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Comparing fast- and slow-acting features for short-term price
predictions

Abstract

This thesis compares two groups of features for short-term price predictions of futures con-
tracts; fast- and slow-acting features. The fast-acting group are based on limit order book
derived features and technical indicators that reacts to changes in price quickly. The slow-
acting features constitute of technical indicators that reacts to changes in price slowly.

The comparison is done through two methods, group importance and a mean cost calculation.
This is evaluated for different forecast horizons and contracts. Furthermore, two years of data
was provided to do the analysis. Moreover, the comparison is modelled with an ensemble
method called random forest. The response is constructed using rolling quantiles and a vol-
ume weighted price.

The finding implies that fast-acting features are superior at predicting price changes on smaller
time scales, while long-acting features are better at predicting prices changes on larger time
scales. Furthermore, the multivariate model results were similar to the univariate ones. How-
ever, the results are not clear-cut and more investigation ought to be done in order to confirm
these results.
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Jämförelse av snabba och långsamma variabler för kortsiktig
prisprediktion

Sammanfattning

Den här uppsatsen jämför två typer av variabler för kortsiktig pris prediktion av terminskon-
trakt; snabba och långsamma variabler. De snabba variablerna är en sammansättning av limit
order boks härledda variabler och tekniska indikatorer som svarar snabbt på prisförändringar.
De långsamma variablerna utgörs av tekniska indikatorer som svarar långsamt på prisförän-
dringar.

Jämförelsen är gjord med två metoder, "group importance" och genomsnittskostnad. Detta
har gjort för olika prediktionshorisonter och kontrakt. Två-års data användes för att göra
analysen. Detta modellerades med en gruppmetod, kallad "random forest". Responsvariabel
är konstruerad med rullande kvantiler och ett volymviktat pris.

Resultaten indikerar att snabba variabler är bättre på att prediktera prisändringar på korta
horisonter medan långsamma är bättre på att prediktera prisändring på långa horisonter.
Dessutom efterliknade de multivariata resultaten de univariata. Dock var resultaten inte
entydiga och mer undersökning krävs för att säkerställa dessa resultat.
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Chapter 1

Introduction

In the last two decades enormous advances have been made within communication technology,
which allowed the tremendous increase in financial electronic trading. For example, in 2015,
99% of all futures contracts traded on Chicago Mercantile Exchange were done electronically
[15].

All trades that are executed electronically, are recorded and therefore produce an abundance
of data that can be used by machine learning algorithms to predict future prices. This increase
in data and the developments in computer processing turned the machine learning application
to financial data into a hot topic.

When applying learners on financial data, one builds a model that tries to predict future prices
based on market information. This market information is compressed into a set of features
and the underlying assumption is that the features are correlated with future prices. The
most common learners in finance are supervised, i.e. one exposes the learners to a number
of training examples (future prices and features), which the learners adapt to. This is called
the training phase. When the learners are trained, one evaluates the models on unseen data,
i.e. data that was not used for training. There are numerous machine learning algorithms,
however in this thesis the random forest algorithm will be used. It is a very powerful method
that has performed well on many different tasks [11].

Traditionally, computerized trading has been done on longer time horizons, such as days or
even weeks. However, during the last decade more interest were shown towards short-term
trading (also known as high frequency trading) [31] [12] [43]. According to the Aldridge and
Krawciw estimate, in 2016 high frequency trading initiate 10-40% of trading volume in equi-
ties, and 10-15% of the trading volume in foreign exchange and commodities [3].

Applying machine learning algorithms to high frequency data, one can divide the features into
two groups based on the time period they operate on, namely features that act on shorter
time periods and those that act on longer time periods. For example, one can use a moving
average based on one minute of data or a moving average based on thirty minutes of data.

However, there is little documented information in the scientific literature on which feature
groups perform better for short-term price prediction. Furthermore, does the performance

1



1.1. OBJECTIVES CHAPTER 1. INTRODUCTION

change as the prediction horizon increases/decreases? A lot of questions regarding short-term
price prediction are still unanswered in the literature and therefore I choose this as my topic
of this thesis.

1.1 Objectives

In this section, the main objectives of this thesis are presented. At the end of the thesis,
chapter 8, each objective will be reviewed and related to the results. The objectives of this
thesis are:

1. Compare the importance for short and long time-acting features

Given historical time series of price and volume for different futures contracts, investigate
if the importance for the short time-acting features differs from the longer ones on
different forecast horizons.

2. Compare the mean cost for the short and long time-acting features

Investigate how the two groups perform as one increases the punishment for making an
incorrect direction prediction (i.e. predicting an increase in price, but the outcome is a
decrease and vice versa) on different forecast horizons.

3. To do the previous analysis for a multivariate model

To investigate the group importance and mean cost calculations using a multivariate
model. Moreover, examine if the results for the multivariate model differ from the
univariate ones.

1.2 Scope and Limitations

As stated in section 1.1, the main objective of this thesis is the comparison of two feature
groups, namely slow-acting and fast-acting features. However, no hyper-parameter optimiza-
tion was done for the random forest algorithm, only the default values were used as it is
described in section 5.3. Moreover, no other machine learning algorithms were considered.

Additionally, the technical indicators’ parameters were not optimized. Finally, the used con-
tracts for the analysis were limited to four, see section 5.1 for the list of contracts, and the
number of forecast horizons were restricted to six.

1.3 Previous studies

The literature on machine learning application to short-term price prediction is quite exten-
sive. The features used here can be broadly divided into three categories: limit order book
derived features, technical indicators and combinations of the two.

Alec N. Kercheval et al. applied support vector machines with features derived from the limit
order book to predict the mid price movements and spread crossing 5-15 tick-events ahead
[31]. Additionally, Frédéric Abergel et al. used similar features, with logistic regression, to
predict the sign of the mid price at the next event [43].

2



1.4. OUTLINE CHAPTER 1. INTRODUCTION

German Creamer used gradient boosting with technical indicators to predict mid price move-
ment 10-600 seconds ahead [17]. Hao Chen et al. used a double layered neural network with
technical indicators to predict the mid price movement five minutes ahead [12]. Youngdoo
Sona et al. used logistic regression, neural networks and support vector machines with tech-
nical indicators to predict the mid price movement one minute ahead [39].

Ash Booth used a random forest model with features derived from the limit order book and
technical indicators to predict the price impact of an order [8].

1.4 Outline

This thesis has the following layout:

In chapter 2 the limit order book is presented along with a short description of futures con-
tracts. In chapter 3 the mathematical background is covered. Some of the statistical methods
that are used in this thesis are introduced along with the machine learning theory. Further-
more, time series and how they relate to financial prediction are described. In chapter 4 the
used features are described. The chapter opens with the limit order book derived features and
it is followed by the technical indicators.

In chapter 5 the methodology is introduced. Here, the reader finds a description on the data
processing methods and how the features are built. Furthermore, the used methods in the
results section are described. In chapter 6 the results are presented. Here, the objective ques-
tions are investigated, i.e. the group importance for the short- and long-time-acting groups.
Lastly, the mean cost for the two groups are explored. In chapter 7 the results are discussed
and related to the objective questions. Finally, in chapter 8 conclusions are drawn and some
ideas of future work are discussed.

3



Chapter 2

Financial Background

In this chapter, some financial background is presented. It begins with the limit order book.
Afterwards the different order types are described, and how one can define the price in a limit
order book. Finally, forward and futures contracts are introduced.

2.1 The limit order book

A limit order book is an electronic waiting list of buy and sell orders for equities, futures or
other listed derivatives at a given market place. It keeps track of all orders and their price,
quantity, other market dependent information and the time of arrival. Therefore, a limit order
book contains at a given time a list of all the possible transactions that a market participant
could perform on that market.

A market, where buyers and sellers meet via a limit order book is called order-driven market.
In an order-driven market buy and sell orders are matched as they arrive over time and are
subjected to some priority rules. The priority is always based on the price and secondly, in
most markets according to time with the first in, first out rule [1].

Figure 2.1 are a visualization of the limit order book at a given time.

p

b

t,1p

b

t,2p

b

t,3
...

p

a

t,1 p

a

t,2 p

a

t,3 ...
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Figure 2.1: Visualization of a limit order book at time t. The blue regions represents the bid
side and the grey regions represents the ask side.
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2.1. THE LIMIT ORDER BOOK CHAPTER 2. FINANCIAL BACKGROUND

2.1.1 Order types

There are three basic order types: market order entry, limit order entry and limit order can-
cellation.

Market order entries will be executed immediately at the best available price for a given quan-
tity, therefore the market orders demand liquidity and have more uncertainty risks in terms
of price.

Limit order entries will buy/sell a quantity from an asset for a specified limit price that the
order cannot surpass. When the exchange receives a limit order the matching engine will
compare the order’s price and quantity with opposing orders from the book. If there is a
resting order matching the incoming orders’ price, a trade will occur.

Finally, a cancellation order is a type of order that cancels an existing limit order.

One should note, that most exchanges offer several types of orders, not only these, for in-
stance orders with limited lifetime or orders wih partially visible volume [1]. However, these
order-types will not be covered in this thesis.

2.1.2 The price in a limit order book

In a limit order book the definition of the price is not obvious. One way to define the price is
to weight the bid and ask price with the volumes:

p

t

= p

b

t,1 + (p

a

t,1 � p

b

t,1) ·
V

b

t,1

V

b

t,1 + V

a

t,1

(2.1.1)

where p

b

t,1 is the bid price on the first level at time t, pa
t,1 is the ask price on the first level at

time t, V b

t,1 and V

a

t,1 is their respective volumes. The reason behind this definition is to get a
more accurate description on the demands for the bid and ask side. Furthermore, one notices
that if V b

t,1 � V

a

t,1 then p

t

⇡ p

a

t,1, i.e. since the volume on the bid side is much larger than on
the ask side, the ask price is more likely the price, and vice versa. In this thesis the actual
price is defined as above.

Moreover, mid price is a commonly used price definition, described in Appendix A.1.
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2.2 Forward and futures

2.2.1 Forward contracts

A forward contract is a customized contract between two parties to buy/sell an asset at a
specified future time at a price agreed upon today making it a derivative instrument. Forward
contracts are not being traded on a centralized exchange (due to its customized nature) and
are regarded as over-the-counter instruments.

The party that is buying the underlying asset in the future is said to have a long position and
the party agreeing to sell the asset in the future has a short position [26].

2.2.2 Futures contracts

A futures contract can be viewed as a standardized forward contract and therefore it can easily
be traded between parties including others than the two original ones. The parties initially
agree to buy/sell an asset for a price agreed upon today, however unlike forward contracts the
futures are marked-to-market daily, i.e. daily changes are settled day by day until the end of
the contract.

These contracts are traded at exchanges and cleared at a clearing house. This addresses one
of the problems with forward contracts since the clearing houses guarantee the transactions
and therefore drastically reduces the counterpart risk. On the other hand, forward contracts
are private agreements between two parties and therefore there is always a chance that one
party may default on the agreement [26].

2.2.3 Futures contracts for speculation

Futures contracts are usually used for speculation. If a market participant expects a price
increments of an underlying asset in the future he/she could potentially gain a profit by pur-
chasing the asset in a futures contract and selling it later at a higher price on the spot market
and profiting from the favorable price difference through cash settlement. Alternatively, the
speculator could sell the futures which should now trade at a higher price.

Also, futures are desirable in speculation since they can go both long and short when one
expects the price of the underlying asset to be higher or lower.

2.2.4 Futures contracts rollover

Since all futures contracts have expiration dates, investors who want to hold their exposures
for a longer time period than the maturity date, need to close the contracts before they
expiration and open new ones with later expiration date to avoid the obligations associated
with settlement of the contracts. This is called rollover of futures contracts and makes it
possible to produce a continuous time series for the futures price (see section 3.4 for the
definition of a time series).
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Chapter 3

Mathematical Background

In this chapter, the mathematical background is presented. It begins with some statistical
methods that are used later in this thesis. Afterwards, decision trees and ensemble learning
are presented. Lastly, time series and how they relate to financial prediction is described.

3.1 Statistical Theory

3.1.1 Quantiles

Quantiles are cut-points that divide observations from a sample into q-contiguous intervals
with roughly equal-size. There is one less quantile than the number of groups created. For
example, tertiles are the two cut-points that divide a sample into three roughly equal-sized
groups. Figure 3.1 is an example of quantiles that divides the samples into three parts:
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Figure 3.1: Example of quantiles (the red dotted lines) that has been estimated from a sample.
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3.1. STATISTICAL THEORY CHAPTER 3. MATHEMATICAL BACKGROUND

When the samples are drawn from an unknown population, the cumulative distribution func-
tion and quantile function of the underlying population are not known and the task is to
estimate these quantiles. In essence, the task is to compute Q

r

, the estimate for the k-th
q-quantile, where r = k/q, k = 1, ..., q � 1. This is done from a sample of size n

0 by comput-
ing a real valued index h. If h is an integer, the h-th smallest data point z

h

is the quantile
estimate. Otherwise an interpolation scheme is used to compute the quantile estimate from h

[27]. Assuming that {z}n0
i=1 is the data set, one common interpolation scheme is:

h = (n

0 � 1)r + 1

Q

r

= zbhc + (h� bhc)(zbhc+1 � zbhc) (3.1.1)

3.1.2 Bias variance trade-off

The bias variance trade-off is characterized by trying to minimize two sources of errors, bias
and variance, that prevent a supervised learner to generalize beyond its training set [40].

The bias in the model comes from erroneous assumptions in the learner. Large bias can arise
when relevant relationships between the features and the response are missed i.e. underfitting;
the model is not complex enough to fit the data. Underfitted models do not perform well on
the training, nor the test set.

The variance in the model arises from sensitivity to small fluctuations in the training set. High
variance can be caused by overfitting; modeling the random noise in the training set rather
than the intended response and therefore usually generalize poorly outside of the training set.

Figure 3.2 is an illustration of the training and test set errors as the model complexity increases:
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Figure 3.2: A visualization of the bias variance trade-off [25].
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3.1. STATISTICAL THEORY CHAPTER 3. MATHEMATICAL BACKGROUND

From figure 3.2 one can see that high bias, low variance and low bias, high variance classifiers
has large out of sample error. However, by balancing the variance and bias, out of sample
performance can be optimized.

3.1.3 Confusion matrix

In classification problems it is important to be able to visualize the performance of classification
methods. This can be done with a confusion matrix. The rows of the matrix represent true
classes and the columns represent the predicted classes. The confusion matrix will be denoted
as P in this thesis. The table below is an example of a confusion matrix for a classification
problem with three classes (�1, 0, 1):

Predicted ŷ

1 0 �1

A
ct

ua
ly 1 99 44 21

0 33 105 24

�1 11 33 87

Table 3.1: Example of a confusion matrix P . The columns represents the predicted classes
and on rows represents the actual classes.

