
Hierarchical clustering of market risk models

Ludvig Pucek Viktor Sonebäck
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Abstract

This thesis aims to discern what factors and assumptions are the most important in mar-
ket risk modeling through examining a broad range of models, for different risk measures
(VaR0.01, ES0.01 and ES0.025) and using hierarchical clustering to identify similarities and dis-
similarities between the models. The data used is daily log returns for OMXS30 stock index
and Bloomberg Barclays US aggregate bond index (AGG) from which daily risk estimates
are simulated.

In total, 33 market risk models are included in the study. These models consist of uncon-
ditional variance models (Student’s t distribution, Normal distribution, Historical simulation
and Extreme Value Theory (EVT) with Generalized Pareto Tails (GPD)) and conditional
variance models (ARCH, GARCH, GJR-GARCH and EGARCH). The conditional models
are used in filtered and unfiltered market risk models.

The hierarchical clustering is done for all risk measures and for both time series, and a
comparison is made between VaR0.01 and ES0.025.

The thesis shows that the most important assumption is whether the models have conditional
or unconditional variance. The hierarchy for assumptions then differ depending on time series
and risk measure. For OMXS30, the clusters for VaR0.01 and ES0.025 are the same and the
largest dividing factors for the conditional models are (in descending order):
• Leverage component (EGARCH or GJR-GARCH models) or no leverage component

(GARCH or ARCH)
• Filtered or unfiltered models
• Type of variance model (EGARCH/GJR-GARCH and GARCH/ARCH)

The ES0.01 cluster shows that ES0.01 puts a higher emphasis on normality or non-normality
assumptions in the models.

The similarities in the different clusters are more prominent for OMXS30 than for AGG.
The hierarchical clustering for AGG is also more sensitive to the choice of risk measure. For
AGG the variance models are generally less important and more focus lies in the assumed
distributions in the variance models (normal innovations or student’s t innovations) and the
assumed final log return distribution (Normal, Student’s t, HS or EVT-tails).

In the lowest level clusters, the transition from VaR0.01 to ES0.025 result in a smaller model
disagreement.



Sammanfattning - Hierarkisk klustring av marknadsriskmodeller

Denna uppsats syfte är att utröna vilka faktorer och antaganden som är de viktigaste i
marknadsriskmodellering genom att undersöka en mängd modeller, för riskm̊atten (VaR0.01,
ES0.01 and ES0.025) och genom hierarkisk klustring identifiera likheter och skillnader mellan
modellerna

Datan som används är dagliga log-returns för OMXS30 och Bloomberg Barclays US
aggregate bond index (AGG) fr̊an vilka dagliga riskestimat simuleras.

Totalt används 33 marknadsriskmodeller i denna studie. Dessa modeller best̊ar av mod-
eller med obetingad varians (Student’s t-fördelning, normalfördelning, historisk simulering
och extremevärdeteori med Generalized Pareto svansar i fördelningen (GPD)) och modeller
med betingad varians (ARCH, GARCH, GJR-GARCH och EGARCH). De betingade vari-
ansmodellerna används som filtrerade och ofiltrerade modeller.

Den hierarkiska klustringen görs för alla riskm̊att och för b̊ada tidsserierna. En jämförelse
görs mellan VaR0.01 and ES0.025.

Denna studie visar att det viktigaste antagande är om modellerna har betingad eller obetingad
varians. Sedan skiljer hierarkin gällande vilka antaganden som är viktigast beroende p̊a
tidsserie och riskm̊att. För OMXS30 är klustrena för VaR0.01 och ES0.025 likadana och de
viktigaste faktorerna i modelleringen är (i sjunkande ordning):
• Leverage-komponent (EGARCH or GJR-GARCH models) eller ingen leverage-komponent

(GARCH or ARCH)
• Filtrerad eller ofiltrerad modell
• Typ av variansmodellering (EGARCH/GJR-GARCH and GARCH/ARCH)

Klustret för ES0.01 visar att ES0.01 sätter en större vikt vid antagandet om normalfördelning
eller inte normalfördelning i modellerna.

Likheterna i de olika klustrena är mer framträdande för OMXS30 än för AGG. Klustren för
AGG är även mer känsliga för valet av riskm̊att. För AGG är de olika valen av varians-
modell generellt sett mindre viktiga och fokus ligger istället p̊a den antagna fördelningen
i variansmodellerna (normalfördelade eller Student t-fördelade) och den antagna slutgiltiga
fördelningen (normal, Student’s t, historisk simulering eller EVT).

I de lägsta niv̊aern i klustrena resulterar bytet fr̊an VaR0.01 till ES0.025 i en mindre spridning
mellan modellerna.
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1 Introduction

Over the years there has been an increasing amount of regulation regarding financial institutions.
There are numerous governing documents such as the Basel accords, FRTB (Financial Review
of the Trading Book), IFRS (International Financial Reporting Standards) to only name a few.
Some of these documents have placed limitations on the banking sector regarding minimum
capital requirements. The purpose of these is to make sure that banks are solvent enough to
withstand certain risky events that might occur, with a specified level of probabilistic certainty.
There are standardized models dictated by IFRS9 which provide banks with a capital require-
ment level that is most often high enough that the banks have incentives to construct their own
internal models for risk measurement, since having too much extra capital unused raises capital
costs. During the recent years, these internal models have decreased the amount of required
capital for banks (Sveriges Riksbank, 2015).

The internal quantitative risk models rest upon different assumptions regarding, for example,
volatility modeling or type of probability distribution for the returns. The models are therefore
very varying from the aspect of complexity. These assumptions (or choices in model construction)
cause different levels of disagreement between the models. The level of disagreement can depend
on, for example, the current situation in the market (Danielsson et al., 2016), the characteristics
of the time series in question and/or the choice of risk measure.

A market risk model can be very precise during specific time periods due to numerous factors,
but might be misleading during others, for example during times of financial turmoil. This can
be due to that the models fail to take into account the characteristics of the data. There are
several model assumptions that can cause the model to fail during certain situations (Gibson,
2000). An important note on the subject is that there is no model that has the best performance
for all periods in the time series or across different time series.

Since we generally do not know which model will perform the best, it can be important to
evaluate the level of impact that the different model choices can have on the risk estimation.
This can be done in order to, for example, highlight potential risky and crucial choices in the
modeling which therefore should receive extra focus, or to explain the similarity/dissimilarity
between the model and a benchmark or other models.

The purpose of this thesis is to investigate the similarity of different market risk models and find-
ing key choices in model construction that to a large extent explains the disagreement between
the models. Furthermore, we show how these choices and their impact can differ depending on
the characteristics of the times series and what risk measure that is used. In the latter, the
transition from Value at Risk (1%) to Expected Shortfall (2.5%) and its effects on the subject
is also covered.

In order to fulfill the purpose of this study, the following research question must be answered:

• What assumptions in market risk models have the largest effect on the estimated VaR/ES?

The subject is further explored by answering the following related questions:

• How much of the difference in the estimates can be explained by these assumptions?

• How does the transition from VaR0.01 to ES0.025 affect the impact of these assumptions?

There are numerous different types of market risk models and the possible choices of these must
therefore be restricted; 28 and 33 models are implemented for times series 1 and 2, respectively.
The models are chosen using mainly the literature study and the data analysis in the methodol-
ogy section. This data analysis also explains why there are 28 models for one of the time series
and 33 models for the other.
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The number of possible financial times series that could be used in the analysis is also incalcu-
lable. The analysis is therefore restricted to two times series that have different characteristics,
are well known, and represents two different asset types; equity and bonds. The times series are
OMXS30 and Bloomberg Barclays US Aggregate Bond Index.

Furthermore, the analysis is restricted to the risk measures Value at Risk and Expected Shortfall.
There are several different possible probability levels for VaR and ES that could be used in the
study. The chosen levels are 1% for both risk measures and 2.5% for ES in order for the analysis
to include the effect of the transition from VaR to ES.

The contribution can roughly be divided in two parts. The first part is insights in the different
levels of importance for the choices in market risk model construction and how much of the
disagreement between the models that is explained by these choices and assumptions. This is,
as previously mentioned, done for both VaR and ES, and also for two different times series. Sec-
ondly, a framework for analyzing the similarities/differences between a large number of models
is provided.

This study will hopefully lead to a better understanding of the similarities/differences between
market risk models, and highlight important aspects of the modeling. This will in turn help
banks and other financial institutions to be better able to model their risk exposure. Ultimately
this leads to a safer and more efficient risk management.
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2 Literature Review

This section covers relevant literature that is of importance for this study. The main focus of
the presented literature is the different market risk models and ways to compare these. This
section aims to give an understanding of previous work that has been done in the field and acts
as a foundation for the theoretical framework and the methodology sections.

2.1 Market risk models

In the following two subsections, some of the literature on market risk models is presented. In the
first one, the models have an unconditional variance. In the section thereafter, the conditional
models, such as GARCH are covered.

2.1.1 Unconditional variance models

There are a wide variety of methods to model the marginal distribution and forecast market
risks. The far most commonly used non-parametric method is historical simulation (Danielsson
et al 2016). This method has been questioned because of, for example, the i.i.d. assumption
which causes it to fail many backtests (Alexander and Sheedy, 2008) (Pritsker, 2006).

Other common approaches include fitting the historical data to a probability distribution. The
normal distribution has been widely used for this purpose. However, it has also been disputed
by many due to, for example, its inability of considering the excess kurtosis and skewness that
financial returns often exhibit (Aparicio and Estrada, 1997) (Verhoeven and McAleer, 2004).
This causes a high bias for low level VaR/ES-estimates. Among other distributions that provide
a better fit to the tails is the Student’s t distribution (Lin and Shen, 2006).

Another set of approaches is the extreme value theory (EVT) where you model the tails of the
distribution separately. These methods can be divided into two main categories: Block maxima
and Peaks of threshold (POT). Critique against the block maxima approach is that it is wasteful
of data. However, the POT method utilizes all the extreme value data and is therefore often
preferred (McNeil et al., 2005).

The i.i.d. assumptions that the methods above utilize can be unproblematic for, for example,
insurance and operational risk. For market risk the case is different due to heteroskedasticity
in the form of volatility clustering and more. Marimoutou et al (2009) among others show the
importance of filtering for HS, EVT etc (Marimoutou et al., 2009). Therefore, a number of
methods with conditional variance are discussed in the following sections.

2.1.2 Conditional variance models

Due to the violation of the i.i.d. assumptions for financial returns, conditional variance ap-
proaches are often used as a remedy. The ARCH model was first introduced (Engle, 1982)
and was later followed by GARCH and GARCH-t (Bollerslev, 1987). Several further exten-
sions/variations of GARCH have been proposed. For example, the GJR-GARCH and others
also take into account the possible asymmetry in the ARCH process (Glosten et al., 1993), and
the AR-GARCH considers possible autocorrelation in the time series.

