueness" of the I.I.D. assumption. This thesis does
however not treat this optimization problem and instead uses daily observations to maximize the sample size.

3.2.1 Equity

One stock index from each of the monetary regions is used to model the stochastics of the return on equity.
Table 3.1 presents the stock indices elected to model equity and the length of the acquired time series. The
five stock indices included in this study are indices which consist of stocks with great liquidity from large
companies. This choice has been made because it pose good resemblance to the composition of If’s equity
portfolio. Additionally, it is partly the aim of If’s investment strategy to have high correlation between If’s
equity portfolio and the OMXS30 index.

As a comparison, one rejected alternative is to use all-share indices, which can be assumed to reflect the
overall equity market stochastics, including smaller and less liquid companies.
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Table 3.1: The five stock indices used to model equity within each considered monetary region.

Index Description Start Date  End Date
Euro STOXX 50 (SX5E) The Euro STOXX 50 index consists of 50 of the  1987-01-01  2016-04-08
largest and most liquid stocks from the Euro-
zone states, i.e. the member states of the Euro-
pean monetary union.
Dow Jones Industrial Average The Dow Jones Industrial Average is a price- 1925-01-05 2016-04-08
(INDU) weighted index consisting of stocks from 30
U.S. blue-chip companies and covers all in-
dustries except transportation and utilities.
OMX Copenhagen 20 Formerly known as the KFX index, this index 1989-12-04 2016-04-08
(OMXC20) consists of the 20 most liquid stocks on the
Copenhagen Stock Exchange (CSE).
OBX Index (OBX) The OBX index is a stock index on the Oslo 1996-01-02 2016-04-08
Stock Exchange (OSE) and includes the 25
most liquid stock from companies listed on
the OSE.
OMX Stockholm 30 The OMX Stockholm 30 index is a 1986-09-30 2016-04-08
(OMXS30) capitalization-weighted stock index and

includes the 30 most liquid stocks of com-
panies listed on the Swedish Stock Exchange
(SSE). Up until 2005 this index was known as
simply OMX index.

3.2.2 Five-Year Risk-Free Interest Rates

The five-year risk-free rate is modeled using the interest rate implied by government bonds with a time to
maturity of five years. When collecting data, the Swedish National Bank was used as a main source, as they
offer long time-series of both Swedish and some non-Swedish government bonds on a daily basis. The Swedish
National Bank did not however have data for Danish or Norwegian government bond rates and consequently
these data were obtained from Bloomberg and Norges Bank (the National Bank of Norway). Bloomberg was
used simply because the Danish National Bank does not provide historical data of government bond rates.
Table 3.2 summarizes the government bonds included in this study.

Table 3.2: Government bonds included in the thesis and the source used to obtain historical data

Macroeconomic Quantity Source Start Date ~ End Date

U.S. 5-Year Government Bond (USGVB5Y) Swedish National Bank 1987-02-02 2016-04-22
German 5-Year Government Bond (DEGVB5Y) Swedish National Bank 1987-02-09 2016-04-22
Danish 5-Year Government Bond (DKGVB5Y) Bloomberg 1993-01-04 2016-04-08
Norwegian 5-Year Government Bond (NOGVB5Y) Norges Bank 1989-12-29 2016-04-21
Swedish 5-Year Government Bond (SEGVB5Y) Swedish National Bank 1985-01-02 2016-04-21

The German 5-year government bond is used to model the risk-free interest rate of the Eurozone. The
German government is among the most financially stable governments in the Eurozone which is why the the
interest rate implied by the German government bond consistently has been among the lowest for Eurozone
countries. Hence, the German government bond provides the best approximation of the risk-free interest rate
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for the euro currency.

3.2.3 Ten-Year Credit Spreads

The ten-year credit spread is modeled using credit spread indices. The available data for credit spread indices is
sparse in several aspects. First, data series of credits spread indices are in general shorter, due to more recent
start dates, than data series for equity or interest rates. Second, credit spread indices for monetary regions
other than the U.S. are rare and very few were encountered during the data survey for this thesis. The non-U.S.
spread indices encountered were quoted as total yield (spread rate plus risk-free rate) without providing a clear
definition of the index, thus making it impossible to deduce the spread rate implied by the index yield. As a
result, only U.S. spread indices are included in the studies.

All credit spread time series data have been obtained from Bloomberg and their definitions have been deci-
phered with assistance of Bloomberg and public corporate reports from Guotai Junan Securities', BlackRock?,
and Narodowy Bank Polski®.

All but one of the credit spread indices are quoted as the actual spread rate, i.e. the process s; in Section
2.1.3. The one exception is the BICLB10Y index which is quoted as an index which follows the actual spread
rate. However, this should not be of concern for the application of this thesis since it is the changes of the
spread rate, and not the actual value of the spread rate, that is relevant for the purpose of dependency modeling
and analysis.

Table 3.3: Credit spreads indices included in the thesis along with a description of the index compositions.
Note that different rating agencies uses different labels, e.g. Moody’s BAA rating corresponds to S&P’s BBB
rating.

Index Description Quotedas StartDate  End Date

BASPCAAA The BASPCAAA Index represents the spread be- Credit 1986-01-10 2016-04-08
tween Moody’s 10-year corporate bond yields for

spread
bonds rated AAA and the U.S. 10-year government
bond.
CSIA The CSI A Index represents the spread between 10- Credit 2002-09-25 2016-04-08
year corporate bond yields for bonds rated A and spread
the U.S. 10-year government bond.
CSIBB The CSI BB Index represents the spread between Credit 2002-09-25 2016-04-08
10-year corporate bond yields for bonds rated BB spread

and the U.S. 10-year government bond.

CSIBBB The CSI BBB Index represents the spread between Credit 2002-09-25 2016-04-08
10-year corporate bond yields for bonds rated BBB

spread
and the U.S. 10-year government bond.

CSI BARC The CSI BARC Index represents the spread between Credit 1987-01-30 2016-04-08
the yield to worst of Barclays Capital U.S. corporate
high yield index and the U.S. 10-year government
bond.

BICLB10Y  TheBICLB10Y Indexrepresents the spread between Index 1986-01-02 2016-04-08
Moody’s 10-year corporate bond yields for bonds
rated BAA and the U.S. 10-year government bond.

spread

Ihttp://www.gtja.com.hk/UploadFiles/gtja_enReport/2015/12/FI_RF_Dec.pdf (Accessed 2016-05-19)

Zhttp://www. blogg.etfsverige.se/wp-content/uploads/2012/05/etpl_industrysummary_apr2012_Global_final.pdf
(Accessed 2016-05-19)

Shttps://www.nbp.pl/publikacje/materialy_i_studia/213_en.pdf (Accessed 2016-05-20)
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Time series data for U.S. credit spread indices were found for more indices than those presented in Table
3.3. However, some of the time series acquired were deemed to be too short and were therefore not included.
Consequently, the indices in Table 3.3 does not represent a complete range of credit ratings. The negative effect
of including one or more short time series in the modeling is explained in the next section.

3.2.4 Processing of Marginal Data

The first processing step is to transform the time series data into outcomes of supposedly independent and
identically distributed random variables, following the transformations described by (2.3), (2.5), and (2.6) in
Section 2.1. The credit spread index BICLB10Y has to be transformed differently due to it being quoted as an
index. Since an index value describes relative change, the BICLB10Y index is transformed into log-returns,
similarly to the stock indices.

In order to be able to implement the copula modeling methods in 2.4, the marginal time series data has to
be fused into a multivariate time series of joint observations. This is done by inspecting all the marginal time
series data for observation dates that exist for every marginal. If an certain observation date exists for every
marginal, then a joint observation exists for that date. The multivariate time series is constructed of these joint
observations.

The number of missing internal data points within each marginal time series is low in relation to the total
number of data points and hence the acquired number of joint observations is mainly dependent on the start
and end dates of the marginal time series. Clearly, the number of joint observations relies heavily on the length
of the shortest marginal time series, i.e. CSI A, CSI BB, and CSI BBB. Table 3.4 presents the length of each
marginal time series. Additionally, the average number of data points per year have been computed for each
time series to assess the completeness of data points. The first and last year of each time series are excluded
from the average as the time series rarely start on the first day of a year or end on the last day of a year. For
reference, the US calendar has an average of 252 working days per year between the years 1920 and 2016. This
reference value is used to compute the right-most column in Table 3.4.
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Table 3.4: The total number of raw data points used for each macroeconomic variable. The fourth column
shows the ratio in percent between the average data points per year of each variable and the yearly average
number of working days in the US calendar from 1920 to 2016.

