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Abstract

Allocation to private infrastructure debt investments has increased in the
recent years [15]. For managers of multi-asset portfolios, it is important to
be able to assess the risk of the total portfolio and the contribution to risk
of the various holdings in the portfolio. This includes being able to explain
the risk of having private infrastructure debt investments in the portfolio.

The modelling of private infrastructure debt face many challenges, such
as the lack of private data and public indices for private infrastructure debt.
In this thesis, two approaches for modelling private infrastructure debt in a
parametric risk factor model are proposed. Both approaches aim to incorpo-
rate revenue risk, which is the risk occurring from the type of revenue model
in the infrastructure project or company.

Revenue risk is categorised into three revenue models; merchant, con-
tracted and regulated, as spread level differences can be distinguished for
private infrastructure debt investments using this categorisation. The differ-
ence in spread levels between the categories are used to estimate � coefficients
for the two modelling approaches. The spread levels are obtained from a data
set and from a previous study.

In the first modelling approach, the systematic risk factor approach, three
systematic risk factors are introduced where each factor represent infrastruc-
ture debt investments with a certain revenue model. The risk or the volatility
for each of these factors is the volatility of a general infrastructure debt index
adjusted with one of the � coefficients.

In the second modelling approach, the idiosyncratic risk term approach,
three constant risk terms for the revenue models are added in order to capture
the revenue risk for private infrastructure debt investments. These constant
risk terms are estimated with the � coefficients and the historical volatility
of a infrastructure debt index.

For each modelling approach, the commonly used risk measures stand-
alone risk and risk contribution are presented for the entire block of the
infrastructure debt specific factors and for each of the individual factors
within this block.

Both modelling approaches should enable for better explanation of risk
in private infrastructure debt investments by introducing revenue risk. How-
ever, the modelling approaches have not been backtested and therefore no
conclusion can be made in regards to whether one of the proposed modelling
approaches actually is better than current modelling approaches for private
infrastructure debt.

Keywords: Private Infrastructure Debt, Value at Risk, Factor Models, Rev-
enue Model Risk, Stand-Alone Risk, Risk Contribution





Sammanfattning

Investeringar i privat infrastrukturskuld har ökat de senaste åren [15]. För
ägare av portföljer med investeringar i samtliga tillgångsslag är det viktigt
att kunna urskilja risken från de olika innehaven i portföljen.

Det finns många utmaningar vad gäller modellering av privat infrastruk-
turskuld, så som den begränsade mängden privat data och publika index för
privat infrastrukturskuld. I denna uppsats föreslås två tillvägagångssätt för
att modellera privat infrastrukturskuld i en parametrisk riskfaktormodell.
Båda tillvägagångssätten eftersträvar att inkorporera intäktsrisk, vilket är
risken som beror på den underliggande intäktsmodellen i ett infrastruktur-
projekt eller företag.

Intäksrisk delas in i intäksmodellerna "merchant", "contracted" och "reg-
ulated", då en skillnad i spreadnivå mellan privata infrastrukturskuldin-
vesteringar kan urskiljas med denna kategorisering. Skillnaden i spreadnivå
mellan de olika kategorierna används för att estimera �-koefficienter som
används i båda tillvägagångssätten. Spreadnivåerna erhålls från ett dataset
och från en tidigare studie.

I det första tillvägagångssättet, den systematiska riskfaktor-ansatsen, in-
troduceras tre systematiska riskfaktorer som representerar infrastrukturskuld-
investeringar med en viss intäktsmodell. Risken eller volatiliten för dessa
faktorer är densamma som volatiliteten för ett index för infrastrukturskuld
justerat med en av �-koefficienterna.

I det andra tillvägagångssättet, den idriosynktratiska riskterm-ansatsen,
adderas tre konstanta risktermer för intäktsmodellerna för att fånga upp
intäktsrisken i de privata infrastrukturinvesteringarna. De konstanta risk-
termerna är estimerade med �-koefficienterna och en historisk volatilitet för
ett index för infrastrukturskuld.

För båda tillvägagångssätten presenteras riskmåtten stand-alone risk1

och risk contribution2. Riskmåtten ges för ett block av samtliga faktorer för
infrastrukturskuld och för varje enskild faktor inom detta block.

Båda tillvägagångssätten borde möjliggöra bättre förklaring av risken för
privata infrastrukturskuldinvesteringar i en större portfölj genom att ta hän-
syn till intäktsrisken. De två tillvägagångssätten för modelleringen har dock
ej testats. Därför kan ingen slutsats dras med hänsyn till huruvida ett av
tillvägagångssätten är bättre än de som används för närvärande för model-
lering av privat infrastrukturskuld.

Nyckelord: Privat Infrastrukturskuld, Value at Risk, Faktormodeller, Intäk-
tsmodeller, Stand-Alone Risk, Risk Contribution

1
Fristående risk

2
Inverkan på risk
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Chapter 1

Introduction

1.1 Background

Asset Management refers to the activity of overseeing a client’s financial
portfolio. These services are, among others, provided by asset managers.
The top 400 asset managers together manage approximately e56.3trn1[14].

The majority of the asset managers have a risk model which they use
for providing risk analytics of their portfolios. This risk model can either
be sourced from another company or be constructed in-house by the asset
manager. A well used model for portfolio risk analysis is the risk factor
model which commonly is based on Analytical Value at Risk. Value at Risk
(VaR) is the maximum loss of a portfolio over a specified time horizon and
a set probability level. Analytical, parametric or variance-covariance VaR is
based on the assumption that the financial instruments in a portfolio can be
mapped to a set of simpler market instruments and factors. The factors are
specific to each model. Some models have thousands of factors within areas
such as equity, fixed income and alternatives.

The distribution for the market factors or returns are often assumed
to be normal and by making this assumption, standard statistical methods
can be used to calculate the volatility and the covariance matrices for the
instruments in the portfolio. From this, VaR can easily be obtained [10].
The mapping to factors allows for a intuitive explanation of risk and sources
of risk in a portfolio which justifies the popularity of the risk factor model.

The comprehensiveness of the risk models vary and not all risk models
cover alternatives. Compared to equity and fixed income, alternatives pose
specific modelling challenges. These challenges include lack of information,
few data points, smoothing of returns, seasonality and specific factors that
can not be represented by the commonly used risk factors. Moreover, the
alternative models need to be developed continuously in order to satisfy on-
going changes in the alternatives market.

1
Data as of 12/31/2015.
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Infrastructure is one of the asset classes that belong to alternatives. Infras-
tructure has been provided with various definitions. Allianz Global Investors
[3], defined infrastructure as an asset class that refers to physical and tech-
nical structures that helps accommodate the operation, development and
growth of societies and economies. This definition also encompasses func-
tional services that enable economic development and maintain social struc-
ture. Financing of infrastructure can take place through various forms and
instruments. Private infrastructure debt is the financing of infrastructure
with debt by the private side.

As for the other asset classes within alternatives, private infrastructure
debt face risk modelling challenges. This is mainly due to the limited amount
of data on private infrastructure debt investments. Furthermore, the lack of
good public benchmarks and indices as well as factors for the instrument
makes it difficult to model private infrastructure debt in a risk factor model.

Asset allocation to infrastructure funds and direct investments by institu-
tional investors has increased since the mid-2000s. In Europe, infrastructure
investments have previously been very dependent on bank loans. Recapital-
isation of banks and stricter regulations will however force banks to reduce
their risk which could potentially mean a reduction of financing by banks
[12]. Although fund managers have increased allocation to infrastructure
debt, banks and investment banks still remain the largest investors with 19%
[15]. Furthermore, in recent decades, governments have entirely or partially
privatised toll-roads, utility companies, tunnels, airports, and bridges, which
is a trend that is expected to accelerate [9]. This will spur private-sector
investment in infrastructure going forward.

1.2 Problem Statement

There are many challenges when it comes to the risk modelling of private
infrastructure debt investments. The increased allocation to infrastructure
debt by the private sector puts greater importance on the risk modelling of
the asset. Especially institutional investors with multi-asset portfolios, need
to be able to assess the risk from allocating part of their capital to private
infrastructure debt.

There is no consensus regarding how private infrastructure debt should
be modelled in a risk factor model. As private infrastructure debt face unique
challenges when it comes to risk modelling, it is of high interest for the asset
management industry and risk model constructors, to examine if there are
alternative risk modelling approaches for private infrastructure debt that
could reflect the risk from the investments in a multi-asset portfolio better.

2



1.3 Purpose

The purpose of this study is to propose an alternative modelling approach
for private infrastructure debt which is suitable for a parametric risk factor
model.

1.4 Research Questions

In order to fulfil the purpose of the study, the aim is to answer the following
research question:

• How can an alternative approach for modelling private infrastructure
debt in a parametric risk factor model be constructed?

In order two answer the main research question, the following sub-questions
aim to be answered:

• Which are the main risk drivers for private infrastructure debt?

• How can the most important risk drivers be incorporated into the mod-
elling of private infrastructure debt?

1.5 Delimitations and Requisites

Infrastructure can be financed by equity, debt and various mixes of these two.
This can further be split into private/unlisted or public/listed instruments.
The thesis will solely cover the modelling of private infrastructure debt.

A key requirement of the suggested private infrastructure debt modelling
approach is that it can be integrated and combined with a multi-asset para-
metric risk factor model. This implies that all existing factors for the model,
both in the alternative space and for other asset classes, can be utilised for
the modelling approach.

The parametric risk factor model aims at providing an overview of the risk
and risk contribution in a multi-asset portfolio where private infrastructure
debt investments only represent a part of the portfolio’s allocation. The risk
model is assumed to be scalable and scalability is therefore also a requirement
of the suggested modelling approach for private infrastructure debt. In other
words, the modelling approach should be easy to implement and backtest.

This thesis will solely provide possible modelling approaches for private
infrastructure debt. The implementation and backtesting of the models are
not in the scope of this thesis. However, there is a short section which brings
up possible ways of evaluating the modelling approaches.

3
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Chapter 2

Infrastructure Debt

This chapter aims to provide a deeper knowledge of infrastructure invest-
ments and particularly investments in private infrastructure debt. The pur-
pose is to identify risk drivers for private infrastructure debt that could be
incorporated into the risk modelling of the instrument in a multi-asset port-
folio.

2.1 Infrastructure

2.1.1 Introduction

The term infrastructure has been provided various definitions, from very
broad to much more specified. Yet there is no universal definition of in-
frastructure. Furthermore, other terms relating to infrastructure are often
used incorrectly, which brings further confusion. The financial industry has
provided a more narrow definition of infrastructure. The authors Weber,
Staub-Bisang and Alfen [16], defined material infrastructure as "all physical
assets, equipment and facilities of interrelated systems and their necessary
service providers offering related commodities and services to the individual
economic entities or the wider public with the aim of enabling, sustaining or
enhancing societal living conditions".

An infrastructure "facility" or "asset" refer to the physical objects of
the material infrastructure, where the term "asset" is commonly used by
the finance industry. Infrastructure investors will to different degrees be
owners of the infrastructure asset. In the case of infrastructure projects, the
investor will rather support the provision of the asset and get compensated
with revenue from the project, alternatively receive regular payments [16].

Infrastructure investments typically offer long-term and predictable in-
come streams, low correlation to other assets as well as lower default and
better recovery rates compared to other debt instruments [16]. Infrastructure
assets are vital to the functioning of societies and therefore have the benefit
of being isolated from economic cycles [9]. Today, institutional investing in

5



infrastructure usually take place in dedicated private investment vehicles.
These include closed-end funds, direct investments in infrastructure projects
and companies, and co-investments in various forms.

Although infrastructure have many features that appeal to investors, the
investments also come with disadvantages. Direct investments in infrastruc-
ture include large initial capital requirements, contractual obligations, long
lock-up periods and fees. Furthermore, direct investments are also subject
to concentration risk in illiquid, leveraged investments. In contrast, infras-
tructure funds are regulated, liquid, diversified, easy to invest in and com-
paratively cheap to direct investments. The funds offer the exposure to the
publicly traded shares of owners and operators of infrastructure assets [9].

The characteristics of infrastructure debt has traditionally been very at-
tractive to institutional investors with long-term liabilities and annual cash
flows. The changing regulatory environment has however made it more dif-
ficult to invest long-term in relatively illiquid assets [12].