Examining the confusion matrix above (table 3.1) yields that there are 99 + 44 + 21 = 164

examples of class one and 99+33+11 = 143 instances of predicted class one. This is a useful
visualization tool of the performance of a classifier, since it shows which classes are being
predicted [25].

3.1.4 Cost matrix

Often, the performance measure of classification learners are based on the accuracy. While
this is an useful performance metric, it may be important to take additional factors into ac-
count, some types of misclassifications may be worse than others. For example, rejecting a
valid credit card transaction may cause an inconvenience, but approving a large fraudulent
transaction may have substantial negative consequences. In situations such as this, it is im-
portant to take the cost of every type of misclassification into account to avoid the costliest
errors [19].

To represent the differing cost of each type of classification, a cost matrix can be used. It
will be denoted as C in this thesis. The matrix entry C

ij

is the cost of predicting the i-th
class when the j-th class is actually correct. In general, C

ij

> C

jj

when i 6= j, i.e. a correct
prediction is less costly than an incorrect prediction. Often the entries C

jj

along the main
diagonal will be zero. The table below is an example of a cost matrix for a classification
problem with three classes (�1, 0, 1):
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3.1. STATISTICAL THEORY CHAPTER 3. MATHEMATICAL BACKGROUND

Predicted ŷ

1 0 �1

A
ct

ua
ly 1 0 1 2

0 1 0 1

�1 2 1 0

Table 3.2: An example of a cost matrix C. The columns represents the predicted classes and
on rows represents the actual classes.

For the example in table 3.2, predicting �1 when the true response is 1 is twice as costly as
predicting 0. Now, given a confusion matrix P and a cost matrix C, the out of sample mean
cost is given by:

ĉ =

1

m

X

i,j

P

ij

C

ij

3.1.5 Feature scaling

Usually the value range of the features varies extensively. This can cause problems for some
machine learning algorithms. For example KNN (K-nearest neighbors) calculates the Eu-
clidean distance between data points. If one of the features has a broad range of values, the
distance between data points will be governed by this particular features and that is not de-
sirable. This can be solved by normalizing the features.

One common scaling method is the standardization. Feature standardization makes the values
have zero mean and unit variance [40]. Let X

j

be a feature of interest with the corresponding
outcomes x

j with n data points. Now, the standardized feature ˜

x is defined as:

x̃

j

i

=

x

j

i

� x̄

j

s

j

(3.1.2)

where x̄

j

=

1
n

nX

i=1

x

j

i

and s

j

=

vuut 1
n�1

nX

i=1

�
x

j

i

� x̄

j

�2.
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3.2 Classification trees

Let us consider a supervised classification problem. The aim is to derive a prediction f(X) for
the response Y , with both f(X) and Y taking values in Y. Here, the features X =

�
X1, ..., Xp

�

comprise of p-dimensional random variable from the feature space X and Y is a scalar random
variable from the response space Y.

The paired outcomes of X and Y , (x, y) are called data points. The function f is estimated
from the training set: D = {(x1, y1), ..., (xn

, y

n

)}.

In this thesis, f will be approximated by tree based models (classification trees). Therefore,
let us define a tree properly [6]:

Definition 3.2.1. A tree is a graph G in which any two nodes are connected by exactly one
path.

Definition 3.2.2. A rooted tree is a tree in which one of the nodes has been assigned as the
root. Furthermore, it is assumed in this thesis that the rooted tree is a directed graph, i.e. all
edges are directed away from the root.

Definition 3.2.3. If there is an edge from ⌘1 to ⌘2 then node ⌘1 is said to be the parent of
node ⌘2 while node ⌘2 is said to be a child of node ⌘1.

Definition 3.2.4. In a rooted tree, a node is said to be internal if it has one or more children
and terminal if it has no children.

Definition 3.2.5. A binary tree is a rooted tree where all internal nodes have exactly two
children.

The trees in this thesis will be rooted binary trees. Figure 3.3 is an example of a rooted binary
tree:

Root node

Internal node

Terminal node Terminal node

Internal node

Terminal nodeTerminal node

Figure 3.3: Example of a rooted binary tree structure.

A classification tree can be defined as a model f : X ! Y represented by a rooted tree,
where any node ⌘ represents a subspace X

⌘

✓ X of the feature space, with the root node ⌘0
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3.2. CLASSIFICATION TREES CHAPTER 3. MATHEMATICAL BACKGROUND

corresponding to X itself. Internal nodes ⌘ are labeled with a split s
⌘

, which divides the space
X
⌘

that node ⌘ represents into disjoint subspaces.

Learning a classification tree ideally amounts to determine the tree structure producing the
partition which is closest to the partition caused by Y over X . Since the partitions are un-
known, the construction of a classification tree is driven with the objective of finding a model
which partitions the training set D as well as possible.

Let H be the hypothesis space. Among all classification trees f 2 H, there may exist several
of them that explain D equally well. Following Occam’s Razor principles of preferring the
explanation which makes as few assumptions as possible, i.e. to favor the simplest solution
which fits the data set D. While this assumption makes sense from a generalization point
of view, it also makes sense regarding interpretability. A classification tree which is small is
easier to understand than a large and complex tree [25].

Let us define an impurity measure i(⌘) which evaluates the goodness of any node ⌘. Let us
assume that the smaller i(⌘), the purer the node and the better the predictions ŷ

i

is, for all
x

i

2 D
⌘

, where D
⌘

is the subset of training samples such that x

i

2 X
⌘

, where {x
i

, y

i

} 2 D.

Starting from a single node representing the whole training set D, near-optimal decision trees
can then be grown greedily by iteratively dividing nodes into purer nodes. That is, by it-
eratively dividing D into smaller subsets, until a stopping criteria is meet, for example the
impurity decrease is not large enough in a given node. The greedy assumption is to divide
each node ⌘ using the split s that locally maximizes the decrease of impurity of the resulting
child nodes. Formally, the decrease of impurity of a binary split s is defined as follows [25]:

Definition 3.2.6. The impurity decrease of a binary split s dividing node ⌘ in a left node ⌘

L

and a right node ⌘

R

is:

�i(s, ⌘) = i(⌘)� ⌘̄

L

⌘̄

i(⌘

L

)� ⌘̄

R

⌘̄

i(⌘

R

)

where ⌘̄⇤ = |D
⌘⇤ |, where ⇤ indicates the node index.

In this thesis the Gini impurity will be used as the impurity measure. The Gini impurity
measures the inequality among classes of a frequency distribution. If the Gini impurity is
close to one it indicates almost perfect equality (i.e. the class frequency is roughly the same).
If the Gini impurity is close to zero it has maximal inequality among classes (i.e. one class has
a frequency of 100% while the others have 0%). The Gini impurity is defined as:

i

G

(⌘) = 1�
KX

k=1

⌫̂

2
k

(3.2.1)

where ⌫̂

2
k

is the frequency of class k amongst the population in node ⌘ and K is the total
number of classes [35]. ⌫̂

k

can be calculated in node ⌘ as:

⌫̂

k

=

1

|D
⌘

|
X

(xi,yi)2D⌘

�
y

i

= k

�
(3.2.2)
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In order to build the tree one has to be able to determine where the splits should be made.
The splits used in this thesis are binary splits defined on a single feature X

j

and results in
non-empty subsets, i.e. D

⌘L 6= ; ^D
⌘R 6= ; [9].

Now, if X
j

is a categorical feature then one can simply compare the different possible splits
(assuming p is of reasonable size). For example, assume that the feature X

j

is a discrete fea-
ture with three outcomes, {�1, 0, 1}. Then the splits to consider would be X

j

� 0 and X

j

� 1.
Now, one would choose the split that yields the highest Gini gain according to equation (3.2.1).

However, determining the split for a continuous feature X

j

is a bit harder. The most common
approach for determining the split for a continuous feature is to group the data set into bins.
The following algorithm can be used to find the best splitting point on a continuous feature
X

j

[13]:

Algorithm 1: Finding the best split s

j

on feature X

j

in node ⌘.

1 Assume that {xj
i

} 2 D
⌘

2 Let Q be the number of bins.
3 Create Q bins from {xj

i

}, B1, ...,BQ

4 for q = 1, ..., Q� 1 do

5 Create the split sq
j

according to the largest value in bin q, i.e. sq
j

= max

�
x

j

i

|xj
i

2 B
q

�

6 Compute the Gini gain for the split s

q

j

, i.e. �i

G

(s

q

j

, ⌘)

7 end

8 Choose the split s

j

that maximizes the Gini gain, i.e. s
j

= argmax

q

�i

G

(s

q

j

, ⌘)

Algorithm 1 can also be used for categorical features when p is large, with some modifications.

Now, the following algorithm can be employed to determine the best split amongst all features:

Algorithm 2: Finding the best split s

⌘

in node ⌘.
1 � = �1
2 for j = 1, ..., p do

3 Find the best binary split s

j

defined on X

j

according to algorithm 1
4 if �i

G

(s

j

, ⌘) > � then

5 � = �i

G

(s

j

, ⌘)

6 s

⌘

= s

j

7 end

8 end

Now, equipped with the methods described earlier, one can finally define the process of building
a classification tree:
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Algorithm 3: The algorithm for building a classification tree T

b

.
1 for each internal node ⌘, recursively do

2 Find the best split s

⌘

according to algorithm 2
3 Split the node ⌘ into two child nodes (⌘

L

, ⌘

R

) according to s

⌘

4 Partition the data D
⌘

according to s

⌘

, i.e.
5 D

⌘L = {x
i

, y

i

}��{x
i

, y

i

} 2 D
⌘

^ x

j

i

 s

⌘

6 D
⌘R = D

⌘

\ D
⌘L

7 end

Figure 3.4 is an example of a classification tree which partition the feature space according to
a tree model into four disjoint regions:
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Figure 3.4: An example of a classification tree and the corresponding feature space partitions
[34].

Assuming that the classification tree is built, one can predict a new point x⇤ by:

Algorithm 4: Predicting ŷ⇤ from a classification tree.
1 ⌘ = ⌘0

2 while ⌘ is not a terminal node do

3 ⌘ = the child node ⌘

0 of ⌘ such that x⇤ 2 X
⌘

0

4 end

5 ŷ⇤ = argmax

k

X

(xi,yi)2D⌘

�
y

i

= k

�

Unfortunately, classification trees tend to create over-complex trees that do not generalize well
out of sample (i.e. overfitting). In terms of the variance-bias trade off, they usually produce
low bias, high variance classifiers [25]. This can be solved with an ensemble learner.
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3.3 Ensemble learning

An ensemble learner contains a set of learners which are usually called base learners. The
generalization ability of an ensemble is usually much larger than the base learners. Actually,
ensemble learning is appealing because they are able to boost weak learners which are just
slightly better than random guesses to strong learners which can make very accurate predic-
tions.

The base learners f

i

are generated from a training set by a base learning algorithm which
can be decision trees [40]. Bagging of trees and random forest are two examples of ensemble
methods based on decision trees.

Typically, an ensemble is constructed in two steps. First, a number of base learners are pro-
duced, which can be generated in a parallel style or in a sequential style where the generation
of base learners has influence on the generation of subsequent learners. Then, the base learners
are combined, usually by majority voting for classification:

ˆ

F (x) = argmax

k

X

i

�
ˆ

f

i

(x) = k

�
(3.3.1)

To understand why the generalization ability of an ensemble is usually much stronger than
that of a single learner, [18] give three reasons by viewing the nature of machine learning as
searching a hypothesis space H for the most accurate hypothesis.

The first reason is that the training set might not provide sufficient information for choosing
a single best learner. For example, there may be many learners that perform equally well on
the training set. Thus, combining these learners may be a better choice.

The second reason is that the search processes of the learning algorithms might be imperfect.
For example, even if there exists a unique best hypothesis, it might be difficult to find it since
running the algorithms results in sub-optimal hypotheses. Thus, ensembles can compensate
for such imperfect search processes.

The third reason is that, the hypothesis space being searched might not contain the true target
function, while ensembles can give a good approximation. For example, it is well-known that
the classification boundaries of decision trees are linear segments parallel to coordinate axes. If
the target classification boundary is a diagonal line, using a single decision tree cannot lead to
a good result. A good approximation can be achieved by combining a set of decision trees [18].

Figure 3.5 is an example of an ensemble learner with three base learners.
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Input features

Base learner Base learnerBase learner

Combine

Prediction

Figure 3.5: Example of an ensemble learner with three base learners.

3.3.1 Bagging

Bagging (also known as bootstrap aggregating) is an ensemble learner designed to lower the
variance and thereby increase prediction accuracy by combining multiple classification trees.

Given a training set D of size n, the bagging method generates B new training sets {D0
b

}B
b=1

with size n0 by sampling from D through bootstrap cases. These new training sets D0
b

are being
used to train the new models ˆ

f

b

and combined by majority vote to produce a prediction:

ˆ

F

bag

(x) = argmax

k

BX

b=1

�
ˆ

f

b

(x) = k

�
(3.3.2)

A critical factor to whether bagging will improve accuracy is the stability of the procedure
for constructing ˆ

f , i.e. the base learner. If changes in D, i.e. a replicate D, produces small
changes in ˆ

f then ˆ

F will be close to ˆ

f . Improvement will occur for unstable procedures where
a small change in D can result in large changes in ˆ

f . Therefore, bagging unstable classifiers
usually improves them. Bagging stable classifiers is not a good idea.

In terms of bias variance trade-off, the bagging procedure leads to a decrease in variance and
a small increase in bias. The prediction of a single tree is highly sensitive to noise in the
training set. The average of many trees are not sensitive to noise, as long as the tress are not
correlated. Training multiple trees on the same data set would lead to highly correlated trees,
and choosing bootstrap samples is a way to de-correlate the tress by showing them different
training sets [40].

The number of trees B is a free parameter that is chosen by the user. The algorithm for
bagging follows:
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Algorithm 5: The bagging algorithm.
1 for b = 1 to B do

2 Select n

0 observations from D with replacement to form the bootstrap sample D0
b

3 Grow a classification tree T

b

on the bootstrap sample D0
b

according to algorithm 3,
which represent the function ˆ

f

b

4 end

5 Majority vote the output from all B trees, i.e. ˆ

F

bag

(x) = argmax

k

BX

b=1

�
ˆ

f

b

(x) = k

�

3.3.2 Random forest

Random forest is an extension of the bagging algorithm. It uses the same bootstrap proce-
dure as bagging but, at each split, a random subset of features with size p

try

 p is selected
to build the trees. The reason for doing this is to de-correlate the trees even more. When
one uses ordinary bootstrap samples, some of the features can be strong predictors for the
response and they will be selected in many of the B trees which will cause them to become
correlated. By choosing a random subset one might break up this dependency and make them
more de-correlated.