Variable Data Points Avg. Points per Year Ratio %

SX5E 7542 258 102
INDU 23022 252 100
OMXC20 6592 250 99

OBX 5084 251 100
OMXS30 7406 251 100
USGVB5Y 6971 251 100
DEGVB5Y 7072 251 100
DKGVB5Y 5532 237 94

NOGVB5Y 6440 261 104
SEGVB5Y 7828 251 100
BASPCAAA 8300 250 99

CSIA 3517 260 103
CSIBB 3523 260 103
CSIBBB 3523 260 103
CSI BARC 7615 261 104
BICLB10Y 7612 251 100

3.2.4.1 Validity of IID Assumption of Marginals It is fundamental for the application of a copula model
that the considered data sample are outcomes of independent and identically distributed random variables.
Evidently, the majority of the theory presented in this thesis relies on the assumption that IID data is at hand.
Consequently, the transformation of the marginal time series into IID time series crucial for the reliability of
the results of this thesis.

The lognormal, from which the transformations (2.3), (2.5), and (2.6) were derived, does not perfectly cap-
ture the characteristics of the financial market and hence the transformed marginal time series cannot be
expected to be perfectly IID. The IID hypothesis can be tested using the sample autocorrelation function. How
to test the IID hypothesis for a time series using the sample autocorrelation function is outlined in section 1.6
of [2]. In short, approximately 95% of the sample autocorrelations should be within the bounds +1.96//7,
where 7 is the sample size, if the considered sample is a realization of an IID sequence. However, testing using
the sample autocorrelation function is not included in this thesis.

3.3 Estimation of Model Parameters
3.3.1 Modeling Marginal Distributions

Parametric distribution models of the normal, Student’s ¢, and the polynomial normal (PN) distribution are
fitted to the transformed marginal data using MLE (see (2.47)) and LSE (see (2.50)). Additionally, the empirical
distribution function of each marginal is computed through (2.38). Note here that the entire transformed
marginal time series data is used, rather than only the data points that are comprised within the multivariate
time series of joint observations.

This choice results in more data points for the fitting of marginal models and hence less variability and
data sensitivity. However, if the distribution characteristics of the transformed marginal time series data has
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a significant non-periodic time-dependency, then this choice results in the risk of the fitted marginal models
being unrepresentative for the marginal data within the multivariate time series of joint observations.

Once the parametric and non-parametric marginal models have been computed, the marginal data in the
set of joint observations are transformed into sets of pseudo-observations using the probability transform in
Proposition 2.1. Thus, one set of joint pseudo-observations is obtained for each parametric marginal model
and type of parametric estimator and one set of joint pseudo-observations is obtained for the non-parametric
marginal model. All in all, seven sets of joint pseudo-observations are obtained. Mathematically, the set of
joint pseudo-observations is

w; = [F (x1,5%), - Fa(xa,i57,)] and w;=[Fin (x1i),.0Fan, (xa:)] i=1..m

for the parametric models and non-parametric model respectively, where m is the number of joint observa-
tions and n;, ..., ng are the lengths of the transformed marginal time series.

3.3.2 Calibrating Copula Model Parameters to Pseudo-Observations

Gaussian copulas and Student’s ¢ copula are fitted using both composite and non-composite methods to each
of the sets of joint pseudo-observations. The resulting correlation matrix from (2.60) was not positive semidef-
inite and was thus modified using the eigenvalue method mentioned in Section 2.4.1.3. It was found to be
sufficiently good to replace the negative eigenvalue with the value of the smallest positive eigenvalue times a
factor of one half. Further, when calibrating Student’s ¢ copulas using composite methods, a initial value of
v =15 was used for the numerical ML estimations.

For the numerical ML estimation of the copula parameters comprised within the non-composite methods,
the obtained copula parameter estimates of the composite methods were used as initial values.

The grouped ¢ copula is only calibrated using composite methods. Further, the optimization of (2.84) and
(2.85) is done for each group separately within the copula rather than for the entire copula.

The results of the model calibration, with calibration methods taken into account, are five calibrated para-
metric copulas for each of the seven sets of pseudo-observations, namely:

¢ Gaussian copula calibrated by composite methods

¢ Gaussian copula calibrated by non-composite methods

¢ Student’s ¢ copula calibrated by composite methods

¢ Student’s ¢ copula calibrated by non-composite methods
¢ Grouped ¢ copula calibrated by composite methods

For the grouped ¢ copula the marginals are grouped per instrument category as presented in Section 3.2.1,
3.2.2, and 3.2.3, i.e. the marginals are modeled in three groups, namely: equity, interest rates and credit
spreads.

3.4 Computation of Model Diagnostics

Provided with the 5-7 = 35 calibrated copula models, all of the diagnostic methods in Section 2.3.5 can be
applied. The dependence measures for assessment of adequacy-of-fit are computed as described in Section
2.4.3.1. Further, the four goodness-of-fit measures listed in Section 2.4.3.2 are computed for each of the 35
calibrated copula models. One exception however is that AIC and BIC are not computed for the grouped ¢
copula due to it not having a well-defined likelihood function.

Regarding the Monte Carlo approximation required for computation of the mean squared error measures,
(2.75) and (2.76), the scale-invariant dependence measures, the tail-weighted dependence measures and the
hypothesis tests, samples of 50 000 simulated joint observations were used. Due to the large number of simu-
lations, N = 10 was used for the computations of (2.77).
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4 RESULTS

This section presents the results of the calibration of the copula models as well as the results of the goodness-
of-fit and adequacy-of-fit measures. However, due to the large number of considered macroeconomic vari-
ables, the obtained numerical values of pairwise measures such as linear correlation coefficients or other de-
pendence measures are presented separately in the Appendix.

4.1 Adequacy-of-Fit of Copula Models

The numbers presented in this section are the most computationally heavy results in this thesis, due to the
frequent use of Monte Carlo approximation and bootstrapping. In total, the results required months of com-
putation time (computations were executed partly on an 8 core machine and partly on a 16 core machine). As
an example, the goodness-of-fit mean squared errors required 24 days of computational time.

4.1.1 Scale-invariant Dependency Measures

The parametric copula models imply certain values of the dependency measures Kendall’s tau, Spearman’s
rho and Blomgyvist’s beta. These values are computed using Monte Carlo simulation and are then compared
to the confidence intervals approximated from the sample data. For some models it is possible to analytically
compute the dependence measures instead of using Monte Carlo simulation.

Table 4.1: Kendall’s tau, percentage inside confidence interval

Gaussian Gaussian ~ Student’st  Student'st  Grouped t
(Composite) (Composite) (Composite)
Normal & MLE 0.992 0.967 0.992 0.992 1
Normal & LSE 0.992 0.942 0.992 0.967 1
Student’s t & MLE 0.992 0.992 0.992 1 1
Student’s t & LSE 0.992 0.967 0.992 1 1
PNN & MLE 0.992 0.992 0.992 1 1
PNN & LSE 0.992 0.967 1 0.992 1
Empirical 0.992 0.983 0.992 1 1

As can be seen in Table 4.1, nearly all model estimates are encompassed by their corresponding confidence
intervals. The grouped ¢ copula model values of Kendall’s tau are all inside their respective confidence interval
for all marginal models.

On a further note, 1/120 = 0.008, meaning that most of the copula models only "miss" the Kendall’s tau
value of one variable pair. By looking at Figure 1 through Figure 5, it appears that the credit spread indices
CSI BB and CSI BBB have an extremely high Kendall’s tau value. Table B.1 shows that the approximate con-
fidence interval is (0.953,1.000). Additionally, Figure 1 through 5 show that only the models calibrated using
non-composite methods capture this high Kendall’s tau value. The grouped ¢ copula model capture the high
Kendall’s tau value despite being calibrated using composite methods however.
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Table 4.2: Spearman’s rho, percentage inside confidence interval

Gaussian Gaussian ~ Student’st  Student'st  Groupedt
(Composite) (Composite) (Composite)
Normal & MLE 1 0.992 1 1 1
Normal & LSE 1 0.992 1 1 1
Student’s t & MLE 1 1 1 1 1
Student’s t & LSE 1 1 1 1 1
PNN & MLE 1 1 1 1 1
PNN & LSE 1 1 1 1 1
Empirical 1 1 1 1 1

The approximated confidence intervals for Spearman’s rho on the sample data are relatively wide, as can
be seen in the figures in Appendix A.1. Consequently, the adequacy-of-fit test using Spearman’s rho has a high
acceptance rate and as shown in Table 4.2, all copula models are assessed to be adequate.