2.1.2 Financing of Infrastructure

Infrastructure can be financed by public or private provision of capital. Cen-
tral, regional, local and other government institutions are referred to as pub-
lic providers of capital. Private capital is provided through project finance
or corporate finance. Project finance is further divided into PPP and Non-
PPP1, corporate finance is split into public companies and private companies
[12].

Infrastructure financing is realised through a range of financing instru-
ments and investment vehicles. The most common financing instruments are
equity, debt and mezzanine. There is also a range of infrastructure invest-
ment products that are a mix of or are based on the mentioned instruments.
The investments vehicles could either be publicly traded or privately traded
and the investments in infrastructure are either direct or indirect via funds
[12]. Each of these financing alternatives have different advantages and dis-
advantages and the most suitable financing is dependent on the maturity of
the asset, the time of the financing requirements and the type of contract,
which in turn is dependent on the infrastructure asset itself [16]. From the
investor’s point of view, the optimal solution is based on the investor’s indi-
vidual perspective and strategy. Infrastructure financing gap is defined as the
difference between the the investment needs and the available investments
[12].

1
PPP stands for Public-Private Partnerships
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2.2 Infrastructure Debt

Debt is the major source of financing for infrastructure projects and assets,
contributing with 60% to 90% of the capital [16]. Infrastructure debt includes
both loans and bonds, which in turn could be broken down further into
subcategories [12].

2.2.1 Senior Infrastructure Loans

Senior loans are used for all types of financing, including financing of infras-
tructure. Senior loans can either by provided by one player or several banks
and/or financial investors and is then referred to as syndicated loans. The
loan terms and conditions are constructed to fit the specific asset or project
and the interest and final principal payment can be tailored to reflect the
underlying cash flows of the borrowing company or project. The average
length of a senior bank loans is 7-12 years but some projects require loan
durations up to 30 years. The longer term loans are typically partly financed
by development banks. Independent of the term length of the loan, lenders
usually require the loan to be repaid a couple of years before maturity. This
is referred to as the tail of the loan and gives the borrower time to repay
the lenders in the case of debt restructuring or late payments. The ultimate
goal of a lender is a fully repaid loan [16].

The interest rate or return of the debt instrument is based on a reference
interest rate and a specific margin for the infrastructure project or asset.
The margin is determined by several factors such as current market and
industry standards, the risk profile of the asset or project, and the lenders
yield expectation. The debt’s interest rate can either be fixed, variable or
set to be in a specific interval [16].

The risk of a senior loan is typically low as they are secured by standard
collateral and is senior to other financing by debt. The standard collat-
eral include amongst others; present and future claims of the company from
material contracts, pledge of the shares held by equity owners, pledge on ac-
count balances, ensuring sufficient capitalisation, maintaining liquidity and
cash reserves as well as achieving financial covenants. Furthermore, the risk
of the instrument is lowered by the fact that it is not subject to business risk,
such as lower profit than expected. However, if the project company fails to
repay the debt, the lender will need to take part in the renegotiations [16].
In the case of large loan transactions, the debt will be split into tranches
where junior debt is subordinated to the senior debt. As the risk and default
probability tend to be higher for the junior debt, the lender is compensated
with a higher return [16].

7



Senior Syndicated Infrastructure Loans

The traditional senior loan is provided by one bank or lender. The senior
syndicated loan on the other hand, is provided by a group of banks, referred
to as the syndicate, and then placed on debt market which makes the loan
available to a larger group of investors. The incentives for syndication is the
lower credit risk for the lender as well as opportunities to gain arrangement
fees. The financing of the transaction is structured and arranged by one or
sometimes several banks, called the "lead manager" or "lead arranger". The
lead manager decides upon the size of the loan and the amount that is to
be kept at the balance sheet after the final take of the syndication, which is
usually around 10%. Other lenders are then invited to participate and the
commitment of these are referred to as underwriting [16].

The underwriting participation is determined by factors such as attrac-
tiveness of the transaction, the financing structure and the fees offered for
participating in the syndication. Subsequently to the underwriting, the syn-
dicate offer tranches of the loan to other lenders and participants. Financial
long-term investors have in the recent years also started to buy syndicated
tranches and participate in the syndication from the start, which previously
was dominated by banks. There are extensive contractual agreements con-
cerning syndicated loans in which the topics covenants, representations, war-
ranties and the events of default are of great importance [16].

2.2.2 Infrastructure Bonds

Bonds may be issued instead of, before, or after a loan. Bonds are typically
issued for long durations and transaction volumes exceeding approximately
£200m. The longest terms stretch to nearly 50 years. In comparison to loans,
the bonds are not tailored to the financing needs of the borrower. The term
and interest rate will instead be based on other factors such as current capital
markets and the creditworthiness of the project company. Interest conditions
of the bond is therefore superior to the ones of the loan. However, as there is
a large number of bond holders, there is little or no ability of restructuring
of the bond when borrowers face repayment challenges [16].

Bonds have either a floating or fixed interest rate, where the floating rate
is the most common. Fixed rate bonds with annual payments are attractive
to insurance groups and other investors with similar cash flow structures.
Pension funds with inflation linked liabilities also have an interest in floating
inflation linked bonds as they are not as sensitive to changes in the interest
rate as for example insurance companies [16].

The bond may either be placed privately or offered to the public. Private
placements have many advantages compared to public as they are not as
costly to issue, less time consuming and generate funds more quickly. Bond
issues in connection to infrastructure projects and assets as well as PPP’s,
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are most common in the U.K, Canada and Australia. In the rest of world,
the market for PPP bonds is very illiquid, however, it is expected to pick
up as a result of increased infrastructure volumes and transactions going
forward [16].

A common financing instrument is the corporate bond which serves as
a financing instrument for infrastructure companies active in the capital
markets. The U.S. corporate bond market is much more developed than the
European, due to the European markets relying heavily on bank debt in the
past. U.S. infrastructure financing is largely occurring from municipal bonds
with the feature of being tax-exempt [12]. An infrastructure bond could be
seen as a corporate bond with focus on infrastructure investments.

Loan financing has the major share of infrastructure financing but project
bonds have increased in volume post financial crisis. However, in Europe
there is almost no financing by project bonds post financial crisis [12]. The
projects bonds are issued by project finance companies and institutional
investors and other financial institutions then have the opportunity to invest
in these. The projects could either be private placements or more commonly,
traded in a secondary market.

In addition to spending by governments and private investments of in-
frastructure companies, PPP can facilitate public infrastructure investments.
This form is a type of project finance which include an agreement between
a public authority and a private party to invest and provide a particular
public project or service. A Specific Purpose Vehicle (SPV) is usually set
up in order to develop, build, maintain and operate the asset under the pe-
riod that it is contracted [12]. A private investor in a PPP project usually
become shareholder of the project company responsible for the provision of
the asset, while the actual ownership of the asset still belongs to the public
partner. The projects are time limited and as the private investor do not
own the asset, the asset can not be sold at termination of the contract [16].

2.3 Private Infrastructure Debt

Private infrastructure debt refers to loans and bonds that have been financed
by the private side. Private infrastructure investments can be attractive to
institutional investors that seek returns from allocations to illiquid alter-
natives. A decision to make a specific allocation to infrastructure implies
that the risk profile of the asset is unique. Private infrastructure debt is
today considered to have high risk by regulators. This is mainly because
infrastructure debt is a long-term and illiquid asset with lack of track record
[6].

Due to its unique risk profile, Blanc-Brude, Hasan and Whittaker [6]
argued that infrastructure should have its own bucket or sub-bucket in a
broader group of assets. Private infrastructure investments could benefit of
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being referred to as financial instruments rather than industrial sectors, as
the latter has a limited role in explaining and predicting the performance of
the asset. The authors further argued that private infrastructure investments
should not be conceptualised as real assets. Contractual and legal aspects as
well as the business model of the infrastructure project largely determines
the value of the investor’s claims [6].

Infrastructure project finance debt is typically priced as a floating rate
instrument with a benchmark rate and a credit spread. The all-in spread,
i.e. the spread inclusive of fees, for project finance loans tend to be lower
than for comparable corporate loans. This could possibly be due to the
the fact that project financing solves some of the agency issues that are
typically involved in a creditor and borrower relationship. On the other
hand, political and regulatory risk should be taken into account in long-term
investments like infrastructure projects. The risk of deterioration of a public
sector’s commitment in the long term contracts is not consistently priced in
by investors. Hence, political risk protection and guarantees contributes to
lowering spreads of long term loans [7].

Blanc-Brude and Ismail [7] examined the relationship between loan char-
acteristics and credit spreads as well as the the impact by macro-level factors
and project-level risk factors on the credit spread of infrastructure project
finance debt. Their conclusion was that infrastructure debt has two pric-
ing dimensions. On a cross-sectional basis, project risk factors can explain
spread levels between loans for projects that have different contractual struc-
tures. On a longitudinal basis, each project loan can be attributed a decreas-
ing path reflecting continuous deleverage and change in risk profile as time
passes. Therefore there is a difference in credit risk both between loans and
within loans in a portfolio. The level of credit risk faced by an investor is
both determined by the type of project and the contractual agreement, as
well as at the time point in the loan’s life cycle [7].

2.3.1 Project Finance

Project finance could serve as a well defined form of investment structuring
for infrastructure projects. Project financing do not represent all investable
infrastructure. However, it is a long-term investment that is solely dedicated
to repay creditors and investors over the project life cycle [6].

The borrower in project finance is usually a special purpose entity (SPE),
which only has permissions to develop, own, and operate the installation. As
a consequence, the project’s cash flow as well as the collateral value of the
project’s assets are the main determinants of repayment ability. However,
as the collateral is typically worth nothing outside the contract between the
parties, it could be argued that the cash flows of the project is the most
important for determining repayment ability. Infrastructure project finance
debt is different from corporate debt due to the setup of the SPE. The SPE

10



only invest in the initial phase of a project and will continue to deleverage
as time passes. Furthermore lenders have the ability to structure aspects of
the credit risk. Project finance thus have a dynamic credit risk profile which
is reflected on the credit spread changes with the passage of time [7].

Corporate governance in project finance is different from that in tradi-
tional corporates. In project finance, lenders have an important role from
the investment decision stage where they are involved in determining the pa-
rameters that are usually only controlled by the firm. Furthermore they can
minimise the credit risk by taking use of covenants as well as having control
right over the free cash flow in the project. The structuring of project debt
could therefore be seen as an optimisation exercise between borrowers and
lender and therefore certain risk profiles for a level of yield can be targeted.
On average, the level of credit risk in project debt is between Baa1/BBB+
and Ba2/BB [7].

Delegation allows for the creation of investable infrastructure assets.
When financing a new venture, the companies or governments can choose
to invest themselves or they can enter into a contractual agreement. The
contractual agreement involves purchasing a product or service from a third
part after they have invested in the project. Contracts therefore become vital
in order to create enforceable and valuable claims. The relationship-specific
infrastructure investments have little or no value outside the contractual
agreement and therefore the investment’s characteristics could be best de-
scribed by its contractual characteristics [7].

2.3.2 Loan Characteristics and Macro-Level Factors

Loan characteristics and macro-level risk factors could possibly explain credit
spreads of infrastructure debt. Macro-level factors include country specific
risk, the credit cycle and the business cycle amongst others factors. These
factors have however shown to have a limited impact on the credit-spread of
infrastructure debt [7].

In terms of specific loan characteristics, default rates are low and re-
covery levels are very high in project finance. As time passes, the project
loans systematically receives a lower default probability. As it is systematic
and predictable, it could be argued that it is necessary to take into account
when building and looking at portfolio with infrastructure debt investments.
Contrary to intuition, maturity has been shown to not have a positive re-
lationship to project loan pricing. In one study it was shown that longer
projects tend to have lower credit spread and in another study it was found
that longer loans have lower spreads beyond a certain maturity. Further-
more, loan size and syndicate size have been shown to have a limited impact
on spreads [7].
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2.3.3 Project-Level Risk Factors

Project-level risk factors include leverage, construction risk and revenue risk.
Risk factors that can’t be managed, such as political or revenue risk are sig-
nificant and renumerated risk factors that can explain the cost of infrastruc-
ture project finance debt [7].

Leverage and Construction Risk

Blanc-Brude and Ismail [7] came to the conclusion that the impact of delever-
aging may be more relevant than the initial leverage itself for the credit dy-
namics which suggest that infrastructure project finance should be moved to
lower risk categories.