Usually, in a classification setting with p features, one chooses p
try

= bppc [25]. However, this
parameter can be determined by the user according to the problem specification. Furthermore,
random forest have more hyper-parameters that can be tuned, for example, number of trees
that are grown B, depth of the tree and more.

The algorithm for random forest follows:

Algorithm 6: The random forest algorithm.
1 for b = 1 to B do

2 Select n

0 observations from D with replacement to form the bootstrap sample D0
b

3 Grow a classification tree T

b

on the bootstrap sample by recursively
4 for each internal node ⌘ do

5 Randomly select p

try

features
6 Select the best split s

⌘

among the p

try

features according to algorithm 2 in node
⌘

7 Split the node ⌘ into two child nodes according to the best split s

⌘

8 end

9 This tree T

b

represent the function ˆ

f

b

10 end

11 Majority vote the output from all B trees, i.e. ˆ

F

rf

(x) = argmax

k

BX

b=1

�
ˆ

f

b

(x) = k

�
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3.3.3 Feature importance for random forest

Usually, only a few of the features substantial influence on the response in a machine learning
setting. The vast majority of features are irrelevant and could be eliminated. Therefore, it is
often useful to learn the importance of each feature.

Now, introduce a random variable X

0
j

, which is an independent replication of X
j

and it is also
independent of the response and all other features. According to [28] the feature importance
for the feature X

j

can be defined by:

I
j

= P
�
Y 6= f(X1, ..., X

0
j

, ..., X

p

)

�� P
�
Y 6= f(X1, ..., Xj

, ..., X

p

)

�
(3.3.3)

The variable X

j

is called relevant if I
j

> 0, i.e. the probability of an incorrect prediction
is larger when X

0
j

is used rather than X

j

. It is important to note that this relevant feature
definition also includes those variables that do not have their own effects on the response, but
they are associated with the response due to their correlation with influential features.

In order to estimate I
j

one tries to mimic the independent replication X

0
j

by permuting the
j-th feature, i.e. the j-th feature’ data points are randomly mixed (however still retaining the
distribution of the feature values since it is just a permutation). The predictions and their
respective error rates are obtained from the modified and original data set that are used in
the estimation of equation (3.3.3). Therefore, the estimation of I

j

for the tree T

b

is given by:
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(3.3.4)

where ŷ

0
i

is the predicted response when the j-th feature’ data points are permuted and ŷ

i

is
when it is not. Here, the predictions are for the out of sample data, i.e. data that was not
used to train the model and m(T

b

) is the size of the out of sample data for tree T

b

[28].

This importance measure can easily be generalized for ensemble methods with a decision tree
base learner by simply averaging over all trees:

ˆI
j

=

1

B

BX

b=1

ˆI
j

(T

b

) (3.3.5)

Since averaging gives a stabilizing effect, the ensemble measure is more reliable than a single
tree measure.

3.3.4 Group importance for random forest

The feature importance in section 3.3.3 can be extended to a group of features. Now, assume
that J = {j1, ..., j

k

} is a k-tuple of indices and k  p. Let us introduce a random vector X

0
J

,
which is an independent replication of X

J

and it is also independent of the response and all
other features. The importance for group J is defined by:
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�
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,X

J̄

)
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,X
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�
(3.3.6)
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where X

J̄

= X \X
J

. In order to estimate I
J

one tries to mimic the independent replication
X

0
J

by permuting the J features’ data points, independently [24] [23]. The predictions and
their respective error rates are obtained from the modified and original data set that are used
in the estimation of equation (3.3.6). Therefore, the estimation of I

J

for the tree T

b

is given
by:
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(3.3.7)

where ŷ

0
i

is the predicted response when the J features’ data points are permuted and ŷ

i

is
when it is not [28]. As in section 3.3.3, it can be generalized for ensemble methods with a
decision tree base learner by simply averaging over all trees:

ˆI
J

=

1

B

BX

b=1

ˆI
J

(T

b

) (3.3.8)

It is worth noting that, in general, I
J

6=
X

j2J
I
j

.
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3.4 Time series

Let {Z
t

}, t = 1, ..., T be a discrete time series where t = 1, ..., T are certain discrete time points.
In most cases the time is taken at equally spaced intervals. Time series are used in signal pro-
cessing, weather forecasting, but most importantly for this thesis, econometrics/mathematical
finance (prices of commodities or assets produce time series) [10].

Time series analysis can be used to forecast future values. Here one uses information about
historical values and related patterns to predict future values.

3.4.1 Financial time series

Since trading is done on a continuous basis one would like to create discrete time bars that
contain the essential information. This is done by creating bars which is a form of aggregation
of trades. These bars contain the open, close, high and low price for a set period of time.
Furthermore, noise in the tick-by-tick data is removed when the trades are being aggregated.

This aggregated data can be used to build features or to estimate the volatility.

3.4.1.1 Volatility estimation

In many financial applications there is a need to estimate the historical daily volatility of an
asset. A naive approach is the close-to-close volatility estimation:
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�
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c

t�i

�2 (3.4.1)

where p

c

t

is the closing price at day t, n1 is the number of data points used to estimate the
volatility and F is the number of trading days in a year.

Unfortunately, the close-close estimator does not handle opening jumps well. However, Yang-
Zhang extension of the Garman-Klass volatility does, denoted as the Yang-Zhang volatility in
this thesis. Now, let:

⇤
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Then, the Yang-Zhang volatility is given by:

�

t,Y Z

=

p
F

p
EMA(⇤

t

,�) (3.4.3)

where EMA(...) is defined in section 4. The Yang-Zhang volatility assumes zero drift and will
therefore overestimate the volatility if an asset has a non-zero mean return [14]. It tends to
create lower bias estimates of volatility than the close-close estimator. Therefore, the Yang-
Zhang volatility is used as historical volatility measure in this thesis.
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3.4.2 Machine learning using time series

When using machine learning methods on time series one needs to be careful not to change
the time order of the training, validation and test set. For instance, assume that the price at
time t and t + 1 are strongly correlated. Now, if one would sample the data randomly and
the price at t+ 1 would be in the training set and the price at t would be in the test set this
correlation would "leak" information about the test set and therefore would introduce a look
ahead bias in the model.

3.4.3 Properties of time series features

It is useful if the features are invariant in price and/or volume when applying classification
learners on time series data. Invariance means that the feature remains unchanged when it
is transformed under a certain operation. For example, if the bid volume is 10 and the ask
volume is 20 then a volume imbalance feature should have the same value if the bid and ask
volume were multiplied by a factor of 1000 [22].

Another useful property is that the features’ range are symmetric around their centers. For
example if it is centered around 0 then the feature’s interval would be [�c, c], c 2 R.

Furthermore, one would like the features to be anti-symmetric, with respect to the price. If
one assumes that a feature has a value of 0.5 at a given time, if one would flip the limit order
book and the order book volumes would reverse (bid with ask) then the feature would change
its value to �0.5.
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Chapter 4

Features description

In this chapter, the used features are defined. It begins with the limit order book derived
features. These are included in the fast-acting group F

f

. Afterwards, the technical indicators
are presented. These are included in both the fast-acting group F

f

and the slow-acting group
F
s

, however with different parameters.

4.1 Order book features

4.1.1 Order flow imbalance

Rama Cont et al. proposed that price changes could be driven by order flow imbalance [16].
Let:
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Consider the bid side. If V b

i,1 increases but pb
i,1 remains the same, one assign e

i

= V

b

i,1�V

b

i�1,1,
representing the size that was added to the bid side. If V

b

i,1 decreases, one also assign
e

i

= V

b

i,1 � V

b

i�1,1, representing the size that was removed from the bid side, regardless if
it was due to a market sell order or a cancel buy order. If pb

i,1 increases, then e

i

= V

b

i,1, repre-
senting the size of a price-improving limit order. If pb

i,1 decreases, let e
i

= V

b

i�1,1, representing
the size that was removed, regardless if it was due to a market order or a cancellation. The
same holds for events on the ask side, but with signs reversed.

The order flow imbalance over the time interval [t
k�L

, t

k

] is defined by:

OFI
k

(L) =

tkX

i=tk�L

e

i

(4.1.1)

4.1.2 Volume order book imbalance

Alexander Lipton et al. used an order book imbalance to describe the trade arrival dynamics
of the limit order book [33]. The imbalance at time t on level i in the limit order book is
defined as:
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(4.1.2)

4.1.3 Difference in expected level

An informative feature could be the difference in expected level of volume in the limit order
book between bid and ask side. Let the limit order book on bid and ask side have I visible
levels (it is important to note that the limit order book typically has more levels, but these
are not visible in a the public data). Now, let:
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Then the expected level on bid side is defined as:
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(4.1.3)

Now, the same procedure can be applied to the ask side. Then the difference in expected level
is defined as:
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(4.1.4)

4.1.4 Conditional probability of VWAP

Let the volume weighted price over the time period ⌧ = [t

k

, t

k

0
] be defined as:
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Here p

◆

t

is the traded price at time t and V

◆

t

is the respective volume. Furthermore, let:
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where p

VWAP

⌧

0 means the VWAP of the previous time period before ⌧ . Michael Rechenthin et
al. showed that the probability that �

⌧

> 0 conditioned on �

⌧

0
< 0 is informative on shorter

time periods (1-5 seconds) [38]. Therefore the following feature could be used for prediction:

CPC
⌧

=

8
><

>:

1 if �

⌧

> 0

0 if �

⌧

= 0

�1 if �

⌧

< 0

(4.1.7)
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4.1.5 VWAP spread

A common feature from the limit order book is the price spread [8] [31], i.e. the difference
between best bid and ask price. However, for most liquid futures contracts this spread is
almost always constant and therefore not very informative.

However, one can define the VWAP spread instead, i.e. the difference between the bid VWAP
and ask VWAP [37]. Let us assume that there are I levels on the bid and ask side. Then the
VWAP spread is defined as:
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(4.1.8)

4.1.6 Best price versus VWAP

One informative feature could compare the best price and the price one would have to pay
in order to buy ↵ percent of a reference volume [29]. This reference volume is set as an
exponential moving average of the total volume of both bid and ask side. The average is over
the same time-stamp, for example at the "09:01" today, yesterday and so on. Now, let the
total volume series be defined as:
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where EMA(...) is defined in section 4. The bid side will now be investigated. Let ⌥ = {1, 2, ...}
be the largest set s.t:
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Note that if the last level in ⌥ has more volume then the required one (in terms of obtaining
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difference between the best bid price and VWAP is defined as:
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The same procedure can be applied to the ask side.

24



4.2. TECHNICAL INDICATORS CHAPTER 4. FEATURES DESCRIPTION

4.2 Technical indicators

Traders use technical indicators as tools to determine future trends in security prices. Tech-
nical indicators are not connected to the intrinsic value of securities, instead they focus on
matters such as trade volume, price and volatility to predict future prices [36].

There are several different types of technical indicators, one usually puts them into the fol-
lowing categories:

4.2.1 Trend indicators

Since markets tend to oscillate a lot, it can be difficult to disguise trends in the market
from normal oscillations and noise. Trend indicators measure the direction and strength of
a trend using some form of price average to establish a baseline. When prices move above
the average it can be a sign of an uptrend and when the prices fall below the average it can
be a sign of a downtrend. This averaging of price can be referred to as "smoothing" since
it removes oscillations and helps to identify trends. Some examples of trend indicators are
moving averages and macd [21].

4.2.1.1 Simple moving average

Simple moving average (sma) can be used as a technical indicator. It is calculated as an
average over the last L series point of the time series {Z

t

}. It is used to smooth out short-
term fluctuations and highlight longer-term trends or cycles. It is calculated as [30]:
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A commonly used value for the length parameter is L = 12, when it is applied to daily series.

4.2.1.2 Exponential moving average

An exponential moving average (ema) can be viewed as an infinite simple moving average with
exponential decaying weights. It is defined as:
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where 0 < � < 1. The ema can be computed recursively by:
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It is practical to define the ema in terms of a length L. One can show that if � =

2
L+1 then the
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[36]. In this thesis, ema will be expressed in terms of a length:
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25



4.2. TECHNICAL INDICATORS CHAPTER 4. FEATURES DESCRIPTION

� =

2

L+ 1

A commonly used value for the length parameter is L = 12, when it is applied to daily series.

4.2.1.3 Moving average convergence divergence

The moving average convergence divergence (macd) is based on the convergence and divergence
of two exponential moving averages. Convergence occurs when the two exponential moving
averages move towards each other and divergence occurs when the they move away from each
other. It is defined as:
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The shorter exponential moving average EMA
�
Z

t

, L1
�

is faster and responsible for most of the
macd movements while the longer EMA

�
Z

t

, L2
�

is slower and less reactive to price changes
in the underlying security [4]. A commonly used value for the length parameters are L1 = 12

and L2 = 26, when it is applied to daily series.

4.2.1.4 Bollinger bands

Bollinger bands are volatility bands positioned above and below a simple moving average,
called upper/lower Bollinger bands. The bands automatically expands when the volatility
increases and narrows when the volatility decreases. They are defined as:

BBU
�
p

t

, s, L1, L2
�
= SMA

�
p

t

, L1
�
+ s�

�
p

t

, L2
�

(4.2.6)

BBL
�
p

t

, s, L1, L2
�
= SMA

�
p

t

, L1
�� s�

�
p

t

, L2
�

(4.2.7)

�

�
p

t

, L2
�
=

vuut 1

L2 � 1

L2�1X

i=0

�
p

t�i

� p̄

�2

p̄ = SMA
�
p

t

, L2
�

One version of the Bollinger bands is the percent Bollinger (pb) that shows where the price
is in relation to the bands. At the upper band pb equals 1 and at the lower band pb equals 0
[7]. It is defined as:
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A commonly used value for the length parameters are L1 = L2 = 20, when it is applied to
daily series. Furthermore, one usually set s = 2.
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4.2.2 Momentum indicators

Momentum indicators identify the speed of price movements by comparing prices over time.
Some examples of momentum indicators are relative strength index, fast stochastic k and fast
stochastic d [21].

It is important to note that most of these indicators require bar data since they operate on
high, low and closing prices.

4.2.2.1 Relative strength index

Relative strength index (rsi) is an indicator that measures the speed and price change move-
ments, which oscillates between 0 and 1. In the literature, rsi is considered to be overbought
when it is above 0.7 and oversold when it is below 0.3 [41]. Let:
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Now, let the relative strength index is defined by:
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A commonly used value for the length parameter is L = 14, when it is applied to daily series.

