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Abstract

This thesis analyses different methods of data fusion by fitting a chosen number
of statistical models to empirical consumer data and evaluating their perfor-
mance in terms of a selection of performance measures. The main purpose of the
models is to predict business related consumer variables. Conventional methods
such as decision trees, linear model and K-nearest neighbor have been suggested
as well as single-layered neural networks and the naive Bayesian classifier. Fur-
thermore, ensemble methods for both classification and regression have been
investigated by minimizing the cross-entropy and RMSE of predicted outcomes
using the iterative non-linear BFGS optimization algorithm. Time consumption
of the models and methods for feature selection is also discussed in this thesis.
Data regarding consumer drinking habits, transaction and purchase history and
social demographic background is provided by Nepa. Evaluation of the perfor-
mance measures indicate that the naive Bayesian classifier predicts consumer
drinking habits most accurately whereas the random forest, although the most
time consuming, is preferred when classifying the Consumer Satisfaction Index
(CSI). Regression of CSI yield similar performance to all models. Moreover,
the ensemble methods increased the prediction accuracy slightly in addition to
increasing the time consumption.

I den här uppsatsen undersöks olika metoder för data fussion genom att anpassa
ett antal statistiska modeller till empirisk konsument data och evaluera mod-
ellernas prestations niv̊a med avseende p̊a ett antal statistiska m̊att. Syftet för
modellerna är att predicera affärsrelaterade konsumentvariabler. I denna rap-
port har konventionella metoder s̊asom beslutsträd, linjära modeller och meto-
den med de närmsta grannarna föreslagits samt enkelskiktade neurala nätverk
och den naiva bayesianska klassificeraren. Vidare har även ensemble metoder
för b̊ade klassificeringar och regressioner undersökts genom att minimera kors
entropin och RMSE av predicerade utfall med den iterativa icke-linjära op-
timeringsalgoritmen BFGS. Tidskonsumption för modellerna och metoder för
selektion av prediktorer har ocks̊a diskuterats i rapporten. Data gällande kon-
sumenternas alkoholvanor, transaktion- och köphistorik samt social demografiska
bakgrund har försetts av Nepa. Evaluering av prestationsm̊atten visar att den
naiva bayesianska klassificeraren ger de mest precisa prediktionerna av kon-
sumenternas driksvanor medan random forest, fastän den mest tidskrävande, är
föredragen vid klassifiering av Nöjd Kund Index (NKI). Regression av NKI re-
sulterade i likartad prestations niv̊a för samtliga modeller. Ensemble metoderna
gav en lätt ökning av predicerings precision samt en ökad tidskonsumption.
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Chapter 1

Introduction

The topic of data fusion has been discussed and investigated by data scientists
for the past decades and is an exciting branch in applied statistics. From a
business perspective, we want to see if the fusion of data enables us to make
informative and complete deductions about consumers’ behavior. It is desirable
to utilize as much information about the consumers as possible to increase profit.
Only collecting data from separate market surveys might yield data sets that
are sparse and insufficient. There might be variables that are important to the
company’s business model but not necessarily considered by all surveys. Instead
of repeating all surveys that do not include the missing questions, which is
both time consuming and expensive, one can try to predict important consumer
variables and then fuse the data using the common features of both data sets
and obtain a more extensive data base. The idea is loosely depicted in Figure
1.1. Academically speaking, data fusion is about making insights from the
joint distribution of multiple random variables where only knowledge of the
marginal distributions is given. Papers covering this subject include efforts
from McCulloch et al [8], Esteban et al [6] and Takama et al [17].
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Figure 1.1: A sketch of data fusion.

