
Master Thesis : Extreme Value Theroy Applied to
Securitizations Rating Methodology

Tarek Barbouche

March 23, 2017





Sammanfattning

Värdepapperisering är en av dagens finansiella trender. Att utvärdera vär-
depapperisering risk kräver starka kvantitativa kunskaper och en förståelse
för både kredit- och marknadsrisk. För internationell värdepapperisering är
det obligatoriskt att hänsyn tas till valutarisker. Vi kommer att se de olika
metoder för att utvärdera extrema variationer i valutakurser med hjälp av
extremvärdesteori och Monte Carlo-simuleringar.
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Abstract

One of today’s financial trends is securitization. Evaluating Securitization
risk requires some strong quantitative skills and a deep understanding of
both credit and market risk. For international securitization programs it is
mandatory to take into account the exchange-rates-related risks. We will see
the different methods to evaluate extreme variations of the exchange rates
using the Extreme Value Theory and Monte Carlo simulations.

Keywords: Extreme Value Theory, Exchange rates, Block Maxima, Peaks-
over-Threshold, Securitization
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Introduction

Risk management is a very wide and complex field that is at the core of every
financial activity. The importance of this area of expertise is emphasized by
the regulatory framework which is currently at the center of many discussions
and negotiations. As a matter of fact, the Basel committee is shortly going
to publish the new amendments that will constitute Basel 4 and that will
strongly impact all financial institutions and will without a doubt impact
the European economy. The complexity of risk management relies on the
combination of very advanced quantitative methods that should always be
combined to a deep qualitative understanding of the market and the notions
that are hidden behind every computation.
Risk analysis is based on estimating extreme losses and covering all kind of
risks. In the following case, we will focus on managing the exchange rate in
the quantitative risk analysis of securitizations (considered as a very specific
credit risk that needs to have its own rating methodology).
In this thesis we will try to analyse how the extreme value theory can be
applied in order to find extreme scenarios for exchange rates. For foreign
transactions we want to find a stressed exchange rate in order to cover the
exchange rates risks.

1



2



Chapter 1

Context and goals

1.1 Preliminaries

As part of my Master Thesis, I integrated a Rating Methodology Team in
a french Investment Bank. This team is responsible for all the Credit Risk
internal methodologies of the Bank. These methodologies require having a
strong quantitative and qualitative knowledge of the Credit Risk. We will fo-
cus on the methodologies concerning Securitizations. There are several kinds
of securitizations in this bank (e.g. Trade Receivables, Auto Loan/Lease,
Dealer Floor Plan, Consumer Loan ...). We will focus on the Trade Receiv-
ables that represents almost half of the securitization activity and is the only
one where the Bank has to take some exchange rates risk. An Investment
Bank can take equity risks (or sometimes mezzanine risks) for Trade Receiv-
able Securitization Transactions. These operations are generally off balance-
sheet from the seller’s standpoint. Thus this part of the portfolio presents
specific securitization transactions risks. In the current portfolio, there are
several currencies: USD, GBP, AUD, DKK, SEK and NOK. To convert all
of them in EUR, the FX rate at the calculation date is stressed with an
AA scenario. We are interested in the estimation of an "extreme" 99,985%
percentile of the FX rate for several horizons (from one to twelve months),
using a 17 year historical data base (from 03/01/1999 to 31/07/2016). The
daily FX rates values are directly taken from the website www.quandl.com
[2]. The percentile we are trying to estimate is extremely high, that is why
we have to be cautious in our choices in modeling the variations of the FX
rates.

1.2 Description of the Data

In order to study the variations of the FX-rates we need to find the historical
variations. Based on the history of one FX-rate EUR/CUR (where CUR is
any other currency), we will distinguish the daily variations and variations
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over longer periods (1 to 12 months). From now on we will let Xi denote
the EUR/CUR FX rate’s value for day "i", V n

i the relative variation over n
months at day "i" and Vi the log-return over 1 day at day "i" (here CUR
designs any of the considered currencies). We have the following formulas:

Vi = ln

(
Xi+1

Xi

)

V n
i = ln

(
Xi−30∗n
Xi

)
We took these formulas so that when V n

i is high this means the domestic
currency (EUR) is devalued. That will allow us, once we have modeled V n

i

to take the 99.985% percentile to estimate the worst relative variation of the
FX-rate. For Vi, we start at day 2 and we compute all the variations possible
with the extracted data. We notice that the variation over a non-working
day (week-ends or holidays) is automatically 0. These values are predictable
and they may bias the results (if they are not removed that would mean that
almost one third of the data would be zeros). On top of that, removing the
zeros is being more conservative in the simulations (by simulating 30 days
over one month we allow the FX rate to decrease every day even during the
non-working days of the month).