4.2.2.2 Fast stochastic K

The fast stochastic k (fsk) represents a percent measure of the last closing price in relationship
to the highest and lowest price of the last L periods. When fsk is above 0.5, the closing price
is in the upper half of the price range and below 0.5 when it is in the lower half of the price
range. Low values (below 0.2) indicate that the price is near the lowest low for that time
period. High values (above 0.8) indicate that price is near the highest high for that time
period [32]. Let:
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A commonly used value for the length parameter is L = 14, when it is applied to daily series.
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4.2.2.3 Fast stochastic D

The fast stochastic d (fsd) is a simple moving average of the fsk, that indicates trends of the
fast stochastic k [32]. It is defined as:
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A commonly used value for the length parameters are L1 = 14 and L2 = 3, when it is applied
to daily series.

4.2.2.4 Ultimate oscillator

The ultimate oscillator (uo) is a momentum oscillator that captures momentum on three
different time frames [36]. Let:
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Where bp stands for buying pressure and tr for true range. Now, let:
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One can finally define the ultimate oscillator as:
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In this thesis w = [4, 2, 1]

T . A commonly used value for the length parameters are L =

[7, 14, 28]

T , when it is applied to daily series.

4.2.3 Volatility indicators

Volatility measures the speed of increases and decreases in price. For technical analysis, volatil-
ity indicators measure the rate of price movements and it is independent of direction. It is
usually based on changes in the highest and lowest historical prices in an instrument. Two
examples of volatility indicators are Chaikin volatility and average true range [21].

Like momentum indicators, these indicators operate on bar data.

4.2.3.1 Chaikin volatility

The Chaikin volatility (chv) evaluates the breadth of the range between high and low prices.
It also calculates the rate of change of an exponential moving average of the difference between
the high and low prices. Often, a very fast increase/decrease of this indicator is a sign of the
near bottom/top of the market [2]. It is defined as:
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A commonly used value for the length parameters are L1 = L2 = 10, when it is applied to
daily series.

4.2.3.2 Average true range

Average true range (atr) is based on the true range which measures absolute price changes
and therefore atr reflects volatility in absolute terms [41]. Now, let:
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Then atr is defined as:
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A commonly used value for the length parameter is L = 14, when it is applied to daily series.

4.2.4 Volume indicators

The volume represents the amount of contracts that change hands in a given time interval.
Most volume indicators are based on some forms of smoothing of raw volume. When volume
levels move above their averages, it can suggest an upward trend or confirmation of a trading
direction. The strongest trends often occur while volume increases, an increase in trading
volume can lead to large movement in price [21]. Examples of volume indicators are accumu-
lation distribution line and Chaikin oscillator.

As for momentum indicators, these indicators operate on bar data.

4.2.4.1 Accumulation distribution line

The accumulation/distribution line (adl) is calculated by using the close location value. This
indicator compares the close price with the range of prices from the same period. A positive
value indicates an increase in buying pressure and a negative indicates a decrease in buying
pressure [2]. Let:

CLV
t

=

2p

c

t

� p

l

t

� p

h

t

p

h

t

� p

l

t

(4.2.15)

Now, the adl can be calculated:
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ADL0 = 0
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4.2.4.2 Chaikin oscillator

The Chaikin oscillator (cho) is the macd of the adl and therefore has similar interpretation as
a macd [36]. It is defined as:

CHO
t

�
L1, L2

�
= MACD

�
ADL

t

, L1, L2
�

(4.2.17)

A commonly used value for the length parameters are L1 = 10 and L2 = 3, when it is applied
to daily series.
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Chapter 5

Methodology

In this chapter, the methodology used in the results section is presented. This chapter begins
with a description of the data and how it was manipulated, then the features and their
respective parameters are presented. Afterwards, the learner and its hyper-parameters are
specified. Lastly, the methods for the group importance and the mean cost calculations are
clarified.

5.1 Data processing

Two years of data was given to do the analysis, 2015-01-04 to 2016-12-30 for four futures
contracts. The contracts are:

1. Crude oil - Futures contracts on the crude oil price. The underlying asset is a commodity.

2. GBP - Futures contracts on the British pound to U.S. dollar. The underlying asset is a
foreign exchange index.

3. T-bond - Futures contracts on the U.S. treasury bond with a duration of 10� 30 years.
The underlying asset is a fixed-income security.

4. Dow Jones index futures (mini) - futures contract that represents a portion of a standard
Dow Jones index. The underlying asset is a stock market index.

5.1.1 Raw data

The data was provided by Lynx Asset Management and each contract’s data consists of three
parts:

1. Continuous quote data - every quote update on the first level only. Here, the data
contained date, time, price and volume for both bid and ask at the top level.

2. Continuous trade data - all completed trades. Here, the data contained date, time, price
and volume for the trades.

3. Discrete quote data - A depth snapshot every minute for the first ten levels. Here, the
data contained date, time, price and volume for bid and ask at each level.
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Since some features required limit order book depth data, one data point was constructed
each minute. Furthermore, none-overlapping regions were constructed in time. This was done
to avoid correlation (due to time series) in the prediction of the overlapping regions. For
example, if the forecast horizons is one minute, one would get the time periods 09:00, 09:01,
09:02,... (assuming one starts at 09:00). Figure 5.1 is an example of these none-overlapping
regions.

t

t+ 1 t+ 2

Figure 5.1: Example of none-overlapping regions.

The quote and trade data was aggregated into discrete buckets as discussed in section 3.4. Six
different prediction horizons were chosen: 3, 9, 30, 90, 300, 900 seconds. Since the depth snap-
shots were recorded each minute the 3, 9, 30 seconds horizons were aligned to whole minutes,
i.e. making a prediction each minute. For the 90, 300 and 900 seconds prediction horizons the
time periods were 120, 300 and 900 seconds respectively.

Furthermore, 75% of the data was assigned as the training set D and the remaining 25% was
assigned to the test set T . The training and test set were selected in time order, i.e. the first
75% of the data set was used for training and the last 25% of the data set was used for testing,
according to the theoretical arguments in section 3.4.2.

The same assignment was done for the multivariate analysis, i.e. the first 75% of the data
set was used for training and the last 25% of the data set was used for testing, within each
contract. Then, these four training set from each contract were combined into one training
set. The same was done for the test set.

5.1.2 Response

Since the price definition in section 2.1.2 is continuous, one wishes to discretize it into three
classes; down, neutral and up, denoted by {�1, 0, 1}. These classes were constructed by look-
ing at how the price difference between t and t+ 1 falls compared to the quantiles computed
from historical price differences. The quantiles are introduced in section 3.1.1, however the
used quantiles were rolled, explained below.

The rolling quantiles are estimated from the price differences over a two week period (histor-
ically). This yields the two cutting points Q

t,1/3 and Q

t,2/3. The classes are defined as:

y

t

=

8
><

>:

�1 if Q

t,1/3 > p

t+1 � p

t

0 if Q

t,1/3  p

t+1 � p

t

 Q

t,2/3

1 if Q

t,2/3 < p

t+1 � p

t

(5.1.1)
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There are a few reasons for defining the response this way. Firstly, comparison between dif-
ferent time horizons becomes possible. If one would define the price according to, for example
mid price (take the average between best bid and ask price), the class distribution would
become different between shorter forecast horizons and longer ones. For example, at 3 seconds
forecast horizon, the class distribution might be: 33% up, 33% neutral and 33% down. For
the longer horizon, the distribution might be 49% up, 2% neutral and 49% down. This would
make the comparison between forecast horizons difficult.

Another reason for using this approach is that the machine learning part becomes less trouble-
some. Most learners have problems when the class distribution is skewed, since they usually
try to maximize the accuracy. For some contracts, for example t-bond, the class distribution
for the mid price on three seconds forecast horizon is skewed, with 15% up, 70% neutral and
15% down.

Now, the learner could only predict neural and get an acceptable accuracy, however only
predicting no price changes is obviously not desirable. To account for this some alternative
approaches would have to be employed, such as to under/over-sample the majority/minority
class etc. However this tends to produce suboptimal results.

One should keep in mind that estimating the quantiles from historical data does not ensure
equal class frequency, however it should be near equal.

5.2 Selecting and building features

In this section all the used features are presented with their respective parameters. The defi-
nition of the features can be found in chapter 4.

Since one objective of this thesis was to examine the group importance for short and long-acting
features, one would like to divide the features into two groups; fast-acting and slow-acting.
The shorter features parameters were chosen to be the "default" values when they are applied
to daily series. As the longer acting technical indicators should span a longer time period, their
parameters were increased by a factor of ten. The longer features parameters were increased
substantially in order to differentiate them from the shorter ones.

The technical indicators were built upon data sampled every ten seconds. This was done since
the order flow imbalance feature had a length of ten seconds in the original paper [16] and the
shorter technical indicators ought be on the same time scale as the limit order book derived
features.

Additionally, the technical indicators were only calculated on data from the same day, except
for the vrv features. This was done in order to avoid jumps in the series. These jumps, called
"overnight gaps" come from the flow of information during closed market periods.

The following two groups were created:
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Features Parameters
ema L = 120

rsi L = 140

fsk L = 140

fsd L1 = 140, L2 = 30

pb L1 = 200, L2 = 400, s = 2

macd L1 = 120, L2 = 260

chv L = 100

atr L = 140

cho L1 = 100, L2 = 30

uo L = [70, 140, 280]

T

Table 5.1: The slow-acting features F
s

.

Features Parameters
ema L = 12

rsi L = 14

fsk L = 14

fsd L1 = 14, L2 = 3

pb L1 = 20,L2 = 40, s = 2

macd L1 = 12, L2 = 26

chv L = 10

atr L = 14

cho L1 = 10, L2 = 3

uo L = [7, 14, 28]

T

ofi L = 1

vi i = 1, 2, 3

cpc ⌧ = 1

del I = 10

vs I = 10

vrv (bid & ask) L = 12, ↵ = 0.25

Table 5.2: The fast-acting features F
f

.

Note that the vrv feature has a length parameter L that spans over L days (at the same
time-stamp). However, every other parameters with a length L are built upon ten seconds
interval. Also, the ema features were built from the difference between the price at time t

and the opening price of that day. Furthermore, the volatility time length for the percent
Bollinger feature was increased by a factor of two, in order to get a more accurate estimation
of the volatility.
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5.3 Choice of machine learning method

The chosen machine learning method was random forest because of the following reasons:

1. It is robust. Usually performs well even if the underlying assumptions are somewhat
violated by the model [40].

2. Easy to parallelise. Since each tree is built separately, it is easy to parallelise the com-
putation on multiple computers/cores which reduces the computational time [20].

3. Performs well. Rich Caruana et al. compared a number of supervised learning methods
including support vector machines, artificial neural nets, logistic regression and random
forest on different data sets. They concluded that random forest performed very well
amongst these data sets. The only method that was better than random forest was
gradient boosting [11].

4. Deals with multi-class problem naturally. Since one only takes a majority vote in each
leaf, the random forest algorithm has a natural way of dealing with multi-class problems.
In other learners, such as support vector machines, one would need to employ additional
functionality to deal with multi-classes.

5. Few parameters to tune. Random forest has relatively few hyper-parameters to tune
compared to other methods, such as artificial neural nets. The hyper-parameters for
random forest can be found in section 3.3.2.

Random forest default parameters were chosen, i.e. p
try

= bppc, n = n

0. However there is no
default value for the number of trees B, but according to [5], 64-128 trees are usually enough.
Since financial data are notoriously noisy, B was set to 500 for the 3, 9, 30 seconds forecast
horizons. Furthermore, it was increased by 500 trees at each following forecast horizon, i.e.
1000 trees were used for the 90 seconds forecast horizon, 1500 for the 300 seconds forecast
horizon etc. This was done to compensate for the decrease in data size.

It is worth pointing out that the accuracy tends to increase as B increases. However, this
accuracy increase will decay as B increases and therefore it becomes a trade-off between small
increases in accuracy and computational time.

Furthermore, all continuous features were scaled to standardization, according to section 3.1.5.
Random forests do not usually have any problems with differences in feature scales, unlike
other methods such as artificial neural networks, however it is a good practice.

5.3.1 Computer software

The R programming language was chosen, it is a open source programming language used for
statistical computation and more. Furthermore, it was decided that the ranger package for R
would be used. It contains a fast implementation of the random forest algorithm and allows
for distributed computation [42].
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5.4 Group importance

In this section the methods and algorithms that were used to compute the group importance
for F

f

and F
s

are presented.

The following algorithm was used to estimate the group importance for the slow- and fast-
acting features:

Algorithm 7: The algorithm for computing the group importance for the slow- and
fast-acting features.
1 for i = 1 to N do

2 Use D to build a random forest according to algorithm 6
3 Compute the group importance ˆIi

J

, J = {F
s

,F
f

}, on the test set T , according to
equation (3.3.8)

4 end

5 Compute the mean and standard deviation for the slow and fast-acting group, µ̂
f

, µ̂
s

,
�̂

f

and �̂

s

(see definition below)

µ̂⇤ =
1
N

NX

i=1

ˆIi

⇤ �̂⇤ =

vuut 1
N�1

NX

i=1

�
ˆIi

⇤ � µ̂⇤
�2

The N iterations were computed with different random seed numbers. It was done in order
to investigate how much the randomness effected the results.

Furthermore, one can calculate the feature importance for a single feature j. Now, compute
the feature importance ˆIi

j

according to equation (3.3.5) for each iteration i. The mean feature
importance is given by:

µ̂

j

=

1

N

NX

i=1

ˆIi

j

5.5 Mean cost

One of the research questions was related to how a feature group’s performance changes as
the penalty for an incorrect prediction of direction increases. From a trading point of view,
predicting an increase in price (1), but the outcome is a decrease (�1) is worse than predicting
an increase in price (1), but in reality it was a neutral (0) and vice verse. Therefore, the
following cost matrix was proposed:

Predicted ŷ

1 0 �1

A
ct

ua
ly 1 0 1 a

0 1 0 1

�1 a 1 0

Table 5.3: The proposed cost matrix C.
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Here, a dictates how much one punishes the model for making a wrong direction prediction
(predicting 1 but in reality it is �1 etc). If a = 1 then a wrong direction prediction will
have the same cost as an incorrect neutral prediction. Now, given a confusion matrix P of
predictions on the test set T and the cost matrix C described above, the mean cost is given
by:

ĉ =

1

m

X

i,j

P

ij

C

ij

The goal here is to minimize the cost. random forest was compared to a benchmark. The
benchmark will only predict the zeros class (no movements) for all data points in the test set.
This benchmark will have a mean cost independent of a.