The purpose of this thesis is to investigate different methods for data fusion to
see if it is possible to find a preferable model to predict consumer attributes for
empirical data provided by Nepa. The data contains valuable information about
the consumer behavior, e.g. personal information such as salary, relationship,
family and more business oriented variables such as how much they purchase and
satisfaction with the products. The main focus is to predict specific variables
that are important to the company’s business model (called target or response
variable) using sets of the other variables as predictors and hope that they
mirror the values of the target variables accurately. This will be accomplished
by applying a number of statistical models as well as various ensemble methods.
The models considered are the following:

· Linear model

· K-nearest neighbour

· Decision Trees

· Random Forest

· Naive Bayesian classifier

· Neural Networks
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The predictions of the response variables will be evaluated in terms of several
statistical measures that indicate the precision of the predictions and the per-
formance of the classifier. The goal here is not to find a model that performs
well for arbitrary data since this is most likely not even plausible. However, it is
in Nepa’s interest to find models, in an automated way, that are suitable for the
consumer data they have access to and this is the main objective of the thesis.

This thesis will, in addition to adding more detail to the process of data fu-
sion, thoroughly elaborate on the theory behind the statistical models and per-
formance measures used for imputation. There will be sections covering the
feature selection and engineering done for all chosen data sets and the theory
behind these concepts. The ensemble methods will be explained and evaluated.
Finally, all results of the prediction performances and feature selections will be
visualized in tables or plots.
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Chapter 2

Methodology

This section will explain the selection of features, feature engineering and the
imputation process, including the procedure of fitting statistical models and
evaluating the results. First will a more detailed description of the data fusion
process be presented.

2.1 The Process of Data Fusion

The data fusion consists of multiple steps that are illustrated in Figure 2.1,
which represents a scheme of the fusion. The first part consists of a donor and
a receiver set. The donor set is samples of data that contains observed values
on a response variable that is particularly interesting to the company’s business
model. Examples of donors include surveys of consumer behavior or consumer
transaction history etc. The receiver can also be data on consumer behavior
but excluding the important business variables. The main principle here is to
use the common features in both donor and receiver set to predict and impute
values on the response variables that are missing in the receiver sets. The donor
is naturally the key set of the fusion process.

Both donor and receiver go first through a pre-processing part where the data
is cleaned and common features are identified. The cleaning of data includes
removing missing or erroneous values (which are commonly occurring in real
empirical data) as well as converting and renaming the variables to the right
data types so they can be processed properly in R. Identifying common features
include finding linking features in both sets, i.e. prediction variables that have
been included in both sets. For example, the donor and receiver sets might both
contain variables such as age and gender but variables such as TV viewings or
product purchases are only considered in the donor set. The linking features in
this case are age and gender whereas e.g. TV viewings is the response variable.
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Figure 2.1: A sketch of data fusion.

The idea here is to use the linking features as predictors to the response variable
so that we can predict the corresponding values in the receiver set. In Figure
2.1, we see that the donor set goes into a fitting part where the data is split into
training and test data. This is explained more thoroughly in Section 2.3, where
feature selection is also included. Fitting multiple statistical models allows us
to choose the best performing one in terms of some performance measure. Once
the type of the model has been chosen, it is fit to the entire sample size in the
donor set. It is then possible to feed the model input from the linking features
in the receiver set to obtain predicted values on the response variable. The aim
is to obtain values that give a rough approximation of what the values should
have been if the variable was considered in the receiver set. This completes the
fusion which is the last part in Figure 2.1. The process described here have been
implemented in R with the design to be as general as possible.

2.2 Feature Selection

The feature selection part of statistical modelling is quite important since we
are dealing with large data sets. By selecting a specific subset of features that
are relevant to our prediction models rather than using the complete feature
space we can achieve a number of beneficial effects. In addition to making the
model easier to interpret, training the model becomes less time consuming and
it may also improve the performance of the model. Variables that are irrelevant
and redundant might even decrease the accuracy of the model and therefore it
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is better to discard them. For this project, a feature selection algorithm that
works as a wrapper method around random forest has been utilized to select
features in an automated way. The main principle here is to select features
based on a feature importance measure that quantifies the significance of each
feature.