1.3 Main goal

We want to find an extreme percentile for the V n
i so we will try to fit classical

statistical models and to apply the Extreme Values Theory. We will also try
to fit classical statistical models to the one day variations and then generate
randomly millions of days to create variations over n months and then take
an empirical percentile over a sufficient amount of data. Once we have a
0.99985 percentile that we will call Q. The stress factor is given by 1-Q.
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Chapter 2

Mathematical Background

2.1 Classical distributions

The distributions detailed in this part are distribution that have been tested
to fit the daily variations of the FX-rates.

2.1.1 Normal Distribution

It is the most common probability distribution. It is entirely determined by
its mean and standard deviation. It is often used to model financial random
variables but it has a very light tail so it is not exactly the best to model
extreme values. It has the following PDF :

1√
2σ2π

exp

(
−(x− µ)2

2σ2

)

And the following CDF:

1

2

[
1 + erf

(
x− µ√

2σ

)]
Where erf is is the "error function":

erf(z) =
2√
π

∫ z

0
e−t

2
dt
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Figure 2.1: Plot of Normal PDF

Figure 2.2: Plot of Normal CDF

2.1.2 Log-normal Distribution

It is a continuous probability distribution of a random variable whose loga-
rithm is normally distributed. So if X is log-normally distributed then ln(X)
has a normal distribution of mean µ and standard deviation σ.
It has the following PDF:

1

xσ
√

2π
exp

(
− ln(x− µ)2

2σ2

)

And the following CDF:

1

2

[
1 + erf

(
ln(x− µ)√

2σ

)]
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Figure 2.3: Plot of Log Normal PDF

Figure 2.4: Plot of Log Normal CDF

2.1.3 Laplace Distribution

It is sometimes called the double exponential distribution1. It is determined
by the location parameter µ and the scale parameter b > 0. It has the

1[9] p.19 7



following PDF:
1

2b
exp

(
−|x− µ|

b

)
And the following CDF:

1
2exp

(
x−µ
b

)
ifx < µ

1− 1
2exp

(
−x−µ

b

)
ifx ≥ µ

[7]

Figure 2.5: Plot of Laplace PDF

Figure 2.6: Plot of Laplace CDF
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2.1.4 Student t Distribution

The larger the sample size gets the closer to the normal distribution the Stu-
dent’s t distribution gets. The t-distribution is symmetric and bell-shaped
but has heavier tails than the normal distribution. That is why it is in-
teresting to take it into account in our studies because it is more likely to
producing values that fall far from its mean. The standard Student’s t is
only determined by ν > 0 the number of degrees of freedom but we define
non-standardized Student’s t-distributions by: The Standard Student’s t has
the following PDF:

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
x2

ν

)− ν+1
2

And the following CDF:

F (t) = 1− 1

2
Ix(t)

(
ν

2
,
1

2

)

Figure 2.7: Plot of Student PDF
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Figure 2.8: Plot of Student CDF

2.1.5 Cauchy Distribution

The Cauchy distribution is particular since it does not have finite moments
since it has no moment generating function. It is nonetheless a stable dis-
tribution and has probability density function that can easily be expressed
analytically. It is determined by its location x0 and its scale γ > 0. It has
the following PDF:

1

πγ

[
1 +

(
x−x0
γ

)2]
And the following CDF:

1

π
arctan

(
x− x0
γ

)
+

1

2
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Figure 2.9: Plot of Cauchy PDF

Figure 2.10: Plot of Cauchy CDF

2.1.6 Hyperbolic Distribution

The hyperbolic distribution2 is a continuous probability distribution charac-
terized by the logarithm of the probability density function being a hyper-
bola. Thus the distribution decreases exponentially, which is more slowly
than the normal distribution (i.e. heavier tails). It is defined by 4 parame-
ters:

• Location parameter: usually denoted by µ

• Parameter of tail: usually denoted by α.

• Asymmetry parameter: generally denoted by β.
2[7]
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• Scale parameter: generally represented by δ.

These parameters are real: valued, provided that α > |β|. It has the following
PDF:

γ

2δαK1(γδ)
exp

(
−α
√

(x− µ)2 + δ2 + β(x− µ)

)
Where Kλ is Bessel’s function of second kind and γ =

√
α2 − β2

Figure 2.11: Plot of Hyperbolic PDF and CDF
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2.2 Goodness-of-fit tests and Information Criteria

2.2.1 Kolmogorov-Smirnov Test

Kolmogorov-Smirnov Test3 is a non-parametric test of the equality of con-
tinuous one-dimensional probability distribution. It quantifies the distance
between the empirical distribution function of a sample and the cumula-
tive distribution function of the reference distribution. The statistic that is
computed in this test is:

Dn = sup |Fn(x)− F (x)|

If this distance is greater than a specific threshold (given by Kolmogorov
tables and depending on sample sizes) we will refuse the hypothesis that
the two distributions are equal. In the computations we are given a p-
value that represents the probability that Dn is smaller than the matching
threshold. If the p-value is less than 0.05 we reject the hypothesis that the
two distributions are equal. When the p-value is greater than 0.05 we will
assume that there is reasonable doubt in admitting the hypothesis. The
choice of 0.05 is classical in statistical testing and it is most of the time the
convention used is statistical modeling. We can visualize the statistic Dn in
the following graph.