Table 4.3: Blomgqyvist’s beta, percentage inside confidence interval

Gaussian Gaussian ~ Student'st  Studentst  Grouped t
(Composite) (Composite) (Composite)
Normal & MLE 0.892 0.783 0.883 0.875 0.908
Normal & LSE 0.908 0.775 0.908 0.883 0.933
Student’s t & MLE 0.892 0.908 0.883 0.925 0.875
Student’s t & LSE 0.908 0.883 0.892 0.927 0.917
PNN & MLE 0.908 0.917 0.892 0.925 0.908
PNN & LSE 0.900 0.867 0.908 0.917 0.900
Empirical 0.892 0.908 0.892 0.933 0.908

Table 4.3 shows a lower acceptance rate than both Table 4.1 and 4.2. Looking at Table 4.3, there are actually
several marginal models for which the Gaussian copulas score higher than the Student’s # copulas. The highest
results are obtained for the non-composite Student’s ¢ copula with the empirical distributions as marginal
models, i.e. the Student’s ¢ copula calibrated using the SP method. Equally high results are obtained for the
grouped ¢ copula model with normal marginals fitted using LSE.

Inspection of Figure 11 through 15 lead to the impression that there are variable pairs whose Blomqvist’s
beta are not captured by any model. More specifically, the Blomqvist’s beta value of DE GVB 5Y and BICLB 10Y,
DK GVB 5Y and CSI A, OMXS30 and DK GVB 5Y, as well as US GVB 5Y and BICLB 10Y. Additionally, there are
another three pairs whose Blomgqvist’s beta are not captured in the majority of the copula models. This absence
of randomness in the copula models’ shortcomings gives reason to suspect that the process of converting the
market data into series of outcomes of supposedly IID random variables was inadequate for certain time series.

Worth mentioning is that the pair NO GVB 5Y and BICLB 10Y has a Blomqvist’s beta value of 1.

4.1.2 Tail-Weighted Measures of Dependence

The implied tail dependence of the parametric copula models are compared to the observed tail dependence
in the sample data, using the tail-weighted measures of dependence. The tables below present ratios, for each
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copula model, of the number of model values that are within the corresponding confidence intervals approxi-
mated from the sample data. The model values of the tail-weighted measures of dependence are approximated
using Monte Carlo simulation.

Table 4.4: Lower tail-weighted dependence measure, percentage inside confidence interval

Gaussian Gaussian ~ Student’st  Student'st  Grouped t
(Composite) (Composite) (Composite)
Normal & MLE 0.258 0.200 0.408 0.442 0.683
Normal & LSE 0.233 0.175 0.358 0.292 0.642
Student’s t & MLE 0.200 0.217 0.742 0.717 0.258
Student’s t & LSE 0.183 0.158 0.667 0.675 0.308
PNN & MLE 0.175 0.200 0.650 0.625 0.267
PNN & LSE 0.175 0.192 0.708 0.733 0.158
Empirical 0.217 0.192 0.592 0.550 0.333

Table 4.4 contains the ratios of the number of model values of the lower tail-weighted dependence measure
inside the approximated confidence intervals. Evidently, the number of model values within the confidence
intervals are in every way lower if comparing with the scale-invariant dependence measures. These results are
in no way strange or unexpected since none of the calibration methods have been weighted towards the tail.
The calibration methods weight all observations equally.

The copula model with the highest ratio is the Student’s t copula calibrated with composite methods and
Student’s t marginals estimated using MLE. The ratio of this model has been highlighted, despite not being
deemed adequate by this test, simply because it is the model which provides the closest to adequate tail de-
pendence.

By inspecting Figure 16 through 22 and comparing the estimates of the lower tail-weighted dependence
measures on the copula models with the confidence intervals estimated on the set of observations, it becomes
evident that the estimates on the grouped ¢ copula generally are above the confidence interval when not inside,
and the estimates on the other copulas are generally below the confidence interval when not inside. This gives
reason to believe that this grouped ¢ copula (with the chosen grouping considered) implies a stronger tail
dependence structure than what can be observed in the set of observations.

Table 4.5: Upper tail-weighted dependence measure, percentage inside confidence interval

Gaussian Gaussian ~ Student’st  Student'st  Groupedt
(Composite) (Composite) (Composite)
Normal & MLE 0.258 0.233 0.433 0.408 0.558
Normal & LSE 0.208 0.200 0.375 0.350 0.525
Student’s t & MLE 0.142 0.150 0.725 0.708 0.267
Student’s t & LSE 0.175 0.133 0.667 0.650 0.358
PNN & MLE 0.167 0.117 0.717 0.683 0.275
PNN & LSE 0.141 0.117 0.725 0.708 0.208
Empirical 0.158 0.125 0.675 0.658 0.317

In Table 4.5, the ratios obtained using the upper tail-weighted dependence measure are presented. Simi-
larly to the case with the lower tail-weighted dependence measure, the ratios are all lower than those obtained
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using the scale-invariant dependence measures for adequacy-of-fit assessment.

By inspecting Figure 23 through 29 and comparing the estimates of the upper tail-weighted dependence
measures on the copula models with the confidence intervals estimated on the set of observations, similar
conclusions can be made as to that of with the lower tail-weighted dependence measure and Figure 16 through
22. However, when considering the upper tail-weighted dependence measure, the copula models with normal
marginal models form an exception. For neither normal marginals fitted with MLE or LSE the grouped ¢ copula
displays systematically higher estimates than those of the set of observations.

4.2 Goodness-of-Fit of Copula Models
4.2.1 Mean Squared Error

The goodness-of-fit of the copula models are assessed in two distinct ways using mean squared error, using the
copula function and using the Kendall distribution function. In both cases, the mean squared error values are
computed using the robust procedure (2.77). Further, Table 4.6 presents the mean squared error values com-
puted using the copula function, see (2.75), and Table 4.7 presents the mean squared error values computed
using the Kendall distribution function, see (2.76).

Table 4.6: The mean squared error of the copula function of the all the considered copula models. Values have
been computed as the mean of 10 mean squared error values.

Gaussian Gaussian ~ Student’st  Student'st  Grouped t

(Composite) (Composite) (Composite)
Normal & MLE 0.001708 0.001967 0.001682 0.002002 0.001909
Normal & LSE 0.002068 0.002326 0.002092 0.002543 0.002289

Student’s t & MLE 0.003338 0.003683 0.003537 0.003698 0.003876
Student’s t & LSE 0.003539 0.004023 0.003823 0.003979 0.004227

PNN & MLE 0.003706 0.004064 0.003897 0.004012 0.004292
PNN & LSE 0.004534 0.004972 0.005080 0.005190 0.005701
Empirical 0.004049 0.004580 0.004302 0.004521 0.004874

Table 4.7: The mean squared error of the Kendall distribution function of the all the considered copula models.
Values have been computed as the mean of 10 mean squared error values.

Gaussian Gaussian ~ Student’st  Studentst  Grouped t
(Composite) (Composite) (Composite)
Normal & MLE 232.4 223.2 229.8 219.7 223.9
Normal & LSE 232.5 224.3 229.8 214.7 220.4
Student’s t & MLE 232.2 222.5 227.6 224.3 221.6
Student’s t & LSE 232.5 219.9 225.2 224.9 221.1
PNN & MLE 232.3 222.4 226.7 224.3 215.2
PNN & LSE 232.9 220.0 228.4 224.0 2144
Empirical 232.3 221.4 226.0 227.4 216.1

As can be seen from the results in Table 4.7, the copula model that poses the best fit to the data, when
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goodness-of-fit is measured using the mean squared error of the Kendall distribution function, is the Student’s
t copula calibrated with non-composite methods and with normal marginal models fitted using least-squares.
Note further that for any marginal model other than normal, the Gaussian copula with non-composite cali-
bration is preferable.

4.2.2 Akaike and Bayesian Information Criterion

Below the Akaike and Bayesian information criterions are presented in Table 4.8 and 4.9. The values have been
computed by applying (2.78) and (2.79) to the calibrated copula models.

Table 4.8: Akaike Information Criterion of all considered copula models, except those including the grouped ¢
copula.