2.2.1 MDA - Mean Decrease in Accuracy

The mean decrease accuracy (MDA) is computed when fitting data to a random
forest model. When training classifiers that repeatedly fits decision trees to
bootstrapped subsets of the training data, not all observation are considered
by each tree. In fact, one third of the observations are not used for fitting and
these are called out-of-bag samples. The out-of-bag error is the mean prediction
error when using these samples as test data [12].
The random forest model, which is explained more thoroughly in Section 3.1.3,
excludes features randomly in each bagged tree in order to decorrelate the trees
and reduce variance. MDA is the contribution to decrease in prediction accuracy
when excluding a specific feature. The higher MDA, the more significant was
the feature to the response variable and is thus given a higher importance score.

2.2.2 Selecting the important features

The first step of the algorithm is to create permuted copies of the features and
use them to extend the data set. These are called shadow features. Then a
random forest model is fit to the data and the importance of each feature is
measured in terms of the MDA. This process is repeated a chosen number of
times and for each iteration it compares the score of the real feature to the score
of its shadow features and continuously removes the feature with significantly
lower importance than the shadow features. The algorithm is terminated when
all features have been evaluated or when the number of iterations has been ex-
ceeded, i.e. if the algorithm has not converged by then. If this is the case, then
a number of tentative features are returned by the algorithm. The tentative fea-
tures are the features that have not successfully been determined to be included
or removed. One reasonable solution to this problem is to assign the tentative
feature as important or unimportant based on the median score of the feature
compared to the median score of its best shadow features. Another approach is
to simply increase the number of iterations until these features have either been
confirmed as important or rejected. This will, however, make the algorithm
more time consuming. The former approach will be used and implemented in
R for this thesis.

The algorithm is convenient to use and more time efficient than other greedier
methods such as recursive feature elimination. The results will be visualized by
box plots of the scores of each feature, including the shadow features, which will

8



facilitate the interpretation of the results considerably.

Figure 2.2 displays an example of the results of this algorithm where it has been
used to determine variable importance based on sales data for a company selling
car seats. The target variable here is Price, i.e. the price of the car seats. The
x and y axis shows the considered features and the importance score for each
feature, respectively. The score of the shadow features are also present. The
green boxes are the features that have been confirmed as important and the red
boxes are the ones that have been rejected. Note that the median of all red
boxes are below the median of the maximum score of the shadow features. Here
we see that the prices of car seats charged by a competitor (CompPrice) and
the amount of units sold in thousands (Sales) are highly significant for the price
of the car seats which seems perfectly reasonable. The remaining variables were
directly deemed as unimportant.
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Figure 2.2: Variable importance for price on car seats using the decision tree
based feature selection algorithm.

2.3 Fitting statistical models

When predicting values on the response variable, the process is similar for all
statistical models. The donor data set is split into training and test data based
on a rough 70/30 percent ratio. All the statistical methods and procedures are
executed in R. Furthermore, to avoid getting biased results and increase perfor-
mance, an implementation of 10-fold cross validation is done when training the
classifiers. This means that the model is fit to ten separate sub sets of the train-
ing data and the model parameters are adjusted and estimated for all sub sets
and then averaged for the final model. The parameters in the models, when such
exists, are also optimized i.e. grid based optimization (unless otherwise stated
e.g. neural networks) to produce the best possible fit in terms of the training
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error. The quintessential R package used to achieve the grid parametrization
and cross validation is the caret package by Kuhn [14].
Predictions are done for a variety of models which can either perform a classi-
fication or a regression. This relationship will ultimately be based on

yi ∼ f(xi) + ε (2.1)

where yi is the observed response and f(x) is the fitted model that takes input
data x and produces predicted values on the response. The second term, ε, rep-
resents noise. The predicted values are evaluated using the statistical measures
mentioned in this thesis. The performance of the classifiers in terms of these
measures will be put in contrast to their respective time consumption.