GARCH is one of the most common models to forecast volatility (Danielsson et al., 2016). It
has, however, been criticised for not adequately modeling the tail events. Thus, the Student’s t
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GARCH (GARCH-t) is recommended to accommodate for the leptokurtosis of returns. Further-
more, to account for skewness the skewed generalized student-t is proposed (Harris et al., 2004)
(Bauwens and Laurent, 2005). These GARCH models can be combined with the approaches
covered in the earlier section. One can thus create, for example, a GARCH-filtered EVT model.
Kuester et al (2006) show that some VaR forecasts can be greatly improved by using these
combinations (Kuester et al., 2006). Some models that are highlighted:

• Normal GARCH filtered HS

• Student’s t GARCH filtered HS

• Normal GARCH filtered EVT

• Student’s t GARCH filtered EVT

All these conditional VaR models have substantially greater volatility for the estimates. There-
fore, it could be problematic to adjust the amount of allocated capital reserve (Danielssón and
Morimoto, 2000).

2.2 Methods for comparing market risk models

The focus on the relative output of different models has been a large part of the research on
model risks. The comparison is mainly done in two ways: comparing models with each other, and
comparing models with a benchmark, where the latter is less common. However, the benchmark
approach is used by Alexander & Sarabia (2012) among others. They use a benchmark that is
supposed to represent the knowledge of the authority that is responsible for model risk. They
then compare the models with this benchmark and defines the discrepancy as a model risk.
The drawback with the benchmark approach is that it is heavily dependent on the choice of
benchmark and that it at the same time is difficult to choose this model. Therefore, the other
approach is more common.

The risk ratio is a measure that assesses the model risk in the market by investigating the
disagreement between models (highest estimate divided by the lowest estimate). It is thus not
a measure for a specific model. It was proposed by Danielsson et al (2016), and they show that
the risk ratio is much higher in times of financial distress compared to more normal market
conditions (Danielsson et al., 2016). The measure is naturally sensitive to which and how many
models that are used as inputs. The measure does not assess the individual models, and the
usefulness of the measure in its original form can therefore be discussed. Other approaches
include a method by Kerkhof et al. (2010) where they calculate the distance from a model’s
estimate to the worst-case estimate and defines this as a measure of model risk.
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3 Theoretical Framework

The relevant theory of the study is presented in the following subsections. The times series
models, extreme value theory (EVT) and the risk measures are presented. Lastly, some theory
on unsupervised learning in the form of hierarchical clustering is covered.

3.1 Time series models

3.1.1 AR(p)

A process {Xt, t ∈ Z} is an AR(p) if it is stationary and for every t,

Xt − θ1Xt−1 − ...− θpXt−p = Zt, {Zt} ∼WN(0, σ2).

Where WN(0, σ2) denotes the white noise with mean zero and variance σ2.

3.1.2 ARCH(q)

The ARCH(q) is a time series model for modeling conditional variance. It has the following
construction:

σ2t = c+

q∑
i=1

αiε
2
t−i,

where εt = σtZt and Zt has an assumed probability distribution, often assumed to be N(0, 1)
but can be, for example, Student’s t distributed.

3.1.3 GARCH(p, q)

The GARCH(p, q) process is generalized version of the ARCH(p) process and includes a pa-
rameter for the previous value of σ, meaning that the predicted volatility is conditional on
both the mean process and the variance. The volatility is modeled according to the following
formula:

σ2t = c+

p∑
i=1

αiε
2
t−i +

q∑
j=1

βiσ
2
t−j ,

where εt = σtZt with Zt as i.i.d. c > 0 and αj , βj ≥ 0, j = 1, 2, .... The Zt are often assumed to
be N(0, 1) but can be, for example, Student’s t distributed.

3.1.4 GJR-GARCH(p, q)

The GJR-GARCH(p, q) is an asymmetric version of the GARCH(p, q) model. The volatility is
modeled according to the following formula:

σ2t = c+

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j +

p∑
i=1

I{εt−i<0}γiε
2
t−i,

where I{εt−i<0} is the indicator function. This extra term containing the indicator function
I{εt−i<0} means that negative deviations from the mean are weighted higher than positive ones,
called the leverage parameter.
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3.1.5 EGARCH(p, q)

The exponential GARCH, (EGARCH) model is specified according to the following formula:

log(σ2t ) = c+

p∑
i=1

αilog(σ2t−i) + α0 +

q∑
j=1

βj

(
|εt−j |
σt−j

− E
[
|εt−j |
σt−j

])
+

q∑
j=1

ξj

( εt−j
σt−j

)
where ε = σtZt The Zt are often assumed to be N(0, 1) but can be, for example, Student’s t
distributed. The parameters ξj are the leverage component coefficients. In the GARCH and
GJR-GARCH models there are non-negativity constraints on the parameters αi and βj . In the
EGARCH models however there is no such constraint on the parameters.

3.2 Extreme Value Theory (EVT) - Peaks over threshold (POT)

The peak over threshold (POT) method seeks to determine the distribution of X over a certain
threshold u, in other words we seek to model:

Fu(x) = P (X − u ≤ x |X > u) for x ≥ 0.

Given n observations of I.I.D random variables (X1, . . . , Xn) with common unknown distribution
function F where F has a regularly varying right tail F = P (Xk > x) we can approximate the
excess, Xk − u, distribution over a threshold u with a generalized Pareto distribution (GPD).
The GPD function is given by:

Gγ,β(x) = 1− (1 +
γx

β
)−1/γfor x ≤ 0

where γ > 0 and β > 0.

3.3 Empirical Value at Risk

Let X be the value of a financial portfolio at time 1. Then we have V aRp(X) = F−1L (1−p) where
L = −X/R0, where R0 is the return of the reference instrument. Given a sample of L1, . . . , Ln
of independent copies of L, we get the empirical estimate of V aR as

V̂ aRp(X) = L[np]+1,n,

where L1,n ≥ · · · ≥ Ln,n is the ordered sample and [np] is the integer of np.

3.4 Empirical Expected Shortfall

Expected shortfall at level p of a portfolio with value X at time 1 is given by

ESp(X) =
1

p

∫ p

0
V aRu(X) du

so to get the empirical ES we replace V aRu(X) with its empirical estimator and get

ÊSp(X) =
1

p

∫ p

0
L[np]+1,n du =

1

p

(
[np]∑
k=1

Lk,n
n

+

(
p− [np]

n

)
L[np]+1,n

)
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3.5 Hierarchical clustering

Hierarchical clustering is a method within the area of unsupervised machine learning. It is used
to find subgroups (clusters) of observations in a given data set. The result of the hierarchical
clustering is often presented in a dendrogram which is a tree-like visual representation of the
observations and their similarities. Hierarchical clustering requires no pre-specified number of
clusters as, for example, K-means clustering does.

Three decisions that affect the result of the clustering are:

• Choice of dissimilarity measure between observations (for example, Euclidean or Manhat-
tan).

• Choice of type of algorithm; agglomerative (bottom up) or divisive (top down).

• Choice of dissimilarity measure between clusters (for example, complete or single linkage).

The choice of dissimilarity measure between the observation is simply how to measure the
distance between two observations.

In an agglomerative hierarchical clustering all the observations start in their own clusters and the
clusters are thereafter recursively merged together at different levels depending on the similarities
between the clusters. If there are N observations then there are N − 1 steps of the merging.
In a divisive hierarchical clustering it is the other way around, all the observations start in the
same cluster and are thereafter split into smaller and smaller clusters until they are all in their
own cluster, thus N − 1 splits.

In order to decide in which order the clusters should be merged/divided a dissimilarity measure
between the clusters is needed. There are several different options but three examples are;
complete, single and average linkage. Complete linkage is used in this study and it defines the
dissimilarity between cluster A and B as:

d(A,B) = max
i∈A,j∈B

di,j .

Where di,j is the distance between observation i in cluster A and j in the cluster B. Thus, the
distance between the clusters is defined as the maximum intergroup dissimilarity.
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4 Method

This section covers the scientific method used in the study. First, the research process is de-
scribed. In the sections thereafter, some important steps of the research process are explained
in more detail. The data analysis for the two chosen time series is presented at the end of the
chapter.

4.1 Research process

The research process can be summarized in four steps:

1. Choosing and implementing the market risk models.

2. For each day of the historical data, estimating the parameters of the models and forecasting
the daily VaR/ES. This is done with a parameter estimation window of 1000 days.

3. Evaluating the difference/similarities between the models and finding key assumptions/model
choices and estimating how much of the total dissimilarity between the models that might
be explained by these choices.

4. Compare the results from step 3 for the different time series and risk measures.

In the first step, the models are chosen using the literature study but also by finding mod-
els that have some similarities with the other models but are different in some aspect of the
modeling. This is done in order to isolate some assumptions/choices, because if all the models
are completely different then it will be problematic to draw any conclusions regarding which of
the assumptions that actually causes the largest part of the dissimilarity between the models’
estimated risk.

In the second step, the models are estimated with historical data and used to forecast the daily
VaR/ES throughout the entire time series. This yields new time series of VaR/ES forecasts for
each of the models.

In the third step, the difference/similarities between the models are evaluated for the two time
series separately. The first part of this step involves unsupervised learning by using hierarchical
clustering in order to provide insights in which models that tend to be different/similar and
also which model assumptions/choices that influence the estimation of the risk measure the
most, thus splitting the models into smaller and smaller clusters. Several choices of the model
construction are then further investigated by analyzing how much of the maximum dissimilarity
that is decreased when excluding a cluster of models.

The fourth step consists of comparing how the results differ depending on which risk measure
and time series that is analyzed.

In the following sections, the steps of the research process are explained further. The chapter
ends with the data analysis for the chosen time series.

4.2 Market risk models

4.2.1 Selected models

The following section describes the models that are implemented in the study. In figure 1 and 2,
all models are presented that are used for time series 1 and 2, with 28 and 33 models respectively.
The reason why there are more models for time series 2 (AGG) is that the data analysis shows
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signs of autocorrelation in returns, meaning that models containing an AR process are added.
The choices in model construction for the models in this thesis are summarized below:

1. Choose a mean process (AR(1) or mean offset).

2. Choose the variance modeling assumption (unconditional or conditional variance)

• If unconditional variance: Choose probability distribution, Normal, Student’s t, Peak
Over Threshold (POT) with Pareto tails, or an empirical distribution using historical
simulation with bootstrapped data.