Figure 2.12: Example of the Kolmogorov-Smirnov distance

3[14],p.731
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2.2.2 Anderson-Darling Test

The Anderson-Darling test4 is also based on the empirical distribution func-
tion. Similarly to the Kolmogorov-Smirnov test it quantifies the distance
between the empirical distribution of the data and the theoretical cumula-
tive distribution function that is tested. It is based on the distance

A = n

∫ ∞
−∞

(Fn(x)− F (x))2ω(x) dF (x)

with ω(x) = [F (x)(1−F (x))]−1 that is a weighing function that places more
weight on observations in the tails of the distributions. This is interesting
in our case since we are interested in modeling extreme values. The statistic
actually computed is an estimation of A2 = −N − S where :

S =
N∑
i=1

2i− 1

N
(ln(F (Yi)) + ln((1− F (YN+1−i)))

and N is the number of observations in the tested dataset and F is the
theoretical cumulative distribution function of the tested distribution. Once
this statistic computed the reasoning in order to say if the model is approved
is similar to the one described in the Kolmogorov-Smirnov test. A p-value
over 0.05 will be accepted.

2.2.3 Cramer Von Mises Test

This test is very similar to Anderson-Darling’s test because it is based on
the same distance but with a different weighing function. This time we take
ω(x) = 1 . The distance becomes:∫ ∞

−∞
(Fn(x)− F (x))2 dF (x)

but the statistic actually computed in the test is:

T = nω2 =
1

12n
+

n∑
i=1

[
2i− 1

2n
− F (xi)

]2
Once this statistic computed the reasoning in order to say if the model is
approved is similar to the one described in the Kolmogorov-Smirnov test. A
p-value over 0.05 will be accepted.

2.2.4 Maximum Likelihood Estimation

Definition of the Likelihood

The likelihood is a criterion that is very commonly taken into account in
order to compare a theoretical model with an empirical data set. A likelihood

4[14],p.731
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function L(a) is the probability or probability density for the occurrence of
a sample configuration x1, ..., xn given that the probability density f(x; a)
with parameter a is known, then L(a) = f(x1; a)...f(xn; a).

Parameter estimation

MLE is choosing a vector of parameters which maximize the Likelihood L
(or more often ln(L)). This allows us to choose (among all models possible
for a given family) the closest one to the empirical data (in terms of PDF
and CDF). The optimization method most commonly used is Nelder-Mead’s
algorithm. It is a non-linear, multi-dimensional method based on simplex
theory.

2.2.5 Akaike Information Criterion (AIC)

The Akaike information criterion (AIC) is a measure of the relative quality
of statistical models for a given set of data. Given a collection of models
for the data, AIC estimates the quality of each model, relative to each of
the other models. The model with the lowest AIC is preferred Let L be the
maximum value of the likelihood function for the model; let k be the number
of estimated parameters in the model. Then the AIC value of the model is
the following :

AIC = 2k − 2ln(L)

([4], p.268)

2.2.6 Bayesian Information Criterion (BIC)

In statistics, the Bayesian information criterion (BIC) or Schwarz criterion
(also SBC, SBIC) is a criterion for model selection among a finite set of
models; the model with the lowest BIC is preferred. It is based, in part,
on the likelihood function and it is closely related to the Akaike information
criterion (AIC). Let L be the maximum value of the likelihood function for
the model; let n be the number of observations in the data set. Then the
BIC value of the model is the following :

BIC = kln(n)− 2ln(L)

([4], p.275)

Extreme Value Theory Reasoning

Two important results from Extreme Values Theory are the limit distribu-
tions of a series of block maxima (BM) and of excesses over a threshold,
called "peaks over threshold" (POT), given that the distributions are non-
degenerate and the sample is independent and identically distributed.
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2.3 Block Maxima

2.3.1 Main result

The following result is one of the most important theorem in extreme value
theory. LetMn denote the distribution of the maximum of a size n subsample
of (Xn) a sequence of i.i.d random variable. Learning more about the Mn

distribution would give substantial information about the extreme values of
(Xn).