Many institutional investors have feared funding new projects because
of construction risk, an idea that new projects are much more risky than
existing ones. Although construction risk exists, investors often overestimate
the construction risk in private infrastructure investments. Blanc-Brude and
Ismail [7] argued that it should rather be welcomed as a credit risk diversifier
in infrastructure debt portfolios.

Project financing structures for infrastructure requires construction and
operating risks to be managed through a network of contracts. This al-
lows for transfer of main parts of the uncertainty from the SPE to sub-
contractors that have committed to a fixed-date and fixed-price requirement.
Construction risk that the company can manage through its network of con-
tracts therefore only impact the risk pricing at the margin. Although it has
been shown in earlier studies that the risk of cost overruns and delays are
well-managed, the completion of the construction phase is still important in
project finance. Construction risk, just as leverage, is constantly changing
during the life-cycle of the project. In the initial phases of the project, the
outturn of the costs are unknown. After this period has passed, its risk
profile changes [7].

On a cross-sectional basis, factors such as construction risk or leverage
seem to be idiosyncratic and insufficient to explain loan spreads. However,
over time, these factors appear to be systematic and able to explain changes
in risk profile and the trend of decreasing infrastructure project finance loan
spreads over time [7].

Revenue Risk

Risk-and return profiles for infrastructure projects could be grouped by rev-
enue risk and by life-cycle stage [6]. Revenue risk is a significant risk factor
driving the cost of debt in infrastructure project finance as it represents an
unmanaged dimension. Traditionally, revenue risk has been associated with
the type of industrial sector. This could be misleading and it should rather
be seen as a contractual feature of each project as revenue risk in sectors
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can vary significantly. The same type of project may have a very high or
low revenue risk which is more likely to affect the credit risk than the fact
that the project belongs to a specific industrial sector. Government service
projects like a PPP, has on average a leverage of 90% but the revenue risk in
these type of projects is very low or non-existing. Telecom projects have an
average leverage around 67% and transportation, energy and environmental
services have an average leverage of 75-79%. Although these projects have a
lower average leverage, the revenue risk tend to be higher [7].

Blanc-Brude and Ismail [7] suggested that revenue risk should be split
into three categories depending on the revenue model. These categories
are contracted (availability payment scheme), regulated (partial commer-
cial scheme, partially contracted, shadow tolls) and merchant (commercial
scheme, real tolls). The number of projects in each category is roughly equal.
The commercial scheme does however make up a greater portion in terms of
total investment [7].

Availability payment schemes refers to the case where a public sector
agrees to pay a fixed income over a set period to the investor. In exchange,
the investor has the responsibility for investment, operations, residual equity
and debt service cash flows that are necessary for delivering the infrastructure
project as in the pre-agree output specification. At the end of the contract,
the value is set to zero and the asset is returned to the public sector. Con-
tracted revenue models are often used for social infrastructure projects, e.g.
schools, government buildings and hospitals [7]. The risk for this revenue
model is typically lower than for the average infrastructure project.

Commercial schemes include a similar contract, but the big difference is
the floating and variable income instead of a fixed income to the investor.
The investor would typically have the right to collect tolls or tariffs from the
users. The value at the end of the contract is often set to zero [7]. Merchant
revenue risk models are expected to generate a higher return due to demand
risk [5].

Capped commercial schemes is similar to the commercial scheme although
the revenue from users is often shared between the investor and the public
sector. The terminal value in these types of projects are not always set to
zero as they often involve tangible assets and an implicit contract with the
public sector which conditions the value of the investment [7].

In the study by Blanc-Brude and Strange [8], the authors found that rev-
enue risk factors had a positive impact on spreads. The study was conducted
on the European road sector over a specified period and it was found that
real tolls increased the spread on average by 41.2 basis points, and shadow
tolls by 33.6 basis points, ceteris paribus, in comparison to the spread of
availability payment roads. The same study was conducted using a UK
PFI and PPP sample. The results of the study was also that real tolls and
shadow tolls in urban rail and roads increased the spread in comparison to
availability payments in social infrastructure projects.
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Blanc-Brude and Ismail [7] performed empirical analysis using two large data
sets of project finance loans for cross-sectional as well as longitudinal anal-
ysis. The study included several dimensions, there-amongst the impact on
credit spread by project-finance variables such as revenue risk. The contrac-
tual characteristics for each of the projects could not be observed and there-
fore proxies were used. The proxies were primarily based on the fact that
some sectors typically have a certain revenue model. E.g., social infrastruc-
ture projects tend to be contracted as they receive pre-agreed fixed income
from the public sector. The empirical study showed that project finance
that has a revenue model corresponding to availability payment, has credit
spreads that are 30-60 basis points lower than those that have a greater ex-
posure to demand or traffic risk. Furthermore, projects that receive shadow
tolls or has partially contracted revenues, has a spread that is 15-40 basis
points lower than for projects with a merchant revenue model [7].

2.3.4 Research and Data

The available research on private infrastructure investments is limited and
the existing articles almost solely focus on equity infrastructure investments.
As the research and investment knowledge is limited, private infrastructure
debt has remained an area with many unanswered questions. This is mainly
due to three reasons: the absence of trustworthy market proxies, the limita-
tions of existing private databases and studies, and the focus on inadequate
investment metrics in private investments [6].

There are currently no infrastructure investment benchmarks which is
challenging for investors that want to benchmark their infrastructure invest-
ment’s managers or their strategies. A few databases exist and have been
used in studies of private equity investments in infrastructure. This data is
not categorised in terms of factors and the data is mainly on cash flows and
asset values of private equity funds, which is not really representative for
underlying infrastructure investments [6].

Rating agencies hold some data on private infrastructure debt. They
have collected data in order to rate both listed and private bonds and loans.
The issues are ranked in relative to each other but are not considered on
a portfolio level. Furthermore, the rating only tell about expected future
performance but it is not actually monitored. The data collected by rating
agencies is therefore also a poor infrastructure investment benchmark [6].

There is a clear demand of data on private infrastructure investments.
The questions of which data, for what purpose, and how it should be col-
lected still remains. Blanc-Brude, Hasan and Whittaker [6] have proposed
a framework for collecting data and evaluating privately held infrastructure
debt and equity. EDHEC Institute started the process of collecting, aggre-
gating and classifying investment data and infrastructure cash flow in 2015
[6]. This database is however not available to the public.
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Chapter 3

Method and Data

This chapter aims to give a brief overview of the method and the data used
in the thesis.

3.1 Method

The master thesis has been conducted during the spring semester of 2017,
spanning over a period of 5 months. The method can be summarised in the
following overlapping phases:

Problem Formulation: An initial problem formulation as well as ex-
pectations of the outcome was formulated in the initial phase of the
thesis. The problem formulation was updated as further knowledge of
private infrastructure debt investments and risk models were gained
from a literature review and interviews.

Literature Review and Interviews: A literature review covering infras-
tructure debt investments and possible modelling approaches for pri-
vate infrastructure debt was conducted. Existing research on the mod-
elling of private infrastructure debt is very limited and the goal of the
literature review has therefore been to understand private infrastruc-
ture debt as an investment. In order to gain better insight into current
and tested approaches for modelling of private infrastructure debt in
risk factor models, interviews with risk professionals were conducted.

Data: A data set with private infrastructure debt deals was received in
the middle of the thesis period. The data set was used to test findings
from research and to compute empirical risk estimates for one of the
modelling approaches. Details of the data set and modifications of the
data can be found under Section 3.2.

Results: The modelling approaches were constructed after the litera-
ture review and the interviews had been performed. Computations of
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estimates for the modelling approaches were made using the obtained
data set and a sample from a previous study.

Analysis: Analysis of the results and the method was performed after
the modelling approaches had been constructed and computations had
been performed.

Report writing: The first sections of the report were initiated early
in the process and have been amended throughout the process. The
last sections in the report were completed after all the results were
obtained.

3.2 Data

A small data set and public indices are used for the modelling approaches
proposed in the thesis.

3.2.1 Data Set

The data set used in the study consists of approximately 200 private infras-
tructure debt deals where some of these deals are split into tranches with
various risk profiles, sizes, maturities and spreads. Each deal has several
attributes related to the transaction. The data set is not complete, mean-
ing that information for attributes are missing for some transactions. The
data set contain several attributes that are not relevant for the study. The
attributes used in this study are mainly the name of the transaction, the
sector, the credit spread and notes regarding the investment.

The data set was modified in the following way:

• A deal with several tranches was split so that each tranche is seen as
a separate instrument or investment.

• Deals with no information regarding spread margin were removed.

• The spread margin for each deal was split into reference rate and credit
spread as solely the credit spread is relevant for the study.

• For deals that had a spread interval instead for a fixed spread, the
spread was set as the average of the spread interval.

The modifications resulted in a data set suitable for the study. The data was
further split into categories for the modelling approach which is discussed in
Section 5.7.3.
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3.2.2 Time Series

The general infrastructure debt factor, discussed later in the modelling ap-
proach, is represented by a public index. The index is perceived as well di-
versified and representative for infrastructure debt deals with lower volatility
and spread levels in comparison the broad market and other available infras-
tructure indices. As the index is public, the time series is accessed easily and
can be used for various estimations and computations.

17



18



Chapter 4

Mathematical Background

This chapter aims to give an overview of multivariate models, parametric
risk factor models and some of the risk measures used as risk analytics in
portfolios. Furthermore it aims to give an introduction to the Black-Scholes
model and market price of risk, as the latter is used to motivate parts of the
modelling approaches.

4.1 Multivariate Models

Multi-asset portfolios where the risk factors are assumed to have a joint
distribution can be represented by multivariate models.

4.1.1 Spherical Distributions

Y has a spherical distribution in Rd if

OY
d

= Y,

for every orthogonal matrix O. This means that the distribution for Y is
invariant under rotations and reflections [13].

4.1.2 Elliptical Distributions

A random vector X has an elliptical distribution if there exist a vector µ,
a matrix A and a spherically distributed vector Y such that the following
holds

X
d

= µ+AY

The multivariate normal distribution is used in this thesis. A random vector
X has a N

d

(µ,⌃)- distribution if

X
d

= µ+AZ
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where AAT= ⌃ and Z has a N
d

(0, I)-distribution.
The following is an important property of the elliptical distribution and

is useful for large portfolios. If X = µ + AZ is normally distributed with
AAT= ⌃ , then any linear combination of X is also normally distributed.
Hence

wTX
d

= wTµ+ (wT⌃w)1/2Z1 (4.1)

where w is a non-random vector with same dimension as X [13].

4.2 Value at Risk

Value at Risk (VaR) is a measure of the risk of investments and estimates
how much a portfolio might lose during normal market conditions for a set
time period and probability level. The VaR at level p 2 (0, 1) for a portfolio
with value X at time 1 is

VaR
p

(X) = min{m : P (mR0 +X < 0)  p}, (4.2)

where R0 is the percentage return of a risk-free asset.
If we let

L =
�X

R0

where X is the net gain of the portfolio and R0 is the percentage return of
a risk-free asset, we can express (4.2) as

VaR
p

(X) = min{m : P (L  m) � 1� p},

Similarly, in statistical terms, it can be expressed as

VaR
p

(X) = F�1
L

(1� p)

where, F�1
L

(u) is the quantile value of F
L

such that F�1
L

(u) is the smallest
value m for which F

L

(m) � u, see [13].

4.2.1 VaR for Large Portfolios

Consider a portfolio consisting of a linear combination of different assets with
an elliptical distribution. Let X = V

T

� V0 denote the gain of the portfolio
at time T. Using (4.1), the Value at Risk of the portfolio can be expressed
as

VaR
p

(X) = wTµ+ (wT⌃w)1/2��1(1� p) (4.3)

where w represent the portfolio weights and ��1(·) is the quantile of the
normal cumulative distribution function.

In many cases, we will assume that µ = 0, which reduces (4.3) to

VaR
p

(X) = (wT⌃w)1/2��1(1� p)
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4.3 Parametric Linear VaR Models

The Parametric Linear VaR Model is a model that can be used to gain
an oversight of the risk in a portfolio. A bottom-up-modelling approach is
often used for the model which allows for risk measurement calculations at
different levels in the portfolio, from the security level to the entire portfolio.
The construction of the factors are specific to each risk model, which is why
no effort will be made on describing the various risk factors.