• If conditional variance: Choose the conditional variance model; ARCH, GARCH,
GJR-GARCH or EGARCH. Then choose if the innovations should have a Student’s
t-distribution or normal distribution.

– If filtration: choose EVT or HS.

Figure 1: Map of the models for time series 1.
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Figure 2: Map of the models for time series 2.

4.2.2 Model descriptions

In figure 1 and 2, the models are divided into three groups and the structure of the models is
described below:

• Unconditional variance: Let yt be the response, which in this thesis is the asset returns.
If the mean is assumed to be unconditional, then:

yt = µ+ εt,

where εt is assumed to follow a Normal, Student’s t or Empirical distribution. It can also
be assumed to follow a Generalized Pareto distribution in the tails and an interpolated
empirical distribution between the tails. If the mean is assumed to be conditional instead
(an AR(1)-process in this case), then:

yt = c+ θyt−1 + εt,

where εt can have the same types of distributions as above. The parameters of the models
are estimated from the historical data in the parameter estimation window of 1000 days
using maximum likelihood.

• Conditional variance - Unfiltered models: Depending on the choice of mean process,
the models follow:

yt = µ+ εt, or

yt = c+ θyt−1 + εt,
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where εt = σtZt, and Zt is either N(0, 1) or t(υ) distributed. The σt:s can in this study
follow four different types of conditional variance models: ARCH(20), GARCH(1,1), GJR-
GARCH(1,1), EGARCH(1,1) which corresponds to the formulas below,

– ARCH(20): σ2t = c+
∑20

i=1 αiε
2
t−i,

– GARCH(1,1): σ2t = c+ αε2t−1 + βσ2t−1,

– GJR-GARCH(1,1): σ2t = c+ αε2t−1 + βσ2t−1 + I{εt−1<0}γε
2
t−1,

– EGARCH(1,1): log(σ2t ) = c+ αlog(σ2t−1) + β

(
|εt−1|
σt−1

− E
[
|εt−1|
σt−1

])
+ ξ
(
εt−1

σt−1

)
.

The parameters of the models are estimated from the historical data in the parameter
estimation window of 1000 days using maximum likelihood.

• Conditional variance - Filtered models: The filtered models have the same structure
as for the Unfiltered models but with one difference. The difference is that when the condi-
tional variance models have been estimated, they are used to infer the historical conditional
volatilities in the parameter estimation window, yielding {σ−t | 1 ≤ t ≤ 1000}. These his-
torical volatilities are then used to create the standardized residuals { ε−t

σ−t
| 1 ≤ t ≤ 1000}

which are then used to estimate the EVT or the empirical distribution. These distributions
are then scaled with the volatility forecast. As previously mentioned, the parameters of
the models are estimated from the historical data in the parameter estimation window of
1000 days using maximum likelihood.

4.3 Estimation of the risk measures

The risk measures can now be estimated using the different fitted distributions for the asset
return. This is done using the Monte Carlo method and calculating the empirical VaR/ES using
the generated samples from the different distributions. Let Fi be the cdf of model i. Draw n
samples, {yi | 1 ≤ i ≤ n}, from Fi. Calculate the estimates of VaR and ES from their empirical
formulas:

V̂ aRp(X) = y∗[np]+1,n,

ÊSp(X) =
1

p

(
[np]∑
k=1

y∗k,n
n

+

(
p− [np]

n

)
y∗[np]+1,n

)
,

where {y∗i | 1 ≤ i ≤ n} is the ordered sample and p is the chosen probability level.

4.4 Clustering analysis and the risk ratio

The market risk models are clustered using agglomerative hierarchical clustering with complete
linkage as the dissimilarity measure with Euclidean distance. The data that is used in the
clustering is all the daily estimates for VaR0.01, ES0.01 and ES0.025. The models are clustered
separately for each risk measure and time series.

The clustering analysis is visualized in a dendrogram that consist of m−1 splits, where m is the
number of models. Starting from the top of the dendrogram, all models are in the same cluster.
Moving down the tree the clusters reduce in size for each split/level. Several of these cluster
levels are analyzed further by calculating the maximum disagreement between the models’ risk
estimates for each day in the time series. This is done using the risk ratio, RR, which is defined
below. Let Mi be the set of models in the cluster at level i and let mj

i ∈ Mi be model j at the
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same cluster level. Also, let ρ(mj
i , k) be the estimated risk (VaR or ES) for model mj

i at day k.
The risk ratio at level i on day k is defined as:

RRki =

max
mj

i∈Mi

ρ(mj
i , k)

min
mj

i∈Mi

ρ(mj
i , k)

,

where the nominator is the worst case estimate and the denominator is the best case estimate.
The complete linkage as dissimilarity measure for the hierarchical clustering is chosen since it
tends to produce clusters that are compact and where the maximum dissimilarity in the cluster
is low (Hastie et al., 2016). Thus, it should be a suitable choice in order to produce clusters
with low risk ratio.

By following this method, more and more of the disagreement between the models is explained
by the splits in the dendrogram. These splits can be viewed as a choice or assumption in
the model construction. Each of the levels in the dendrogram has an empirical distribution
consisting of all the calculated risk ratios for the time series/risk measure in focus. The mean
and standard deviation of these distributions are further analyzed and the decrease in these
moments is summarized, thus showing how much of the model disagreement that is removed by
excluding a cluster of models (e.g. making a choice/assumption in the model construction).

4.5 Comparing VaR0.01 and ES0.025

For both time series used in this thesis, the effects of changing from VaR0.01 to ES0.025 as a
result of new regulations are analyzed. This is done through using the hierarchical clustering
dendrograms stemming from using VaR0.01 as a risk measure, and comparing the risk ratios
that occur when one estimates VaR0.01 and ES0.025. This change in risk estimation is expressed
both in absolute terms (how both VaR0.01 and ES0.025 are estimated for the specific cluster) and
also in relative terms, i.e. how much the risk ratio has changed (in percentage) from VaR0.01 to
ES0.025.

4.6 Data analysis

The data used in this study came from the Nasdaq Nordic and Yahoo Finance. This data
consist of historical prices for the index OMXS30 from 1993-04-02 to 2017-03-20. The bond
index used is Bloomberg Barclays US Aggregate Bond (AGG) with time series from 2003-09-30
to 2017-04-24.

The following part consists of a detailed description and analysis of the stock, bond and currency
data. For each data series the following is presented and analyzed:

• Plot of log-returns

• Histogram of log-returns

• QQ-plot where empirical data is compared to the quantiles of a fitted normal distribution
and a fitted Student’s t-distribution

• Plots of sample autocorrelation function (ACF) and partial autocorrelation function (PACF)

• Plots of ACF and PACF for squared returns

Given the breakdown of the data according to the above plots, a brief description of the impli-
cations is presented.
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4.6.1 Stock return data (OMXS30)

The following is an analysis of the OMXS30 data used in this thesis. We show the returns,
a histogram of returns, the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) for returns as well as squared returns. Furthermore we present a table with
data characteristics such as mean, standard deviation, skewness and kurtosis.

Figure 3: OMXS30. Graph of returns, histogram with a fitted Normal distribution and QQ-plots
against a standard normal distribution and a standard student’s t-distribution with estimated
degrees of freedom.

Data characteristics for OMXS30

Number of days 6019
Mean 0.0003500
Std dev (daily) 0.01467
Skewness 0.02991
Kurtosis 6.876
Excess tails (1%) 1.877 %

Table 1: OMXS30 data table. Excess tails is the percent of actual daily returns falling in the
lowest (1%) percentile of a fitted normal distribution.

From the top left graph of daily log returns we can quite clearly see that the time series does
not just consist of noise. There are clear signs of volatility clustering which occur during crisis
periods. Prime examples are during the IT bubble of late 1990s and early 2000s as well as during
the financial crisis in the period of 2008-2010.

Judging by the look of the histogram of log returns and the data characteristics table we see
clear signs of excess kurtosis in the empirical distribution. Furthermore the empirical tails are
considerably heavier than those of a fitted normal distribution. In the lowest 1-percentile we
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find approximately 1.9% of actual historical returns, indicating that a normal distribution gives
a poor representation of the tails of the actual distribution, even if it is fitted using MLE.

The QQ-plots show that the standard normal distribution fails to take the heavier tails of the
empirical distribution into account, whereas the fitted student’s t-distribution accomplishes this
better. For the t-distribution however, the QQ-plot shows that the tails are over-estimated
compared to the empirical distribution.

Figure 4: OMXS30. Autocorrelation function (ACF) and partial autocorrelation function
(PACF) for the sample of daily log returns, both normal and squared.

From the top graphs, the ACF and PACF of daily log returns, there is no clear signs for any
significant lags, suggesting that there is neither an AR(p) or MA(q) process present in the data.
However, this does not mean that there is there is no autocorrelation present in the sample,
because if we inspect the bottom two graphs, the ACF and PACF for the squared returns, there
is evidently strong signs of autocorrelation. What can be said from these graphs is that, clearly,
previous daily returns have an impact on the size of the following daily returns. This gives
further merit to the occurrence of volatility clusters that are evident in the top left graph of
figure 3, suggesting that the distribution of the data may benefit from being modeled with a
conditional variance model.
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4.6.2 Interest rate return data (Bloomberg Barclays US Aggregate Bond Index)

The following is an analysis of the Bloomberg Barclays US Aggregate Bond Index (AGG) data
used in this thesis. We show the returns, a histogram of returns, the autocorrelation function
(ACF) and the partial autocorrelation function (PACF) for returns as well as squared returns.
Furthermore we present a table with data characteristics such as mean, standard deviation,
skewness and kurtosis.

Figure 5: AGG. Graph of returns, histogram with a fitted Normal distribution and QQ-plots
against a standard normal distribution and a standard student’s t-distribution with estimated
degrees of freedom.

Data characteristics for AGG

Number of days 3415
Mean 0.0001557
Std dev (daily) 0.003010
Skewness -2.882
Kurtosis 94.76
Excess tails (1%) 0.9078 %

Table 2: AGG data table. Excess tails is the percent of actual daily returns falling in the lowest
(1%) percentile of a fitted normal distribution.

From the top left graph of daily log returns it is evident that the data series has rather con-
stant, low, volatility and does not experience any particularly larger volatility clusters. The one
exception would be during late 2008.

Approximately 0.9% of actual historical returns can be found in the lowest 1-percentile, indicat-
ing that a fitted normal distribution gives a rather good representation of the tail’s of the actual
distribution. However, the skewness apparent in the distribution and the very high kurtosis
leads to the argument that a normal distribution is not a very good fit.
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The QQ-plots show that the empirical distribution fits quite well to a standard normal distri-
bution but that the standard normal distribution fails to take the slightly heavier tails of the
empirical distribution into account. The fitted student’s t-distribution accomplishes this better
and shows an overall good fit.