Theorem 2.1 ([8], p.4)

"Let (Xn) be a sequence of i.i.d. random variables. If there
exist constants cn > 0, dn ∈ R and some non-degenerate distri-
bution function H such that

Mn − dn
cn

→ H

then H belongs to one of the three standard extreme value distri-
butions:

Frechet: Φα(x) =

{
0 ifx ≤ 0

e−x
−α

ifx > 0
α > 0,

Weibull : Ψα(x) =

{
e−(−x)

α
ifx ≤ 0

1 ifx > 0
α > 0,

Gumbel : Λ(x) = e−e
−x
, x ∈ R"

Figure 2.13: Plot of Frechet, Weibul and Gumbel density functions

2.3.2 Interpretation

In practice we will use this results slightly differently. Instead of considering
three distinct distribution families we will gather them into one more general
family. The main idea is to take several equally sized blocks in the dataset
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and to keep only one value for each block. The value we will keep is the
maximum of the block in order to model extreme values. The size of the
blocks is to be determined carefully. As a matter of fact taking blocks that
contain a lot of value will leave few observations for modeling the maxima (we
divide the number of observations by the size of the blocks). On the contrary
taking small blocks will probably lead to value that are not extreme and thus
alter the modeling. Once the blocks done we can model the distribution of
the maxima by a Generalized Extreme Value (GEV) distribution. The GEV
distribution is determined by 3 parameters, the location µ, the scale σ and
the shape ξ. We define the function:

t(x) =


(
1 +

(
x−µ
σ

)
ξ
)− 1

ξ ifξ 6= 0

e−
(x−µ)
σ ifξ = 0

Then the GEV has the PDF:

1

σ
t(x)ξ+1e−t(x)

And the CDF:
e−t(x)

17



Figure 2.14: Plot of GEV PDF

2.3.3 Choice of the Block Size

The hardest part in this model is to select the block size. As a matter of
fact taking blocks that contain a lot of value will leave few observations for
modeling the maxima (we divide the number of observations by the size of
the blocks). On the contrary taking small blocks will probably lead to value
that are not extreme and thus alter the modeling. That is why in general the
choice is arbitrary or has a qualitative meaning (in meteorology the blocks
often represent months or years).
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2.4 Peaks-Over-Threshold

2.4.1 Definition

In this model, we focus on values greater than a threshold.

Definition 2.2 "Suppose we have a sequence of i.i.d. obser-
vations X1; ...;Xn, from an unknown distribution function F. We
are interested in excess losses over a high threshold u. Let x0
be the finite or infinite right endpoint of the distribution F. We
define the distribution function of the excesses over the threshold
u by

Fu(x) = P (X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)

for 0 ≤ x < x0 − u. Fu(x) is thus the probability that a loss
exceeds the threshold u by no more than an amount x, given that
the threshold is exceeded."([11], p.2)

Once the threshold chosen, the values above this threshold are generally
modeled by a Generalized Pareto Distribution (GPD). It is commonly used
to model the tails of another distribution. It has three parameters; the
location µ, the scale σ and the shape ξ. We define z = x−µ

σ It has the
following PDF:

1

σ
(1 + ξz)

−( 1
ξ
+1)

And the CDF:
1− (1 + ξz)

− 1
ξ

2.4.2 Choice of the Threshold

The choice of the threshold raises the same questions as the choice of the
blocks’ size in the BM method. If the threshold is too high there will not be
enough values to correctly estimate a model and if the threshold is too low
there will be values that could not be considered as extreme.

"[...]determination of the optimal threshold [...] is in fact re-
lated to the optimal determination of the subsamples size" ([10],
p.48)

That is why in many cases a fixed threshold is set to the 95% percentile of
the empirical distribution that is studied. The Mean Residual Life can also
be used.

Definition 2.3 "Assuming the niteness of the variable mean,
i.e. E[X] < +∞, the mean excess function associated to X is de-
fined as e(u) = E[X − u|X > u], that is, the expected exceedance
of the threshold u given that exceedance occurs."([5],p.7)
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Figure 2.15: Plot of GPD PDF

This mean excess function also known as the mean residual life can be plotted
in order to identify the heaviness of the tail and find the right threshold.
However sometimes it does not give that much information about the correct
threshold to consider.

2.5 Monte-Carlo Simulations

2.5.1 Distribution fitting

The idea is to fit the best distribution among the ones presented in the pre-
vious part to a vector of historical data. Here we call the "best distribution"
the one that will perform best to the three tests developed in the goodness-
of-fit part. So we want the model that has the smallest statistics computed
by the test. For each test we will compare the statistic for every model and
select the model that minimizes the statistic. This could potentially give us
3 models. If a model is chosen for 2 tests or 3 tests then we will consider
that it is the one we will keep. If 3 distinct models are chosen by the tests
it is the one chosen by Anderson-Darling that we keep. The reason why we
prioritize Anderson-Darling over the others is that it focuses on the tails of
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the distributions (unlike Cramer Von Mises) and that Kolmogorov-Smirnov
is computing a regular distance and not a quadratic distance. We are able to
compute these statistics and the p-values thanks to the R package "goftest"
and the functions "ad.test, ks.test and cvm.test". So for each model we will
estimate the parameters by maximum likelihood thanks to the R package
"fitdistrplus" and the function "fitdist" that automatically computes the es-
timations by maximum likelihood. We use the R function gofstat in order to
compute all the statistical test and comparing the values for the 7 models.
We created a R function called BestFit that has for input a numerical vector
of historical data and gives the best model, the estimated parameters and
the 99.985% percentile of the model and the p-values of each test. It also
displays the pdf, cdf, qq-plot and pp-plot thanks to the functions "qqcomp,
cdfcomp and ppcomp". The idea is to use this function to model the 1 day
variations with the purpose of simulating days to deduce as many monthly
variations as required to estimate a very precise percentile.
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Chapter 3