First, three feature setups with random forest were compared against the benchmark for dif-
ferent a-values. These three setups were: use only the slow features, use only the fast features
and use both the fast and slow features. It was decided that two a-values would be used,
a = 1 and a = 1.3.

Secondly, the a-values were varied to see where the random forest would have the same mean
cost as the benchmark. This was done for the three feature setups described above. Since
random forest predicts 1 and �1’s, as one increases a the mean cost will increase. However,
it should outperform the benchmark when a = 1. Now, let the mean cost difference between
random forest and the benchmark be defined as:

�(a) = ĉ

rf

(a)� ĉ

oz

where ĉ

rf

is the mean cost for random forest and ĉ

oz

is the mean cost for the benchmark.
Then, one wishes to find a

crit

such that:

�(a

crit

) = ĉ

rf

(a

crit

)� ĉ

oz

= 0
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Chapter 6

Results

In this chapter, the results are presented. It begins with the investigation of the response
definition. Afterwards, the results from the group importance for slow- and fast-acting features
are presented. Lastly, the mean cost is investigated.

6.1 Response definition

Section 5.1.2 described how the rolling quantiles would be used to classify the price changes
into discrete responses. Below, the quantiles are displayed as a function of time:
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Quantiles for crude−oil, forecast horizon 3 seconds

Figure 6.1: Quantiles for the time period 2015-2016, at 3 seconds forecast horizon. The
contract is crude oil.

As one can see in figure 6.1, the quantiles seem to have a drift. This is not desirable, since the
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dynamic in which the prices are classified changes. This is the case for all forecast horizons
in crude oil (which is displayed in appendix, B.1). One reason for this drift could be that the
volatility has changed during the time period 2015-2016.

To address this, one approach is to scale the prices with their volatility. However, there was
a concern that this normalization would remove the tick size structure, i.e. one expects that
there should be an increase in frequency of price changes at the tick size. The tick size is the
lowest allowed price difference between the levels in a limit order book.

However, there were no significant increases in frequency at the tick size. Figure B.7 in
Appendix is an example of a histogram at a given time. It shows no apparent sign of an
increase at the tick size. Therefore, the prices were normalized by their volatility, namely the
Yang-Zhang volatility, described in section 3.4.1.1. This was done for all contracts and all
forecast horizons. The price changes were defined as:

p̃

t

=

p

t+1 � p

t

�

Y Z

(6.1.1)

The Yang-Zhang volatility had been estimated from the day before, i.e. all data points within
the same day and contract were normalized by the same volatility value. Moreover, � was set
to 1

22 . This yields the following quantiles figure:
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Figure 6.2: Quantiles for the time period 2015-2016, at 3 seconds forecast horizon and nor-
malized with the Yang-Zhang volatility. The contract is crude oil.

One can see from figure 6.2 that the quantiles seem to have a lower drift than in figure 6.1 (the
quantiles with/without Yang-Zhang on all forecast horizons for crude oil is the in Appendix,
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B.1). Therefore, equation (6.1.1) was used to compute the price changes. Furthermore, the
same procedure as in section 5.1.2 was used to group the data points into discrete values (i.e.
quantiles), however the normalized price changes in equation (6.1.1) were used instead.

Note that most technical indicators were built upon price and therefore these features were
also normalized with the Yang-Zhang volatility. Furthermore, the vrv and vs features were
normalized by the Yang-Zhang volatility.
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6.2 Group importance

In this section, the group importance results are presented. The group importance was cal-
culated using algorithm 7. The number of iterations was chosen to be N = 10 in order to
understand how much the randomness effected the results. Afterwards, the individual feature-
importance was computed. This is done for the univariate models and the multivariate one.

Lastly, a mid price analysis of the group importance and individual feature importance were
evaluated. This was done since the mid price is commonly used to define the price in a limit
order book setting. The results are in Appendix, A.1.

6.2.1 Univariate models

Below, in figures 6.3, 6.5, 6.7 and 6.9 the reader finds the estimated group importance for the
fast- and slow-acting features for different forecast horizons and contracts. The figures display
their means and one standard deviation error bars.

After that, the individual feature importance were computed. Moreover, the features were
ranked, i.e. the feature with the highest feature-importance got rank 1, etc. This is displayed
in figures 6.4, 6.6, 6.8 and 6.10 for different forecast horizons and contracts.
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Figure 6.3: Group importance for the fast- and slow-acting features on different forecast
horizons. The contract is crude oil.
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Figure 6.4: The ranking of individual features on different forecast horizons. The contract is
crude oil.
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Figure 6.5: Group importance for the fast- and slow-acting features at different forecast hori-
zons. The contract is GBP.
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Figure 6.6: The ranking of individual features on different forecast horizons. The contract is
GBP.
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Figure 6.7: Group importance for the fast- and slow-acting features on different forecast
horizons. The contract is t-bond.
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Figure 6.8: The ranking of individual features on different forecast horizons. The contract is
t-bond.
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Figure 6.9: Group importance for the fast- and slow-acting features on different forecast
horizons. The contract is Dow Jones.
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Figure 6.10: The ranking of individual features on different forecast horizons. The contract is
Dow Jones.
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As one can see from the group importance figures above, the fast-acting features were clearly
better for the shorter forecast horizons, across contracts. The difference between the two
groups shrinks as one increases the forecast horizon. At the 90 seconds forecast horizon the
slow-acting features had approximately the same group importance as the fast-acting features,
except for the t-bond contract. There, the slow-acting features had a higher group importance
than the faster ones. Furthermore, for the remaining forecast horizons, 300 and 900 seconds
the slow-acting features had a higher group importance than the fast-acting ones.

Now, if one examine the individual feature importance one notices that the ofi feature was
the best for the shortest forecast horizon (3 seconds) and the volatility indicators also per-
formed well, across contracts. As one increases the forecast horizon the ofi feature importance
dropped while the volatility indicators still performed well.

Furthermore, there is a hierarchy between volatility indicators; the faster volatility indicators
performed better at the short-forecast horizons. This changes as one increases the forecast
horizon and the longer ones became better. On the contrary, most of the technical indicators
do not have this structure for the majority of contracts, with the except for the GBP contract.

For for the limit order book derived features, some of them perform relatively poorly across
forecast horizons, with the exception of the ofi feature. However, for the t-bond contact and
the GBP contract they performed better.

The full list of individual feature importance values can be found in Appendix, B.3.
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6.2.2 Multivariate model

Since the group importance and the individual feature-importances were rather similar amongst
the contracts, it was decided to the same analysis using all data from the four contracts in
one model, i.e. from four univariate models to one multivariate model.

The group importance for the two groups was estimated, as described earlier. In figure 6.11,
their means and one standard deviation error bars are displayed:
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Figure 6.11: Group importance for the fast- and slow-acting features on different forecast
horizons for the multivariate model.

As one can see from figure 6.11, the fast-acting features were clearly better for the shorter
forecast horizons. The difference between the two groups shrinks as one increases the forecast
horizon. Additionally, for the 300 seconds forecast horizon the group importance for slow-
acting features became higher than the fast-acting features. However, the difference between
the group becomes very small for the 900 seconds forecast horizon.

Now, the individual feature importance were computed as described earlier. This is displayed
in figure 6.12 for different forecast horizons:

47



6.2. GROUP IMPORTANCE CHAPTER 6. RESULTS

ofi
F−chv
F−atr
S−chv
S−atr
F−fsk
vi (i=1)

vrv (ask)
vrv (bid)
S−macd

F−fsd
F−macd

S−pb
F−pb
S−fsd
F−cho
S−rsi
S−fsk
F−uo
F−rsi

S−cho
S−uo

vs
F−ema

del
S−ema
vi (i=2)
vi (i=3)

cpc

F−chv
ofi

S−chv
F−atr
S−atr
F−fsk

vrv (bid)
F−macd
vrv (ask)
S−macd
F−cho
F−pb

vi (i=1)
F−fsd
S−pb
S−fsd
S−fsk
S−rsi
F−uo
S−cho
F−rsi
S−uo

F−ema
S−ema

vs
del

vi (i=3)
vi (i=2)

cpc

F−chv
S−chv
F−atr
S−atr

ofi
F−macd

F−fsk
F−cho
F−pb

vrv (ask)
S−macd
vrv (bid)
S−fsk
F−uo

S−cho
F−fsd
F−rsi
S−pb
S−rsi

F−ema
S−ema
S−fsd
S−uo

vs
vi (i=1)

del
vi (i=2)
vi (i=3)

cpc

S−chv
S−atr
F−chv
F−atr

S−macd
F−macd

F−fsk
F−cho

vrv (bid)
vrv (ask)
S−cho

ofi
F−pb
S−fsk
F−rsi
S−pb
S−rsi
F−fsd

vs
F−ema
F−uo
S−fsd

S−ema
S−uo

vi (i=1)
del

vi (i=2)
vi (i=3)

cpc

S−chv
S−atr
F−atr
F−chv

S−macd
vrv (ask)
F−macd
vrv (bid)

S−rsi
S−fsk
S−pb
S−cho

ofi
F−cho
S−fsd

vs
F−fsk

F−ema
F−uo
F−pb

S−ema
F−rsi
F−fsd
S−uo
del

vi (i=1)
vi (i=2)
vi (i=3)

cpc

S−chv
S−atr
F−atr
F−chv

F−macd
S−macd
vrv (ask)
vrv (bid)

S−pb
vs

S−fsk
F−cho
F−pb
S−fsd
F−uo

S−cho
F−fsk
S−rsi
S−uo

F−ema
S−ema
F−fsd
F−rsi

ofi
vi (i=1)
vi (i=3)

cpc
del

vi (i=2)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

3 9 30 90 300 900

Forecast horizon (s)

R
a
n
k

Figure 6.12: The ranking of individual features on different forecast horizons for the multi-
variate model.

As one can see from figure 6.12, the ofi feature was the best for the shortest forecast horizon
(3 seconds) and the volatility indicators also performed well. As one increases the forecast
horizon the ofi feature importance dropped while the volatility indicators still performed well.

Furthermore, there is a hierarchy between volatility indicators; the faster volatility indicators
performed better at the short forecast horizons. This changes as one increases the forecast
horizon and the longer ones became better. On the contrary, most of the technical indicators
do not have this structure.

The limit order book derived features performed better for the multivariate model than it did
for the univariate ones.

The list of individual feature importance values for the multivariate model can be found in
Appendix, section B.3, table B.5.
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6.3 Mean cost

The mean cost of the random forest models was compared to the benchmark, as described in
section 5.5. In the first step, the three feature setups (F

f

, F
s

, {F
f

,F
s

}) were compared to
the benchmark for two a-values. The first one was a = 1. This corresponds to the "usual"
error rate, i.e. how often does the method predict incorrect, regardless of class. Secondly, the
a-value was increased to 1.3 in order to investigate how the models perform. Random forest’s
mean cost will increase, however this is not the case for the benchmark. A lower value of the
mean cost implies better performance. This was done for the four contracts. Moreover, the
average mean cost for the four contracts were compared to the multivariate model.

Finally, the a

crit

-values was investigated for the three feature setups, as described in section
5.5. A higher value of a

crit

implies better performance. Furthermore, this was done for the
same contracts and forecast horizons described in the section 5.1.

6.3.1 Univariate models

Below, in figures 6.13, 6.16, 6.19 and 6.22 the reader finds the estimated mean cost with a = 1

for the three models at different forecast horizons and contracts.

After that, the mean cost was estimated for a = 1.3. This is displayed in figures 6.14, 6.17,
6.20 and 6.23.

Lastly, the a

crit

-values was estimated. This is displayed in figures 6.15, 6.18, 6.21 and 6.24.
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Figure 6.13: The mean cost for the four models on different forecast horizons with a = 1. The
contract is crude-oil.
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Figure 6.14: The mean cost for the four models on different forecast horizons with a = 1.3.
The contract is crude-oil.
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-values for the three models. The contract is crude-oil.
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Figure 6.16: The mean cost for the four models on different forecast horizons with a = 1. The
contract is GBP.
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Figure 6.17: The mean cost for the four models on different forecast horizons with a = 1.3.
The contract is GBP.
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Figure 6.18: The a
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-value for the three models. The contract is GBP.
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Figure 6.19: The mean cost for the four models on different forecast horizons with a = 1. The
contract is t-bond.
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Figure 6.20: The mean cost for the four models on different forecast horizons with a = 1.3.
The contract is t-bond.
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Figure 6.21: The a
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-values for the three models. The contract is t-bond.
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Figure 6.22: The mean cost for the four models on different forecast horizons with a = 1. The
contract is Dow Jones.
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Figure 6.23: The mean cost for the four models on different forecast horizons with a = 1.3.
The contract is Dow Jones.
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Figure 6.24: The a

crit

-values for the three models. The contract is Dow Jones.
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As one can see from figures 6.13, 6.16, 6.19 and 6.22, the fast-acting features were substan-
tially better at the 3 seconds forecast horizon than the slow-acting, across contracts. However,
as one increases the forecast horizon the gap between the two models decrease. At the 900

seconds forecast horizon, the slow-acting features had a lower mean cost than the fast-acting
ones, except for the t-bond contact. There, the slow-acting features did not become better
than the slow-acting features for longer forecast horizons, but it got better at the 90 seconds
forecast horizon.

The models with slow and fast-acting features are roughly the same as the best models, across
forecast horizons. However, it seems to be slightly worse at the 3 and 900 seconds forecast
horizon compared to the best models. This seems to be the case for all contacts except for the
t-bond contract where the model with slow and fast-acting features are roughly the same as
the best model until the 90 seconds forecast horizon. Then, the mixed group became better
than both the fast acting features, but also the slow-acting features.

All of the models are better than the benchmark, across forecast horizons and contracts.

Now, if one examine the figures 6.14, 6.17, 6.20 and 6.23, they resemble the previous ones.
This is also the case for the a

crit

-figures, 6.15, 6.18, 6.21 and 6.24.
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6.3.2 Multivariate model

First of all, random forest was trained, using data from all four contracts. Afterwards, the
mean cost for the multivariate model was compared to average mean cost for the four contracts.

In figure 6.25, the difference between the mean cost of the multivariate model and the average
mean cost for the univariate models are displayed, given different forecast horizons and feature
setups with a = 1. A negative number indicates that the multivariate models has a lower cost
(i.e. performs better) and vice versa.
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Figure 6.25: Difference in mean cost between the multivariate random forest and the average
of the four contracts with a = 1.

As one can see in figure 6.25, the difference seems to oscillate between 0. It is slightly skewed
towards the negative side. However, this is not the case for the forecast horizons 3 and 900

seconds. The same analysis was done with a = 1.3:
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Figure 6.26: Difference in mean cost between the multivariate random forest and the average
of the four contracts with a = 1.3.