2.3.1 Available Data

The data used for this thesis will consist of real consumer data based on con-
sumer transaction history and social-demographic background provided by an
international grocery chain and a well-established liquor company. There will
also be data on consumer drinking habits, purchase power and earnings. More
details about the structure of the data is given in Sections 4.1-4.3. The con-
sumer data will in some cases in this report be encoded due to confidentiality.
This means that details concerning variable names and interpretation will not
be revealed, nor will any values or responses from the consumers. Only the
results and conclusion of the performance measures will be presented as well as
a description of how the data is structured but not the exact feature interpre-
tation.

2.4 Computing Time Duration

When measuring the time consumption, a simple use of the system.time function
in R will yield information about the CPU time needed to run the R sessions.
The measurements include the time required to train the model with 10-fold
cross validation, predict and impute the missing values in the data set as well as
some additional negligible lesser operations. In order to obtain a more robust
perception on the time consumption, the measurement is repeated four or five
times for each model and then the mean is computed. Training the models is
by far the most time consuming part of the code. Time is measured in seconds.
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Chapter 3

Theory

This section will elaborate on the theoretical concepts behind the statistical
models and give an instructive description of the models properties as well as
the performance measures used to evaluate the models. The steps taken in
Sections 3.1.2-3.1.4 are all outlined in Hastie et al [12].

3.1 Models and Classifiers

3.1.1 Multiple Linear Regression

Multiple linear regression is a common and useful way to model the relationship
between a continuous response vector Y and one or more explanatory variables,
denoted by the matrix X = (1,X1,X2, ...,Xp), where 1 and X1, . . .Xp are
column vector of ones and column vectors of input data from p features respec-
tively. The main assumption for linear models is that the dependence of Y on
X is linear. We write this as Y = Xβ + ε or component wise as

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βpXip + εi, (3.1)

where Xi1, Xi2, . . . , Xip are also called covariates, features or predictors. Here,
β = (β0, β1, β2, . . . , βp) are unknown coefficients that are the model parameters.
The β coefficients are interpreted as the average effect on the response when in-
creasingXj , j = 1, ..., p, with one unit if all other features are fixed. The εi in eq
(3.1) is an error term which accounts for measurement error and potential miss-
ing variables and is assumed to be Gaussian distributed, i.e. ε ∈ Nn(0, σ2I).
We also assume that the observations Yi are uncorrelated and that the sam-
ple data xi is non-random. Additionally, the variance, σ2 is assumed to be
constant i.e. we say that the model is homoscedastic. The response vector
is then distributed according to Y ∈ Nn

(
Xβ, σ2I

)
. Linear models are easy

to interpret and work well when the data sample size is close to the number of
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features, i.e. when p is approaching but not exceeding the data sample size n [5].

We estimate β using the training data and the strategy is to find a β that
minimizes the residual sum of square, abbreviated RSS. One such method is
ordinary least squares (OLS) where we let X have full rank. The idea behind
OLS is to draw the regression line such that the distances from the data points
to the line is as small as possible. If the sample size is n and the i:th observation
of the j:th feature is xij , we want to minimize

RSS(β) =

n∑
i=1

(yi − β0 − β1xi1 − β2xi2 − . . .− βpxip)
2

=

= (y −Xβ)
T

(y −Xβ) .

(3.2)

For equation (3.2) the optimal solution is given by

β̂ =
(
XTX

)−1

XTy. (3.3)

This approach is utilized when using linear models.

3.1.2 Classification and Regression Trees

Here we discuss tree-based methods for regression and classification. The most
instructive route to build a decision tree is by stratifying the prediction space
into a number of sub-spaces or regions by following certain splitting rules which
results in tree nodes. This can be visualized in terms of a tree structure, hence
the name decision tree methods.

We will first consider decision trees for regression problems. A decision tree
is composed by typical aspects characterizing a tree, namely leafs and branches.
The branches represents the connection between the tree nodes. At the bottom
of the tree, we have the leafs which are node that do not split prediction regions
any further. This is visualized in Figure 3.1.
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Figure 3.1: Decision tree that partitions the prediction space. This figure have
been adopted from [12.]

We see in Figure 3.1 that leafs are denoted as R1, .., R5 and the internal nodes
are given by the the predictor outcomes (also known as cut points) t1, ..., t4
which are determined by splits that yields the lowest RSS.