Securitizations : Rating
Methodology

3.1 Trade Receivables securitization

Definition 3.1 "Securitization is the process of pooling various types of debt
– mortgages, car loans, or credit card debt, for example – and packaging that
debt as bonds, pass-through securities, or collateralized mortgage obligations
(CMOs), which are sold to investors.

The principal and interest on the debt underlying the security is paid to
the investors on a regular basis, though the method varies based on the type of
security. Debts backed by mortgages are known as mortgage-backed securities,
while those backed by other types of loans are known as asset-backed secu-
rities." (Dictionary of Financial Terms. Copyright c©2008 Lightbulb Press,
Inc.) [3]

Figure 3.1: Securitization diagram
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In our case the investment bank arranges for its core clients securitization
transactions backed by trade receivables and funded through a sponsored
Asset Backed Commercial Paper (ABCP) conduit on the capital markets.
The interest for the client that provides the pool of debts are to diversify his
financing sources, reduce the costs of his financing and above all to transfer
the risk. In fact, the risk of the debtors defaults is transferred to the Invest-
ment Bank in exchange of a premium or a Credit Discount that is usually
used as a First Reserve in order to partly cover this risk. For each target
rating we have to compute the reserves that the Bank has to put aside in
order to cover the sufficient amount of risk for this rating. The sum of all
reserves is called the credit enhancement. In general the Bank completes
the Credit Discount with a guarantee provided by an insurance company (it
is often part of the banking group in order to keep the risk). For example
we have the diagram in the next figure. We will now see how the reserves

Figure 3.2: Credit enhancement for a AA target rating

are computed in the methodology of some the rating agencies. We keep in
mind that the internal methodology of the Investment Bank at stake here is
slightly different but mainly based on the agencies’ methodologies.

3.2 Methodology for computing the reserves

The credit enhancement is mainly used to know how much the insurance
company has to cover. There are four kind of reserves that we will develop :

• Loss reserve

24



• Dilution reserve

• Yield reserve

• Servicing reserve

We will develop the methodologies of computation of the reserves by the 3
following agencies : Standard & Poors, DBRS and Fitch Ratings. [12] [6]
[13]
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3.2.1 Loss reserve

This reserve is related to the risk that obligors of underlying receivable pool
default (i.e. don’t pay within a contractually determined time frame called
the "Loss Horizon").

Figure 3.3: Benchmarking rating agencies on Loss reserves

3.2.2 Dilution reserve

A dilution is any non-credit-related reduction in the value of a receivable.
Dilution usually occurs where: (i) a credit note is issued from the seller to a
debtor to compensate for a wrongly billed receivable or (ii) for faulty goods;
a discount offer is made to a customer for early payment of invoices; or (iii) a
volume discount provided retrospectively to regular customers. Dilution can
also arise as a result of set-off and provisional pricing used in some commodi-
ties markets. The effects of certain forms of dilution are particularly severe,
since once a credit note has been issued against a securitised receivable, the
value of the related receivable could potentially be reduced to zero.
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Figure 3.4: Benchmarking rating agencies on Dilution reserves

3.2.3 Yield reserve

In every trade receivable transaction, a yield reserve is needed to cover in-
terests which are expected to be born over an assumed stressed amortization
period. Trade receivables are noninterest-bearing assets. Therefore, the dis-
count applied to the receivables that were purchased by the special-purpose
entity (SPE) before amortization is sufficient to cover the increased debt ser-
vicing cost throughout the assumed amortization period for a given scenario.
This cost includes mainly two risks: increase of interest rates and increase
of DSO.
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Figure 3.5: Benchmarking rating agencies on Yield reserves

3.2.4 Servicing reserve

In most transactions the originator acts as the servicer, collecting and admin-
istering the receivables. A servicing agreement typically contains a provision
that the servicer will apply its customary and usual servicing procedures for
securitized receivables in accordance with its own policies and procedures.
The servicing reserve aims at covering servicing expenses incurred in the con-
text of default of the initial servicer and of its replacement by a new servicer.
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Figure 3.6: Benchmarking rating agencies on Servicing reserves