Figure 6: AGG. Autocorrelation function (ACF) and partial autocorrelation function (PACF)
for the sample of daily log returns, both normal and squared.

From the top graphs, the ACF and PACF of daily log returns, there are slight signs of AR(p)
and MA(q) processes being present in the data. However, there is no striking signals that the
process should be modeled as in a certain way. If we inspect the bottom two graphs however,
the ACF and PACF for the squared returns, there are signs of autocorrelation in the in the
squared sample. What can be said from these graphs is that the size of previous daily returns
have an impact on the size of the following daily returns. This slight volatility cluster is not as
evident in the top left graph of Figure 5 as it is in the stock return series. However, this still
suggests that the distribution of the data may benefit from being modeled using a conditional
variance model.
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5 Results

This section contains numerous dendrograms/graphs/tables presenting the breakdown and rela-
tions of the market risk models and their estimates of both VaR and ES at α-level 0.01, and 0.025
for ES. The purpose of the graphs is to present similarities and dissimilarities between models
to determine what choices/assumptions causes the largest disagreement between models.

The result section is divided into two subsections, the first for stock index return data and the
second for bond index return data. These subsections are structured in the following way:

1. Results for VaR0.01.

2. Results for ES0.01.

3. Results for ES0.025.

4. Complementary results for the comparison between VaR0.01 and ES0.025.

Furthermore, the results for nr. 1-3 are each structured in the following way:

a. A dendrogram from the hierarchical clustering containing all the market risk models.

b. Graphs with max/min VaRα or ESα-estimates and the risk ratio for the entire set of models.

c. Table with all the chosen cluster levels and their key figures for the risk ratio.

The result for nr. 4 consists of graphs and a table showing how the risk ratio for ES0.025 would
look compared to VaR0.01 and using the clusters/levels from VaR0.01.

Please note that VaR and ES are calculated from the return distribution instead of the loss
distribution, meaing that VaR and ES are negative in the graphs.
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5.1 Stock return modeling (OMXS30)

In the following section, the graphs and tables are explained in more detail than in the following
sections where the structure and types of graphs are repeated.

5.1.1 VaR0.01

In figure 7, the dendrogram for the hierarchical clustering of the market risk models is presented
for VaR0.01. Thirteen clusters at different levels are further analyzed. The first cluster (at level
1) contains all models. The models are thereafter divided into smaller and smaller clusters.
By inspecting which models fall into the same cluster, one can identify similarities in the con-
struction of the models. These similarities are, if possible, commented in the dendrogram. The
dendrogram thus provides a map from which the similarities and the dissimilarities between
market risk models can be visualised. The arrows in the dendrogram are added in order to more
clearly illustrate that the cluster is further divided into sub-clusters.

At level 1, the models are split into clusters 2 and 3. All models in cluster 3 have unconditional
variance and all models in cluster 2 have a conditional variance. Cluster 3 is not further di-
vided/explored, but one can see that the normal-model has a relatively large dissimilarity with
the other models of that cluster.

Cluster 2 is further divided into clusters 4 and 5. All models in cluster 4 have a leverage
component in their conditional variance model since it only contains models with either a GJR-
GARCH or EGARCH model. In cluster 4, there are only models with ARCH and GARCH as the
conditional variance model, and the lack of a leverage component is thus one of the similarities
in this cluster.

Clusters 4 and 5 are split further into clusters 6 & 7 and 8 & 9, respectively. One of the
differences between cluster 6 and 7 is that cluster 6 only contains models with variance filtering
while cluster 7 contains only unfiltered models. The same branching occurs for cluster 5, with
cluster 8 only containing unfiltered models and cluster 9 only containing filtered models.

Clusters 7 and 8 are not further divided. However, one can see that they could be further
branched first by the volatility specification (EGARCH or GJR-GARCH, ARCH or GARCH).
Lastly, they are split depending on the distribution (Student’s t or Normal).

In the clusters with the filtered models, i.e. clusters 6 and 9, the models are further divided into
the clusters 10 & 11 and 12 & 13, respectively. The similarities in these clusters are that they
all have the same type of variance model (EGARCH or GJR-GARCH, ARCH or GARCH) but
with different distributions or filtration distributions1.

Clusters 10, 11, 12 and 13 differ in which order the final splits are made. Two of them, 11 and
13, first split depending on the choice of HS or EVT. This is compared with clusters 10 and 12
which are further divided by the choice of filtration distribution, Normal or Student’s t. These
are, however, not further explored.

1The ”filtration distribution” is the distribution assumed in the variance model of the filtered models, thus
Normal or Student’s t.
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Figure 7: Clustering of models for VaR0.01.
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Figure 8: Max and Min VaR-estimates for cluster level 1.

In figure 8, the maximum dissimilarity between all models (cluster level 1) is presented in three
different ways. In the first graph, the maximum and minimum VaR0.01 estimates for each day in
the times series are plotted. Note that the model which has the highest/lowest estimate changes
numerous times.

In the second graph, the risk ratio time series for cluster 1 is shown, RR1. It is the quotient
between the maximum and minimum estimates displayed in the first graph. In the third graph,
RR1 is summarized in a histogram which gives an idea of how the risk ratio is distributed. The
mean of RR1 is 1.92 and the standard deviation is 0.52, which is shown in the table 3 below
together with all the sub-clusters. The lowest possible risk ratio is 1 and means that all models
have estimated the risk the same.

In table 3, four key figures and their decrease in percentage is summarized for each cluster level.
Note that the minimum value of the mean, 10-percentile and 90-percentile is 1 and that the
decrease in percentage is adjusted for this fact.

The same graphs as 8 but for the other cluster levels all have the same characteristics but with a
reduction of the key figures of RRi. One exception is, however, for cluster level 3 which contains
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only unconditional variance models. In this cluster, the risk ratio exhibits a much stronger
autocorrelation compared with the other clusters.

The characteristics of the other clusters’ risk ratios are, as mentioned, very similar. Also, there
seems to be little difference in the way the different key figures decrease (e.g. a decrease in the
mean with 85% roughly correspond to a decrease for the other key figures with 85%), but with
the exception of the 10-percentile which has smaller percentage decrease in the early splits of the
dendrogram. The decrease in percentage is declining, where the maximal decrease in the risk
ratio achieved in the first split. Furthermore, all the clusters seem to be affected by financial
turmoil which can be seen in the risk ratio graphs (the middle graphs of the figures) around, for
example, 2008.

The mean at the different chosen cluster levels ranges from 1.92 to 1.06 where the lowest value
corresponds to cluster 11 which contains four different GARCH-filtered models. The standard
deviation ranges from 0.524 to 0.0346, where the lowest value was achieved in cluster 13 which
consists of four EGARCH-filtered models.

Key figures of RR for VaR0.01

Level Prev. level Mean Std. dev. 10-percentile 90-percentile

1 1.9169 0.5236 1.3458 2.6188
2 1 1.3851 (−58.0%) 0.1967 (−62.4%) 1.1845 (−46.7%) 1.6386 (−60.6%)
3 1 1.2142 (−76.6%) 0.0874 (−83.3%) 1.0892 (−74.2%) 1.3168 (−80.4%)
4 2 1.2686 (−70.7%) 0.1423 (−72.8%) 1.1201 (−65.3%) 1.4509 (−72.1%)
5 2 1.2167 (−76.4%) 0.1184 (−77.4%) 1.0899 (−74.0%) 1.3582 (−77.9%)
6 4 1.1722 (−81.2%) 0.1044 (−80.1%) 1.0706 (−79.6%) 1.3007 (−81.4%)
7 4 1.1655 (−82.0%) 0.1042 (−80.1%) 1.0631 (−81.7%) 1.2960 (−81.7%)
8 5 1.1159 (−87.4%) 0.0819 (−84.4%) 1.0378 (−89.1%) 1.2177 (−86.5%)
9 5 1.1396 (−84.8%) 0.0870 (−83.4%) 1.0594 (−82.8%) 1.2378 (−85.3%)
10 6 1.0697 (−92.4%) 0.0521 (−90.0%) 1.0231 (−93.3%) 1.1284 (−92.1%)
11 6 1.0600 (−93.5%) 0.0418 (−92.0%) 1.0178 (−94.9%) 1.1099 (−93.2%)
12 9 1.0718 (−92.2%) 0.0627 (−88.0%) 1.0224 (−93.5%) 1.1293 (−92.0%)
13 9 1.0615 (−93.3%) 0.0346 (−93.4%) 1.0237 (−93.2%) 1.1008 (−93.8%)

Table 3: Figures for the risk ratio distribution for VaR0.01. Decrease from level 1 in percentage
in the parentheses. Note that the minimum value of the mean, 10-percentile and 90-percentile
is 1 and that the decrease in percentage is adjusted for this fact.

In the dendrogram, figure 7, the vertical distance (named height in the figure) roughly corre-
sponds to how much the risk ratio decreases between clusters. For example, when comparing
the dendrogram with table 3 it can be seen that the risk ratio has decreased more in cluster 5
than in cluster 4, and the same holds true when comparing cluster 10 with cluster 11.

All in all, the dendrogram in figure 7 illustrates a hierarchy of importance amongst different
assumptions, and table 3 shows just how much of an effect these assumptions can have on the
spread in risk ratio.
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5.1.2 ES0.01

In figure 9, the dendrogram for the hierarchical clustering of the market risk models is presented
for ES0.01. Eleven clusters at different levels are further analyzed. The first cluster (at level 1)
contains all models.

At level 1, the models are split into the clusters 2 and 3. All models in cluster 2 have un-
conditional variance and all models in cluster 3 have a conditional variance model. Cluster 2
is not further divided/explored, but one can see that the Normal-model has a relatively large
dissimilarity with the other models of that cluster. These splits are very similar to the ones of
VaR0.01.

Cluster 3 is further divided into clusters 4 and 5. The similarities in the clusters are not as clear
as for VaR0.01. Anyhow, one can see that all EGARCH models are placed in cluster 4 together
with the unfiltered conditional variance models with normal distributions.

Clusters 4 is split further into clusters 6 & 7. One of the differences between cluster 6 and 7
is that cluster 6 only contains unfiltered conditional variance models with normal distributions.
Cluster 6 and 7 are not further explored, however, one can see that cluster 6 is further divided
where GARCH and ARCH are placed in the same cluster. In the next split of cluster 7, the
unfiltered models are separated from the filtered.