The main objective here is to obtain boxes R1, .., RJ that minimizes the RSS
given by

RSS =

J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2, (3.4)

where ŷRj
denotes mean response for the training data points that falls into

the j:th leaf. It is impossible to evaluate every possible regional partition of
the prediction space (computationally unfeasible) so therefore a regulated ap-
proach known as recursive binary splitting is taken. Among all predictors and
all possible cut points ti we choose the predictor and cut point that yields the
tree with lowest RSS. This process is then repeated for all predictors until we
only have terminal nodes left. To determine the response of a given test data
point, the mean of the training data within the terminal node where the test
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data belongs, is computed. The response is then simply the value of the mean.

Solely building a tree in this fashion might result in too complex trees which
leads to over-fitting and poor test error rate. Therefore, so called tree prun-
ing is utilized in order to reduce the tree into subtrees which might give more
reasonable results. Subtrees means smaller trees with fewer terminal nodes, i.e.
fewer splits in the prediction space. Reducing the trees this way can possibly
result in a decrease in variance and a clearer interpretation of the tree. The
question now is how do we know the optimal way to prune a tree? We do not
check every possible subtree (there might be a lot of them) but instead resort
to cost complexity pruning where a parameter α is regulated such that

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm
) + α|T | (3.5)

is minimized, where T is the total number of terminal nodes, yi is the observed
response and ŷRm

is the prediction output associated with the m:th terminal
node. The purpose of α is to tune the trade off between the complexity of the
tree and the precision of the predicted responses. To avoid biased value on α,
one can use k-fold cross validation.

A classification tree is based on the same structural principles as the regres-
sion tree. However, instead of predicting a quantitative data point, we try to
predict qualitative observations. To predict the response of a classification tree,
a majority vote is conducted within the terminal node where the test observa-
tion belongs. When we grow our tree, we do not consider RSS as a criterion for
making binary splits. Instead, we look at the classification error rate which is
the fraction of the training observation that do not belong to the most common
class. In some cases alternative measures are preferred since classification is too
insensitive for tree-growing. These are the Gini index and cross-entropy where
the former is defined as

G =

K∑
k

p̂mk (1− p̂mk) , (3.6)

where p̂mk is the proportion of training observations that are from the k:th
class. This measure quantifies the spread i.e. the variance across the K classes.
The Gini index can be interpreted as the level of node purity where smaller
values mean that nodes contains mostly observations from the same class. Cross
entropy (more thoroughly investigated in section 3.3.2) is very similar to the Gini
index and also measures node purity but is instead defined as

D = −
K∑

k=1

p̂mklog p̂mk (3.7)
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3.1.3 Random Forest

The random forest is a robust algorithm that is based on bagged decision trees.
The main idea behind random forest is to fit uncorrelated trees to bootstrapped
data samples. If we split the training data at random and fit decision trees to
each sample, the outcomes might become very different. There is a high variance
in growing decision trees. In order to reduce the variance, one can utilize the
idea of bootstrapping the data. Suppose that we have collected n observations,
Z = (z1, ..., zn), where zi = (x, yi) and we use this as training data. Suppose
now that we randomly draw, with replacement, samples of data from Z and of
equal size as Z. This is commonly known as bootstrapping. The bootstrapped
data are treated as I.I.D samples of their empirical distribution. By repeating
this procedure, say B amount of times, we can generate B sets of training data.
This allows us to refit our model B times, i.e grow B decision trees and obtain
B sets of predicted responses. These are then averaged to produce the final
predicted value. More precisely, we have that

ŷbag =
1

B

B∑
b=1

y∗b, (3.8)

where y∗b is predicted value of the response variable for the b:th decision tree.
This is called bagging and will thoroughly reduce the variance of the decision
trees.
Random forest is built on this idea but when growing trees on the bootstrapped
data samples, a majority of the predictors are not even considered. Why is this
a good idea? Let us imagine we have case where a very dominating predictor is
in the predictor space, i.e. it is very significant in predicting a certain response
variable. Then each tree that is built for each bootstrapped data set will use this
predictor as its top split (first predictor considered when partition the prediction
space), making the trees rather indistinguishable. The predictions stemming
from these trees will be highly correlated. This does not reduce the variance in
the model as efficiently as if the predictions are uncorrelated. Random forest is
a conceivable solution to this problem since the strongest predictor will not be
considered in all trees which allows the other predictors to have a bigger impact
on the response variable. We say that the random forest uncorrelates the trees.