3.3 Stress factor on foreign currencies

The core of this thesis is to manage the exchange rates risks in the com-
putations. The reserves are computed in the currency of the transaction
but the insurance company only gives a guarantee in EUR. On top of that
the reserve is computed now but has to cover the risk after the maturity of
the receivables (in general between 2 and 6 months). The idea is to find a
exchange rate that takes into account a catastrophic scenario between the
day of the computation and the maturity. To do so we will consider a stress
factor which will have to be multiplied to the spot exchange rate at the
computation date. The stress factor is necessarily between 0 and 1. The
smaller the stress factor is the worse the impact would be on the portfolio
(as a matter of fact if the EUR/USD fx-rate is small, the outstanding in
USD will be worth less in EUR). For example for a 2 months stress factor of
0.75 would mean that the outstanding we are interested in could lose 25%
of its value in 2 months in the worst case scenario only due to currency risk.
From now on we will focus on estimating this stress factor.
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Chapter 4

Computations and Results

4.1 Descriptions of the R functions

In order to apply the different methods for estimating a stress factor on the
exchange rates, I have computed some R functions in order to synthesize all
the computations in one main function for each method.

4.1.1 Block Maxima

For the block maxima method we can see in Figure 4.1 the description of
what the function BMgev does. The idea is to enter a historical data set
and a block size and the important output for the Bank is the stress factor
that is computed using the block maxima method. In this case the historical
data is the overlapping log-returns on n months. That is to say :

V n
i = ln

(
Xi−30∗n
Xi

)
The bloc size is the parameter that will somehow determine the level of
extremeness of the study. As described in the Mathematical Background the
Block Maxima method requires to form blocks and only keep the maximum
of each block. The block size denotes the number of elements we keep in
the blocks in this method. In order to simplify the computations we will
form equally sized blocks and the blocks are chosen chronologically and not
randomly (random blocks were tried but the stress factors obtained were
to volatile because of the randomness of the blocks). We could also object
that we are considering overlapping log-returns and hence there could be
redundancy and correlations in the data but taking non-overlapping date
and performing the block maxima method on this basis would lead to severe
lack of data in order to find a GEV model.
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Figure 4.1: Description of the function BMgev

The Figure 4.2 is an example of a computation in R.
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Figure 4.2: Example of BMgev on EUR/USD 2 months log-returns

Choice of the block size

In our project we wanted to see the effect of the block size on the stress factor
we wanted to study and on the parameters estimates’ standard error of the
GEV distribution. We see here that after 30 the outcome starts to lose its
consistency. This is probably caused by the lack of data for too big block
sizes. That is why we choose to keep 30 as block size in all the following
computations.
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Figure 4.3: Stability of the 2 months stress factor depending on the block
size

Figure 4.4: Standard error of the parameters estimates depending on the
block size

4.1.2 Peaks-Over-Threshold

For the Peaks-Over-Threshold method we can see in Figure 4.3 the descrip-
tion of what the function POT does. The idea is to enter a historical data set
and the percentage of data the threshold should eliminate. The important
output for the Bank is the stress factor that is computed using the POT
method. In this case the historical data is also the overlapping log-returns
on n months. That is to say :

V n
i = ln

(
Xi−30∗n
Xi

)
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The threshold is defined by an empirical quantile of the dataset. For example
if the second parameter of the R function is set to 0.85, then we take the
85% empirical percentile as threshold (that is to say that only the higher
15% of the data is kept for modeling the extreme values). The Figure 4.6 is
an example of a computation in R.

Figure 4.5: Description of the function POT
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Figure 4.6: Example of POT on EUR/USD 2 months log-returns

Choice of the threshold

We will consider thresholds u in the form quantile(X,q). We use the R
function gpdFit to estimate the parameters by maximum likelihood. We
slightly modified gpdFit into gpdFitbis that stores the value instead of just
displaying it. All this is synthetized in the function POT that we developed
that takes X and q for inputs and gives the p-values, the 0.99985 percentile
of the model the estimated parameters and the plot of the pdf and cdf.
In our case the mean residual life did not give any conclusive explicit value
for the threshold. As we can see in the Figure 4.7. In order to choose
the threshold we will proceed as in the block sizes choice. We consider the 2
months variations for the EUR/USD and we compute the extreme percentile
computed for several threshold of the form quantile(X,q). We take q in [0.50
; 0.99] (taking more than 50% of the values would mean we are not modeling
extreme values).
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Figure 4.7: Mean residual plot for the 2 months log-returns of EUR/USD

Figure 4.8: Stability of the 2 months EUR/USD stress factor depending on
the threshold

We can see that choosing a threshold as the empirical 85% percentile is
a logical choice and we will keep that for the computations to come.
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Figure 4.9: Standard error of the 2 months EUR/USD parameters estimates
depending on the threshold