Cluster 5 is split into clusters 8 & 9, where cluster 9 only contains ARCH models. Cluster 8
contains either GJR-GARCH or GARCH models. This differs from VaR0.01 where GARCH and
ARCH were separated from EGARCH and GJR-GARCH. Cluster 9 is not further explored,
but one can however see that the it is divided by filtered/unfiltered and then which filtration
distribution that is used.

Cluster 8 is split into clusters 10 & 11, where cluster 10 only contains GARCH models, and
cluster 11 only contains GJR-GARCH models. Cluster 10 is then divided by filtered/unfiltered
followed by which filtration distribution that is used. Cluster 11 only contains filtered models
and is further divided by the choice of filtration distribution.
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Figure 9: Clustering of models for ES0.01.
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Figure 10: Max and Min ES-estimates for cluster level 1.

In figure 10, the maximum dissimilarity between all models (cluster level 1) is, as in the previous
section, presented in three different ways. The key figures of the risk ratio at different cluster
levels are summarized in table 4.

All the key ratios at cluster level 1 are larger than the ones for VaR0.01. The mean at the
different chosen cluster levels ranges from 2.15 to 1.05. The standard deviation ranges form 0.65
to 0.055.
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Key figures of RR for ES0.01

Level Prev. level Mean Std. dev. 10-percentile 90-percentile

1 2.1514 0.6503 1.4304 3.0766
2 1 1.3953 (−65.7%) 0.1713 (−73.7%) 1.1705 (−60.4%) 1.6035 (−70.9%)
3 1 1.4475 (−61.1%) 0.2151 (−66.9%) 1.2261 (−47.5%) 1.7306 (−64.8%)
4 3 1.3343 (−71.0%) 0.1792 (−72.4%) 1.1458 (−66.1%) 1.5739 (−72.4%)
5 3 1.2627 (−77.2%) 0.1371 (−78.9%) 1.1273 (−70.4%) 1.4369 (−79.0%)
6 4 1.2027 (−82.4%) 0.1325 (−79.6%) 1.0715 (−83.4%) 1.3699 (−82.2%)
7 4 1.1417 (−87.7%) 0.0832 (−87.2%) 1.0558 (−87.0%) 1.2478 (−88.1%)
8 5 1.1754 (−84.8%) 0.0958 (−85.3%) 1.0765 (−82.2%) 1.2989 (−85.6%)
9 5 1.0924 (−92.0%) 0.0592 (−90.9%) 1.0368 (−91.4%) 1.1621 (−92.2%)
10 8 1.0975 (−91.5%) 0.0568 (−91.3%) 1.0347 (−91.9%) 1.1696 (−91.8%)
11 8 1.0499 (−95.7%) 0.0547 (−91.6%) 1.0152 (−96.5%) 1.0870 (−95.8%)

Table 4: Figures for the risk ratio distribution for ES0.01. Decrease from level 1 in percentage
in the parentheses. Note that the minimum value of the mean, 10-percentile and 90-percentile
is 1 and that the decrease in percentage is adjusted for this fact.

5.1.3 ES0.025

In figure 11, the dendrogram for the hierarchical clustering of the market risk models is presented
for ES0.025. Thirteen clusters at different levels are further analyzed. The first cluster (at level
1) contains all models.

The dendrogram for ES0.025 is very similar to the one of VaR0.01. So, the reader is referred to
section 5.1.1 for descriptions of the similarities in the clusters at the different levels. However,
there is one difference in the lower level splits for the filtered models. For ES0.025, the filtered
models are always separated depending on the filtration distribution, see for example at level
13 where VaR0.01 is divided by HS or EVT and in ES0.025 it is instead divided by the choice of
Normal or Student’s t as a filtration distribution.
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Figure 12: Max and Min ES-estimates for cluster level 1.

In figure 12, the maximum dissimilarity between all models (cluster level 1) is, as in the previous
sections, presented in three different ways. The key figures of the risk ratio at different cluster
levels are summarized in table 5.

The key figures of RR seem to decrease at the same rate, but with the exception of the 10-
percentile which has smaller percentage decrease in the early splits of the dendrogram.

All the key ratios at cluster level 1 are larger than the ones for VaR0.01 but smaller than the
ones corresponding to ES0.025. The mean at the different chosen cluster levels ranges from 1.94
to 1.03. The standard deviation ranges form 0.54 to 0.02.
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Key figures of RR for ES0.025

Level Prev. level Mean Std. dev. 10-percentile 90-percentile

1 1.9401 0.5423 1.3455 2.6848
2 1 1.3791 (−59.7%) 0.1945 (−64.1%) 1.1764 (−48.9%) 1.6361 (−62.2%)
3 1 1.2364 (−74.9%) 0.0940 (−82.7%) 1.1041 (−69.9%) 1.3457 (−79.5%)
4 2 1.2650 (−71.8%) 0.1374 (−74.7%) 1.1189 (−65.6%) 1.4409 (−73.8%)
5 2 1.2121 (−77.4%) 0.1265 (−76.7%) 1.0809 (−76.6%) 1.3678 (−78.2%)
6 4 1.1784 (−81.0%) 0.1076 (−80.2%) 1.0720 (−79.2%) 1.3140 (−81.4%)
7 4 1.1460 (−84.5%) 0.1006 (−81.4%) 1.0509 (−85.3%) 1.2741 (−83.7%)
8 5 1.1253 (−86.7%) 0.0841 (−84.5%) 1.0439 (−87.3%) 1.2308 (−86.3%)
9 5 1.1088 (−88.4%) 0.0821 (−84.9%) 1.0364 (−89.5%) 1.2034 (−87.9%)
10 7 1.0452 (−95.2%) 0.0422 (−92.2%) 1.0150 (−95.7%) 1.0838 (−95.0%)
11 7 1.0395 (−95.8%) 0.0334 (−93.8%) 1.0114 (−96.7%) 1.0731 (−95.7%)
12 9 1.0459 (−95.1%) 0.0568 (−89.5%) 1.0124 (−96.4%) 1.0844 (−95.0%)
13 9 1.0335 (−96.4%) 0.0230 (−95.8%) 1.0111 (−96.8%) 1.0611 (−96.4%)

Table 5: Figures for the risk ratio distribution for ES0.025. Decrease from level 1 in percentage
in the parentheses. Note that the minimum value of the mean, 10-percentile and 90-percentile
is 1 and that the decrease in percentage is adjusted for this fact.
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5.1.4 Comparison between VaR0.01 and ES0.025

The following graphs show the difference in max and min estimates for VaR0.01 and ES0.025 for
specific cluster levels where the clusters are determined according to the VaR0.01 level.

Figure 13: Max and Min VaR0.01 and ES0.025-estimates for cluster level 1.

Figure 13 above shows the risk ratio for VaR0.01 estimation for cluster 1 to the left and for
ES0.025 to the right.

Key takeaways from are that the risk ratios for VaR0.01 and ES0.025 generally look very similar,
but with slight deviations. At the higher cluster levels, dissimilarities are harder to spot, but
at the lower levels, for example clusters 10 and 13 there is a larger dissimilarity. Looking at
the dendrograms corresponding to VaR0.01 and ES0.025, figures 7 and 11 one can see that the
clusters look very much the same. This indicates that the larger spread in RR when ES0.025

is used as a risk measure for the clusters for VaR0.01 does not stem from the models being
more dissimilar than before but rather the way ES0.025 estimates risk. The difference caused by
the choice of risk measure is presented in the table below, table 6 where the mean, standard
deviation, 10-percentile and 90-percentile for the estimation of RR are presented.
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Key figures of RR for ES0.025 compared to VaR0.01

Level Prev. level Mean Std. dev. 10-percentile 90-percentile

1 1.9401 (2.53%) 0.5423 (-3.57%) 1.3455 (-0.01%) 2.6848 (4.08%)
2 1 1.3791 (−1.56%) 0.1945 (−1.15%) 1.1764 (−4.36%) 1.6361 (−0.38%)
3 1 1.2364 (10.40%) 0.0940 (7.56%) 1.1041 (−16.70%) 1.3457 (9.15%)
4 2 1.2650 (−1.33%) 0.1374 (−3.44%) 1.1189 (−1.01%) 1.4409 (−2.2%)
5 2 1.2121 (−2.13%) 0.1265 (6.87%) 1.0809 (−10.00%) 1.3678 (2.68%)
6 4 1.1460 (−15.2%) 0.1006 (−3.57%) 1.0509 (−27.80%) 1.2741 (−8.84%)
7 4 1.1784 (7.81%) 0.1076 (3.28%) 1.0720 (13.97%) 1.3140 (6.11%)
8 5 1.1253 (8.09%) 0.0841 (2.63%) 1.0439 (16.05%) 1.2308 (5.97%)
9 5 1.1088 (−22.03%) 0.08214 (−5.62%) 1.0364 (−38.78%) 1.2034 (−14.44%)
10 6 1.0452 (−35.13%) 0.0422 (−19.00%) 1.0150 (−34.98%) 1.0838 (−34.71%)
11 6 1.0395 (−34.09%) 0.0335 (−19.93%) 1.0114 (−35.74%) 1.0731 (−33.43%)
12 9 1.0459 (−36.06%) 0.0568 (−9.39%) 1.0124 (−44.69%) 1.0844 (−34.74%)
13 9 1.0335 (−45.50%) 0.0230 (−33.56%) 1.0111 (−53.04%) 1.0611 (−39.34%)

Table 6: Figures for the risk ratio distribution for ES0.025 using the clusters from VaR0.01. The
change, in percentage between VaR0.01 and ES0.025 are presented in the parentheses.

For some clusters there is not a large difference in RR, for example clusters 1, 2, 4 and 5.
However, for the other clusters the change from VaR0.01 to ES0.025 seems to have a larger effect.
The more extreme differences occur the further down one goes in the cluster levels, which is
evident in the table above where the change in risk measure has a large effect on the mean RR
for clusters 9, 10, 11, 12 and 13. Generally speaking, the different key figures seem follow the
same pattern where they all have the same sign and are of similar size. The exception to being
of similar size in change is the standard deviation, but the sign (positive or negative) is generally
the same as for the other key figures.
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5.2 Bond index return modeling (AGG)

5.2.1 VaR0.01

The dendrogram for the hierarchical clustering of the market risk models for VaR0.01 is presented
in figure 14. The dendrogram is divided into eleven cluster levels where each cluster level contains
all the models connected to it below. In the case of cluster level 1, it contains all possible
models.

At cluster level 1, the models get split into clusters 2 and 3. All models in cluster 3 have
unconditional variance and all models in cluster 3 have a conditional variance model. All the
models in this cluster are relatively similar but the Normal and Student’s t are the closest
neighbors. However, this cluster is not further explored.