The risk in a portfolio can be split into systematic and idiosyncratic risk.
Systematic risk, also known as market risk, is the risk inherent to the entire
market. Idiosyncratic or unsystematic risk is the opposite to systematic risk
and refers to risk that can be attributed to a particular asset or instrument.
As it does not affect every investment in the portfolio, this risk can partly
be mitigated through diversification. The relationship between systematic
risk, idiosyncratic risk and total portfolio risk is

Total Portfolio Risk = Systematic Risk + Idiosyncratic Risk (4.4)

A normal distribution is assumed where the mean µ is set to zero and the
volatility � is estimated from historical data. The magnitude of VaR and
other risk measures can be expressed in terms of absolute numbers or in
terms of returns. The formulas below have primarily been taken from the
books by Alexander, see [2] and [1]. Modifications have been done to some
of the formulas.

4.3.1 Systematic Risk Factors

Systematic Linear VaR

The systematic return of a portfolio is the return that can be explained by
the variation in risk factors. For a linear portfolio the systematic return is
expressed by the following weighted sum

R
S

=
nX

i=1

e
i

X
i

(4.5)

where e
i

is the exposure in percentage term, and X
i

is the return of risk
factor i.

To be able to calculate the systematic linear VaR, the expectation and the
variance of the portfolio’s systematic returns over the specified time horizon
is needed. To compute these, the factor sensitivities or exposures, e, and
the covariance matrix ⌃ of the risk factor returns need to be estimated. In
addition to adjusting the time period of estimation, various methods can
be used to estimate the covariance matrix, such as applying a weighting
schedule to the factor return data.
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The expectation E
S

[R
S

] of the systematic returns can be expressed as

E
S

[R
S

] = eTµ

where µ = (E
S

[X1], ..., ES

[X
n

])T is the expected systematic return of the
factors and e = (e1, ..., en) is a vector of exposures to n risk factors.

The variance V
S

[R
S

] of the systematic returns can be expressed as

V
S

[R
S

] = eT⌃e

where ⌃ is the n ⇥ n covariance matrix for the risk factor returns and e =
(e1, ..., en) is a vector of exposures to n risk factors.

Assuming that the risk factors follow a multivariate normal distribution,
the systematic linear VaR, V aRS

p

, is given by

VaRS

p

= ��1(1� p)(eT⌃e)1/2 � eTµ

Assuming that the expected systematic return is equal to the discount rate,
the expression above reduces to the following formula

VaRS

p

= ��1(1� p)(eT⌃e)1/2 (4.6)

Often it is assumed that the risk factors are I.I.D. in respect of time de-
pendence, which in combination with absence of auto correlation or het-
eroskedasticity, allows for application of the square-root-of-time rule. This
result in the following property for the covariance matrix

⌃
t

= t⌃1

where ⌃
t

is the covariance matrix of the t-period risk factor returns and ⌃1

is the covariance matrix for the one-period return.
The systematic VaR for the t-period could therefore be expressed as

VaRS

t,p

=
p
tVaRS

1,p (4.7)

Stand-Alone Risk and Stand-Alone VaR

Stand-alone risk and stand-alone VaR is the systematic risk and systematic
VaR respectively, isolated to a specific risk factor or block of risk factors.
The sum of the stand-alone VaR for the risk factors is greater than or equal
to the total systematic VaR. This is due to diversification effect between risk
factors.

Assume that a portfolio can be mapped against risk factors for three
assets; A, B and C. The exposure vector e can then be expressed as

e = (eT
A

, eT
B

, eT
C

)T
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where eT
A

, eT
B

and eT
C

represent the exposure vectors in percentage term for
each of the assets. The method of estimation of exposure will differ for the
assets.

The covariance matrix ⌃ can be expressed in terms of sub-covariance
matrices, i.e. the covariance matrices for each asset’s risk factor returns.
Hence, ⌃ is given by

⌃ =

0

@
⌃
a

⌃
a,b

⌃
a,c

⌃
b,a

⌃
b

⌃
b,c

⌃
c,a

⌃
c,b

⌃
c

1

A

In order to calculate the VaR for one of the assets, the exposure vectors for
the other assets are set to zero. As an example, the stand-alone VaR for
asset A is obtained by letting e

b

= e
c

= 0. The stand-alone risk or volatility
for asset A is then given by

�
a

= (eT
a

⌃
a

e
a

)1/2

The stand-alone VaR for asset A is then obtained by

VaRA

p

= ��1(1� p)(eT
a

⌃
a

e
a

)1/2 = ��1(1� p)�
a

Contribution to Risk

Contribution to risk is a measurement of the change in risk due to a small
change in factor exposure. The sum of the contribution to risk of all factors
in a portfolio is equal to the portfolio volatility.

The portfolio volatility �
P

is given by

�
P

=
p

eT⌃e+ wT w

where ⌃ and  are the covariance matrices for the systematic risk factor
returns and the idiosyncratic risk term returns respectively, e is a vector of
exposures to the risk factors and w is a vector with the market value weights
of the securities in the portfolio.

The risk contribution RC
f

of factor f is defined as

RC
f

=
@�

P

(e)

@e
f

e
f

=
@(
p
eT⌃e+ wT w)

@e
f

e
f

=
(eT⌃

f

)e
f

�
P

(4.8)

where e is the exposure vector, e
f

is the exposure to factor f , @�

P

@e

f

is the
partial derivative of the portfolio volatility �

P

with respect to the exposure
to factor f and ⌃

f

is the column for factor f in ⌃.
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Marginal VaR

Stand-alone VaR can be converted to marginal VaR for which the sum is
equal to the total systematic VaR. The gradient vector is obtained by differ-
entiating the formula for the systematic VaR, see (4.6), with the respect to
each component in e. If one risk factor f is considered, the exposure to the
other risk factors are set to zero.

The marginal VaR can then be estimated as

Marginal VaR ⇡ eTr(e)

where e is the exposure to the asset’s factor returns and r. The gradient
vector r is given by

r(e) = ��1(1� p)(⌃e)(eT⌃e)�1/2 (4.9)

where e is a vector of exposure, ⌃ is the covariance matrix for the returns,
p is the confidence level, ��1(·) is the quantile of the normal cumulative
distribution function and RC

f

is the risk contribution of factor f as given
in (4.8).

Hence, the marginal VaR can be expressed as

Marginal VaR ⇡ eT��1(1� p)(⌃e)(eT⌃e)�1/2

Incremental VaR

The formula for Marginal VaR can be modified as to assess the impact on
VaR of a trade. This is also called incremental VaR and the first order
approximation is given by

Incremental VaR ⇡ �eTr(e) = �eT��1(1� p)(⌃e)(eT⌃e)�1/2

where �e is the change in risk factor exposure as result of a specific trade,
e is the original exposure vector and r is the gradient vector given in (4.9).

4.3.2 Idiosyncratic Risk Terms

A few risk measures for the idiosyncratic risk terms will be brought up in this
section. More detailed descriptions of the risk measures can be found under
Section 4.3.1. where the risk measures are brought up for the systematic risk
factors.

For a linear portfolio, the idiosyncratic return of a portfolio is the return
is represented by the following weighted sum

R
I

=
mX

j=1

w
j

Y
j

(4.10)
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where w
j

is the security weight in percentage terms, and Y
j

is the return of
idiosyncratic risk term j.

The variance V
I

[R
I

] of idiosyncratic risk can be expressed as

V
I

[R
I

] = wT w (4.11)

where w is a vector of the market value weights of the securities in the
portfolio. The risk factors Y

j

are I.I.D N (0, 
jj

) and therefore,  is a m⇥m
diagonal matrix containing the variances of the idiosyncratic risk terms for
the securities.

The idiosyncratic risk and the matrix  can be estimated using the re-
lationship stated in (4.4). The variance �2

P

of the portfolio is given by

�2
P

= V
S

[R
S

] + V
I

[R
I

]

where V
S

[R
S

] and V
I

[R
I

] is the variance of the returns of the systematic risk
factors and the idiosyncratic terms respectively.

Rearrangement of the expression above, therefore gives that the idiosyn-
cratic risk �

I

in a portfolio can be estimated as

�
I

=
q
V
S

[R
S

]� �2
P

Stand-Alone Risk and VaR

The stand-alone risk for the idiosyncratic terms of asset a is given by

�
a

= (wT

a

 
a

w
a

)1/2

where w
a

is the market weights in asset a and  
a

is the diagonal covariance
matrix of asset a.

The stand-alone VaR for the idiosyncratic terms of asset A is then ob-
tained by

VaRA

p

= ��1(1� p)(wT

a

 
a

w
a

)1/2 = ��1(1� p)�
a

where ��1(·) is the quantile of the normal cumulative distribution function.

Contribution to Risk

The risk contribution of a idiosyncratic risk term i is given by
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p
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where , w
i

is the weight in risk term i, @�

P

@w

i

is the partial derivative of the
portfolio volatility �

P

with respect to the exposure to risk term i, and  
i,i

is the variance of the returns of risk term i. The portfolio volatility �
P

is
stated in (4.12).

25



4.3.3 Total Portfolio Risk and VaR

The return in a multi-factor model can then be expressed as

R = R
S

+R
I

=
nX

i=1

e
i

X
i

+
mX

j=1

w
j

Y
j

As the systematic and idiosyncratic risk factors are independent, we get that
the variance of the returns of systematic and idiosyncratic risk terms is

V [R] = V [
nX

i=1

e
i

X
i

+
mX

j=1

w
j

Y
j

] = eT⌃e+ wT w

The total volatility �
P

of a portfolio with both systematic and idiosyncratic
risk can therefore be expressed as

�
P

=
p

eT⌃e+ wT w (4.12)

The VaR for a portfolio subject to both systematic and idiosyncratic risk is
therefore given by

VaR
p

= ��1(1� p)�
P

Assuming that covariance matrices have been estimated for a specific period,
the t-period VaR is given by

VaR
t,p

=
p
t��1(1� p)�

P

4.3.4 Linear VaR for Cash Flows

The following method is applicable for portfolios containing bonds, loans
and swaps. Their common denominator is the ability to be expressed as
cash flows. The risk factors in this case are yield curves. Yield curves are
sets of fixed maturity interest rates of a specific credit rating.

In general, interest rates can be decomposed into a reference rate such as
the LIBOR and a credit spread. The risk factors will then be the yield curve
for the reference rate and the credit spread term structured for different
credit ratings.

Using a linear approximation, the change in present value of the entire
cash flow series is

�PV = �eT�r

where e is a vector of risk factor sensitivities and element i represent the
cash exposure for the ith index and �r is a vector of changes in interest
rates in basis points at the standard maturities.
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4.3.5 Exposure/ Sensitivity vector

There are various ways of defining the exposure or sensitivity vector and
it could either be defined as in nominal or percentage terms. Alexander
[2] used PV01, the present value of a basis point change as a sensitivity
measure. Using PV01, the assumption is that the covariance matrix ⌃ for
the risk factors is expressed in basis points. PV01 is defined as

PV 01
T

= PV 01(C
T

, R
T

) = PV (C
T

, R
T

� 0.01%)� PV (C
T

, R
T

)

where PV (C
T

, R
T

) is the present value of the cash flow at time t. Using a
discretely compounded discount rate R

T

in annual terms, PV (C
T

, R
T

) can
be computed as

PV (C
T

, R
T

) = C
T

(1 +R
T

)�T

If we instead use a continuously compounded rate, we can express PV (C
T

, R
T

)
for any maturity T, not only integer values. The PV (C

T

, R
T

) is then

PV (C
T

, R
T

) = C
T

e(�r

T

T )

An approximation to PV01 using this expression is therefore

PV 01
T

⇡ TC
T

e(�r

T

T )10�4

Using PV01, the sensitivity vector in nominal terms can be expressed as

e = (PV 011, PV 012, ..., PV 01
n

)T

where PV 01
i

is the PV01 for index i.
To obtain the sensitivity in percentage terms, we simply divide by the

total portfolio value. The percentage sensitivity therefore can be expressed
as

e = P�1(PV 011, PV 012, ..., PV 01
n

)T , (4.13)

see [2]. This is closely related to the concept modified duration, which in
percentage terms is

Modified Duration = 100
PV 01

PV
= � 100

PV

@PV

@y

where PV refers to the price of the bond, PV01 is the present value of a
basis point change, and @PV

@y

is the partial derivative of the bond price with
respect to the yield [11].
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4.4 Black-Scholes Model

In this section, the Black-Scholes model will be brought up from a martingale
point of view. From this point of view, the probability space is chosen as
(⌦, F, P, F ), and is carrying a P-Winer process WP . The filtration F is
generated by WP .