4.1.3 Fitting distributions

For the Monte Carlo method the first step is to fit the data on the daily
log-returns, we can see in Figure 4.10 the description of what the function
BestFit does. The idea is to enter a historical data set and the important
output will be the model that fits best to the input data set. The Figure
4.11 is an example of a computation in R.
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Figure 4.10: Description of the function BestFit

4.1.4 Simulations

Using the BestFit

Once we managed to have a sufficiently good fit for the one day variations
we can produce a random walk in order to estimate the variations over n
months. In order to have 1 observation of a variation over n months we will
consider that we need 30*n observations on 1 day. The stress factor is given
by the 0.00015 percentile of the value of :

exp(
30∗n−1∑

1

ln(
Xi+1

Xi
))

The idea is to compute this stress factor a sufficiently large amount of time
and then take the 0.00015 percentile. We programmed the R function SIM-
log(X,n,T) where n is the number of months over which we want to estimate
the stress factor and T is the number of observation we want for the varia-
tions over n months. Now we will try to estimate how many observation we
need in order to have a steady estimation of the stress factor.
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Figure 4.11: Example of BestFit on EUR/USD 1 day log-returns

Using the empirical distribution

We could have exactly the same reasoning but instead of using a theoretical
distribution we would use the empirical distribution. The issue with this
approach is that we do not allow the daily log return simulated to be greater
than the empirical maximum nor being less than the empirical minimum.
This could lead to slightly underestimating the variations and it could be
hard to justify to the regulators.

Using a body-tail model

We could also use a body-tail model in order to approximate the daily log-
returns distribution, this would mean modeling the body of the distribution
by the BestFit function (up to a threshold) and then model the tail of the
distribution by the Peaks-Over-Threshold model.

4.2 Assumption checking

In the models described earlier we have several assumptions to check before
selecting the method that would be better in order to estimate a stress factor
on the FX-rates.
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4.2.1 Independence of the data

One of these assumptions is the independence of the data that is used. It is
essential for the simulations to consider that the 1 day log-returns are inde-
pendent to one another. In order to check this assumption we will compute
the Auto-Correlation Function (ACF) of the historical data set of the daily
log-returns.

Figure 4.12: ACF of the EUR/USD 1 day log-returns

The ACF have been computed for several different FX-rates’ 1 day log-
returns and the result is always similar to the Figure 4.12. This allows us to
consider that the daily variations of the FX-rates are generally independent.
This assumption is also necessary if we want to use the Block Maxima
method. However it is very doubtful that the monthly variations of the
FX-rates are independent. On one hand, if we compare everyday’s FX-rate
with the one 30 days later we will have a lot of data but in general consecu-
tive observations are strongly correlated. One the other hand if we keep only
one variation per month (i.e. one variation for each month) then we have a
significant lack of data in order to use the Block Maxima method.
One solution could be to randomly form the blocks, how ever this makes the
stress factor extremely random. Thus, this solution is not acceptable for a
Bank in general.
The Peaks-Over-Threshold method does not depend on the order of the data
set but having a strong correlation could bias the model.
The two extreme value theory methods describe cannot be properly applied
and used in the Bank’s methodology so we will focus more about the Monte
Carlo method. However in the next section, we will compute the stress fac-
tors given by the extreme value theory methods in order to compare them
to the stress factors given by the Monte Carlo method.
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4.2.2 Robustness of the BestFit function

In order to check that our models are consistent enough and that the identi-
cally distributed assumption is correct we will randomly divide the historical
1 day log-returns into a training set and a test set. It is a common statistical
process to keep 70% of the data for the training set and fit a model. We will
then check that the model can be used to describe the test set. (cf. Figure
4.13)

Figure 4.13: Goodness-of-fit on the test set

There is also an important time dependence when we consider FX-rates,
that is why we could object to the fact that we take randomly the training
set and the test set. That is why we also tested the robustness of the BestFit
function by fitting a distribution with the data as of July 2015 and test that
the data from 2016 still fits the model. (cf. figure 5.9 and 5.10)
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Figure 4.14: BestFit as of 2015

Figure 4.15: Goodness-of-fit on 2016

The P-values on the test set are around 0.68, hence the test set can be
modeled thanks to the BestFit function applied to the training set.
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The P-values on the test set are around 0.22, hence the 2016 data set
can be modeled thanks to the BestFit function applied to the 1999 to 2015
data set.
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4.3 Comparison of the results

We will now compare the extreme value theory methods with one of the 3
Monte Carlo methods we described earlier (one using the empirical distri-
bution, one using a body-tail hybrid distribution and one using the BestFit
function). In order to choose one we will compare the stress factors gener-
ated by each method for the EUR/USD and the EUR/BRL exchange rates.
Choosing USD and BRL would allow us to see how the model reacts to a
quite stable currency (USD) or to a very volatile currency (BRL). On one

Figure 4.16: Comparision of the simulation methods for EUR/USD

hand, can see that the BestFit method and simulating directly out of the
Empirical distribution gives very comparable stress factors. On the other
hand the body-tail model is way too strict, it would be impossible to con-
sider that the EUR/USD exchange rate would be divided by 2 in only 8
months. This would lead to over-conservativeness that would be rejected by
both the Front Office and the regulatory auditing committees. Thus we can
eliminate the body-tail model.