Cluster 2 divides into clusters 4 and 5. Cluster 5 contains only ARCH models while cluster 4
contains the rest of the conditional variance models (GARCH, GJR-GARCH and EGARCH).
Cluster 5 is not further divided into lower levels. However, one can see that the following split
would have been to exclude an outlier from the cluster (AR-ARCH20-t-filtered-HS) and after
that the ARCH models are divided again where all the models that include a normal distribution
are placed in the same cluster.

Cluster 4 divides into clusters 6 and 7, where the dividing factor is that cluster 7 contains
only models based on normal distributions or normal filtration with the exception of GJR-
GARCH-t-filtered-HS. The models in cluster 6 are those that have a non-normal filtration or
final distribution. with the one exception of EGARCH-Normal. One can also note that cluster
7 only contains GJR-GARCH and GARCH models, and not a single EGARCH model.

Cluster 6 splits up into cluster 8 and cluster 9, where cluster 9 contains only EGARCH mod-
els.

Cluster 8 contains all types of GARCH models, but is further divided into clusters 10 and 11,
where the EGARCH models are separated from the GARCH and GJR-GARCH models.

Cluster 10 contains only EGARCH models and gets further split up into two sub-clusters,
each where both models have the same innovations distribution, either Student’s t or normal
distributed. Also, the closest neighbor to AR-EGARCH-t-filtered-HS is the EGARCH-t-filtered-
HS.

Cluster 11 further gets split up, where the two models at the top both have an autoregressive
mean modeling while the bottom four do not. All distributions are also non-normal.

33



1

Unconditional 
variance

Conditional
variance

2
ARCH

5

4

11
9

6

Mainly Non-
Normal

Mainly 
Normal or 
Normal filtr.

7

3

8
10

EGARCH

GJR/GARCH

Figure 14: Clustering of models for VaR0.01.
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Figure 15: Max and Min VaR-estimates for cluster level 1. The y-axis in the Risk Ratio graph
and the x-axis in the risk ratio histogram have both been set to a maximum of 6 to better
illustrate the behavior of RR over time. The actual spike in RR in late 2008 is around 117.

In figure 15, the maximum dissimilarity between all models (cluster level 1) is, as in the previous
sections, presented in three different ways. The key figures of the risk ratio at different cluster
levels are summarized in table 7.

The key figures of RR seem to decrease at roughly the same rate, but with a larger variation
than for OMXS30. Also, the cluster with the unconditional variance models have an outlier for
the risk ratio early in the time series. This outlier was caused by the AR-HS model in the cluster
that naturally reacted much stronger than its neighbors to the large negative return that can
be seen in the data analysis of AGG, figure 5.
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Key figures of RR for VaR0.01

Level Prev. level Mean Std. dev. 10-percentile 90-percentile

1 1.9572 0.6213 1.3937 2.8296
2 1 1.4993 (−47.8%) 0.2101 (−66.2%) 1.2794 (−29.0%) 1.7461 (−59.2%)
3 1 1.2079 (−78.3%) 0.2298 (−63.0%) 1.1058 (−73.1%) 1.2923 (−84.0%)
4 2 1.4108 (−57.1%) 0.1722 (−72.3%) 1.2203 (−44.0%) 1.5982 (−67.3%)
5 2 1.1983 (−79.3%) 0.1304 (−79.0%) 1.0947 (−75.9%) 1.3267 (−82.1%)
6 4 1.3183 (−66.7%) 0.1588 (−74.4%) 1.1545 (−60.8%) 1.5102 (−72.1%)
7 4 1.2664 (−72.2%) 0.1270 (−79.6%) 1.1148 (−70.8%) 1.4177 (−77.2%)
8 6 1.2680 (−72.0%) 0.1435 (−76.9%) 1.1295 (−67.1%) 1.4370 (−76.1%)
9 6 1.1344 (−86.0%) 0.0620 (−90.0%) 1.0629 (−84.0%) 1.2158 (−88.2%)
10 8 1.1085 (−88.7%) 0.0848 (−86.4%) 1.0288 (−92.7%) 1.2218 (−87.9%)
11 8 1.1835 (−80.8%) 0.1069 (−82.8%) 1.0860 (−78.1%) 1.3028 (−83.5%)

Table 7: Figures for the risk ratio distribution for VaR0.01. Total decrease from cluster level 1,
in percentage, are in the parentheses. The numbers exclude all risk ratios above 6 since the large
spike that can be seen in figure 15 is deemed an unlikely outlier and distorts the comparison
presented in the table.

In the dendrogram, figure 14, the vertical distance (named height in the figure) roughly corre-
sponds to how much the risk ratio decreases between clusters. For example, when comparing
the dendrogram with table 7 it can be seen that the risk ratio has decreased more in cluster 7
than in cluster 6, and the same holds true when comparing cluster 7 with cluster 3.

All in all, the dendrogram in figure 14 illustrates a hierarchy of importance amongst different
assumptions, and table 7 shows just how much of an effect these assumptions have on the spread
in risk ratio.
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5.2.2 ES0.01

In figure 16 the dendrogram is presented for the hierarchical clustering of the market risk models
for ES0.01.

At cluster level 1 the models are divided due to the same factor as in previous dendrograms,
conditional or unconditional variance. Cluster 1 splits up into clusters 2 and 3, and in cluster 2
there is evidently a large difference between the normal distributed model and the non-normal
models.

Cluster 3 has a clear split into clusters 4 and 5, where cluster 5 only contains the unfiltered
conditional variance models. This cluster then separates the ARCH-models, which form their
own cluster, from the GARCH models. The EGARCH models end up in the same cluster while
there is a large similarity between the GJR-GARCH and GARCH models which are separated
according to the distribution assumed in the variance modeling (Normal or Student’s t).

Between cluster levels 3 and 4 there is an outlier model, AR-ARCH20-t-filtered-HS, which is
excluded from further analysis since it is a single-model-cluster which naturally causes the risk
ratio to constantly be equal to 1.

Cluster 4 divides into clusters 6 and 7, where cluster contains all filtered ARCH models. This
cluster is further divided according to the assumed distribution in the variance process (Normal
or Student’s t).

Cluster 6 divides into clusters 8 and 9, where cluster 8 only contains EGARCH models and
cluster 9 contains GJR-GARCH and GARCH models. In the same way as in cluster 7, cluster 9
is further divided into smaller clusters according to the distribution in the variance process.

Cluster 8 contains GJR-GARCH and GARCH models and splits into clusters 10 and 11, where
cluster 11 contains only t-filtered models (both GARCH and GJR-GARCH). Cluster 10 contains
only normal filtered models with the exception of GJR-GARCH-t-filtered-HS, which is separated
from the normal filtered models but still in cluster 10. In cluster 10, the normal distributed
models are further divided according to variance model, GJR-GARCH and GARCH models
respectively.

37



2

4

1

Conditional variance Unconditional variance

3
FilteredUnfiltered

5 6

8

1011
97

ARCH

t filtration

GJR/GARCH

Mainly 
Normal 
filtration

EGARCH

Figure 16: Clustering of models for ES0.01.

38



Figure 17: Max and Min ES-estimates for cluster level 1. The y-axis in the Risk Ratio graph
and the x-axis in the risk ratio histogram have both been set to a maximum of 10 to better
illustrate the behavior of RR over time. The actual spike in RR in late 2008 is around 19.

In figure 17, the maximum dissimilarity between all models (cluster level 1) is, as in the previous
sections, presented in three different ways. The key figures of the risk ratio at different cluster
levels are summarized in table 8.

The key figures of RR seem to decrease at roughly the same rate, but with a larger variation
than for the OMXS30. Also, the cluster with the unconditional variance models have an outlier
for the risk ratio early in the time series. This outlier was caused by the AR-HS model in the
cluster that naturally reacted much stronger than its neighbors to the large negative return that
can be seen in the data analysis of AGG, figure 5.

All the key ratios at cluster level 1 are much larger than the ones for VaR0.01. The mean at
the different chosen cluster levels ranges from 2.64 to 1.11. The standard deviation ranges form
1.30 to 0.09.
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Key figures of RR for ES0.01

Level Prev. level Mean Std. dev. 10-percentile 90-percentile

1 2.6380 1.3045 1.5070 4.5394
2 1 1.5413 (−67.0%) 0.2506 (−80.8%) 1.2740 (−46.0%) 1.8660 (−75.5%)
3 1 1.6497 (−60.3%) 0.2576 (−80.3%) 1.3786 (−25.3%) 1.9241 (−73.9%)
4 3 1.3616 (−77.9%) 0.1851 (−85.8%) 1.1757 (−65.4%) 1.6045 (−82.9%)
5 3 1.3992 (−75.6%) 0.2044 (−84.3%) 1.1956 (−61.4%) 1.6599 (−81.3%)
6 4 1.2733 (−83.3%) 0.1484 (−88.6%) 1.1254 (−75.3%) 1.4542 (−87.2%)
7 4 1.0641 (−96.1%) 0.0611 (−95.3%) 1.0202 (−96.0%) 1.1287 (−96.4%)
8 6 1.2014 (−87.7%) 0.1315 (−89.9%) 1.0769 (−84.8%) 1.3598 (−89.8%)
9 6 1.0841 (−94.9%) 0.0666 (−94.9%) 1.0243 (−95.2%) 1.1838 (−94.8%)
10 8 1.1452 (−91.1%) 0.1150 (−91.2%) 1.0423 (−91.7%) 1.2961 (−91.6%)
11 8 1.1123 (−93.1%) 0.0943 (−92.8%) 1.0369 (−92.7%) 1.206 (−94.2%)

Table 8: Figures for the risk ratio distribution for ES0.01. Decrease from the level above in
percentage in the parenthesis. The numbers exclude all risk ratios above 10 since the large spike
that can be seen in figure 17 is deemed an unlikely outlier and distorts the comparison presented
in the table.

There is a rapid decline in each risk ratio key figure from cluster 1 and downwards, most notably
in standard deviation. This decline continues in a somewhat large extent going from cluster 3
to cluster 4 and 5. From this cluster and onwards the changes are not as large.

5.2.3 ES0.025

In figure 18 the dendrogram is presented for the hierarchical clustering for ES0.025.

At cluster level 1 the models are divided into cluster 2 and 3 according to unconditional or
conditional variance modeling, the same way as in previous clusters.

At cluster 2 the ARCH models are separated into their own cluster, while the other conditional
variance models are grouped in cluster 4.

At cluster 4 the models are divided into clusters 6 and 7 according to variance model, EGARCH
and GJR-GARCH/GARCH respectively.