Gaussian Gaussian ~ Student’st  Student’s t
(Composite) (Composite)
Normal & MLE -20413 —42803 —-32639 —49718
Normal & LSE —20034 —43913 -33727 -50168
Student’s t & MLE —-29303 —45284 —-33828 —49520
Student’s t & LSE —-28976 —45426 —-33387 —49315
PNN & MLE —28828 —-45192 -33622 —49368
PNN & LSE —28928 —45284 -33758 —49455
Empirical —-29355 —45539 -33511 —44835

By inspecting Table 4.8 it is evident that from an AIC perspective, the most preferable copula model is
the Student’s ¢ copula calibrated with non-composite methods and with normal marginal models fitted using
least-squares. Note additionally that the non-composite Student’s ¢ copula is preferable over the the other
copula models for every considered marginal model. With the exception of the case with empirical marginals,
the non-composite Student’s £ copula models are preferable to all other models, regardless of marginal models.

Table 4.9: Bayesian Information Criterion of all considered copula models, except those including the grouped
t-copula.

Gaussian Gaussian ~ Student’st  Student’st
(Composite) (Composite)
Normal & MLE —19522 —-41912 -31741 —-48821
Normal & LSE —-19143 —43022 -32829 -49270
Student’s t & MLE —28318 —44398 —-32837 —-38529
Student’s t & LSE —-27991 —44441 -32396 —48324
PNN & MLE —-27749 —-44113 -32538 —-48283
PNN & LSE —27849 —44205 -32673 —-48370
Empirical —-28651 —44835 -32801 —48476

The results in Table 4.9 are similar to those in Table 4.8. However, the non-composite Student’s ¢ copula
models are not equally superior when the number of model parameters is penalized as it is when considering
BIC. The most preferable copula model is the Student’s ¢ copula calibrated with non-composite methods and
with normal marginal models fitted using least-squares, exactly as when AIC is considered. One difference
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in the results relative to 4.8 is that the model with Student’s ¢ marginals fitted using MLE and non-composite
Student’s ¢ copula scores notably worse compared to other models; the non-composite Gaussian copula is in
fact preferable to the non-composite Student’s ¢ copula, if only that marginal model is considered. Another
notable difference is that the model with empirical marginals and non-composite Student’s ¢ copula scores
better and is the third most preferable model.
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5 DISCUSSION

Regarding the first objective, several approaches to calibrating parametric copula models have been outlined.
In literature, copula parameter estimation using non-parametric marginal models have been greatly cher-
ished, mainly due to its obvious robustness to miss-specification. This choice is favorable when aiming to
isolate the copula properties and achieve results with a more general application. However, the objective of
this thesis concerns the driving stochastic factors of If’s investment portfolio and hence the marginals are nei-
ther arbitrary or completely unknown. Although the best choice of model is not obvious, many of the marginal
characteristics are known. Hence, the risk and mainly the severity of miss-specification of the marginals is
lower in this setting. Thus, copula calibration methods capable of handling parametric marginal model are
relevant.

In literature such as [15], the effect of marginal miss-specification is analyzed and found to be significant
enough for the SP method to be preferred in general. However, the study is limited to bivariate Archimedean
copulas and the marginal miss-specifications are limited to the hypothesized model being normal while the
true distribution is more complicated (Student’s ¢ distribution, skew-¢ distribution or y?-distribution). For
example, the normal distribution is a special case of the Student’s ¢ distribution (v — oo) and, as opposed to
the normal distribution, the y2-distribution is non-negative. In other words, the type of miss-specification in-
vestigated is one-sided and not necessarily representative to the miss-specifications one can encounter after
having performed marginal analysis. For the case of this thesis, where both quantitative and qualitative infor-
mation exist for the portfolio components, the degree of marginal miss-specification is likely to be less severe.
The IFM and SP methods for estimation of copula parameters are the most widely used and researched meth-
ods in publications to this date. However, the performance of these methods have mainly been evaluated for
bivariate Archimedean copulas, e.g. in [10] and [15].

Summarily, calibration of copula models to If’s investment portfolio would preferably be done using high
dimensional elliptical copulas on a set of marginals with similar and predictable characteristics, which opens
up for parametric marginal models. This is a not thoroughly explored subcategory of the complex field of
applied copula theory. It should also be mentioned that [14] presents the vine copula as a good model for high
dimensional contexts. This copula family is beyond the scope of this thesis however.

Worth mentioning is that the methods for transforming the marginal observations to i.i.d. outcomes can
have a far larger impact than the choice of whether to implement IFM or SP. This is due to the fundamental
dilemma of financial mathematics that methods for estimating distribution parameters rely on the availability
of i.i.d. data while financial time series tend to not be i.i.d. The choice of IFM versus SP or composite ver-
sus non-composite loses significance if the underlying data is not of sufficient quality for the methods to be
reliable.

The second thesis objective have been met, although there is lot of room for improvement as has been
pointed out. The ability of the copula models and calibration methods to fit the dependence structure of a
set of historical observations have been analyzed and compared. However, a more robust implementation of
the adequacy-of-fit tests would have yielded results with more of a statistical significance. Although this point
does not completely invalidate the achieved results in this thesis, it should be kept in mind when analyzing the
results; conclusions can still be made from the results.

The endeavour to assess copula model plausibility in this thesis should be put into perspective consider-
ing the limited published research within the specific field of application. Over the last two and a half decades,
plenty of research has been published on the topic of copula theory and copula parameter estimation. How-
ever, the majority of the research done have chosen focus on the bivariate case, leaving the high dimensional
multivariate case unmentioned or arguing that the findings are applicable in higher dimensions as well. That
being true, higher dimensional applications can give rise to problems not encountered in the bivariate case.
One example is the problem mentioned in [5] with the non-parametric estimation of elliptical copulas’ cor-
relation matrices using Kendall’s tau, where the estimator may yield indefinite correlations matrices in high
dimensional contexts. The inevitable increase in simulation and computation time that follows when moving
to a high dimensional model should not be neglected. Sophisticated real world applications tend to require a
high number of marginals, especially in market risk analysis.

The copula model assessments done in this thesis should be considered as an exploratory step in the en-
vironment of applied high dimensional copula modeling of macroeconomic variables. Some conclusions can
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be made regarding the copula models however. The results of the tail-weighted measures of dependence
show something interesting. The systematic deviations of the copula models from the sample results imply
a non-stochastic difference in the dependence structure between the models as well as with the sample of
observations. Further, the results of the adequacy of fit tests using scale-invariant dependence measures are
inconclusive as there is only one sample estimate for each variable pair that is being checked against a confi-
dence interval. These results would carry greater significance had the method been extended with the double
bootstrap method suggested in Section 2.4.3.1. This extension would however had increase the requirements
regarding computational power of this thesis tremendously. The results attained can however be used to com-
pare the models under study.

Regarding the tests for goodness-of-fit, the results are not unambiguous but there are some coherence.
For example the Gaussian copula is found inferior by every test performed, regardless of the marginal models
used. Additionally, the tests based on the density functions both prefer the Student’s ¢ copula with LSE normal
marginals. The Student’s ¢ copula was one one best performers in adequacy-of-fit test as well, but the test
results were inconclusive regarding the adequacy of all copulas tested due to insufficient methodology (no
double bootstrap or equivalent method was implemented). For future studies it would be of interest to include
the grouped ¢ copula in the AIC and BIC tests and perhaps include several plausible groupings of the marginals
for the grouped ¢ copula.

Lastly, it should also be mentioned that whenever assessing how good a certain model fits data, the results
are highly dependent of how "good" is defined, especially for multivariate models. A natural approach is to
define "good" based on the intended purpose of the model. In this thesis, the purpose of the multivariate cop-
ula models was to capture the dependence structure of the observed data, without specifying whether focus
should be on tail dependence or overall dependence. As was initially mentioned, another possible purpose
of a copula model could be to estimate the 99.5% quantile of the one-year return of an aggregate portfolio
where the components dependence structure is modelled using the copula. Then "good" should preferably be
defined based on the estimation bias and estimation error of the return quantile.

A natural extension to the studies conducted in this thesis would be to define a portfolio value process that
maps the macroeconomic variables into a single monetary value and then compute the distribution of the
one-year return of the portfolio using a copula. One could then estimate the 0.5 % quantile (99.5 % quantile
of the loss distribution) of the portfolio return for the purpose of risk calculation. Moreover, this would give
reason to revisit the initial choice in this thesis to base the copula modelling on daily observations. It would be
idyllic to further investigate the applicability of the I.1.D. assumption depending on the observation frequency.

The subsequent subsection briefly summarizes the author’s ideas of how to proceed and further investigate
relevant topics related to this thesis.