We can see here that the BestFit gives stricter stress factor, but we
have to keep in mind the fact that BRL was a highly unstable currency
(the EUR/BRL exchange rate once dropped of 10% in only one day). The
Empirical distribution gives stress factors not far from the EUR/USD stress
factors. It would be unthinkable to consider that the EUR/USD and the
EUR/BRL have very close risk profiles. Any regulator would consider that
using the Empirical distribution would lead to an underestimation of the
exchange rate risk on any volatile currency. That is why we will chose the
BestFit model over the two others. We will refer to it as the "Simulations"
for all that follows.

45



Figure 4.17: Comparision of the simulation methods for EUR/BRL

We have computed the stress factor given by each method for each ma-
turity from 1 to 12 months.The stress factors are necessarily between 0 and
1. The smaller it is the more conservative we are. We will now display the
stress factors given by the different method for the following exchange rates
: EUR/USD, EUR/SEK and EUR/BRL (Figure 4.18 to 4.20). The dots
in red represent the stress factors that were denied by the statistical tests.
The simulations give results that are quite intuitive. In fact the longer the
period is the higher the variations can be. We can conclude not only that
the Monte Carlo method is the most stable and the one that shows the fewer
flaws but on top of that it is the method that provides the most conservative
results. The validity of the stress factor only depends on the fitting of the
historical data whereas in the other method the choice of the threshold and
of the block sizes matter a lot and it is not always possible to fit the ex-
treme values. Moreover the dependence of the monthly variations is a major
problem in these methods.
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Figure 4.18: Comparision of the methods for EUR/USD

Figure 4.19: Comparision of the methods for EUR/SEK

4.4 Focus on the simulations

4.4.1 Sufficient amount of data

We also had to check if taking a historical data set from 1999 to 2016 was
enough or if we had to dig deeper data and try to extrapolate the EUR
data from previous European currencies such as the French Franc or the
Deutsche Mark. In order to extrapolate the value of the EUR before 1999
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Figure 4.20: Comparision of the methods for EUR/BRL

we take the data from the Website of the Bank of England. The method
they used is detailed in the following link 1 This allows us to have EUR/USD
daily exchange rates from 1975 to 2016. We compare the outcome of the
simulations with this new data set in Figure 4.21. We can see that the
stress factors are very close obtained with the two different data history are
very close and that the one obtained with the FX-rates since 1999 is slightly
more conservative. This shows us that the results are consistent with an
estimation of a deeper data history.

4.4.2 Comparing the outcome for several currencies

We computed the stress factors for each currency for horizons from 1 to 12
months. We display it in the Figure 4.22. We can see that all simulations
have the same behavior. We also notice that this model allows very high
stress factors for extremely volatile FX-rates such as BRL or RUB.

1[1], http://www.bankofengland.co.uk/statistics/pages/iadb/notesiadb/Spot_rates.aspx
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Figure 4.21: Comparision with a deeper history dataset

4.5 Potential methodology improvements

The issue tackled in this document is the problem of univariate modeling of
extreme exchange rates risk scenarios. Nonetheless, several currencies de-
pend on each other. If we take the example of the EUR/DKK exchange
rate, it is almost constant since the creation of the EUR. This means that
the EUR and the DKK values are very strongly correlated. The DKK case is
only one example among several others. So the greatest complement to this
study would be searching for a Multivariate model taking into account all
the correlation effect between all the currencies in the portfolio. Exploring
copula-based methods could lead to very promising results. Taking a time
series approach could also be worth trying, in the cas of EUR related ex-
change rate the historical data is not deep enough to observe seasonality on
monthly variations, and as far as daily variations are concerned we showed
previously that it could be considered as a stationary noise.
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Figure 4.22: Comparision with several currencies
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Conclusion

To conclude, we can see that Extreme Value Theory methods require a lot of
data since they are based on suppressing a very big part of the initial dataset.
For the POT method we only keep 15% of the data and for the Block Maxima
method the dataset size is divided by 30. This can explain the difficulties to
obtain statistical models that are accepted by the statistical tests for these
methods. The Monte-Carlo method is more reliable since it only relies on
the fitting of the largest dataset that we have (the daily log-returns of the
FX-rate). The random simulations give more conservative stress factors than
the EVT methods. That is why in order not to underestimate the risk the
Bank will rather use the Monte-Carlo method that is also more consistent.
We can conclude that EVT is a very powerful tool in the modern statistics
and could be very important in quantitative risk analysis, but they require
a huge amount of data history and their performance to the statistical tests
is not guaranteed.
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