The Black-Sholes model on this space is defined as

dS
t

= ↵
t

S
t

dt+ �
t

S
t

dWP

t

dB
t

= r
t

B
t

dt

where S
t

can be seen as the stock price and B
t

the bank account at time t.
↵
t

, �
t

and r
t

can be arbitrarily adapted but integrable processes with the
condition �

t

6= 0.
The model is free of arbitrage only if there is a martingale measure Q for

the model. Using the Girsanov Theorem, we can look for a Girsanov kernel
process h such that the measure Q is in fact a martingale measure. The
Q-dynamics of S is given by

dS
t

= {↵
t+�tht}St

dt+ �
t

S
t

dWP

t

where h
t

is the Girsanov kernel process.
For Q to be a martingale measure, the local rate of return under Q must

equal the short rate. Hence, there is a need of a process h such that

↵
t

+ �
t

h
t

= r
t

which has the solution

h
t

= �↵
t

� r
t

�
t

The Girsanov kernel process h
t

is stochastic and can be expressed in terms
of market risk by the relation h

t

= ��
t

.
The market price of risk �

t

is given by

�
t

=
↵
t

� r
t

�
t

(4.14)

where ↵
t

is the local mean rate of return, r
t

is the risk-free rate and �
t

is the
volatility. The numerator ↵

t

� r
t

could be seen as the rate of excess return
over the risk-free rate, i.e. the risk premium [4]. The market price of risk
can be interpreted as the excess return that is required by investors for a
certain level of risk.
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Chapter 5

Modelling Approaches

The intention with this chapter is to provide possible remedies to the risk
modelling of private infrastructure debt. Two modelling approaches are pro-
posed; a systematic approach presented in Section 5.4 and an idiosyncratic
approach presented in Section 5.5.

5.1 Introduction

Key features and characteristics of private infrastructure debt have been
identified based on existing research and interviews with professionals from
the industry. Perceiving infrastructure as a contract rather than as an asset
suggest new risk drivers that are different to those of other assets. With
this view, the risk factors used for traditional assets are not sufficient for
explaining the actual risk in private infrastructure debt investments. The
research provided thoughts on several possible sets of risk factors. However,
according to previous research, see [7], revenue risk seem to be a main driver
of credit risk in private infrastructure debt.

Revenue risk is the risk occurring from the type of revenue model in the
infrastructure project or company. In a previous study by Blanc-Brude and
Ismail [7], the authors showed that the credit spread for private infrastruc-
ture debt varies with the sources of income for the project. The data set
in this study also indicated that the spread level differ a lot between infras-
tructure debt investments categorised by revenue model. The two suggested
modelling approaches therefore aim at incorporating revenue risk into the
modelling of private infrastructure debt in a risk factor model.

The amount of data on private infrastructure debt deals is limited. The
modelling approaches have therefore been designed to take use of public
indices and estimates based on earlier studies and a small data set.
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5.2 Baseline Model

The suggested modelling approaches could be seen as modifications to a
baseline model. The baseline model represent a way of modelling private
infrastructure debt and is assumed to be the way private infrastructure debt
is modelled currently. Therefore, in order to be able to introduce the new
modelling approaches, the baseline model will be presented.

In the baseline model, private infrastructure debt is modelled as a debt
instrument, e.g. a corporate bond or a loan, with exposure to a infrastructure
debt factor. The debt instrument is modelled with the available risk factors
in the model. The infrastructure debt factor is assumed to be represented
by a broad index which captures a general infrastructure debt specific risk
and adjust the spread of the debt instrument accordingly. The spread or the
credit spread is here defined as the difference between required return for
the infrastructure debt instrument and the reference rate.

The infrastructure debt factor return is referred to as X
ID

and therefore
the return of this factor is given by

R
ID

= e
ID

X
ID

where e
ID

is the linear exposure to the infrastructure debt factor and X
ID

is the return of the infrastructure debt factor. The volatility of the factor
returns is simply the volatility of the returns of the infrastructure debt index
used to represent the factor.

The factor is represented by a spread and a commonly used sensitivity
measure for spreads is the spread duration. As the factor is represented
by a general infrastructure debt index, the exposure e

ID

can be set as the
spread duration of the index. The spread duration can either be obtained
from information related to the index or be estimated. An example of a
estimation of the exposure vector is given in (4.13).

5.2.1 Covariance Matrix

As the infrastructure debt factor only consist of one factor, the covariance
matrix ⌃

ID

for the factor is simply the variance of the factor return. The
covariance matrix is therefore given by

⌃
ID

= Var[X
ID

] (5.1)

where X
ID

is the return of the infrastructure debt factor, i.e the return of
the general infrastructure debt index.

5.2.2 Risk Measures

The following section brings up risk measures for the baseline model. The
risk measures are solely focusing on the infrastructure debt factor. The risk
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measures for the asset private infrastructure debt are different because the
underlying debt instrument is modelled with a range of factors not brought
up in this thesis.

Stand-Alone Risk

The stand-alone risk for the infrastructure debt factor is given by

�
ID

=
q

(eT
ID

⌃
ID

e
ID

) = e
ID

p
Var[X

ID

] (5.2)

where ⌃
ID

is the covariance matrix for the returns of the factor, e
ID

is the
linear portfolio exposure to the infrastructure debt factor and Var[X

ID

] is
the variance of the factor’s returns.

Risk Contribution

The risk contribution of the infrastructure debt factor is given by

RC
ID

=
@�

P

(e)

@e
ID

e
ID

=
@(
p
eT⌃e+ wT w)

@e
ID

e
ID

=
(eT⌃

ID

)e
ID

�
P

(5.3)

where e is the exposure vector, e
ID

is the exposure to infrastructure debt
investments, @�

P

@e

ID

is the partial derivative of the portfolio volatility �
P

with
respect to the exposure to infrastructure debt and ⌃

ID

is the column for the
infrastructure debt factor in ⌃.

The new modelling approaches will now be introduced.

5.3 Revenue Risk

The suggested modelling approaches could be seen as an extension of the
representation of the infrastructure debt factor. Instead of letting the in-
frastructure debt factor be represented by one factor and one proxy, it could
be seen as a block of sub-factors. Ideally, the additional factors would cap-
ture the risk occurring from the revenue model in each private infrastructure
debt investment and hence give a better representation of the risk in these
investments.

The factors for revenue risk have been based on the revenue model cat-
egorisation by Blanc-Brude and Ismail [7], which consists of the categories
merchant, contracted and regulated. Further details regarding these revenue
models can be found under Section 3.3.3. The revenue factors and commonly
associated descriptions for each of the revenue models can be found in Table
5.1. below.
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Factor Alternative Names

Merchant(M) Commercial Scheme, Real Tolls
Regulated(R) Partial Commercial Scheme, Partially Contracted, Shadow Tolls
Contracted(C) Availability Payment Scheme

Table 5.1: Revenue Risk Factors

Revenue risk can be incorporated into the model as either idiosyncratic or
systematic risk. The credit spread differ between the revenue risk model
categories and the spread level changes over the time of the infrastructure
project. From another perspective, the limited amount of private data for
infrastructure debt investments might make one approach of estimating the
revenue risk more suitable than the other. Possible approaches for modelling
revenue risk as both idiosyncratic risk as well as systematic risk will therefore
be discussed.

Both the idiosyncratic and the systematic approach is based on the idea
of adding revenue factors that adjusts the volatility of the general infrastruc-
ture debt index for the type of revenue model in the infrastructure project.
The adjustment is represented by a constant coefficient for the type of rev-
enue model in the project and is here referred to as �

i

, where the index i
correspond to the revenue model merchant, contracted or regulated. There
will therefore be a � coefficient for each revenue category. Details on how
the � coefficients are incorporated into the modelling can be found under
the sections for the systematic revenue risk factors and idiosyncratic revenue
risk terms.

5.4 Systematic Revenue Risk Factors

The revenue risk factors could be seen as systematic risk factors where a
credit spread adjustment is made for infrastructure debt investments where
the project or company has a particular revenue model.

The return of the infrastructure debt factor X
ID

in the baseline model
is now replaced by X

M

,X
C

and X
R

, which are the returns of the factors
merchant, contracted and regulated respectively. Hence,

X
ID

) X
M

, X
C

, X
R

The index used for representing the new revenue factors is the same as the
index used for representing the previous infrastructure debt factor. In order
for each of the revenue factors to capture the specific risk of the type of
revenue model, the general infrastructure debt index is multiplied with a �
coefficient specific to the revenue factor.
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The return of a revenue factor i is given by

X
i

= �
i

X
ID

where i = {M,C,R}, �
i

is the coefficient for revenue model i and X
ID

is
the return of the index used for the infrastructure debt factor in the baseline
model.

The variance of the returns of revenue factor i is given by

Var[X
i

] = Var[�
i

X
ID

] = �2
i

Var[X
ID

] (5.4)

The introduced factors X
M

,X
C

and X
R

are therefore perfectly correlated
but with different volatilities. An explanation to why an adjustment of the
volatility can be done with �

i

is given in Section 5.7.
We can now introduce a new infrastructure debt factor which is a block

of the three revenue factors. The return of the new infrastructure debt factor
dR
ID

is given by

dR
ID

=
X

i={M,C,R}

e
i

X
i

=
X

i={M,C,R}

e
i

�
i

X
ID

where e
i

is the linear exposure to factor return X
i

, �
i

is the coefficient
for revenue model i and X

ID

is the return of the general infrastructure
debt index. Note that one infrastructure debt investment can only have one
revenue model and hence only have exposure to one of the revenue factors.

We will denote the exposure vector for the new infrastructure debt factor
as

ê
ID

= (e
M

, e
C

, e
R

) (5.5)

where e
M

, e
C

and e
R

is the exposure to the revenue factors merchant, con-
tracted and regulated respectively.

The exposure e
i

to revenue factor i, i = {M,C,R}, is given by

e
i

= e
ID

w
i

w
ID

(5.6)

where w
ID

is the portfolio weight for all infrastructure debt investments, w
i

is the portfolio weight in infrastructure debt investments with revenue model
i and e

ID

is the linear exposure to all infrastructure debt investments as in
the baseline model.

5.4.1 Covariance Matrix

In a portfolio with m number of assets, the covariance matrix ⌃ is a m ⇥
m matrix containing the sub-covariance matrices for each asset. The sub-
covariance matrix is the covariance matrix for the asset’s risk factor returns,
i.e. the covariance between returns for the proxies used to represent the risk
factors.
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The covariance matrix ⌃ for the portfolio is therefore given by

⌃ =

0

BBB@

⌃1,1 ⌃1,2 · · · ⌃1,m

⌃2,1 ⌃2,2 · · · ⌃2,m
...

... . . . ...
⌃
m,1 ⌃

m,2 · · · ⌃
m,m

1

CCCA
(5.7)

The covariance matrix for the asset infrastructure debt is represented by
one of the diagonal sub-matrices in (5.7). The cross-covariance to the other
assets is given by the sub-matrices with one index that corresponds to the
index for infrastructure debt itself.

If we choose to represent the infrastructure debt factor with n specific
factors, then the covariance matrix for the returns of the infrastructure debt
factors is given by the following n⇥ n matrix

⌃
ID

=

0

BBB@

⌃1,1 ⌃1,2 · · · ⌃1,n

⌃2,1 ⌃2,2 · · · ⌃2,n
...

... . . . ...
⌃
n,1 ⌃

n,2 · · · ⌃
n,n

1

CCCA

In the proposed approach, we replace the infrastructure debt factor with
three new revenue factors. We therefore obtain the following 3⇥3 covariance
matrix d⌃

ID

for the new infrastructure debt factor
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where ⌃
X

i

,X

j

for i = j is the variance of the returns of factor i and ⌃
X

i

,X

j

for i 6= j, is the covariance between the factors i and j. The index i and the
index j, correspond to revenue models merchant, contracted and regulated.