Figure 6.26 resembles figure 6.25 with the excepts that it seems to be more skewed towards
the negative side.
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Chapter 7

Discussion

In this chapter, the results obtained in chapter 6 are examined. The chapter begins with a
discussion about the group importance results from section 6.2. Then it continues with the
results from section 6.3 regarding the mean cost.

7.1 Group importance

In section 6.2.1 the group importance for the four contracts at the six forecast horizons was
reviewed. The main objective for the investigation was to examine if there is an difference in
group importance between the fast- and slow-acting features. As one can see from the figures
in section 6.2, the fast-acting features had a higher group importance value at the 3 seconds
forecast horizon, across contracts.

However, when the forecast horizon was increased, the fast-acting features’ group importance
drops quite substantially. This is the case for slow-acting features as well (except for the
GBP contract), however they did not drop as drastically. For the GBP contract the group
importance for the slow-acting features seem to be relatively stable. The slow-acting features
becomes better at the 90/300 seconds forecast horizon.

An interesting observation is that as one increases the forecast horizon, the group importance
for both groups dropped. One explanation for this could be that it becomes difficult to predict
price movements at longer forecast horizons. One could speculate that it is due to larger profit
margins and therefore becomes more "noisy" since more market participants operates there.

Now, if one examines the individual feature importances, the order flow imbalance feature
was the best feature at the 3 seconds forecast horizon, across contracts. In the original paper,
where the order flow imbalance feature is described [16], it is showed that it had a good ex-
planatory power on the price changes, however the finding in section 6.2 suggests that it has a
good predictive power for shorter forecast horizons. When the forecast horizon was increased,
the ofi importance decreased, drastically.

The volatility indicators performed well, across forecast horizons and contracts. Both the fast-
and slow-acting atr and chv features were among the best at the 3 seconds horizon, across
contracts. An interesting observation is that the faster version of the volatility indicators
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outperforms the slower versions at 3 and 9 seconds forecast horizons. However, this dynamic
changes around the horizons 30 and 90 seconds. For 300 and 900 seconds forecast horizons
the slower versions performed better. Furthermore, the slow and fast volatility indicators were
amongst the best at 900 seconds forecast horizons.

Most technical indicators’ ranks were centred around the middle, i.e. they were not amongst
the best or worse. For the GBP contract’ technical indicators there seems to a hierarchy be-
tween the fast-acting and the slow-acting, i.e. the faster indicators performed better on short
forecast horizons while the slower performed better on the longer horizons. However, most
contracts do not have this structure.

Some of the limit order book derived features performed relatively poorly across forecast hori-
zons. However, the volume imbalance feature (at the first level) performed well on the GBP
contract and the t-bond contract. Moreover, one notices that the vrv and vs features became
better at the longer forecast horizons, which is a bit counter-intuitive. One explanation for
this phenomenon is that these features operate on deeper levels of the limit order book and
therefore has a longer time dependency, which can be useful on longer forecast horizons.

If one examines the results from the multivariate model they resemble the univariate ones.
The fast-acting features perform substantially better at the shorter forecast horizons. At the
90 seconds forecast horizon the group importances are roughly the same. However, the differ-
ence between the fast- and slow-acting group importance is smaller at the 900 seconds forecast
horizon for the multivariate model than for the univariate ones.

The individual feature importances for the multivariate model also matches the univariate
results. One difference is that some limit order book derived features had a higher rank for
the lower forecast horizons than they did for the univariate models.

The results from section A.1 and 6.2.1 regarding group importance for the mid price definition
and the volume weighted one for the Dow Jones contract are rather similar. The results from
the mid price definition can be found in Appendix, A.1. When comparing the individual fea-
ture importance between the two definitions, one notes that some of the volume based limit
order book derived features performed better for the mid price definition than on the volume
weighted price definition, for example the vi (on the first level) and the vrv features.

One explanation for this could be that the volume is already incorporated into the volume
weighted price definition. Therefore, a feature that is based on volume, for example the vol-
ume imbalance feature, will perform worse on the weighted volume price definition since some
of it predictive power has already been extracted in the price definition.

In essence, the fast-acting features were substantially better than the slow-acting features in
terms of group importance on shorter forecast horizons. For the longer forecast horizons, the
slower features were slightly better.
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7.2 Mean cost

In section 6.3.1 the mean cost results are presented. To begin with, one notices that the mean
cost for a = 1 at the 3 seconds horizon is dominated by the fast-acting features, quite sub-
stantially. Also, the mixed group with both fast- and slow-acting features perform well there.
However, it is interesting that the fast-acting features seem to outperform the mixed feature
group slightly (except for the t-bond contract where they are roughly equal). This suggests
that adding the slower features actually hurts the prediction ability for the 3 seconds forecast
horizon.

The fast and mixed group are dominating until the 90/300 seconds forecast horizon, where
they start to become roughly equal to the slow-acting features. At 900 seconds forecast hori-
zon the slow-acting features were better than the fast-acting ones, across contracts, except
for the t-bond contract, where the slow-acting features become better at 90 seconds forecast
horizon. However, later it shifts back and the fast-acting features becomes better at 300 and
900 forecast horizon, which was unexpected.

It seems to be a trend that the mean cost is increasing with forecast horizons across contracts
for all three groups. This is aligned with the findings in section 6.2, i.e. it becomes more dif-
ficult to predict the outcomes on longer horizons. However, all three methods outperformed
the benchmark across forecast horizons and contracts.

Then, the penalty was increased for predicting an incorrect price direction, i.e. a was set to
1.3. As one can see from the figures in section 6.3, the dynamics are fairly similar to the
results when a = 1, i.e. the groups that had the smallest mean cost when a = 1 also had it
when a = 1.3.

The three random forest models were all better than the benchmark at 3 seconds forecast
horizon. The fast-acting features and the mixed group performed substantially better. The
benchmark becomes better at 30 seconds forecast horizon for all contracts expect GBP, where
the benchmark gets better at 900 seconds forecast horizon. At 900 seconds forecast horizon
the benchmark was better than all the random forest models, across contracts.

If one inspects the a

crit

figures they follow the theme from the mean cost calculations. For
the 3 seconds forecast horizons the fast and mix group dominated. The allowed a

crit

was
around 1.6 to 1.8. For the slow-acting group it was substantially lower with a value of around
1.2 to 1.4. When the forecast horizon was increased the allowed a

crit

dropped. It is the most
significant for the fast-acting features and the mixed group. The slow group seems to be stable
until the 90 second forecast horizon, then it also dropped. This was also observed in the mean
cost results for both a = 1 and a = 1.3.

At the 900 second forecast horizon the slower features become better across all contracts ex-
cept for the t-bond contract. However, the mixed group is better than both of them which
indicates that a combination is necessary to achieve the highest a

crit

.

Moreover, the results from the multivariate analysis in section 6.3.2 suggest that the difference
between the multivariate model and the univariate ones do not differ greatly, in terms of mean
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cost. Although, there is a difference for the 900 seconds forecast horizon for both a = 1 and
a = 1.3, i.e. the univariate models are better for this forecast horizon in terms of mean cost.
This is supported by the results from the group importance for the multivariate model.

In essence, the three investigations with a = 1, a = 1.3 and to find a

crit

showed similar
outcomes. The fast-acting features were substantially better than the slow-acting features
for lower forecast horizons. However, this changes for longer forecast horizons where the
slow-acting features become better.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

One of the objective questions described in section 1.1 was to investigate if the group im-
portances for fast- and slow-acting features differ, given different forecast horizons. From
section 6.2 one can see that this seems to be the case, i.e. the faster features group importance
are better at shorter forecast horizons, however this dynamic changes as the forecast horizon
increases. But if one inspects the individual feature importance, one notices that certain tech-
nical indicators are better than others, regardless of the length parameter. However, there
seems to be a hierarchy within certain technical indicators, i.e. the fast-acting indicator are
better at shorter forecast horizons and vise versa. One example of is the Chaikin volatility
indicator.

Furthermore, some of the limit order book derived features performed poorly, across forecast
horizons. However, this could be explained by the weighted price definition that was used.

The second objective question described in section 1.1 was to investigate if the mean cost
differs for the fast- and slow-acting features, given different forecast horizons. From section
6.3 one can see that this is true for most contracts, i.e. the faster features has a lower cost on
shorter forecast horizon. This changes as one increases the forecast horizon.

However, the findings are not conclusive since the t-bond contract did not show this behaviour
at the 900 seconds forecast horizon. The fast-acting features were better for shorter forecast
horizons, across contracts, quite substantially.

Moreover, the results from the multivariate analysis do not differ greatly from the univariate
analysis, neither in terms of group importance or mean cost. The largest difference is for the
900 seconds forecast horizon.

In conclusion, the fast-acting features performed better than the slow-acting features at short
forecast horizons. After that, the slow-acting features became better. So, as a rule of thumb,
fast-acting features should be chosen for shorter forecast horizons and slow-acting features for
longer forecast horizons, according to the results in section 6.2 and 6.3. However, it would
be a good idea to investigate which type of feature performs best given a forecast horizons,
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since the importance for the fast-acting features varied extensively. The same holds for the
slow-acting features.

8.2 Future work

This thesis lays the groundwork for group/feature importance for short-term price prediction.
Now, a natural question is whether it is possible to apply this work in practice. One applica-
tion could be for executing orders. Assuming that one has a "base" algorithm that dictates
when an order should be executed, one could predict whether the price will increase/decrease
in the near future. This can aid the decision whether an order should be executed now or at
a later time in order to decrease execution cost.

Furthermore, it would be interesting to see if there is an "optimal" length for the technical
indicators given a forecast horizon. The length parameters were somewhat arbitrarily chosen in
this thesis, that is, it is not necessarily true that one can simply transfer the length parameters
from day trading to high frequency trading. In some sense, the length choice for short-term
prediction should reflect the same information flow as it does when applied to daily series.
However, this information flow can be difficult to measure or even define.
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Appendix A

Additional group importance analysis

A.1 Mid price

The mid price analysis was done for one contract, Dow Jones. The reason for choosing this
contract is that it has roughly equal class distribution for the 3 seconds forecast horizon. For
the other contracts, the class frequency is skewed at shorter forecast horizons. For example,
the t-bond contract has a frequency of around 70% for the neutral class, at the 3 seconds
forecast horizon.

This is problematic since it is unreasonable to expect that height of an accuracy for the up
and down classes. Therefore, if a feature were to predict increases/decreases in prices, these
would yield low/negative feature importance, which is undesirable. The same hold for the
group importance.

The mid price is defined by:

p

t

=

p

a

t,1 + p

b

t,1

2

(A.1.1)

In order to achieve equal class distribution on longer forecast horizons, the quantile approach
described in section 5.1.2 was used. Furthermore, the price and certain features were normal-
ized by the Yang-Zhang volatility, as in section 6.1.

Therefore, the group importance for the fast- and slow-acting features were computed for the
mid price definition. Moreover, their means and standard deviations were estimated, displayed
in figure A.1:
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Figure A.1: Group importance for the fast and slow acting features on different forecast
horizons with the mid price definition. The contract is Dow Jones.

As one can see from figure A.1, the fast-acting features were clearly better for the shorter
forecast horizons. The difference between the two groups shrinks as one increases the forecast
horizon. At the 300 and 900 seconds forecast horizon the slow-acting features had a higher
group importance than the fast-acting features. The results are fairly similar to the volume
weighted price definition for Dow Jones, found in section 6.2.1.

The individual feature importance were computed. Furthermore, the features were ranked,
i.e. the feature with the highest feature importance got rank 1, etc. This was displayed in
figure A.2 for different forecast horizons:
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Figure A.2: The ranking of individual features on different forecast horizons with mid price
definition. The contract is Dow Jones.

As one can see from figure A.2, the ofi feature was the best for the shortest forecast horizon
(3 seconds) and the volatility indicators also performed well. As one increases the forecast
horizon the ofi feature importance dropped while the volatility indicators still performed well.

The list of individual feature importance values for the Dow Jones contract with mid price
definition can be found in Appendix, section B.3, table B.6.

In general, the results from this analysis are fairly similar to the volume weighted price results
for the Dow Jones contract.
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Appendix B

Figures and tables

B.1 Quantiles

In this section the quantiles figures for the crude oil contract are presented:
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Figure B.1: Quantiles for the crude oil contract with 3 seconds forecast horizon on different
horizons, unnormalized/normalized with Yang-Zhang volatility.

70



B.1. QUANTILES APPENDIX B. FIGURES AND TABLES

−0.010

−0.005

0.000

0.005

0.010

Time, 2015−01−02 to 2016−12−30

P
ric

e 
di

ffe
re

nc
e

class
Lower

Upper

Quantiles for crude−oil, forecast horizon 9 seconds

(a)

−0.005

0.000

0.005

0.010

Time, 2015−01−02 to 2016−12−30

P
ric

e 
di

ffe
re

nc
e 

no
rm

ed
 b

y 
Ya

ng
−Z

ha
ng

 v
ol

at
ili

ty

class
Lower

Upper

Quantiles for crude−oil, forecast horizon 9 seconds with Yang−Zhang

(b)

Figure B.2: Quantiles for the crude oil contract with 9 seconds forecast horizon on different
horizons, unnormalized/normalized with Yang-Zhang volatility.
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Figure B.3: Quantiles for the crude oil contract with 30 seconds forecast horizon on different
horizons, unnormalized/normalized with Yang-Zhang volatility.
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Figure B.4: Quantiles for the crude oil contract with 90 seconds forecast horizon on different
horizons, unnormalized/normalized with Yang-Zhang volatility.
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Figure B.5: Quantiles for the crude oil contract with 300 seconds forecast horizon on different
horizons, unnormalized/normalized with Yang-Zhang volatility.
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Figure B.6: Quantiles for the crude oil contract with 900 seconds forecast horizon on different
horizons, unnormalized/normalized with Yang-Zhang volatility.
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B.2 Histogram example
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Figure B.7: Example of a histogram for price differences between t+1 and t for the 3 seconds
forecast horizon. The contract is Dow Jones. Furthermore, the histogram is constructed using
two weeks of data, 2015-01-02 till 2015-01-14.
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B.3 Feature importance tables

In this section the individual feature importance for all contracts and forecast horizons are
presented.