5.1 Suggestion of Topics for Future Research

1. Investigate the accuracy of estimation of elliptical copula correlation matrix through non-parametric
estimation (the estimator (2.60)). Also, analyze of the estimator’s accuracy depends on the size of the
sample of observations. Suggestion: A simulation study where (2.63) is further investigated. A good
general approach would be to simulate several samples from elliptical copulas with known correlation
matrices and then estimate using (2.60). With estimates from several samples, and a varying sample size,
then the distributional characteristics of (2.60) can be studied as a function of the sample size.

2. Investigate the capability of goodness-of-fit tests to identify the most preferable copula model. Sugges-
tion: A simulation study where multiple samples are simulated from known copulas, then several copula
models are calibrated to the simulated samples and compared using the goodness-of-fit tests presented
in this thesis. With multiple simulated samples, once can statistically analyze the rate at which each
goodness-of-fit test identifies the correct copula as the most preferable model. Additionally, the effect of
the size of the simulated samples on the results can be included in the study.

3. Investigate the accuracy of confidence intervals for Kendall’s tau, Spearman’s rho and Blomqvist’s beta
approximated by using the large-sample estimators of the asymptotic variances. This study should be
seen as an extension to the topicin 1. above. Suggestion: A large simulation study where several samples
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are simulated from copulas where Kendall’s tau, Spearman’s rho and Blomqvist’s beta are known. Then
confidence intervals can be approximated on each sample by assuming that the estimators have their
respective asymptotic distributions. The true confidence level of the approximated intervals can then be
assessed. Further, the simulated samples can be used to perform a deeper analysis of the asymptotic dis-
tributions of the estimators. The theoretical distributions can be compared to the observed outcomes of
the estimators and the large-sample estimators of the asymptotic variances for Kendall’s tau and Spear-
man'’s rho can be assessed. Finally, studying the speed of convergence to the asymptotic distributions as
function of sample size would be of great interest.

4. Investigate the capability of adequacy-of-fit tests to reject invalid copula models by assessing confi-
dence intervals of scale-invariant dependence measures approximated using large-sample estimators
of asymptotic variance. Suggestion: A simulation study where samples are simulated from copulas with
known Kendall’s tau, Spearman’s rho and Blomgqyvist’s beta. For each copula used for simulation, take
the simulated sample to be the observed outcomes, estimate dependence measures and approximate
confidence intervals. Then, list a set of possible copula models and assess their adequacy to describe
the dependence structure of the observed outcomes by simulating a large sample from each model and
estimating dependence measures. It would at this point be of great value to have significant results from
the study described in 1. and 3. to use as grounds for determining what sample size to use for the sam-
ples simulated from the models. The dependency between the power of the adequacy-of-fit tests and
the sample size of the observed outcomes constitutes another dimension of interest for this study.

Both step three and four can in theory also be repeated using the tail-weighted measures of dependence.
However, since there are no analytic expressions for the distributions of the estimators, the tasks will be far
heavier from a computational perspective and for example require bootstrapping.
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Figure 1: Kendall’s tau for Gaussian copula with composite methods.
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Figure 2: Kendall’s tau for Gaussian copula with non-composite methods.
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Figure 3: Kendall’s tau for Student’s t copula with composite methods.
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Figure 4: Kendall’s tau for Student’s t copula with non-composite methods.
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Figure 5: Kendall’s tau for Grouped t copula with non-composite methods.
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Figure 6: Spearman’s rho for Gaussian copula with composite methods.
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Figure 8: Spearman’s rho for Student’s t copula with composite methods.
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Figure 9: Spearman’s rho for Student’s #-copula with non-composite methods.
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Figure 10: Spearman’s rho for Grouped t copula with non-composite methods.
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Figure 11: Blomqvist’s beta for Gaussian copula with composite methods.
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Figure 12: Blomgqvist’s beta for Gaussian copula with non-composite methods.
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Figure 13: Blomgqvist’s beta for Student’s ¢-copula with composite methods.

59 (80)



March 21, 2017

lled a|qelien

m

mm mmm mms

ccmm £ cc - & c8
C 2] -4 S3ES S sol = 3o, [w) O w @
cCcc LN om o (©] ZO S0 S Mo Q TXU0Y0 om >
PR 5 Gemm, B Moo Q00 o 0200 900 o O > & 66 POSSmATPASLomSR 9 SBERIR 2 RE . Q ® =&
OOOGE D<OOmpe D<SZQ SEZo = XSS S50 = =X OZO_O< SO0 O5 000 55 OXOR0n  0<00P0non 9<98 ~og% 5w
SSSODLCSTSSOMENSIRXE XXX=o% XXX XXX=0% XO5~00, O8022z<Tss__ 555 = SERIO0S XOXXANIG SRSATI<m<LSIROo<mi® OOF  THcS0
%%%AOSS%M%%AOGH%A%S%O%%%XW%S%@OO@%%XWOOOW8888% O QLLOWORIEEZZ Goos Z MMWWWWB%QWWMXBWWSASHM%M%%%%AOQH%ME%ASGEWO Qo0 usng
=XRBIO L BTSSR EEENRUESTSSESEEORBEN RO XBTOIHEEE0 CECESE CipPotito Q00nSN08m <R Ln 22 B T B OO P L DD G

: 5 P = W O<< < << . & P < &
TOBBRLBE IS BEEHTLE 3> DL>OT DL>OD EL>OXNFETIE =B 555 S OB HRm LB S OBZ SLb o Pere Jvv/eeil
HSOV%%m%%%ﬁﬂﬂHSOW%%@Wﬁ%%%GHSOWﬂHHHH D0 .bON_H_HH_SOV%C._SZ89%%%8&80W%%%@S%G%%HSHSOVQSSH_SOVSQQ_C._S_HHSOVHOEHOOSGHOESHSO

-0'L-

TN SauSPNIS @ m I -50-

3STisduspnis e H
JN‘[ewJou [elWoUAl0d e H Mm H 4 i H T H WM
3S7'[ewsou eiwouklod e 'y 5§ Wm T T m
JINeWION e W m H m ﬁ H m
3STIRWON o & = % i Hmmm & & T & MM Tk HWH [ T < T t
se|uenpesuidwe o & T
|opo‘[eubiepy ‘ I b ﬂ L i

- -0k

e|ndo) 1 juspnig o} elag SisiAbwolg

A.1 Scale-invariant Dependence Measures

anjep
Figure 14: Blomqvist’s beta for Student’s ¢-copula with non-composite methods.
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Figure 15: Blomqvist’s beta for Grouped t copula with non-composite methods.
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Figure 16: Lower tail-weighted dependence measure for copula models with normal MLE marginals.
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Figure 17: Lower tail-weighted dependence measure for copula models with normal LSE marginals.
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Figure 18: Lower tail-weighted dependence measure for copula models with Student’s t MLE marginals.
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Figure 19: Lower tail-weighted dependence measure for copula models with Student’s t LSE marginals.
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Figure 20: Lower tail-weighted dependence measure for copula models with polynomial normal MLE
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Figure 22: Lower tail-weighted dependence measure for copula models with empirical marginals.
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Figure 23: Upper tail-weighted dependence measure for copula models with normal MLE marginals.
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Figure 24: Upper tail-weighted dependence measure for copula models with normal LSE marginals.
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Figure 25: Upper tail-weighted dependence measure for copula models with Student’s t MLE marginals.
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Figure 26: Upper tail-weighted dependence measure for copula models with Student’s t LSE marginals.
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Figure 27: Upper tail-weighted dependence measure for copula models with polynomial normal MLE

marginals.
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A.2 Tail-weighted Dependence Coefficients

ausodwo) eindoy ¥ uepnis
eindod 1 uspnig
ausodwo) e|ndoy 1 padnoin
a)isodwo) e|ndo)~ ueISSNEL)