For i = j we get that
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= Var[X
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where Var[X
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] is obtained from (5.4).
For i 6= j we get that
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where ⇢
i,j

is the correlation between the factor returns X
i

and X
i

. We know
that the factor returns X

M

, X
R

, X
C

are represented by the same general
infrastructure debt index. The returns of the factors are therefore perfectly
correlated and ⇢

i,j

= 1.
Hence, for i 6= j we get that
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In order to be able aggregate the risk to a portfolio level, a number of other
covariance matrices need to be estimated. These include a covariance matrix
for the underlying debt instrument, and a covariance matrix for the asset
infrastructure debt and the other securities in the portfolio.

The covariance and cross-covariance matrices need to be estimated in
order to compute the risk measures. There are various ways of estimating the
covariance matrices from historical data. Furthermore, there are possibilities
to apply weighting schemes, typically to let more recent data have greater
influence. The estimation method is chosen on a case to case basis and
therefore the estimation of covariance matrices are left out in this thesis.

5.4.2 Risk Measures

In the following section, stand-alone risk and risk contribution on the revenue
factor level and the infrastructure debt factor level will be presented.

Stand-Alone Risk

The factor volatility and the linear factor exposure are used to compute
the stand-alone risk from all private infrastructure debt investments with a
particular revenue model in the portfolio.

The stand-alone risk for revenue factor i is given by
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i

=
p
e
i

⌃
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i

,X

i

e
i

= e
i

�
i

p
Var[X

ID

] (5.9)

where i = {M,C,R}, e
i

is the exposure to revenue factor i, �
i

is the co-
efficient representing the estimated change in volatility due to the specific
revenue model and Var[X

ID

] is the variance of the returns of the general
infrastructure debt index.

The stand-alone risk from the total infrastructure debt factor is received
by letting every exposure element, except for those of the the revenue factors,
be set to zero. The stand-alone risk from the total infrastructure debt factor
is therefore
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q
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where d⌃
ID

is the covariance matrix for the new infrastructure debt factor
given in (5.8) and ê

ID

= (e
M

, e
C

, e
R

) is the vector of exposures to the revenue
factors.

Risk Contribution

The risk contribution from revenue factor i is given by
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where e is the exposure vector, e
i

is the exposure to infrastructure debt in-
vestments with revenue model i, @�

P

@e

i

is the partial derivative of the portfolio
volatility �

P

with respect to the exposure to revenue factor i and ⌃
i

is the
column for revenue factor i in ⌃. Furthermore, i = {M,C,R}.

Similarly, the risk contribution from the total infrastructure debt factor
is given by

\RC
ID

=
@�
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@e
ID

e
ID

=
(eT⌃

ID

)e
ID

�
P

(5.12)

where e is the exposure vector, e
ID

is the exposure to infrastructure debt
investments, @�

P

@e

ID

is the partial derivative of the portfolio volatility �
P

with
respect to the exposure to all infrastructure debt investments, ⌃

ID

is the
column for the infrastructure debt block in the total covariance matrix ⌃,
i = {M,C,R}

5.5 Idiosyncratic Revenue Risk Terms

Revenue risk can also be seen as a type of idiosyncratic risk which can not
be explained by factors or the market as the risk is specific to the security.
In this approach, a constant spread is added for the type of revenue model
in the infrastructure project. The infrastructure debt factor can therefore be
represented by two parts; the systematic risk reflected by the infrastructure
debt factor from the baseline model and a risk term representative for the
risk due to the revenue model in a project.

The revenue risk terms are here referred to as idiosyncratic risk terms
although this is not completely true as we now have risk terms that can
explain variation in risk between infrastructure debt investments. The true
idiosyncratic risk for the infrastructure debt instrument is in fact given by
the subtracting the estimated idiosyncratic risk with the risk estimates for
the revenue factor.

Each of the revenue risk categories merchant, contracted and regulated
is attributed its own risk estimate based on the estimated � coefficient and
the volatility of the general infrastructure debt index.
There are a number of assumptions and conditions underlying this approach:

One Revenue Factor. It is assumed that an individual private infras-
tructure debt investment can only belong to one revenue risk category
and hence only have exposure to one revenue factor.

Uncorrelated. The revenue factors are assumed to be uncorrelated to
other risk factors. Furthermore, the same revenue factor for different
infrastructure debt investment are assumed to be uncorrelated.
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Rescaling. Depending on the size of the portfolio, the risk estimate
from the revenue factor will be scaled down to be representative for
the portfolio.

The constant risk estimates �̃
i

for each revenue category are constructed as

�̃
i

= (�
i

� 1)�
index

(5.13)

where �
i

is the estimated coefficient representing the difference in volatility
compared to the infrastructure debt index and �

index

is an estimate of the
volatility of the index representing the infrastructure debt factor. Methods
for estimating �

i

are given in section 5.7.
The return of the infrastructure debt factor X

ID

is now exchanged for
the return of the same factor X

ID

and three additional terms Y
M

, Y
C

, Y
R

representing the returns of the revenue risk terms. Hence

X
ID

) X
ID

, Y
M

, Y
C

, Y
R

The return R
i

of the idiosyncratic term i is given by

R
i

= w
i

Y
i

where w
i

is the market weight for infrastructure debt investments with rev-
enue model i and Y

i

is the return of the idiosyncratic term.
There is nothing systematic in the idiosyncratic terms and it is therefore

not appropriate to determine estimates of a constant return Y
i

based on his-
torical returns. The returns of the idiosyncratic terms are a residual of the
return that can not be explained by the systematic risk factors. The idiosyn-
cratic return for the asset infrastructure debt can therefore be estimated as
the return of the asset subtracted with the return for the asset explained by
the systematic factors that asset has exposure to. Hence the total idiosyn-
cratic return RI

ID

for the asset infrastructure debt can be estimated as the
residual

RI

ID

= R
ID

�RS

ID

= R
ID

�
X

i

e
i

X
i

=
X

j

w
j

Y
j

where R
ID

is the total return of infrastructure debt and RS

ID

=
P
i

e
i

X
i

is

the systematic return of all the factors that the asset infrastructure debt has
exposure to.

The idiosyncratic return of the asset is then
P
j

w
j

Y
j

which represent the

weighted return of all idiosyncratic terms for the asset. However, although
we can determine the total return of the idiosyncratic terms for the asset,
we can not determine the individual return of the idiosyncratic terms.

The vector of market weights in the revenue risk terms is denoted

w = (w
M

, w
C

, w
R

)
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where w
i

is the market weight in the idiosyncratic revenue risk term i, i =
{M,C,R}. The exposure to the systematic infrastructure debt factor with
return X

ID

is
e = (e

ID

)

where e
ID

is the linear portfolio exposure to the infrastructure debt factor,
just as in the baseline model.

5.5.1 Covariance Matrix

In this modelling approach, we have one systematic risk factor and three
idiosyncratic risk terms. There is therefore a need for two covariance matrices
in order to calculate risk measures for the new infrastructure debt block.

The covariance matrix ⌃
ID

for the returns of the systematic factor X
ID

is the same as in the baseline model. The covariance matrix is a 1⇥1 matrix
consisting of the variance of X

ID

. Hence, the covariance matrix for X
ID

is
given by

⌃
ID

= Var[X
ID

] (5.14)

where X
ID

is the return of the infrastructure debt factor.
The covariance matrix  

ID

for the returns of the idiosyncratic risk terms
is a 3⇥3 diagonal containing the variance of idiosyncratic risk terms. Hence
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where  
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are the variances of the idiosyncratic rev-
enue risk terms merchant, contracted and regulated respectively.

The variance of the idiosyncratic revenue risk terms is simply the squared
risk estimates given in (5.13) and the variance is therefore constant. The
covariance matrix for the returns of the idiosyncratic revenue risk terms is
therefore given by
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where �̃2
i

= ((�
i

� 1)�
index

)2 from (5.13) and i = {M,C,R}.

5.5.2 Risk Measures

The risk measures stand-alone risk and risk contribution are presented in
the following sections. The risk measures are given at the following levels;
the systematic infrastructure debt factor, the revenue factor and the block
infrastructure debt.
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Stand-Alone Risk

The stand-alone risk from the revenue factor is given by the exposure to
only one of the revenue factors and in isolation to the rest of the factors
in the portfolio. It is computed as the risk estimate scaled down to be
representative for the portfolio. The stand-alone risk for the revenue factor
is therefore
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where w
i

correspond to the market value weight of all the private infrastruc-
ture debt investments with revenue model i in the portfolio and �̃

i

is the risk
estimate for the corresponding revenue model, i = {M,C,R}.

The stand-alone risk from all revenue factors is
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where �
M

,�
C

,�
R

is the stand-alone risk of the revenue factors merchant,
contracted and regulated given in (5.17) respectively.

The stand-alone risk for the systematic infrastructure debt factor is the
same as in the baseline model, i.e.
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The stand-alone risk from the new infrastructure debt block is a function
of the systematic infrastructure debt factor used in the baseline model and
the new revenue risk terms.

The stand-alone risk of the new infrastructure debt block d�
ID

is therefore
given by
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where �
ID

is the stand-alone risk from the systematic infrastructure debt
factor given in (5.19) and �

R

Tot

is the stand-alone risk from the revenue risk
terms as given in (5.18).

Risk Contribution

The risk contribution from revenue factor i is given by
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where @�

P

@w

i

is the partial derivative of the portfolio volatility �
P

to the market
weight w

i

of the infrastructure debt investments with revenue model i,  
i,i

is the variance of risk term i as given in (5.16) and i = {M,C,R}.

39



The risk contribution of all revenue terms is
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R
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= RC
M
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R

(5.22)

where RC
M

, RC
C

, RC
R

are given by (5.21).
The risk contribution of the systematic infrastructure debt factor is the

same as for the baseline model. Hence
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where e is the exposure vector, e
ID

is the exposure to infrastructure debt
investments, @�

P

@e

ID

is the partial derivative of the portfolio volatility �
P

with
respect to the exposure to infrastructure debt and ⌃

ID

is the column for the
infrastructure debt factor in ⌃.

The risk contribution of the total infrastructure debt factor or block is
now given by

\RC
ID

= RC
ID

+RC
R

Tot

(5.24)

where RC
ID

is given by (5.23) and RC
R

Tot

is given by (5.22).

5.6 Portfolio Level Risk Measures

The aim of the modelling approaches is also to be able to compute standard
risk measures on a portfolio level.

Value at Risk

The total portfolio volatility can be computed as the sum of the risk contribu-
tion from the total infrastructure debt factor RC

ID

and the risk contribution
from all remaining factors and securities in the portfolio. Hence

�
P

= \RC
ID

+
X

RC
j

(5.25)

where \RC
ID

is defined as (5.12) in the systematic approach and (5.24) in
the idiosyncratic approach.

Alternatively, the total portfolio volatility can be computed as the sum
of the volatility of the systematic risk factors and the volatility of the id-
iosyncratic terms as in (4.12), i.e. as

�
P

=
p

eT⌃e+ wT w (5.26)

where e is the exposure vector, ⌃ is the covariance matrix for the systematic
returns, w is the market value weights and  is the covariance matrix for
the idiosyncratic factors.
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Using the total portfolio volatility, the VaR for the portfolio can be estimated.
Assuming that the covariance matrix have been estimated over a specific time
period, the T-period VaR at level ↵ is given by

VaRT

↵

=
p
T��1(1� ↵)�

P

(5.27)

where �(·) is the standard normal distribution function.

5.7 � Coefficients

The � coefficients can be estimated from the spread levels of the infrastruc-
ture debt investments belonging to the different revenue categories. Ad-
justing the volatility of the credit spread for infrastructure debt with � is
justified with market price of risk �

t

, see (4.14). As an example, infrastruc-
ture debt for a project with high demand risk, here classified as merchant, is
expected to have a higher credit spread than an infrastructure project with
a regulated or contracted revenue model. Market price of risk gives us that
a higher credit spread implies a higher volatility.

As a reminder, the market price of risk �
t

is given by
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where ↵
t

is the local mean rate of return, r
t

is the risk-free rate, s
t

is the
spread and �

t

is the volatility if the instrument. The numerator s
t

= ↵
t

� r
t

can be seen as the risk premium or in this case, the credit spread for a private
infrastructure debt investment. As �

t

is constant, a larger numerator or a
wider credit spread s

t

, must imply a higher higher volatility �
t

. Furthermore,
this relationship is proportional.