Cluster 6 divides into clusters 8 and 9 where the normal distributed models end up in cluster 9.
Cluster 8 consists of the models that have non-normal distributions in them. Some of the models
have normal distributed innovations in the GARCH processes, but the similarity between them
is that they all have either a Student’s t, HS or EVT distribution assumption.

Cluster 8 further divides into clusters 10 and 11, where the t-filtered models are in cluster 10.
Cluster 11 consists of mainly normal-filtered models with the notable exception of GJR-GARCH-
t-filtered HS. In cluster 11 the models are divided one last time according to the variance model
(GARCH or GJR-GARCH) and in cluster 10 we see the same effect, except that the AR models
are grouped together regardless of one being a GJR-GARCH model and the other a GARCH
model.
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Figure 19: Max and Min ES-estimates for cluster level 1. The y-axis in the Risk Ratio graph and
the x-axis in the risk ratio histogram have both been set to a maximum of 7 to better illustrate
the behavior of RR over time. The actual spike in RR in late 2008 is around 21.

In figure 19, the maximum dissimilarity between all models (cluster level 1) is, as in the previous
sections, presented in three different ways. The key figures of the risk ratio at different cluster
levels are summarized in table 9.

The key figures of RR seem to decrease at roughly the same rate, but with a larger variation
than for OMXS30. Also, the cluster with the unconditional variance models have an outlier for
the risk ratio early in the time series. This outlier was caused by the AR-HS model in the cluster
that naturally reacted much stronger than its neighbors to the large negative return that can
be seen in the data analysis of AGG, figure 5.

All the key ratios at cluster level 1 are larger than the ones for VaR0.01 but smaller than the
ones corresponding to ES0.025. The mean at the different chosen cluster levels ranges from 2.13
to 1.11. The standard deviation ranges form 0.84 to 0.05.
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Key figures of RR for ES0.025

Level Prev. level Mean Std. dev. 10-percentile 90-percentile

1 2.1317 0.84627 1.4072 3.3249
2 1 1.4913 (−56.6%) 0.2015 (−76.2%) 1.2846 (−30.1%) 1.7282 (−68.7%)
3 1 1.2597 (−77.1%) 0.0744 (−91.2%) 1.1870 (−54.1%) 1.3274 (−85.9%)
4 2 1.4063 (−64.1%) 0.1677 (−80.2%) 1.2345 (−42.4%) 1.6027 (−74.1%)
5 2 1.1733 (−84.7%) 0.0815 (−90.4%) 1.0831 (−79.6%) 1.2639 (−88.7%)
6 4 1.3190 (−71.8%) 0.1399 (−83.5%) 1.1783 (−56.2%) 1.4827 (−79.2%)
7 4 1.2135 (−81.1%) 0.0901 (−89.3%) 1.1210 (−70.3%) 1.3534 (−84.8%)
8 6 1.2233 (−80.3%) 0.1265 (−85.1%) 1.1034 (−74.6%) 1.3769 (−83.8%)
9 6 1.0369 (−96.7%) 0.0567 (−93.3%) 1.0031 (−99.2%) 1.0894 (−96.2%)
10 8 1.1658 (−85.2%) 0.0982 (−88.4%) 1.0779 (−80.9%) 1.2612 (−88.8%)
11 8 1.1194 (−89.5%) 0.0993 (−88.3%) 1.0332 (−91.8%) 1.2429 (−89.6%)
12 7 1.1681 (−85.1%) 0.0574 (−93.2%) 1.0999 (−75.5%) 1.2289 (−90.2%)
13 7 1.1128 (−90.0%) 0.0470 (−94.4%) 1.0579 (−85.8%) 1.1766 (−92.4%)

Table 9: Figures for the risk ratio distribution for ES0.025. Decrease from cluster level 1 in the
parentheses. The numbers exclude all risk ratios above 8 since the large spike that can be seen
in figure 19 is deemed an unlikely outlier and distorts the comparison presented in the table.

5.2.4 Comparison between VaR0.01 and ES0.025

The following graphs show the difference in max and min estimates for VaR0.01 and ES0.025 for
specific cluster levels where the clusters are determined according to the VaR0.01 level.

New regulations have come out that dictate the change from VaR0.01 to ES0.025 as a risk measure.
The following section shows the effect this has on the similarities and dissimilarities for the
market risk models used in this thesis through comparing the risk estimate for VaR0.01 and
ES0.025 using the clusters from VaR0.01 as shown in the dendrogram in figure 14.
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Figure 20: Max and Min VaR0.01 and ES0.025-estimates for cluster level 1.

Figure 20 above shows the max min estimations of VaR0.01 and ES0.025 together with risk ratio
and risk ratio histogram.

At cluster level 1, Both RR estimates look very similar throughout the time series, but the
histogram tells a different story. The ES0.025 estimates seem to be more volatile given the larger
tail of the histogram while the VaR0.01 RR estimates are centered more below an RR of 3.
Looking at the middle graphs the Risk Ratio from ES0.025 seems to vary more in size. During
the volatile period of late 2009 until 2013 the ES0.025 RR is generally estimated higher while also
being more volatile. During the period after 2013 they both look the same however. Looking at
the table below, table 10, we find supporting data for the graph. At cluster 1 ES0.025 estimates
a mean of 2.1135 which is 16.33% higher than the VaR0.01-estimate. The standard deviation for
RR1 for ES0.025 is 27.59% higher.
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Key figures of RR for ES0.025 compared to VaR0.01

Level Prev. level Mean Std. dev. 10-percentile 90-percentile

1 2.1135 (16.33%) 0.7927 (27.59%) 1.4067 (3.84%) 3.2630 (26.15%)
2 1 1.4975 (-0.36%) 0.2118 (0.80%) 1.2886 (3.29%) 1.7363 (-1.31%)
3 1 1.2592 (27.37%) 0.0709 (-10.69%) 1.1870 (76.77%) 1.327 (11.93%)
4 2 1.4063 (-1.10%) 0.1677 (-2.62%) 1.2345 (6.41%) 1.6027 (0.75%)
5 2 1.2073 (4.56%) 0.1372 (5.18%) 1.0943 (-0.41%) 1.3538 (8.30%)
6 4 1.3072 (-3.48%) 0.1551 (-2.34%) 1.1568 (1.50%) 1.5021 (-1.60%)
7 4 1.2623 (-1.54%) 0.1145 (-9.80%) 1.1346 (17.30%) 1.3798 (-9.05%)
8 6 1.2347 (-12.42%) 0.1315 (-8.38%) 1.1160 (-10.41%) 1.3859 (-11.70%)
9 6 1.1755 (30.51%) 0.0811 (30.96%) 1.0890 (41.55%) 1.2957 (37.02%)
10 8 1.0725 (-33.11%) 0.0617 (-27.26%) 1.0199 (-30.77%) 1.1590 (-28.30%)
11 8 1.1658 (-9.65%) 0.0982 (-8.12%) 1.0779 (-9.47%) 1.2612 (-13.7%)

Table 10: Figures for the risk ratio distribution for ES0.025 using the clusters from VaR0.01. The
change, in percentage between VaR0.01 and ES0.025 are presented in the parentheses. Due to
outliers in the data where the risk ratio for cluster 1 and VaR0.01 momentarily exceeded 120 in
late 2008, all days with a VaR0.01 risk ratio above 6 were excluded in the comparison.

For some cluster levels, for example levels 2, 4, 5, 6 and 7 there is no significant change in
RR when using ES0.025 as a risk measure. For other clusters there is a notable change in risk
estimates and the spread within the clusters. Most notable is the changes in the risk ratio mean
for RR9 and RR10 where the mean changes with +30.6% and -33.1% respectively. Looking at
the dendrogram in figure 14 cluster 9 contains three models, EGARCH-Normal, EGARCH-t-
filtered-EVT and EGARCH-t.
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6 Discussion

In the following sections, the results and the possible effects the methodology had on the result
are discussed.

6.1 Difference between clusters for OMXS30 and AGG

The clusters for OMXS30 and AGG, with the same risk measures, differ significantly, meaning
that the primary assumptions which have the largest effect on the models also differ. The first
important modeling assumption is, in all clusters, whether the models have an unconditional
variance or a conditional variance. Focusing on the conditional variance part of the dendrograms
we notice that there are large dissimilarities in the clusters that arise for AGG and OMXS30.
For example for the OMXS30 time series, with VaR0.01, we see that the second most important
assumption is whether the conditional variance models have a leverage component or not. A
reason to this might be the large volatility and the many volatility clusters in this time series
where large negative log returns are quite common, meaning that the leverage component be-
comes an important dividing factor. For the AGG time series, we see in the dendrogram in
figure 14 that the second most important assumption is not the leverage component, but rather
whether the models are GARCH-models or ARCH. Very soon after this point, at cluster 4,
the dividing factor is still not about the leverage component, but instead if the models have
a normal distribution or not. The fact that the clustering for AGG and VaR0.01 puts little to
no emphasis on the leverage component probably stems from the characteristics presented in
the data analysis where it is obvious that the bond index time series does not have many large
negative log returns and no significant volatility clustering. The fact that the OMXS30 time
series has a considerably higher degree of volatility and volatility clustering seems to result in a
stronger emphasis on the volatility models in the clusters. The dividing factors are more tilted
towards the models themselves, i.e. if they are filtered or unfiltered, have a leverage component
or not and so on. For AGG it seems that the underlying distribution assumptions are more
important, in general. I.e. if the conditional variance distribution is Student’s t or a Normal, or
if the assumed marginal distribution is Student’s t, Normal, HS or EVT.

Looking at the dendrogram for ES0.01, figures 9 and 16 we find that the first split for OMXS30, at
cluster 3, is not quite clear but that all EGARCH models end up in cluster 4. For AGG however,
the first split occurs regarding filtered or unfiltered models. After this point, both dendrograms
split up depending on variance model, ARCH is excluded while the remaining (GJR-GARCH,
GARCH and EGARCH for AGG and GARCH and GJR-GARCH for OMXS30) fall in the same
cluster. One can see in the dendrograms for ES0.01 that AGG at the final steps divide first
places EGARCH separate from GJR-GARCH and GARCH but that the distributions in the
GJR-GARCH and GARCH models are more important than the variance model itself. For
OMXS30, the variance model type is more important than the distribution, and we see that
the dendrogram clusters the GJR-GARCH models separate from the GARCH models. What
differs between the GJR-GARCH and GARCH models is the leverage term in the GJR-GARCH.
What differs between the GJR-GARCH and the EGARCH is that the EGARCH model has no
constraints on the parameters. It could therefore be argued that the leverage effect is quite
limited for AGG while it has a larger effect for OMX. The effect of unconstrained parameters
in the EGARCH seems to be important for both time series.