3 seconds 9 seconds 30 seconds 90 seconds 300 seconds 900 seconds
Rank Names Mean Names Mean Names Mean Names Mean Names Mean Names Mean

1 ofi 0.01512 F-chv 0.00745 F-chv 0.00468 S-chv 0.00465 S-chv 0.00335 S-chv 0.00274
2 F-chv 0.01054 S-chv 0.00587 S-chv 0.00451 S-atr 0.00318 S-atr 0.00306 S-atr 0.00202
3 F-atr 0.00624 F-atr 0.00509 F-atr 0.00316 F-chv 0.00313 F-atr 0.00160 F-atr 0.00166
4 S-chv 0.00602 ofi 0.00493 S-atr 0.00297 F-atr 0.00261 F-chv 0.00131 F-chv 0.00139
5 S-atr 0.00375 S-atr 0.00394 F-fsk 0.00139 F-fsk 0.00107 S-macd 0.00106 vs 0.00111
6 S-macd 0.00211 S-macd 0.00163 ofi 0.00128 S-macd 0.00097 F-macd 0.00062 S-pb 0.00072
7 S-pb 0.00199 F-fsk 0.00136 F-pb 0.00120 S-rsi 0.00094 S-rsi 0.00062 S-macd 0.00063
8 F-fsk 0.00180 F-pb 0.00124 F-macd 0.00104 F-macd 0.00093 S-pb 0.00058 F-pb 0.00047
9 S-rsi 0.00174 S-pb 0.00114 F-uo 0.00096 F-pb 0.00087 S-fsk 0.00057 S-uo 0.00045
10 S-fsd 0.00169 S-fsd 0.00111 F-cho 0.00091 F-rsi 0.00086 F-cho 0.00044 F-cho 0.00045
11 F-macd 0.00168 F-macd 0.00108 S-macd 0.00088 S-fsk 0.00083 S-fsd 0.00040 F-macd 0.00045
12 S-fsk 0.00161 S-rsi 0.00100 S-fsk 0.00083 F-cho 0.00076 F-ema 0.00040 S-rsi 0.00044
13 F-pb 0.00130 S-fsk 0.00095 S-pb 0.00077 S-cho 0.00073 F-rsi 0.00038 F-uo 0.00043
14 vrv (bid) 0.00127 F-cho 0.00090 F-rsi 0.00077 S-pb 0.00072 F-pb 0.00036 S-cho 0.00043
15 F-fsd 0.00115 F-rsi 0.00083 S-rsi 0.00068 F-fsd 0.00069 S-uo 0.00035 S-fsk 0.00038
16 S-cho 0.00105 S-cho 0.00081 F-fsd 0.00067 ofi 0.00062 vrv (ask) 0.00035 F-fsk 0.00037
17 vrv (ask) 0.00100 F-uo 0.00080 S-uo 0.00058 S-uo 0.00057 S-cho 0.00034 vrv (ask) 0.00037
18 F-uo 0.00094 F-fsd 0.00069 S-cho 0.00057 S-fsd 0.00056 S-ema 0.00034 S-fsd 0.00029
19 F-cho 0.00093 F-ema 0.00067 S-fsd 0.00053 F-uo 0.00055 F-fsk 0.00030 F-ema 0.00026
20 S-uo 0.00091 vrv (bid) 0.00063 F-ema 0.00042 F-ema 0.00041 vrv (bid) 0.00026 vrv (bid) 0.00021
21 F-rsi 0.00089 S-ema 0.00059 S-ema 0.00039 S-ema 0.00036 F-uo 0.00025 F-fsd 0.00020
22 F-ema 0.00083 S-uo 0.00059 vrv (ask) 0.00031 vrv (bid) 0.00028 F-fsd 0.00019 S-ema 0.00020
23 vi (i=1) 0.00074 vrv (ask) 0.00043 vi (i=1) 0.00023 vrv (ask) 0.00027 ofi 0.00017 F-rsi 0.00018
24 S-ema 0.00069 vi (i=1) 0.00029 vi (i=2) 0.00018 vi (i=1) 0.00019 vi (i=3) 0.00011 ofi 0.00010
25 vs 0.00044 vs 0.00022 vrv (bid) 0.00016 del 0.00012 cpc 0.00007 vi (i=3) 0.00009
26 cpc 0.00035 vi (i=2) 0.00018 vs 0.00014 vs 0.00011 vi (i=1) 0.00005 vi (i=2) 0.00004
27 del 0.00032 del 0.00017 del 0.00012 cpc 0.00007 vi (i=2) 0.00004 vi (i=1) 0.00004
28 vi (i=2) 0.00028 cpc 0.00017 vi (i=3) 0.00011 vi (i=2) 0.00006 del 0.00002 cpc 0.00002
29 vi (i=3) 0.00017 vi (i=3) 0.00008 cpc 0.00010 vi (i=3) 0.00003 vs 0.00001 del -0.00002

Table B.1: The individual feature importance for the crude oil contract on different forecast
horizons. The S-index indicates the slower version while the F-index indicates the faster
version.
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3 seconds 9 seconds 30 seconds 90 seconds 300 seconds 900 seconds
Rank Names Mean Names Mean Names Mean Names Mean Names Mean Names Mean

1 ofi 0.01501 F-chv 0.00917 S-chv 0.00688 S-chv 0.00606 S-chv 0.00476 S-chv 0.00402
2 F-chv 0.01057 ofi 0.00767 F-chv 0.00670 F-chv 0.00510 S-atr 0.00439 S-atr 0.00368
3 F-atr 0.00636 S-chv 0.00609 F-atr 0.00510 S-atr 0.00436 F-atr 0.00295 F-atr 0.00145
4 vi (i=1) 0.00552 F-atr 0.00572 S-atr 0.00475 F-atr 0.00430 F-chv 0.00270 vrv (ask) 0.00103
5 S-chv 0.00529 S-atr 0.00419 ofi 0.00263 F-macd 0.00130 S-pb 0.00112 F-chv 0.00094
6 S-atr 0.00377 vi (i=1) 0.00222 vrv (ask) 0.00139 S-macd 0.00099 F-macd 0.00111 S-fsk 0.00087
7 F-fsk 0.00284 vrv (bid) 0.00178 F-macd 0.00138 vrv (bid) 0.00095 S-macd 0.00106 S-pb 0.00080
8 vrv (bid) 0.00234 vrv (ask) 0.00158 vrv (bid) 0.00124 S-cho 0.00091 S-rsi 0.00095 S-macd 0.00071
9 vrv (ask) 0.00228 F-fsk 0.00157 F-cho 0.00120 F-cho 0.00090 S-fsk 0.00085 vrv (bid) 0.00070
10 F-pb 0.00213 F-macd 0.00155 S-macd 0.00106 ofi 0.00081 S-cho 0.00080 S-cho 0.00065
11 F-fsd 0.00164 F-pb 0.00142 S-cho 0.00101 F-fsk 0.00079 F-cho 0.00078 F-macd 0.00062
12 F-uo 0.00153 F-cho 0.00118 vi (i=1) 0.00100 F-pb 0.00078 ofi 0.00073 F-fsk 0.00059
13 F-macd 0.00149 S-fsk 0.00105 F-fsk 0.00090 S-fsk 0.00077 vrv (bid) 0.00062 vs 0.00057
14 F-rsi 0.00142 S-pb 0.00101 F-pb 0.00090 F-rsi 0.00073 F-fsk 0.00062 S-rsi 0.00055
15 F-cho 0.00142 F-rsi 0.00100 S-pb 0.00087 S-pb 0.00072 F-pb 0.00061 F-cho 0.00046
16 S-fsk 0.00129 F-fsd 0.00099 S-fsk 0.00078 vrv (ask) 0.00070 vrv (ask) 0.00054 F-rsi 0.00046
17 S-pb 0.00118 S-cho 0.00099 F-rsi 0.00070 F-fsd 0.00067 S-fsd 0.00054 F-pb 0.00043
18 del 0.00101 S-macd 0.00091 F-fsd 0.00062 S-rsi 0.00064 F-rsi 0.00051 S-uo 0.00042
19 S-macd 0.00095 F-uo 0.00088 S-rsi 0.00061 S-fsd 0.00054 F-uo 0.00050 S-fsd 0.00039
20 S-rsi 0.00090 S-rsi 0.00082 S-fsd 0.00059 vi (i=1) 0.00050 F-fsd 0.00045 F-fsd 0.00033
21 S-cho 0.00089 del 0.00073 F-uo 0.00055 F-uo 0.00047 S-uo 0.00040 ofi 0.00033
22 S-fsd 0.00088 S-fsd 0.00073 del 0.00045 S-uo 0.00037 F-ema 0.00033 F-uo 0.00025
23 S-uo 0.00075 vs 0.00060 S-uo 0.00044 F-ema 0.00033 S-ema 0.00030 F-ema 0.00024
24 F-ema 0.00042 S-uo 0.00058 vs 0.00040 S-ema 0.00031 del 0.00026 S-ema 0.00021
25 S-ema 0.00038 F-ema 0.00041 F-ema 0.00036 del 0.00030 vs 0.00026 vi (i=3) 0.00011
26 vi (i=2) 0.00029 S-ema 0.00038 S-ema 0.00033 vs 0.00026 vi (i=1) 0.00024 cpc 0.00007
27 vi (i=3) 0.00021 vi (i=3) 0.00026 vi (i=3) 0.00017 vi (i=3) 0.00026 cpc 0.00004 del 0.00000
28 cpc 0.00019 vi (i=2) 0.00024 vi (i=2) 0.00015 vi (i=2) 0.00014 vi (i=2) 0.00003 vi (i=1) -0.00003
29 vs 0.00019 cpc 0.00015 cpc 0.00010 cpc 0.00005 vi (i=3) -0.00000 vi (i=2) -0.00012

Table B.2: The individual feature importance for the GPB contract on different forecast
horizons. The S-index indicates the slower version while the F-index indicates the faster
version.
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3 seconds 9 seconds 30 seconds 90 seconds 300 seconds 900 seconds
Rank Names Mean Names Mean Names Mean Names Mean Names Mean Names Mean

1 ofi 0.02043 ofi 0.01234 F-chv 0.00642 S-chv 0.00570 S-chv 0.00317 S-chv 0.00197
2 F-chv 0.01150 F-chv 0.01021 S-chv 0.00622 S-atr 0.00454 S-atr 0.00293 S-atr 0.00170
3 S-chv 0.00612 S-chv 0.00591 ofi 0.00419 F-chv 0.00289 F-chv 0.00117 F-chv 0.00087
4 F-atr 0.00580 F-atr 0.00503 F-atr 0.00412 F-atr 0.00221 F-atr 0.00085 vrv (bid) 0.00076
5 vi (i=1) 0.00423 S-atr 0.00374 S-atr 0.00379 S-macd 0.00091 vrv (bid) 0.00069 F-atr 0.00074
6 S-atr 0.00395 vi (i=1) 0.00317 vi (i=1) 0.00123 F-macd 0.00082 vrv (ask) 0.00053 S-macd 0.00052
7 F-fsk 0.00284 F-fsk 0.00202 F-macd 0.00111 F-fsk 0.00065 ofi 0.00049 F-macd 0.00040
8 F-fsd 0.00237 F-fsd 0.00176 vrv (ask) 0.00110 ofi 0.00062 F-macd 0.00048 S-rsi 0.00032
9 vrv (ask) 0.00216 vrv (bid) 0.00166 F-fsk 0.00108 vrv (bid) 0.00061 F-fsk 0.00038 vi (i=1) 0.00029
10 vrv (bid) 0.00195 vrv (ask) 0.00162 vrv (bid) 0.00108 S-fsk 0.00061 F-cho 0.00033 F-pb 0.00023
11 S-pb 0.00189 S-fsk 0.00152 S-fsk 0.00100 S-cho 0.00058 S-macd 0.00032 S-pb 0.00023
12 S-fsk 0.00188 F-macd 0.00148 S-macd 0.00097 F-pb 0.00057 del 0.00031 F-cho 0.00020
13 F-macd 0.00184 S-pb 0.00141 S-pb 0.00096 vrv (ask) 0.00055 F-uo 0.00031 vrv (ask) 0.00019
14 F-pb 0.00176 F-cho 0.00130 F-fsd 0.00090 S-pb 0.00055 vi (i=1) 0.00030 S-cho 0.00018
15 F-uo 0.00175 F-uo 0.00129 F-cho 0.00088 F-fsd 0.00054 S-rsi 0.00028 F-uo 0.00017
16 S-fsd 0.00168 S-rsi 0.00126 F-uo 0.00085 S-fsd 0.00050 S-fsk 0.00028 S-fsk 0.00017
17 S-rsi 0.00166 F-pb 0.00124 S-rsi 0.00081 F-cho 0.00049 vi (i=2) 0.00026 vi (i=2) 0.00016
18 F-cho 0.00158 S-fsd 0.00119 S-cho 0.00074 F-uo 0.00044 F-pb 0.00022 ofi 0.00013
19 S-macd 0.00146 S-macd 0.00114 F-pb 0.00073 S-rsi 0.00041 S-pb 0.00022 F-rsi 0.00009
20 F-rsi 0.00139 F-rsi 0.00106 S-fsd 0.00073 F-rsi 0.00040 S-cho 0.00021 F-fsk 0.00008
21 S-uo 0.00130 S-uo 0.00105 S-uo 0.00071 S-uo 0.00034 F-fsd 0.00021 S-fsd 0.00008
22 S-cho 0.00121 S-cho 0.00100 F-rsi 0.00069 F-ema 0.00029 S-uo 0.00021 del 0.00004
23 del 0.00084 del 0.00067 F-ema 0.00038 S-ema 0.00026 F-rsi 0.00020 vi (i=3) -0.00003
24 F-ema 0.00068 F-ema 0.00053 del 0.00037 vi (i=1) 0.00021 S-fsd 0.00018 vs -0.00004
25 S-ema 0.00063 S-ema 0.00049 S-ema 0.00035 del 0.00015 S-ema 0.00015 F-ema -0.00004
26 vs 0.00039 vs 0.00033 vs 0.00021 vs 0.00011 F-ema 0.00015 cpc -0.00005
27 vi (i=2) 0.00028 vi (i=2) 0.00031 vi (i=2) 0.00018 vi (i=3) 0.00009 cpc -0.00006 S-ema -0.00007
28 vi (i=3) 0.00024 vi (i=3) 0.00024 vi (i=3) 0.00012 vi (i=2) 0.00003 vs -0.00007 S-uo -0.00010
29 cpc -0.00001 cpc 0.00000 cpc -0.00000 cpc -0.00001 vi (i=3) -0.00012 F-fsd -0.00011

Table B.3: The individual feature importance for the t-bond contract on different forecast
horizons. The S-index indicates the slower version while the F-index indicates the faster
version.
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B.3. FEATURE IMPORTANCE TABLES APPENDIX B. FIGURES AND TABLES

3 seconds 9 seconds 30 seconds 90 seconds 300 seconds 900 seconds
Rank Names Mean Names Mean Names Mean Names Mean Names Mean Names Mean