The formula above can be rearranged. Assume a portfolio P represen-
tative for the general infrastructure debt index at time t. The volatility �P

t

for the portfolio, i.e. the volatility for the infrastructure debt instruments or
the index is then represented by

�P
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=
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t

An infrastructure debt investment with revenue risk model i is then added to
the portfolio. The credit spread for this investment is different to the spread
of the portfolio due to the revenue model in the infrastructure project. The
volatility �P

0
t

of the portfolio is now given by
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The relationship is linear and �
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represent the impact of revenue model i on
the volatility of the general infrastructure debt index. This follows from
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(5.29)
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In the earlier example, the infrastructure debt investment with the merchant
revenue model will most likely have a positive �

i

, implying and a higher
volatility than the average infrastructure debt investment. The interpreta-
tion of (5.29) is that the volatility of a infrastructure debt investment with
revenue model i can be represented by the adjusted volatility of the general
infrastructure debt index.

5.7.1 Estimation of � coefficients

The suggested modelling approach is heavily based on the estimation of the
� coefficient for each of the three revenue model categories. The following
sections give an overview of results from a previous study and a studied data
set. Furthermore, the aim is to provide a guideline for the construction of
the �

i

’s in the systematic and idiosyncratic modelling approach. A similar
approach could be performed with the use of internal data.

Formula for �

From (5.29), we can obtain the following relationship
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t

= sP
t

�
i

(5.30)

where sP
t

is the spread for the general infrastructure debt portfolio and sP
0

t

is
the same portfolio with added infrastructure debt investments with revenue
model i.

Rearrangement of (5.30) gives that the � coefficients can be estimated
as

�
i

=
sP

0
t

sP
t

The spread within the revenue model categories merchant, contracted and
regulated vary. A more reliable estimate of the spread for a category is
therefore given by the average spread. Hence �

i

can be estimated as

�
i

=
s̄
i

s
index

(5.31)

where s
index

is the spread for the general infrastructure debt index and s̄
i

is
the mean spread for the revenue category and i = {M,C,R}.

5.7.2 Previous Study

Blanc-Brude and Ismail [7] performed an empirical study using two data
sets in order to determine the most important factors for the level of credit
spreads. These factors included the revenue factors merchant, contracted
and regulated and showed significant impact of the revenue model on the
credit spread level. This study is the main inspiration for suggesting that
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revenue risk should be incorporated to the risk model of private infrastructure
debt. Parts of the statistics for the data set will therefore be used to get risk
estimates of the � coefficients.

The amount of internal data might be limited in terms of the number
of deals and information regarding the projects. Sample A in the study
by Blanc-Brude and Ismail [7] contained approximately 5500 deals. The �
coefficients based on the results of this study might therefore be more reliable
than the � coefficients estimated from a much smaller internal data set.

Figure 5.1 shows the the distribution for the deals in Sample A that
Blanc-Brude and Ismail [7] used in their study.

Figure 5.1: Distribution of deals in the study by Blanc-Brude and Ismail.

The mean and the standard deviation of the spread for each revenue category
is shown in the Table 5.2 below.

Revenue Category Mean SD

Merchant 164.97 80.67
Regulated 157.10 78.39
Contracted 150.4 69.49

Table 5.2: Mean and Standard Deviation(SD) for the spreads in Sample A
in the study by Blanc-Brude and Ismail [7].

Based on the mean spreads for each category, the � coefficients were esti-
mated. The coefficient �

i

should be computed as in (5.31) using the spread
level of the general infrastructure debt index and the mean spread for the
revenue category. In this study, the spreads of the index and the data are
defined differently, leading to unrealistic values of the coefficient. The con-
stituents of the general infrastructure debt index primarily have a regulated
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revenue model. The mean spread of the revenue category regulated could
therefore serve as an approximation of the spread for the general infrastruc-
ture debt index. The � estimates from the mean spreads in the study can
be found in Table 5.3. below.

Revenue Factor �i �i Estimate

Merchant �
M

1.05
Regulated �

R

1
Contracted �

C

0.96

Table 5.3: � coefficients based on a previous study.

5.7.3 Data Set

The �
i

for each of the revenue factors can be estimated from data on previous
deals and investments in private infrastructure debt. The estimates can be
obtained by the following steps:

1. Collect data on private infrastructure debt investments. Important
attributes are the credit spread and the source of revenue for the project
or company. If there is no information regarding the revenue model,
collect deal specific information which can be used for searching the
deal on internet.

2. Categorise the data into the revenue groups merchant, contracted and
regulated, based on the revenue model.

3. Compute the mean and the standard deviation of the credit spread for
each revenue category.

4. Compute the �
i

coefficient for each revenue category as in (5.31).

5. Repeat the process when new data is obtained in order to improve the
�
i

estimates.

The process of obtaining the �
i

estimates is very straightforward, however,
it requires that the data has a attribute with the source of revenue in the
project which can be obtained by adding the attribute to new data. Current
data on private infrastructure debt deals typically have no attribute for the
type of revenue model in the project. Therefore alternative methods have to
be used for the categorisation of the data into revenue groups. An alternative
method was used for the data set in this thesis.

The data set is firstly modified as described in Section 3.2.1. It is there-
after split into the categories merchant, regulated and contracted. Certain
industrial sectors are known to have typical revenue models which makes
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the categorisation easier. A quick search on each deal is however performed
in order to confirm the source of revenue. In the cases where the industrial
sector is not able to explain the revenue model, a more in depth search on
the deal and the company is performed.
The resulting distribution of the revenue risk categories is shown in Figure
5.2 below.

Figure 5.2: Distribution of deals in the data set.

Computation of mean and sample standard deviation of the spreads for each
of the three revenue categories is thereafter performed. The � coefficients
were then computed using (5.31). As in the previous approach, the mean of
the regulated revenue category served as a proxy for the general infrastruc-
ture debt index.

The � coefficients are shown in Table 5.4 below.

Revenue Factor �i �i Estimate

Merchant �
M

1.66
Regulated �

R

1
Contracted �

C

1.37

Table 5.4: � coefficients for the data set.

As illustrated in the table, the coefficient is one for the category regulated
which is a consequence of the approximation of the spread of index with
the mean spread of the regulated revenue category. In comparison to the
deals where the income is regulated, deals that have merchant risk or are
contracted have a positive �, indicating that the volatility should be greater
for these categories. The result for the � of the merchant category is in
line with previous studies which also suggest that these type of deals should
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have the highest risk out of the three revenue categories. The result for the
contracted category does however not coincide with earlier research where the
contracted projects had the lowest credit spread out of the three categories.

5.7.4 Results and Notes

The estimates for the � coefficients vary significantly between the two data
sets. The estimates of the coefficients are not meant to be used for modelling
the revenue factors, the process of obtaining the estimates should rather serve
as guidelines for how the coefficients can be estimated outside of this study.

For every data set, different estimates of the � coefficients will be ob-
tained. It is therefore important that the estimates are based on a repre-
sentable data set. The larger the data set, the more reliable the estimates
should be. An internal data set may give a better reflection of the risk in
the private infrastructure debt investments. The best estimations of the �
coefficients can however only be determined by backtesting of the model.

The general infrastructure debt index was approximated with the mean
spread of the revenue category regulated, which result in a coefficient with
value 1 for the revenue factor regulated. When estimating the �’s, the spread
level of the index should be used as shown in (5.31). It is however important
that the definitions of the spread for the index and the categories are the
same.

The �
i

’s were estimated using yearly credit spreads. Although they were
computed using yearly credit spreads, the coefficients can be applied to the
volatility for any time period. This is because the spreads are set as a ratio
and therefore any time adjustment will cancel out. It is however important
that the two spreads used in the coefficient estimations reflect the spread over
the same length of the time periods. If not, the spreads need to adjusted be
adjusted in order to be able to compute the coefficients.

5.8 Backtesting

The two modelling approaches were constructed with the intention of incor-
porating revenue risk, a risk driver that was identified from earlier studies.
Although there are variations in credit spread between infrastructure debt
investment with certain revenue models, it is not sure whether one and/or
both of the proposed modelling approaches actually manages to capture
these differences. Therefore, extensive backtesting of the model using the
two modelling approaches need to be performed.

Backtesting could be used to assess the level of risk and return of a
trading strategy or to be able to determine how good a model is. Both
the systematic and idiosyncratic approach need to be evaluated in order to
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determine if both or any of the approaches enable better modelling of the
risk in private infrastructure debt investments.

Furthermore, the � coefficients have a significant impact on the results for
both of the modelling approaches and therefore the data used for estimating
the coefficients need to be analysed and categorised correctly into the revenue
categories in order to give reliable estimates of the � coefficients. When
assessing the two modelling approaches, changes in the � coefficients also
need to be included and tested.

5.8.1 Systematic Risk Factor Approach

Briefly, backtesting of the systematic risk factor model could be done in the
following way:

• Use an existing portfolio with fixed portfolio weights in the holdings.

• Introduce the new factors to the model and estimate covariance ma-
trices using historical data.

• Apply a historical scenario to the portfolio where the historical scenario
includes changes in the prices of the securities as of that event.

• Compare the returns and systematic returns with those that would
have been estimated by the old model in order to assess whether the
new factors are able to explain more of the return.

• Compare the risk estimates given by the new model and the old model.
Moreover, compare the actual stand-alone risks and risk contributions
for the portfolio with those estimated by the old and the new model.

The process above is very brief. In reality, the backtesting needs to be much
more comprehensive and detailed in order to properly assess the models.

5.8.2 Idiosyncratic Risk Term Approach

The modelling approach with idiosyncratic risk terms is more difficult to
backtest. This is because of the unsystematic nature of the introduced risk
terms for revenue risk.

The risk terms for each revenue model are constant and therefore the
aim should be to evaluate whether the constructed risk estimates are of a
realistic magnitude. The sum of the revenue risk terms can not be greater
than the estimated idiosyncratic risk for the infrastructure debt instrument.
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Chapter 6

Analysis and Conclusion

In this chapter the proposed modelling approaches and the results from the
data sets are analysed. Moreover, a conclusion is stated in regards to the
problem formulation and the purpose of this study.

6.1 Analysis of Modelling Approaches

The modelling approach for private infrastructure debt was to be suggested
for a risk factor model based on analytical VaR. Therefore a parametric
factor model with a range of factors , including a infrastructure debt factor,
was assumed to be available.

There are many possible ways of modelling private infrastructure debt
in a factor model. In order to restrict the range of possible modelling ap-
proaches as well as the comprehensiveness of the suggested approach, it was
assumed that private infrastructure debt currently is modelled as a debt in-
strument with exposure to a infrastructure debt factor. This was referred to
as the baseline model.

The baseline model is a strong assumption but necessary in order to
restrict the modelling to that of the infrastructure debt factor. Private in-
frastructure debt does not have to be modelled as a debt instrument in the
bottom. However, this assumption can be justified as private infrastructure
debt has exposure to similar factors as traditional debt instruments and addi-
tional factors for the infrastructure specific risk. Suggesting a complete mod-
elling approach for private infrastructure debt would therefore most likely
be redundant.

The concentration of the modelling to that of the infrastructure debt
factor is justified by the fact that the return on a infrastructure debt in-
strument can be represented as a benchmark rate and a credit spread which
allows for focus on the credit spread attributable to infrastructure. Factors
such as interest rate risk and credit rating have been ignored as these factors
are captured in the modelling of the underlying debt instrument.
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As the modelling was restricted to the infrastructure debt factor, the options
were to either adjust the current infrastructure debt factor and/or to add
new factors to the model. Infrastructure debt investments have risk drivers
that are not typical to other assets. The infrastructure debt factor in the
baseline model manage to catch some of the infrastructure debt specific risk.
However, there were some variations between private infrastructure debt
investments that this factor or the debt specific factors could not capture.
Hence, there was a need for more infrastructure specific factors.

6.1.1 Revenue Risk

From the literature review, revenue risk was identified as a risk driver that
could possibly explain the variations between private infrastructure debt
investments. It could be argued that the credit rating should reflect the
risk in these investments. Studying the deals in the merchant category of
the obtained data set, there are investments with credit rating and other
attributes that are similar to those of the regulated category and contracted
category but have a higher spread. This suggest that there might be reasons
to look at other factors, such as the revenue model in the project.