e|ndoyueIssnen

|opoy\ eindod

Ired’s|qeleA
m
_ g
C (2] S3ES S sol S o o o w @
. covmn wm o o =z z0 Se&mSiR?....@.:N%UGGMGGGG o om 2>
%nsﬁﬂﬁsxoﬁnwonwwwoomwawwwoomm 2.9 32 OO e R 00 A oBiomo 1 Hoon 2 Y2 2
P 20 SR XX S Sk X S 5 OONON _ o _ o READ D5 2O SVdWO
SODI=OT T X ORO0200 OROSZSTZZ__ 222 5 TR X<OS SOSIOE D 000
ﬁmm@gx@@g%%s%wy&%m@ﬁmg § TeoRdiaoez 905 & Sin i, St gﬁwﬁ%ﬂsﬁ% o) &w@%
<X <u<: <IOOWZ OO OO > < ) CCCoZE ¢ OSTNOC OO IO <=L << << << OHPGHOPONOT LTS
DO S I 2 O S b s Z T e R Z T S P Z T O D S P i 5 Z Do O 2R R Z TN XHVNM%%@%VQ%M O AT TISL I,
T Y o s e o S e ) e e B A BP0 BT BRI O e G A SR AR T
§h§ﬁ%ﬁ§|x1 A B A O B S PRSP R L=t n e d0 S0 p R R ey DS S L R L3 SJmﬁKV%w
SSSHOROTIS LSO L LLPOD OLEOEL, &xVEJSOAAAMM&xVE LSS AAAIKRVEJHOAAXM‘OANA = %AA%% R AT AEOT
Sunsnnsnaasuuﬂbmwnﬂﬁﬂgbmwgzgﬁ .:_mesz _________ R DPDDDT bmwacﬂ%bmgszss oD smggzggcéaﬂbmgamﬂ\lmwgn gnnnuemﬁbmvwm%%wmmﬂm%m
< <<IOIOP<P~<<WOOP<PL LXK <K <KTTOP <P~ LAK L <L <TTHOP LB~ <K<K <K< TIHOBL B WO <P L LESOK<K <K<K ITOB LB~ ~LOOX <K C<K<WIOB>~ B>~ WO P>~ << <TIO PP OO <WRO<WIO><

...-H e, a1 eolefe a7 H.. ¢ ol
& : th %ﬁwﬁ&M.H.ﬁmm..ﬁmmw@q |

‘. H‘ + M‘l
I i
) H Ll -H.M
I i

Ir

° g0

3S7[ewJou [elwoukjod Joj ML Jeddn

iy

-90-

-Sg0

-0k

anfep

Figure 28: Upper tail-weighted dependence measure for copula models with polynomial normal LSE
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B DEPENDENCE COEFFICIENTS

Table B.1: Kendall’s tau for the data sample of macroeconomic variables.

Variable Pair Lower Upper Variable Pair Lower Upper | Variable Pair Lower Upper
Bound  Bound Bound Bound Bound Bound
EuroSTOXX50.INDU 0.318 0.482 OBX.NOGVB5Y 0.062 0.202 | OMXS30.CSIBBB -0.0717 0.0425
EuroSTOXX50.0MXS30 0.546 0.718 DEGVB5Y.NOGVB5Y 0.278 0.431 OMXC20.CSIBBB -0.0752 0.0394
INDU.OMXS30 0.268 0.43 USGVB5Y.NOGVB5Y 0.103 0.245 | OBX.CSIBBB -0.0911 0.0219
EuroSTOXX50.0MXC20 0.377 0.544 SEGVB5Y.NOGVB5Y 0.331 0.485 | DEGVB5Y.CSIBBB -0.111 -0.00122
INDU.OMXC20 0.168 0.323 DKGVB5Y.NOGVB5Y 0.297 0.45 USGVB5Y.CSIBBB -0.0931 0.0202
OMXS30.0MXC20 0.384 0.551 EuroSTOXX50.BASPCAAA -0.0134 0.128 | SEGVB5Y.CSIBBB -0.115 -0.00589
EuroSTOXX50.0BX 0.378 0.544 INDU.BASPCAAA 0.0186 0.163 | DKGVB5Y.CSIBBB -0.0996 0.0114
INDU.OBX 0.194 0.351 OMXS30.BASPCAAA -0.0208 0.12 NOGVB5Y.CSIBBB -0.112 -0.0113
OMXS30.0BX 0.372 0.538 OMXC20.BASPCAAA -0.0685 0.0681 | BASPCAAA.CSIBBB 0.0756 0.2
OMXC20.0BX 0.328 0.492 OBX.BASPCAAA -0.0296 0.111 | CSIA.CSIBBB 0.34 0.433
EuroSTOXX50.DEGVB5Y 0.174 0.329 DEGVB5Y.BASPCAAA 0.0239 0.169 | CSIBB.CSIBBB 0.953 1
INDU.DEGVB5Y 0.0874 0.236 USGVB5Y.BASPCAAA 0.19 0.347 | EuroSTOXX50.CSIBARC -0.377 -0.274
OMXS30.DEGVB5Y 0.154 0.307 SEGVB5Y.BASPCAAA -0.0599 0.077 | INDU.CSIBARC -0.305 -0.192
OMXC20.DEGVB5Y 0.0914 0.24 DKGVB5Y.BASPCAAA 0.0168 0.161 OMXS30.CSIBARC -0.342 -0.235
OBX.DEGVB5Y 0.116 0.267 NOGVB5Y.BASPCAAA -0.126 -0.0015 OMXC20.CSIBARC -0.307 -0.196
EuroSTOXX50.USGVB5Y 0.106 0.256 EuroSTOXX50.CSIA -0.0518 0.0593 | OBX.CSIBARC -0.324 -0.215
INDU.USGVB5Y 0.132 0.285 INDU.CSIA -0.0601 0.0505| DEGVB5Y.CSIBARC -0.314 -0.205
OMXS30.USGVB5Y 0.0906 0.24 OMXS30.CSIA -0.0602 0.05 USGVB5Y.CSIBARC -0.5 -0.413
OMXC20.USGVB5Y 0.05 0.196 OMXC20.CSIA -0.0682 0.0414| SEGVB5Y.CSIBARC -0.29 -0.179
OBX.USGVB5Y 0.0678 0.215 OBX.CSIA -0.0652 0.0448 | DKGVB5Y.CSIBARC -0.299 -0.188
DEGVB5Y.USGVB5Y 0.253 0.412 DEGVB5Y.CSIA -0.0796 0.029 | NOGVB5Y.CSIBARC -0.212 -0.0988
EuroSTOXX50.SEGVB5Y 0.15 0.303 USGVB5Y.CSIA -0.0535 0.0562 | BASPCAAA.CSIBARC -0.246 -0.128
INDU.SEGVB5Y 0.0456 0.191 SEGVB5Y.CSIA -0.0979 0.00805| CSIA.CSIBARC -0.00955 0.0994
OMXS30.SEGVB5Y 0.136 0.288 DKGVB5Y.CSIA -0.0772 0.0318| CSIBB.CSIBARC 0.027 0.144
OMXC20.SEGVB5Y 0.114 0.264 NOGVB5Y.CSIA -0.095 0.00276] CSIBBB.CSIBARC 0.027 0.144
OBX.SEGVB5Y 0.123 0.273 BASPCAAA.CSIA 0.0819 0.201 EuroSTOXX50.BICLB10Y -0.177 -0.0509
DEGVB5Y.SEGVB5Y 0.454 0.621 EuroSTOXX50.CSIBB -0.0751 0.0389 | INDU.BICLB10Y -0.218 -0.0962
USGVB5Y.SEGVB5Y 0.183 0.338 INDU.CSIBB -0.0777 0.0367 | OMXS30.BICLB10Y -0.158 -0.0315
EuroSTOXX50.DKGVB5Y 0.161 0.315 OMXS30.CSIBB -0.0717 0.0425| OMXC20.BICLB10Y -0.136 -0.00619
INDU.DKGVB5Y 0.0772 0.225 OMXC20.CSIBB -0.0752 0.0394| OBX.BICLB10Y -0.142 -0.0138
OMXS30.DKGVB5Y 0.144 0.297 OBX.CSIBB -0.0911 0.0219| DEGVB5Y.BICLB10Y -0.214 -0.0939
OMXC20.DKGVB5Y 0.0918 0.241 DEGVB5Y.CSIBB -0.111 -0.00122 USGVB5Y.BICLB10Y -0.434 -0.341
OBX.DKGVB5Y 0.113 0.263 USGVB5Y.CSIBB -0.0931 0.0202 | SEGVB5Y.BICLB10Y -0.164 -0.0382
DEGVB5Y.DKGVB5Y 0.67 0.843 SEGVB5Y.CSIBB -0.115 -0.00589 DKGVB5Y.BICLB10Y -0.203 -0.0812
USGVB5Y.DKGVB5Y 0.245 0.403 DKGVB5Y.CSIBB -0.0996 0.0114| NOGVB5Y.BICLB10Y -0.103 0.0223
SEGVB5Y.DKGVB5Y 0.473 0.641 NOGVB5Y.CSIBB -0.112 -0.0113| BASPCAAA BICLB10Y -0.177 -0.0522
EuroSTOXX50.NOGVB5Y 0.0994 0.241 BASPCAAA.CSIBB 0.0756 0.2 CSIA.BICLB10Y -0.0223 0.0901
INDU.NOGVB5Y 0.0244 0.161 CSIA.CSIBB 0.34 0.433 | CSIBB.BICLB10Y 0.00203 0.122
OMXS30.NOGVB5Y 0.0878 0.229 EuroSTOXX50.CSIBBB -0.0751 0.0389 | CSIBBB.BICLB10Y 0.00203 0.122
OMXC20.NOGVB5Y 0.0765 0.217 INDU.CSIBBB -0.0777 0.0367 | CSIBARC.BICLB10Y 0.236 0.39
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Table B.2: Spearman’s rho for the data sample of macroeconomic variables.