3.1.4 K -nearest neighbour

The main principles outlining the K -nearest neighbour (KNN) algorithm is that
one can estimate the probability that an observation belongs to a specific class
by comparing it to its neighbouring data points and see what classes they belong
to. In order to decide which points counts as the closest neighbours, similarity
between the data points must be defined. It can be determined in various ways
and differs depending on if the data is qualitative or quantitative. A plausible
way to determine similarity when the observation features are quantitative is to
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use the Euclidean distance between data points. A farther Euclidean distance
indicate more discrepancies in the data. The KNN algorithm operates with
training sets, denoted {(xi,yi)}. Let us now assume that we have observed
a new observation, say X = x0. First we want to form a set of the of the k
nearest points, i.e lowest values on the distances ||xxxj −X|| where j = 1, . . . , k
and denote it N0. Then we follow this scheme:

1. Use Pr(Y = c|X = x0) = 1
k

∑
j∈N0

I(yj = c) to determine the probabil-
ity that observation X belongs to class c. If there are more occurrences of class
c in N0, the estimated probability that response Y takes class c will become
higher.

2. Finally, Y will be assigned to the class which yielded the highest estimated
probability.

The last part is a majority vote of the different classes that are in the set
N0. Regulating k severely impacts the outcome of the classifications. A conse-
quence of a smaller value on k is that the KNN algorithm becomes increasingly
sensitive. Then this classification procedure tends to yield more complicated
decision boundaries. Most training points will be classified correctly since there
are fewer neighbors that affect their classification. This comes at the cost of
increased sensitivity to outliers, meaning that the accuracy for the test set can
be low if there are many differences between the test- and training sets. For
higher values on k, the method is more robust since more observations are taken
into account which decreases the influence of outliers and the impact they have
on the classification. On the other hand, it also decreases the impact the train-
ing points have on their own classification which might lead to training points
being classified incorrectly. Tuning the value of k is a balance between variance
and bias where high k yields a simple decision boundary that is too biased and
low values mean complex decision boundaries with high variance. However, a
condition that needs to be satisfied is that k is less than the sample size n,
otherwise all points will have different classification.

3.1.5 Naive Bayesian Classifier

The naive Bayesian classifier is a simple yet surprisingly powerful classification
technique well suited for large data sets. Like all Bayesian methods, it utilizes
Bayes’ rule but with a strong (and naive) assumption of independence among
the predictors. Let us denote p features as X = (X1, . . . , Xp). Each feature
takes a value from its domain Ωj , j = 1, . . . , p. The entire feature space is
then given by Ω = Ω1 × . . . × Ωp. We can propose a classifier which assigns a
class to any set of features based on the class discriminant function fc(x). The
main purpose of the classifier is to, for a given set of features, maximize the
discriminant function, i.e.

h∗(x) = argmax {fc(x)} . (3.9)
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A Bayesian classifier is based on these principles where the discriminant function
is represented by the posterior probabilities. These probabilities are obtained
by utilizing Bayes’ theorem. In other words, the discriminant function is given
by f∗(x) = P (C = c|X = x) and employing Bayes’ theorem yields

P (C = c|X = x) =
P (X = x|C = c)P (C = c)

P (X = x)
, (3.10)

where the denominator is the same for all classes and is thus ignored [13].
The Bayesian classifier is, for an observed data x, given by

h∗(x) = argmaxcP (X = x|C = c)P (C = c) (3.11)

In order to obtain the näıve Bayesian classifier, we must make the assumption
that all features are independent in which case eq (3.11) becomes a product

fNB
c (X) =

p∏
i=1

P (Xj = xj |C = c)P (C = c) (3.12)

The outcome of the classification is given by the class with the highest poste-
rior probability. The naive Bayes’ classifier is easy to understand and is able
to make fast predictions of classes in test data sets. However, the assumption
of independence is incorrect for almost all real life empirical data and it might
impair the precision of the predictions [16].