Revenue risk can be seen as both idiosyncratic and systematic risk, de-
pending if it is viewed at a cross-sectional basis or if it is viewed as time
series. The suggested approaches were therefore to model revenue risk as ei-
ther idiosyncratic or systematic risk. Nevertheless, modelling some revenue
factors as systematic and some as idiosyncratic might be an alternative.

The revenue factors were based on the categorisation of revenue models
into three groups, which might not be the best representable categorisation of
the different revenue models for infrastructure projects and companies. An
alternative categorisation would have been to group the investments with
regulated and contracted revenue models into one category, characterised by
a less risky revenue model and to let projects with merchant revenue risk by
represented by one category, characterised by a much riskier revenue model.
This categorisation could be motivated by the fact that the investments in
the merchant category show higher spreads than the rest of infrastructure
debt deals.

In order to obtain good estimates of the factor volatilities, time series
that represent the factors well are needed. As the amount of private data
is limited and seldom tracked over time, public indices need to be used to
represent the returns of the revenue risk factors. Ideally there would exist a
infrastructure debt index where the constituents are divided into sub-indices
that reflect each revenue model. To the knowledge of the author, there are
currently no indices that track infrastructure debt investments with a certain
revenue risk profile. The approaches therefore relied upon adjusting existing
public indices with data on private infrastructure debt investments. These
adjustments were referred to as � coefficients and the estimation of these are
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discussed under Section 6.1.4.
If there was a public index for each revenue category, the modelling ap-

proach would have simplified to representing revenue risk as systematic risk
factors where the factor returns are represented by individual indices. Such
approach would probably have given more reliable estimates of the volatility
of each revenue category. In order to be able to realise this, it is required
that we start to view infrastructure investments from a different perspective
than we do today. Furthermore, the collecting and sharing of data on infras-
tructure debt investments and the creation of relevant infrastructure debt
indices and benchmarks needs to be stepped up.

6.1.2 Systematic Approach

In the systematic risk factor approach, three new infrastructure debt specific
factors were added. The returns of the revenue factors were given by a �
coefficient multiplied with the return of the infrastructure debt factor in the
baseline model, i.e. the return of the general infrastructure debt index.

The main advantages with this approach include that it is easy to im-
plement as we just need to adjust our results from the baseline model with
the estimated � coefficients. As the revenue factors in the bottom are rep-
resented by a general infrastructure debt index, whenever the volatility of
the index changes, so does the the volatility of the introduced revenue risk
factors. The change in volatility of the revenue risk factors over time can be
argued as both positive and negative features of the modelling approach.

Arguments on the positive side include that it might be more realistic
to assume that the volatility of infrastructure debt investments change over
time, just as the volatility for most other assets do. The negative feature
is the magnitude of the change in the volatility of the revenue risk fac-
tors. Depending on the size of the � coefficients, a volatility change in the
infrastructure debt index might largely overestimate or underestimate the
volatility of the revenue factors. On the other hand, the infrastructure debt
index is quite stable over time and therefore it is not likely that there will be
surprises in terms of the magnitude of the volatility for the revenue factors.

The � coefficients become crucial as they have a great impact on the
return and volatility of the systematic revenue factors. This leads to the
question of what magnitudes of the � coefficients that are realistic and when
they should be updated. These are questions that can not be answered in
this thesis as the modelling approach was not implemented and tested.

Ideally, each revenue factor should be represented by its own index as the
volatility of these may be very different to that of the general infrastructure,
not only in magnitude, but also in terms of its behaviour in relation the
the infrastructure debt index over time. Varying � coefficients can not be
estimated from the differences in spread levels and therefore is lacking in the
proposed modelling approach.
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6.1.3 Idiosyncratic Approach

In the idiosyncratic approach, three idiosyncratic revenue risk terms are
added in addition to the systematic infrastructure debt factor in the baseline
model. In this case, a risk estimate is computed as the � coefficient multiplied
with a constant estimate of the volatility of the infrastructure debt index.

The big difference to the systematic approach is that the volatility of
the revenue terms are constant rather than changing over time. On the
positive side, we could argue that the risk solely due to the revenue model in
a infrastructure project is a constant spread that could be added to a more
general infrastructure debt spread. It might be more intuitive with having a
constant risk estimate and we get a larger control over the magnitude of the
added risk. On the negative side is the question of when the � coefficients
and the estimate of the volatility should be updated.

Furthermore, this approach might be more difficult to implement than
the systematic approach as it might not be possible to add non-systematic
terms in some factor models. The approach is also more suitable for risk
analysis rather than estimating returns of the idiosyncratic terms.

6.1.4 Estimation of � coefficients

The � coefficients were computed according to (5.31). The general infrastruc-
ture debt index was approximated with the mean spread for the regulated
category. The reason for this is that the spread of the index was defined
differently to that of the data set. The � coefficients would have made more
sense if they were computed as the ratio of mean spread of the revenue cate-
gory and the spread for the index. This is also the approach that is suggested
if the coefficients are to be estimated outside this study.

(5.31) was obtained by assuming a fixed market price of risk across sim-
ilar instruments. The market price of risk does not necessarily have to be
constant over time. It is time-varying due to the change of aggregated risk
aversion, which in turn can be explained by economic variables. The change
over time does not have an impact on the estimation of the � coefficients,
unless the spread levels are measured at different time periods. The spread
levels in this study were for different time periods and therefore a fixed mar-
ket price of risk may not have be an appropriate assumption. However, as
the the average of the spread levels were used for all revenue categories when
estimating the � coefficients, it could be argued that the impact of changes
in market price of risk over time could partly be neglected.

Using a mean spread does not explain variation in spread in isolation
to other factors. An alternative approach would therefore have been to
use a regression to estimate the coefficients. In the study by Blanc-Brude
and Ismail [7], regression and analysis were performed. Excluding other
factors showed larger differences between the revenue model categories in
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comparison to just looking at the mean spread of the categories.

6.2 Discussion on Data

The estimates of the � coefficients are dependent on the the data used to
compute the coefficients. In this study, there was shown to be large differ-
ences in the spread levels between the revenue categories for the data from
an earlier study and the data set used in this thesis. This was reflected in the
estimated � coefficients as they differed a lot between the approaches, shown
in Table 5.3 and Table 5.4. The large dependence on the data is a major
drawback with the suggested modelling approaches as whenever a new data
set is used, the estimates will change. Whether the � coefficients of one of
the two data sets in this study are more realistic can not be concluded as
the models were not tested.

From the earlier study by Blanc-Brude and Ismail [7], it was suggested
that for infrastructure debt investments categorised into the three revenue
models, the spread level, from lowest to highest, should be contracted, regu-
lated, merchant. The results are very intuitive as a project with riskier rev-
enue model should have a higher credit spread. In contrast, the mean spreads
from the obtained data set contradicts the hypothesis that contracted rev-
enue models should have the lowest mean spread out of the three categories.

An explanation to the large difference in spread levels between the two
data sets might be their very different distributions in terms of the number
of deals in each revenue category. The distributions of the samples from the
previous study and the data sets were illustrated in Figure 5.1 and Figure
5.2. The obtained data set contained deals that were mainly subject to
merchant risk and the data set used in the previous study mainly consisted
of deals with a contracted revenue model. A revenue category with a few
number of deals may not be representable for the average spread level and
as a consequence, give biased estimates.

The obtained data set had a small concentration of projects that were
classified as contracted and these deals were mainly greenfield projects.
Greenfield projects are known to have a higher credit spread than brownfield
projects due to construction risk. The mean spread may therefore have been
biased upwards due to higher concentration of greenfield projects in this cat-
egory. In order to avoid bias in the spread levels, larger data sets with more
deals in each revenue category would be preferred.

Furthermore, the categorisation of the data into the revenue categories
may have affected the mean spread levels of the categories. The data was
categorised to the best knowledge of the author by using public informa-
tion. The very same project or company can however change its revenue
model over time, especially in the constantly changing regulatory environ-
ment. Therefore what was identified as the revenue model might not have
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been the revenue model at the time of the infrastructure debt deal.
Outside of this study, it will be important that the data set is categorised

into the revenue categories such that mean spread of each category is repre-
sentable for infrastructure debt investments with a specific revenue model.
As mentioned earlier, a way of obtaining this is to use a large data set with
a fair distribution of the deals between the revenue categories.

6.3 Analysis of Method

The idea of incorporating revenue risk into the modelling of private infras-
tructure debt stems from results from previous research. There were other
risk drivers that could have explained the risk in the investments better or
could have serves as good complements to these factors. However, the aim
was to propose a modelling approach that could be implemented easily.

An alternative method would have been to perform regressions and re-
gression analysis on the obtained data set in order to determine the most
significant risk drivers. The coefficients in the regression would need to be
set arbitrarily or be constructed based on possible risk drivers identified in
the literature review. As Blanc-Brude and Ismail [7] performed a regression
analysis and found that revenue risk was one of the main and significant
revenue factors, it was assumed that these results could serve as a substitute
to performing a similar study in this thesis.

The two proposed modelling approaches have not been implemented and
tested and it is therefore impossible to draw any conclusions regarding the
feasibility of these approaches and whether they are better than the baseline
model. For the same reason, no other factors sets except for the revenue
model factors and terms were suggested as there was no possibility to eval-
uate and compare the different models. Therefore, this is certainly a weak
point of the used method.

However, the modelling approaches have been described thoroughly in
order to make them easy implement in a factor model. The modelling ap-
proaches could therefore be evaluated by managers of the model, which is
also more accurate as the results may vary depending on the factors in the
model and the index used to represent infrastructure debt investments in
general.

6.3.1 Alternative Infrastructure Factors

The literature review brought up many possible factors within the categories
loan characteristics and macro-level factors, and project-level risk factors. In
earlier studies, most of the factors within these categories showed to have a
small impact on the credit spread of infrastructure debt and these factors
were therefore assumed to be less appropriate for the suggested modelling
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approaches. Furthermore, some of the risk factors, such as political risk, are
difficult to translate into a single set of factors, if even possible.
In comparison, for revenue model risk, the credit spread for infrastructure
debt varied between the different revenue model categories. For a infras-
tructure debt investment, the revenue model of the project or the company
can be found out and therefore the revenue risk factors seemed like a more
realistic set of factors to be incorporated to the model. Nevertheless, there
was no given way for how the revenue risk models should be translated into
factors.

The research also showed that for a infrastructure debt investment, the
credit spread systematically changes over the life cycle. In order to prop-
erly assess the changes in credit spread over time, an approach would be to
split each infrastructure debt instrument into different phases/sub instru-
ments. This would however require continuously updated information on
each infrastructure debt instrument which probably is not the case in large
portfolios where we only know which instruments that we hold and some of
their characteristics. Therefore the idea of credit spread changes over time
seemed less relevant for a factor model.

6.4 Further Studies

An extension of this study which includes the implementation, backtesting
and evaluation of the modelling approaches would be interesting as a con-
clusion could be drawn in regards to the performance of the models.

It would also have been interesting to study the difference in credit spread
due to the type of revenue model in isolation to other variables that might
affect the credit spread. This could either confirm or reject the idea of
including revenue risk factors or terms in the modelling of infrastructure
debt.

Further studies on how to construct a broader range of indices and sub-
indices for infrastructure debt would be desirable. In this thesis, the optimal
representation for the systematic revenue factors would have been indices for
infrastructure debt with particular revenue models.

6.5 Final Conclusion

The aim of this study was to propose an alternative modelling approach for
private infrastructure debt in a risk factor model. From earlier research and
a studied data set, it was indicated that the risk due to the revenue model
in a project or company is one of the main risk drivers in these investments.

Approaches for incorporating revenue risk as idiosyncratic and systematic
risk into the current modelling of private infrastructure debt were suggested.
The revenue risk is integrated by adding three revenue risk specific factors
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or terms; merchant, contracted and regulated. The volatility of these factors
are represented by an adjusted volatility of a general infrastructure debt
factor. The magnitudes of these adjustments are estimated from data on
private infrastructure debt investments and the process of obtaining these
estimates was illustrated using two samples in this study.

The incorporation of revenue factors should give a better representa-
tion of the risk of private infrastructure debt investments in a multi-asset
portfolio. However, implementation, backtesting and evaluation of the two
approaches need to be performed before deciding whether one, both or none
of the approaches give a better representation of the risk in private infras-
tructure debt investments.
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