Variable Pair Lower Upper | Variable Pair Lower Upper | Variable Pair Lower Upper
Bound Bound Bound Bound Bound Bound
EuroSTOXX50.INDU 0.251 0.845 | OBX.NOGVB5Y -0.0669 0.447 | OMXS30.CSIBBB -0.242 0.201
EuroSTOXX50.0MXS30 0.493 1 DEGVB5Y.NOGVB5Y 0.206 0.77 OMXC20.CSIBBB -0.247 0.196
INDU.OMXS30 0.194 0.777 | USGVB5Y.NOGVB5Y -0.0129 0.511 OBX.CSIBBB -0.268 0.171
EuroSTOXX50.0MXC20 0.326 0.935 SEGVB5Y.NOGVB5Y 0.27 0.844 DEGVB5Y.CSIBBB -0.295 0.137
INDU.OMXC20 0.0685 0.628 DKGVB5Y.NOGVB5Y 0.229 0.797 USGVB5Y.CSIBBB -0.269 0.169
OMXS30.0MXC20 0.333 0.943 | EuroSTOXX50.BASPCAAA -0.172 0.341 SEGVB5Y.CSIBBB -0.299 0.131
EuroSTOXX50.0BX 0.327 0.936 | INDU.BASPCAAA -0.127 0.394 | DKGVB5Y.CSIBBB -0.28 0.156
INDU.OBX 0.103 0.669 | OMXS30.BASPCAAA -0.182 0.328 | NOGVB5Y.CSIBBB -0.293 0.123
OMXS30.0BX 0.319 0.927 | OMXC20.BASPCAAA -0.249 0.249 BASPCAAA.CSIBBB -0.0478 0.433
OMXC20.0BX 0.269 0.867 | OBX.BASPCAAA -0.194 0.314 CSIA.CSIBBB 0.236 0.71
EuroSTOXX50.DEGVB5Y 0.0811 0.642 DEGVB5Y.BASPCAAA -0.121 0.4 CSIBB.CSIBBB 0.714 1
INDU.DEGVB5Y -0.0335 0.506 | USGVB5Y.BASPCAAA 0.103 0.667 | EuroSTOXX50.CSIBARC -0.659 -0.252
OMXS30.DEGVB5Y 0.0558 0.612 | SEGVB5Y.BASPCAAA -0.236 0.262 | INDU.CSIBARC -0.561 -0.135
OMXC20.DEGVB5Y -0.0268 0.513 | DKGVB5Y.BASPCAAA -0.13 0.39 OMXS30.CSIBARC -0.614 -0.198
OBX.DEGVB5Y 0.00628 0.552 | NOGVB5Y.BASPCAAA -0.323 0.141 OMXC20.CSIBARC -0.569 -0.144
EuroSTOXX50.USGVB5Y -0.00842 0.536 | EuroSTOXX50.CSIA -0.214 0.225 | OBX.CSIBARC -0.59 -0.17
INDU.USGVB5Y 0.0232 0.574 | INDU.CSIA -0.224 0.212 | DEGVB5Y.CSIBARC -0.577 -0.155
OMXS30.USGVB5Y -0.0295 0.511 OMXS30.CSIA -0.224 0.212 USGVB5Y.CSIBARC -0.801 -0.423
OMXC20.USGVB5Y -0.085 0.445 | OMXC20.CSIA -0.236 0.199 | SEGVB5Y.CSIBARC -0.548 -0.122
OBX.USGVB5Y -0.0596 0.475 | OBX.CSIA -0.231 0.204 | DKGVB5Y.CSIBARC -0.555 -0.128
DEGVB5Y.USGVB5Y 0.18 0.759 | DEGVB5Y.CSIA -0.249 0.181 NOGVB5Y.CSIBARC -0.436 -0.00357
EuroSTOXX50.SEGVB5Y 0.0481 0.601 | USGVB5Y.CSIA -0.217 0.22 BASPCAAA.CSIBARC -0.486 -0.0446
INDU.SEGVB5Y -0.0908 0.436 | SEGVB5Y.CSIA -0.274 0.151 CSIA.CSIBARC -0.158 0.283
OMXS30.SEGVB5Y 0.031 0.58 DKGVB5Y.CSIA -0.246 0.185 CSIBB.CSIBARC -0.112 0.348
OMXC20.SEGVB5Y 0.00394 0.548 | NOGVB5Y.CSIA -0.266 0.145 | CSIBBB.CSIBARC -0.112 0.348
OBX.SEGVB5Y 0.0142 0.56 | BASPCAAA.CSIA -0.0404 0.431 EuroSTOXX50.BICLB10Y -0.402 0.0652
DEGVB5Y.SEGVB5Y 0.404 1 EuroSTOXX50.CSIBB -0.247 0.196 | INDU.BICLB10Y -0.459 -0.00354
USGVB5Y.SEGVB5Y 0.0942 0.655 | INDU.CSIBB -0.249 0.192 | OMXS30.BICLB10Y -0.378 0.094
EuroSTOXX50.DKGVB5Y 0.0619 0.619 OMXS30.CSIBB -0.242 0.201 OMXC20.BICLB10Y -0.345 0.134
INDU.DKGVB5Y -0.0479 0.489 OMXC20.CSIBB -0.247 0.196 OBX.BICLB10Y -0.356 0.122
OMXS30.DKGVB5Y 0.0414 0.594 | OBX.CSIBB -0.268 0.171 DEGVB5Y.BICLB10Y -0.457 -0.00218
OMZXC20.DKGVB5Y -0.0271 0.513 | DEGVB5Y.CSIBB -0.295 0.137 | USGVB5Y.BICLB10Y -0.754 -0.358
OBX.DKGVB5Y 0.000657 0.546 | USGVB5Y.CSIBB -0.269 0.169 | SEGVB5Y.BICLB10Y -0.384 0.0844
DEGVB5Y.DKGVB5Y 0.567 1 SEGVB5Y.CSIBB -0.299 0.131 DKGVB5Y.BICLB10Y -0.44 0.0188
USGVB5Y.DKGVB5Y 0.169 0.746 | DKGVB5Y.CSIBB -0.28 0.156 | NOGVB5Y.BICLB10Y -0.294 0.175
SEGVB5Y.DKGVB5Y 0.421 1 NOGVB5Y.CSIBB -0.293 0.123 | BASPCAAA.BICLB10Y -0.405 0.0617
EuroSTOXX50.NOGVB5Y -0.0172 0.506 | BASPCAAA.CSIBB -0.0478 0.433 CSIA.BICLB10Y -0.175 0.271
INDU.NOGVB5Y -0.119 0.386 | CSIA.CSIBB 0.236 0.71 CSIBB.BICLB10Y -0.144 0.319
OMXS30.NOGVB5Y -0.0323 0.488 | EuroSTOXX50.CSIBBB -0.247 0.196 | CSIBBB.BICLB10Y -0.144 0.319
OMXC20.NOGVB5Y -0.047 0.471 | INDU.CSIBBB -0.249 0.192 | CSIBARC.BICLB10Y 0.161 0.728
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Table B.3: Blomqvist’s beta for the data sample of macroeconomic variables.