Looking at the dendrograms for OMXS30, figures 11 and 18, there are large dissimilarities.
The first split occurs due to leverage component for OMXS30, but for AGG the dendrogram
first separates the ARCH models from the rest. At cluster level 4 for AGG, the separation is
between EGARCH and GJR-GARCH/GARCH, indicating that the unconstrainedness in the
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EGARCH models has a large effect. The GARCH and GJR-GARCH models are then rather
mixed together and one can see that the filtration distributions and final distributions have a
larger impact than the model itself. For OMXS30 the leverage effect has a large impact meaning
that the EGARCH and GJR-GARCH models are clustered together. Then, in both cluster 4
and 5, the dividing factor is if the models are filtered or unfiltered. Lastly, the models are
divided based on variance model. This differs a lot from how the AGG dendrogram separates
at different levels.

6.2 Difference between clusters for the different risk measures

Using VaR0.01 as risk estimate might not take into account the differences in the distribution tails
caused by the dissimilarities between the models. ES0.025 however might capture the dissimilarity
that occurs better, causing the RR to increase substantially as the models now differ more than
before. Looking at the dendrogram in figure 18, EGARCH-Normal and EGARCH-t are still
grouped together, as in cluster 9 in figure 14, but the EGARCH-t-filtered-EVT model has been
separated far away from them. It seems that the filtration procedure has effects which VaR0.01

does not capture well, but ES0.025 manages to.

6.3 The study and choosing a market risk model

The study provides a hierarchy for the different assumptions which the models are based on.
Through the clustering one can see that some seemingly simple models are often clustered
together with more complicated models. This indicates a large similarity between the models
and it could thus be questioned whether the extra complexity is necessary or not. The study
therefore provides information to what assumptions are necessary in the models, and helps to
avoid over complicated models where the added complexity does little to make the model any
different. Two examples are given below.

Some of the most complicated models are the filtered EVT methods, such as the GJR-GARCH-
t-filtered-EVT. In these models, the Generalized Pareto Distribution (GPD) is fitted to the tails
of the standardized residuals of the historical data. In this method there are many assumptions
and parameters which therefore increases the risk in the model estimation. For example, the
choice of the threshold u can have a large effect on the estimated distribution. If u is chosen to
be too small, then there will be too few data points for the estimation, and if the u is chosen
to be too large, then ”non-extreme” observations will affect the estimation of the tails of the
distribution. So using the cluster (for OMXS30 VaR0.01, for example) and the risk ratio of
that level, one could therefore argue that the cluster neighbor GJR-GARCH-t-filtered-HS is a
suitable replacement, with a possibility of an added margin. This would reduce the complexity
and the number of parameters that are to be estimated.

A similar argument could be made for replacing the GJR-GARCH-filtered-EVT with the GJR-
GARCH-t for AGG with the risk measures VaR0.01 or ES0.025. This replacement would reduce
the complexity even more than before since the entire step with the standardization of the
residuals is also removed.

6.4 The methodology’s impact on the result

In the following sections some examples regarding how the result could have been affected by
the chosen methodology are described.
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6.4.1 Risk ratio

The risk ratio was chosen as a measure to describe the intra-cluster dissimilarity. This measure
is, as mentioned, a measure of the maximum dissimilarity in the cluster and does not consider
how the spread of the other models than the models with the maximum and minimum estimate
behave. If another measure would have been chosen, then it might have altered how much of
the model disagreement that is explained by each split/exclusion.

6.4.2 The dissimilarity measure of the hierarchical clustering and its effect on the
clustering

The complete linkage measure was chosen in the hierarchical clustering algorithm since it pro-
duces clusters where the maximum dissimilarity is low. Therefore it can be argued that it is a
suitable choice due to its connection to the risk ratio. However, complete linkage can produce
clusters where a member of a cluster actually is more similar to members of other clusters than
its own which questions this choice of dissimilarity measure if one was to choose something other
than the risk ratio to measure the intra cluster similarity.

6.4.3 Time horizon

The time period used for parameter estimation in this thesis is 1000 days for all models. Using
a different number of days might yield a different result than presented in this thesis, and may
affect the models to a different extent. For example, the GARCH-based models should be much
more insensitive to the parameter estimation windows than the unconditional variance models
such as Normal distribution, Student’s t, Historical Simulation (HS) or Extreme Value Theory
(EVT). This stems from the fact that the GARCH-models put more emphasis on recent events
while the static distributions do not. A clear sign of this is in cluster 3 where the max and
min estimates fall sharply at the end of 2008, only to rise sharply in 2013, 1000 after a larger
negative return. In the same figure, but cluster 2, we see that the GARCH-models are much
more responsive to recent events and is less affected by a momentary large shock in the returns.
Changing the parameter estimation time window to 500 would mean that the max and min
estimates for cluster 3 would rise back up after only 500 days instead of 1000, significantly
altering the risk ratio histogram.

As can be seen from the middle graph in figure, for example, 17 the overall risk ratio varies
quite a bit from the beginning of the time series until the beginning of 2013. After this point
the risk ratio is more steady and remain relatively low in comparison to the earlier time period.
The earlier high volatility is reflected in the risk ratio histogram through the distribution having
a long and heavy tail. The bulk of the distribution is located at a risk ratio below 3, where
the majority lies even below 2. If this study were done with the same time series, but starting
at 2013 the histogram and risk ratio would look very different. This high volatility is further
reflected in table 8, where the standard deviation for RR at cluster 1 is as high as 1.3045. As
soon as one goes further into the dendrogram, into cluster level 2 or 3, the difference between
the models with conditional variance and those with unconditional variance becomes clearer.
The high volatility in the time series at the end of 2008 creates a large difference between how
the different model groups estimate ES, and eliminating this difference and focusing on the
models that have the same variance modeling yields a much lower standard deviation in risk
ratio, 0.2506 and 0.2576 for clusters 2 and 3 respectively.
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6.4.4 Model choices

The result could have been partly changed if even more types of models were included in the
study. Several more possible variations of the models could have been implemented, such as
changing the number of parameters in the conditional variance model, increasing the number
of different distributions, changing the threshold for the EVT-models and more. Two examples
are given in the two paragraphs below.

By varying the number of ARCH, GARCH and leverage lags in the conditional variance models,
one could have been able to see how this affected the clusters. Maybe a GARCH(2,2) is placed
in the same cluster as a EGARCH(2,2) instead of GARCH(1,1), for example.

Furthermore, one could have included additional types of distributions, for example, skewed-t or
skewed-normal. However, since the time series in our case did not exhibit any strong skewness,
this would probably not have provided any additional interesting insights.

6.4.5 Monte Carlo estimation of the risk measures

As mentioned in the methodology section, the Monte Carlo method is used to estimate the
chosen risk measures. Given a large enough sample size, this should have little impact on the
results for the most part. However, it could still affect some parts. It might, for example,
affect the comparison between VaR0.01 and ES0.025 when comparing the risk ratio at the lower
level clusters since ES0.025 is estimated with a mean comprised of multiple sample points while
VaR0.01 is estimated with a single sample.
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7 Conclusion

In most clusters there is a very clear hierarchy for the assumptions in the models, where one can
easily see which underlying assumptions have a significant effect on the risk estimation. This
holds true for both time series in this thesis and when the models are clustered a clear structure
emerges from which one can discern the most important aspects of the risk modeling. The
clustering methodology provides a framework from which risk models can be chosen. Through
showing which models are similar and dissimilar one can better understand the differences in
the models, their effects on the risk estimation and avoid using over complicated models. For
example, in cluster 9 in figure 14, the EGARCH-t and EGARCH-Normal models are clustered
together with EGARCH-t-filtered-EVT, meaning that the models are very similar. Instead of us-
ing the much more complicated model EGARCH-t-filtered-EVT, which also an added model risk
in the form of GPD assumptions, one can chose to use the much simpler GARCH-t model.

The two different time series provide different clusters, meaning that the dissimilarity and sim-
ilarity between models differ depending on the time series on which the risk is estimated. Per-
forming the same type of clustering on another data set which differs from a stock index and
bond index (OMXS30 and AGG) would likely provide its own clusters. This means that dif-
ferent time series are affected differently by the assumptions in the models, which falls quite
naturally from the data analysis. For example, in the OMXS30 time series, the leverage effect
in the GJR-GARCH and EGARCH models have a much larger effect than it does for AGG.
In the case of AGG, the GJR-GARCH models are clustered very close to the GARCH models,
indicating that the leverage component has a limited effect. Looking at figure 5 and the graph
with log returns there is no clear volatility clusters, giving further merit to the argument that
the specific GARCH model is not as important in the AGG modeling as it is when estimating
risk for OMXS30.

The clusters may differ quite a bit depending on what risk measure is used. In this thesis we
have shown that there is a large difference between the clusters for VaR0.01 and ES0.01 for both
time series. Generally, the final final distribution assumption (Normal, t, HS or EVT) is more
important for the clustering when looking at Expected Shortfall. However, there does not seem
to be the same large difference in clustering when comparing VaR0.01 with ES0.025. The models
seem to keep their structures in the clusters. What does differ though, and sometimes with large
numbers, is how VaR0.01 and ES0.025 estimate the risk levels for these clusters. Even though the
clusters are somewhat the same, the lower one looks in the dendrogram ES tends to estimate
the risk significantly lower than VaR does. This is positive for risk modelers, since changing
from VaR0.01 to ES0.025 then leads to a lower spread between models at lower clusters and would
mean that the model choice within the smaller clusters becomes less important since it would
not affect the economic capital requirement as much as it does for VaR0.01.

Further research could be done using a similar methodology but comparing different clustering
methods. Altering the method might lead to other clusters than those presented in this thesis,
from which further conclusions can be drawn. Furthermore, it would be an important part of
analyzing and evaluating the methodology used in this thesis. If the clusters were to change
drastically one might argue that the clustering method has a very large effect on the end result,
meaning that the clustering method needs to be evaluated further in order to determine which
one produces the most correct clusters.

The same methodology as used in this thesis can be used but for multiple models. There
are numerous additional models than those analyzed in this thesis, and conducting the same
study with a larger set of models would yield a more comprehensive view of the similarities and
dissimilarities between market risk models.
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The effect of time series length for parameter estimation can be analyzed further, to address
whether a smaller or larger window for historical data would affect the clusters to any significant
extent.

This thesis is done with two different time series, a bond index and a stock index. The same
study could be done with other, fundamentally different time series in order to determine what
assumptions are the most important depending on the characteristics of the time series being
examined. Perhaps one can find a link stating that ”if a time series has the characteristics A, B
and C then assumptions X and Y will be the most important”.
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