3.1.6 Neural networks

The idea of neural networks is originally inspired from how the neurons in
the human brain communicate and interact with each other. This is a com-
plex biological process, involving billions of neurons that continuously transmit
electrochemical-signals which are received by other neurons through the synapse
and dendrites of the nerve cell and eventually integrated in the cell body. Thou-
sands of signals are processed in a single instant and if the aggregated effect of
all signals exceeds some specific threshold, an impulse is created in the neu-
ron and transmitted via the axon which is a long slender fiber that conducts
impulses away from the cell body. Not all signals promote the generation of
an impulse (so called excitatory signals) but some can result in an inhibitory
reaction which suppresses the neuron from firing an impulse. The effects of
the signals are changed as the human brain learns things, recognizes patterns,
makes decisions etc [9].

It is impossible to construct a computational machine or software simulation
that fully replicates the neurons in the brain. However, neural network models
are loosely based on the structure and the style of processing in the brain. The
neurons in this case are replaced by artificial neurons, more properly known
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as units, that are arranged in three different types of layers. The first type is
called the input layer which is composed by input units. It receives information
from the outside world through observational data that the networks want to
learn about and recognize its patterns. The third type is known as the output
layer where the units are conveniently called output units which signal how the
network responded to the data. Practically speaking the output layer will signal
how the target variables were predicted. In between the first and third layers
lies the hidden layer where the hidden units constitutes most of the artificial
neural network. The connections between the units are called weights which is a
number that determines if the “signals” are either excitatory or inhibitory. The
weight number can be either positive or negative and the higher the weights
the stronger the connection is between the units. A neural network can have
multiple hidden layers in which case it is called multilayered neural network.
Having more than one hidden layer can improve the performance of the network
but the amount of parameters to determine increases significantly. Unless the
problem is unusually complex, having only one hidden layer will suffice. This
thesis will only focus on single-layered neural networks [15].

Figure 3.2: A sketch of the different layers in a neural network.

A visual presentation of the artificial neural network is given in figure 3.2.
All classifiers need to be trained before they can be used for prediction and the
artificial neural network is no exception. Each artificial neuron in the layers use
an activation function, denoted σ(x), to convert the input data to an output
which is then transmitted to the next layer. These activation functions take
different forms depending on if it is a regression or classification and depending
on which layer it is. For instance, multinomial classification is mostly done by
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using the softmax function as σ(x) whereas probabilistic regression uses the
sigmoid function. To put this in a more formal context, we express aij as the
activation or output of σ(x) of the j:th perceptron (artificial neuron) in the i:th
layer. Each layer input can then be expressed by its preceding layers output in
the following way

aij = σ

(∑
k

(
wi

jk · ai−1
k

)
+ bij

)
(3.13)

In (3.13), wi
jk is the weight of the k:th neuron in the (i− 1):th layer to the j:th

neuron in the i:th layer. Furthermore, bij is the bias of the j:th neuron in the
i:th layer. During training phase, we want to optimize the weights such that
the cost function, generally expressed as

C(W,B, I,O), (3.14)

where W is the weights, B are the biases, I is the input from training data and O
is the corresponding output, is minimized. The cost function can take different
forms depending if it is a classification problem or a regression but the more
commonly used costs for neural networks are mean squared error (regression)
or cross-entropy (classification). Initially, the weights are randomly chosen [15].
Optimization of the weights is most frequently done by an algorithm known as
gradient descent which is an iterative first-order optimization algortihm which
takes steps that are porportional to the negative gradient. Another method used
to find optimal points is the BFGS algorithm which is mentioned more in section
3.3.1. For this thesis, the BFGS algorithm is utilized for weight optimization.