Variable Pair Lower Upper | Variable Pair Lower Upper | Variable Pair Lower Upper
Bound Bound Bound Bound Bound Bound
EuroSTOXX50.INDU 0.335 0.406 | OBX.NOGVB5Y -0.304 -0.23 | OMXS30.CSIBBB -0.0657 0.0111
EuroSTOXX50.0MXS30 0.603 0.663 DEGVB5Y.NOGVB5Y -0.115 -0.0382 | OMXC20.CSIBBB -0.0657 0.0111
INDU.OMXS30 0.416 0.485 USGVB5Y.NOGVB5Y 0.338 0.409 OBX.CSIBBB -0.53 -0.463
EuroSTOXX50.0MXC20 0.377 0.447 SEGVB5Y.NOGVB5Y 0.119 0.194 DEGVB5Y.CSIBBB -0.464 -0.395
INDU.OMXC20 0.213 0.287 DKGVB5Y.NOGVB5Y 0.0961 0.172 USGVB5Y.CSIBBB 0.54 0.603
OMXS30.0MXC20 0.128 0.204 | EuroSTOXX50.BASPCAAA 0.147 0.223 | SEGVB5Y.CSIBBB 0.383 0.453
EuroSTOXX50.0BX 0.196 0.271 | INDU.BASPCAAA 0.101 0.177 | DKGVB5Y.CSIBBB -0.0442 0.0327
INDU.OBX 0.198 0.273 | OMXS30.BASPCAAA 0.102 0.178 | NOGVB5Y.CSIBBB -0.0749 0.00188
OMXS30.0BX 0.119 0.195 OMXC20.BASPCAAA -0.0557 0.0211 | BASPCAAA.CSIBBB -0.117 -0.0405
OMXC20.0BX -0.00265 0.0742 | OBX.BASPCAAA -0.0465 0.0304 | CSIA.CSIBBB -0.117 -0.0405
EuroSTOXX50.DEGVB5Y -0.0342 0.0427 | DEGVB5Y.BASPCAAA -0.0488 0.028 CSIBB.CSIBBB -0.252 -0.177
INDU.DEGVB5Y -0.0626 0.0142 | USGVB5Y.BASPCAAA -0.0488 0.028 | EuroSTOXX50.CSIBARC -0.136 -0.0598
OMXS30.DEGVB5Y -0.0626 0.0142 | SEGVB5Y.BASPCAAA -0.255 -0.18 | INDU.CSIBARC 0.356 0.426
OMXC20.DEGVB5Y -0.328 -0.254 | DKGVB5Y.BASPCAAA -0.104 -0.0274 | OMXS30.CSIBARC 0.0181 0.0949
OBX.DEGVB5Y -0.129 -0.0528| NOGVB5Y.BASPCAAA 0.14 0.216 | OMXC20.CSIBARC -0.0488 0.028
EuroSTOXX50.USGVB5Y 0.296 0.369 EuroSTOXX50.CSIA 0.0706 0.147 OBX.CSIBARC -0.0757 0.00111
INDU.USGVB5Y 0.19 0.265 | INDU.CSIA 0.132 0.208 | DEGVB5Y.CSIBARC -0.0757 0.00111
OMXS30.USGVB5Y 0.227 0.301 OMXS30.CSIA 0.143 0.218 USGVB5Y.CSIBARC -0.285 -0.211
OMXC20.USGVB5Y 0.112 0.188 | OMXC20.CSIA 0.076 0.152 | SEGVB5Y.CSIBARC -0.185 -0.109
OBX.USGVB5Y 0.149 0.225 | OBX.CSIA -0.015 0.0619 | DKGVB5Y.CSIBARC -0.116 -0.039
DEGVB5Y.USGVB5Y 0.0752 0.152 | DEGVB5Y.CSIA -0.045 0.0319 | NOGVB5Y.CSIBARC -0.0719 0.00496
EuroSTOXX50.SEGVB5Y 0.0876 0.164 USGVB5Y.CSIA -0.0534 0.0234 | BASPCAAA.CSIBARC -0.0803 -0.00351
INDU.SEGVB5Y 0.0474 0.124 SEGVB5Y.CSIA -0.0534 0.0234 | CSIA.CSIBARC -0.0803 -0.00351
OMXS30.SEGVB5Y 0.0289 0.106 DKGVB5Y.CSIA -0.252 -0.177 | CSIBB.CSIBARC -0.186 -0.11
OMXC20.SEGVB5Y -0.0388 0.038 | NOGVB5Y.CSIA -0.114 -0.0374 | CSIBBB.CSIBARC -0.0734 0.00342
OBX.SEGVB5Y -0.0388 0.038 | BASPCAAA.CSIA 0.301 0.373 | EuroSTOXX50.BICLB10Y 0.0891 0.165
DEGVB5Y.SEGVB5Y -0.0388 0.038 | EuroSTOXX50.CSIBB 0.53 0.594 | INDU.BICLB10Y 0.093 0.169
USGVB5Y.SEGVB5Y -0.245 -0.17 | INDU.CSIBB 0.754 0.802 | OMXS30.BICLB10Y 0.093 0.169
EuroSTOXX50.DKGVB5Y -0.185 -0.109 | OMXS30.CSIBB 0.333 0.404 OMXC20.BICLB10Y -0.228 -0.153
INDU.DKGVB5Y 0.408 0.477 OMXC20.CSIBB 0.0436 0.12 OBX.BICLB10Y -0.168 -0.0915
OMXS30.DKGVB5Y 0.373 0.443 OBX.CSIBB -0.0711 0.00573| DEGVB5Y.BICLB10Y 0.428 0.497
OMXC20.DKGVB5Y 0.177 0.252 | DEGVB5Y.CSIBB -0.0934  -0.0166 | USGVB5Y.BICLB10Y 0.428 0.497
OBX.DKGVB5Y 0.11 0.186 | USGVB5Y.CSIBB -0.0934  -0.0166 | SEGVB5Y.BICLB10Y -0.0065 0.0703
DEGVB5Y.DKGVB5Y 0.182 0.257 | SEGVB5Y.CSIBB -0.306 -0.232 | DKGVB5Y.BICLB10Y -0.00958 0.0672
USGVB5Y.DKGVB5Y 0.175 0.25 DKGVB5Y.CSIBB -0.189 -0.113 | NOGVB5Y.BICLB10Y 1 1
SEGVB5Y.DKGVB5Y 0.108 0.184 | NOGVB5Y.CSIBB 0.209 0.284 | BASPCAAA.BICLB10Y 0.0174 0.0941
EuroSTOXX50.NOGVB5Y -0.00419 0.0726 | BASPCAAA.CSIBB 0.289 0.361 CSIA.BICLB10Y -0.00727 0.0696
INDU.NOGVB5Y -0.0557 0.0211 | CSIA.CSIBB 0.144 0.22 CSIBB.BICLB10Y 0.0174 0.0941
OMXS30.NOGVB5Y -0.0411 0.0357 | EuroSTOXX50.CSIBBB 0.162 0.237 | CSIBBB.BICLB10Y -0.00727 0.0696
OMXC20.NOGVB5Y -0.0411 0.0357 | INDU.CSIBBB -0.0365 0.0404 | CSIBARC.BICLB10Y 0.282 0.354

C SUPPLEMENTAL THEORY

C.1 Coefficients of Tail Dependence

For many applications, the dependence of extreme events is of particular interest. This type of dependence
is referred to as tail dependence or asymptotic dependence. Consider a random vector X = (X;, X») with
marginals F; and F», the coefficient of lower tail dependence is then defined as the limit of the conditional
probability that X5 is less than or equal to the quantile F; ! (¢) provided that X; is less than or equal to F;'! (g)
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as g approaches 0, i.e.

AL:;%P(XZ <E'(q)1X1 < F'(q)). (C.1)

Conversely, the coefficient of upper tail dependence defined as the limit of the conditional probability that X,
is greater than the quantile F; ! (g) provided that X; is greater than F; ! (¢) as g approaches 1, i.e

Ay = L}RP(XZ >F ' (q)1X: > F' (q)) (C2)

If A1 =0, X; and X, have independent tails; if A € (0, 1], X; and X, have dependent lower tails; and similar for
Ay.

When X has an elliptical distribution, A; and Ay takes a special form. In order to address this case, however,
the notion of regularly varying tails must be introduced.

Definition C.1. A distribution function F is said to have a regularly varying left tail with tail index k if there
exists a number k such that

F(tx)

im = x* for every x > 0.
t—-oco0 F (1)

Similarly, the condition for F to have a regularly varying right tail with tail index k is that there exists a number
k such that
1-F(tx)

im = x¥ for every x > 0. O
t—oo 1—F (1)

Now, if X is assumed to be elliptically distributed with linear correlation coefficient p, it holds that

/2
(m/2—arcsinp) /2

6”2 (cost)*dt

(cos)*dt

Ay = (C.3)

provided that X; and X, are equally distributed and F; (x) has a regularly varying left tail with index —a. For
more information about a proof, the reader is directed to [12]. Due to the symmetry of elliptical distribution it
follows that Ay = A7. Additionally, a special case worth mentioning is when X has a bivariate standard normal
distribution, which leads to the tails of X; and X, being independent,i.e. A; = Ay =0.
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