1 ofi 0.01343 F-chv 0.00710 S-chv 0.00497 S-chv 0.00456 S-chv 0.00464 S-atr 0.00335
2 F-chv 0.00912 S-chv 0.00570 F-chv 0.00467 F-chv 0.00369 S-atr 0.00390 S-chv 0.00301
3 S-chv 0.00592 ofi 0.00511 S-atr 0.00363 S-atr 0.00334 F-atr 0.00272 F-atr 0.00198
4 F-atr 0.00581 F-atr 0.00500 F-atr 0.00318 F-atr 0.00279 F-chv 0.00253 F-chv 0.00139
5 S-atr 0.00439 S-atr 0.00395 F-fsk 0.00148 F-ema 0.00100 S-macd 0.00111 S-macd 0.00106
6 F-fsk 0.00243 F-fsk 0.00189 F-macd 0.00127 S-macd 0.00092 F-ema 0.00086 S-ema 0.00077
7 S-macd 0.00225 S-macd 0.00167 F-pb 0.00126 S-ema 0.00088 S-ema 0.00080 F-ema 0.00074
8 S-pb 0.00207 F-cho 0.00154 ofi 0.00123 F-macd 0.00080 vrv (ask) 0.00071 vrv (ask) 0.00073
9 S-fsd 0.00183 F-pb 0.00135 S-macd 0.00112 F-fsk 0.00079 F-cho 0.00069 S-cho 0.00067
10 F-cho 0.00178 F-macd 0.00116 F-rsi 0.00096 F-cho 0.00076 S-fsk 0.00069 vrv (bid) 0.00063
11 S-rsi 0.00175 S-rsi 0.00113 F-cho 0.00093 F-pb 0.00075 S-rsi 0.00069 S-fsk 0.00054
12 S-fsk 0.00169 S-pb 0.00112 F-ema 0.00091 S-fsk 0.00075 S-fsd 0.00068 S-fsd 0.00053
13 F-pb 0.00162 S-fsd 0.00112 S-ema 0.00085 vrv (ask) 0.00073 S-cho 0.00059 F-macd 0.00052
14 F-macd 0.00158 S-fsk 0.00107 S-fsk 0.00084 S-rsi 0.00068 S-pb 0.00058 F-pb 0.00050
15 F-fsd 0.00147 F-fsd 0.00103 F-fsd 0.00083 S-pb 0.00068 F-macd 0.00055 S-rsi 0.00041
16 S-cho 0.00127 F-ema 0.00099 vrv (ask) 0.00080 F-rsi 0.00064 F-uo 0.00049 S-uo 0.00038
17 F-uo 0.00122 S-cho 0.00095 F-uo 0.00076 F-fsd 0.00059 vrv (bid) 0.00047 F-fsk 0.00036
18 F-rsi 0.00115 S-ema 0.00094 S-pb 0.00071 F-uo 0.00055 F-fsk 0.00044 F-rsi 0.00036
19 vrv (ask) 0.00107 F-rsi 0.00094 S-rsi 0.00065 S-cho 0.00055 F-fsd 0.00040 F-fsd 0.00033
20 F-ema 0.00106 F-uo 0.00090 S-cho 0.00059 S-fsd 0.00053 S-uo 0.00034 F-uo 0.00028
21 S-uo 0.00102 vrv (bid) 0.00085 vrv (bid) 0.00053 S-uo 0.00048 ofi 0.00032 F-cho 0.00023
22 vrv (bid) 0.00102 vrv (ask) 0.00083 S-uo 0.00051 vrv (bid) 0.00045 F-pb 0.00032 S-pb 0.00022
23 S-ema 0.00093 S-uo 0.00077 S-fsd 0.00050 ofi 0.00037 del 0.00032 vi (i=1) 0.00019
24 vi (i=3) 0.00055 del 0.00037 del 0.00023 vi (i=3) 0.00015 F-rsi 0.00028 ofi 0.00018
25 del 0.00050 vs 0.00034 vi (i=3) 0.00016 vi (i=1) 0.00014 vi (i=2) 0.00022 vs 0.00009
26 vi (i=1) 0.00048 vi (i=3) 0.00031 vi (i=1) 0.00012 vi (i=2) 0.00013 vi (i=3) 0.00017 del 0.00006
27 vs 0.00047 vi (i=1) 0.00030 vi (i=2) 0.00012 del 0.00013 vi (i=1) 0.00010 cpc 0.00003
28 vi (i=2) 0.00032 vi (i=2) 0.00018 vs 0.00010 vs 0.00010 vs 0.00005 vi (i=3) -0.00003
29 cpc 0.00001 cpc 0.00001 cpc -0.00000 cpc -0.00000 cpc -0.00003 vi (i=2) -0.00004

Table B.4: The individual feature importance for the Dow Jones contract on different forecast
horizons. The S-index indicates the slower version while the F-index indicates the faster
version.
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B.3. FEATURE IMPORTANCE TABLES APPENDIX B. FIGURES AND TABLES

3 seconds 9 seconds 30 seconds 90 seconds 300 seconds 900 seconds
1 ofi 0.01849 F-chv 0.00949 F-chv 0.00644 S-chv 0.00562 S-chv 0.00378 S-chv 0.00244
2 F-chv 0.01128 ofi 0.00877 S-chv 0.00599 S-atr 0.00489 S-atr 0.00372 S-atr 0.00216
3 F-atr 0.00733 S-chv 0.00640 F-atr 0.00500 F-chv 0.00461 F-atr 0.00259 F-atr 0.00181
4 S-chv 0.00729 F-atr 0.00630 S-atr 0.00484 F-atr 0.00375 F-chv 0.00239 F-chv 0.00146
5 S-atr 0.00568 S-atr 0.00521 ofi 0.00301 S-macd 0.00125 S-macd 0.00129 F-macd 0.00097
6 F-fsk 0.00325 F-fsk 0.00214 F-macd 0.00150 F-macd 0.00119 vrv (ask) 0.00101 S-macd 0.00077
7 vi (i=1) 0.00268 vrv (bid) 0.00173 F-fsk 0.00145 F-fsk 0.00092 F-macd 0.00085 vrv (ask) 0.00073
8 vrv (ask) 0.00258 F-macd 0.00160 F-cho 0.00125 F-cho 0.00092 vrv (bid) 0.00081 vrv (bid) 0.00070
9 vrv (bid) 0.00254 vrv (ask) 0.00153 F-pb 0.00122 vrv (bid) 0.00091 S-rsi 0.00075 S-pb 0.00061
10 S-macd 0.00204 S-macd 0.00152 vrv (ask) 0.00121 vrv (ask) 0.00089 S-fsk 0.00072 vs 0.00058
11 F-fsd 0.00198 F-cho 0.00149 S-macd 0.00119 S-cho 0.00087 S-pb 0.00069 S-fsk 0.00053
12 F-macd 0.00193 F-pb 0.00138 vrv (bid) 0.00117 ofi 0.00085 S-cho 0.00062 F-cho 0.00043
13 S-pb 0.00193 vi (i=1) 0.00123 S-fsk 0.00086 F-pb 0.00085 ofi 0.00057 F-pb 0.00040
14 F-pb 0.00192 F-fsd 0.00120 F-uo 0.00086 S-fsk 0.00080 F-cho 0.00055 S-fsd 0.00036
15 S-fsd 0.00170 S-pb 0.00118 S-cho 0.00084 F-rsi 0.00070 S-fsd 0.00049 F-uo 0.00035
16 F-cho 0.00169 S-fsd 0.00113 F-fsd 0.00083 S-pb 0.00069 vs 0.00049 S-cho 0.00035
17 S-rsi 0.00169 S-fsk 0.00113 F-rsi 0.00083 S-rsi 0.00069 F-fsk 0.00047 F-fsk 0.00035
18 S-fsk 0.00167 S-rsi 0.00106 S-pb 0.00077 F-fsd 0.00066 F-ema 0.00046 S-rsi 0.00030
19 F-uo 0.00150 F-uo 0.00104 S-rsi 0.00063 vs 0.00055 F-uo 0.00040 S-uo 0.00029
20 F-rsi 0.00135 S-cho 0.00102 F-ema 0.00058 F-ema 0.00055 F-pb 0.00040 F-ema 0.00026
21 S-cho 0.00128 F-rsi 0.00100 S-ema 0.00057 F-uo 0.00054 S-ema 0.00036 S-ema 0.00024
22 S-uo 0.00103 S-uo 0.00075 S-fsd 0.00056 S-fsd 0.00053 F-rsi 0.00030 F-fsd 0.00021
23 vs 0.00088 F-ema 0.00071 S-uo 0.00055 S-ema 0.00049 F-fsd 0.00028 F-rsi 0.00020
24 F-ema 0.00079 S-ema 0.00062 vs 0.00055 S-uo 0.00048 S-uo 0.00028 ofi 0.00019
25 del 0.00073 vs 0.00062 vi (i=1) 0.00050 vi (i=1) 0.00029 del 0.00022 vi (i=1) 0.00004
26 S-ema 0.00070 del 0.00049 del 0.00029 del 0.00019 vi (i=1) 0.00019 vi (i=3) 0.00000
27 vi (i=2) 0.00036 vi (i=3) 0.00025 vi (i=2) 0.00017 vi (i=2) 0.00011 vi (i=2) 0.00016 cpc -0.00000
28 vi (i=3) 0.00027 vi (i=2) 0.00023 vi (i=3) 0.00014 vi (i=3) 0.00011 vi (i=3) 0.00007 del -0.00003
29 cpc 0.00011 cpc 0.00010 cpc 0.00007 cpc 0.00003 cpc 0.00001 vi (i=2) -0.00005

Table B.5: The individual feature importance for the multivariate model on different forecast
horizons. The S-index indicates the slower version while the F-index indicates the faster
version.

79



B.3. FEATURE IMPORTANCE TABLES APPENDIX B. FIGURES AND TABLES

3 seconds 9 seconds 30 seconds 90 seconds 300 seconds 900 seconds
1 ofi 0.01479 F-chv 0.00514 S-chv 0.00288 S-chv 0.00264 S-chv 0.00405 S-atr 0.00357
2 F-chv 0.01325 ofi 0.00444 F-chv 0.00265 F-chv 0.00216 S-atr 0.00308 S-chv 0.00345
3 S-chv 0.00967 S-chv 0.00393 S-atr 0.00201 F-atr 0.00201 F-atr 0.00238 F-atr 0.00159
4 F-atr 0.00841 F-atr 0.00356 F-atr 0.00199 S-atr 0.00178 F-chv 0.00183 F-chv 0.00118
5 S-atr 0.00747 S-atr 0.00283 F-fsk 0.00149 F-fsk 0.00079 S-macd 0.00095 S-macd 0.00111
6 F-fsk 0.00547 F-fsk 0.00217 F-pb 0.00110 F-ema 0.00071 S-fsd 0.00068 vrv (bid) 0.00083
7 vi (i=1) 0.00424 vi (i=1) 0.00170 F-macd 0.00071 F-pb 0.00064 F-ema 0.00067 S-ema 0.00076
8 vrv (ask) 0.00374 S-macd 0.00132 ofi 0.00069 F-cho 0.00063 vrv (ask) 0.00065 vrv (ask) 0.00061
9 vrv (bid) 0.00353 F-pb 0.00125 F-rsi 0.00066 S-ema 0.00058 S-fsk 0.00062 F-ema 0.00060
10 S-macd 0.00276 F-cho 0.00116 F-cho 0.00062 S-fsk 0.00057 S-ema 0.00060 S-fsd 0.00050
11 F-macd 0.00256 vrv (ask) 0.00096 F-uo 0.00056 vrv (ask) 0.00053 S-cho 0.00056 S-cho 0.00046
12 S-fsd 0.00250 F-macd 0.00094 S-fsk 0.00056 F-rsi 0.00052 S-rsi 0.00049 S-fsk 0.00045
13 F-pb 0.00247 F-uo 0.00092 S-macd 0.00055 F-macd 0.00047 S-pb 0.00042 F-cho 0.00043
14 S-pb 0.00246 F-fsd 0.00089 S-cho 0.00050 S-pb 0.00046 S-uo 0.00041 F-pb 0.00040
15 F-fsd 0.00242 S-fsd 0.00082 vrv (ask) 0.00048 S-macd 0.00043 F-cho 0.00040 F-macd 0.00037
16 S-fsk 0.00227 S-rsi 0.00081 F-ema 0.00045 S-rsi 0.00043 F-uo 0.00039 S-rsi 0.00036
17 S-rsi 0.00225 vrv (bid) 0.00080 F-fsd 0.00045 S-uo 0.00041 F-fsk 0.00038 F-fsk 0.00029
18 F-cho 0.00191 S-fsk 0.00077 S-pb 0.00045 F-uo 0.00041 ofi 0.00031 S-pb 0.00029
19 F-uo 0.00171 S-pb 0.00075 S-ema 0.00043 F-fsd 0.00038 F-macd 0.00030 F-rsi 0.00029
20 del 0.00159 F-rsi 0.00071 vrv (bid) 0.00041 S-cho 0.00034 vrv (bid) 0.00027 S-uo 0.00026
21 F-ema 0.00145 S-cho 0.00057 S-rsi 0.00035 S-fsd 0.00032 del 0.00023 ofi 0.00025
22 F-rsi 0.00145 del 0.00053 vi (i=1) 0.00028 vrv (bid) 0.00027 F-fsd 0.00023 F-uo 0.00020
23 S-ema 0.00135 F-ema 0.00051 S-fsd 0.00028 ofi 0.00027 F-pb 0.00021 F-fsd 0.00017
24 S-cho 0.00131 S-ema 0.00044 vs 0.00027 vi (i=1) 0.00027 F-rsi 0.00019 vs 0.00017
25 S-uo 0.00120 S-uo 0.00043 S-uo 0.00023 vi (i=2) 0.00016 vi (i=2) 0.00016 vi (i=1) 0.00014
26 vi (i=3) 0.00119 vi (i=3) 0.00030 del 0.00016 vi (i=3) 0.00012 vi (i=3) 0.00007 cpc 0.00003
27 vs 0.00107 vi (i=2) 0.00028 vi (i=3) 0.00014 del 0.00012 vs 0.00006 vi (i=2) -0.00010
28 vi (i=2) 0.00081 vs 0.00022 vi (i=2) 0.00007 cpc -0.00001 vi (i=1) 0.00000 vi (i=3) -0.00012
29 cpc 0.00001 cpc 0.00002 cpc 0.00000 vs -0.00003 cpc -0.00001 del -0.00012

Table B.6: The individual feature importance for the Dow Jones contract on different forecast
horizons with the mid price definition. The S-index indicates the slower version while the
F-index indicates the faster version.
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