3.2 Performance Measures

3.2.1 Accuracy

Accuracy is a simple intuitive measure that will be used to evaluate classifi-
cations. It is a measure of how close the predictions are to the true value of
the data. In classification, this becomes the proportion of correctly predicted
classes, i.e. the number of correct predictions, divided by the total number of
predictions (sample size of test data). More precisley,

Accuracy =
#correct predictions

#predictions
. (3.15)

This will yield a percentage number (between 0 and 1) where a higher value
means more accurate prediction. Investigation of the confusion matrix in table
3.1 shows that accuracy also can be expressed as #TruePositive+#TrueNegative

P+N .
Solely choosing a model on classification accuracy can be misleading and should
not be done in all cases. When there is a high imbalance among the classes in
the prediction domain, models only choosing the dominating class will yield a
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very high accuracy and appear to be precise but they are in fact useless when it
comes to modelling the minority classes. For instance, if we collect data on 200
adult females and try to predict how many will be diagnosed with breast cancer
within five years, simply choosing a model which predicts everyone to not be
diagnosed with breast cancer might give an accuracy of 95 % which seems to
be very precise but this model says nothing about the females that actually get
breast cancer which is what we want to model. When these kinds of imbalances
are present in the data, many predictions might be correct by mere chance [3].
A conceivable alternative is to evaluate the classification in combination with
the Kappa coefficient which is investigated in the next section.

3.2.2 Kappa

The Kappa statistics is a coefficient measuring the rate agreement for qualitative
data. It is considered to be a more valid and robust measure compared to other
statistics evaluating nominal data since it takes into account the possibility that
agreements occur by chance. The Kappa value is based on the confusion matrix
which is a table that visualizes performances of classifiers. A simple example of
such a matrix is

a
c
tu

a
l

v
a
lu
e

Prediction outcome

p n total

p′
True
Positive

False
Negative

P′

n′
False
Positive

True
Negative

N′

total P N

Table 3.1: The confusion matrix.

The table above displays the result of a binary classification. Let us introduce
the quantity chance-agreement probability denoted pe. This is the hypothetical
probability of chance agreement. It is computed by determining the marginal
frequencies and then take the sum. Thus we obtain (looking at table 3.1)

pe =
#True Positive

P +N
∗ #False Positive

P +N
+

#False negative

P +N
∗ #True negative

P +N
(3.16)
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Furthermore, let us denote the aforementioned accuracy as pa. Then Kappa is
given by

κ =
pa − pe
1− pe

. (3.17)

From this expression we can obtain an estimated value on Kappa based on
sample data. The denominator represents the percentage of data for one would
not expect random agreement. The numerator represents the percentage for
which actual agreements has occurred, i.e. not agreements that have occurred
by chance. In order to evaluate the value on Kappa, one may refer to various
benchmark scales presented in literature. One such scale, which is widely-used
by statisticians, is the Landis and Koch Kappa’s Benchmark Scale which is
summarized in Table 3.2. Although its validity is sometimes questioned, it still
provides a decent perception of how robust the prediction is. Regardless of
benchmark scale however, we ultimately want Kappa to be as close to one as
possible. Kappa ranges from -1 to 1 like most correlation statistics and negative
values indicate poor classifiers and the number of agreements is what can be
expected by chance [10].

Kappa Statistics Strength of Agreement

<0 Poor
0.0 to 0.2 Slight

0.21 to 0.40 Fair
0.41 to 0.60 Moderate
0.61 to 0.8 Substantial
0.81 to 1.00 Almost Perfect

Table 3.2: Landis and Kochs’ benchmark scale for Kappa.

3.2.3 RMSE and MAD

When doing regressions on data, the residuals are given by how much the re-
gression line deviates from the measured data points. The further away from
the points, the higher the values on the residuals become. The residuals can
therefore be seen as prediction errors. This introduces the concept root mean
square error (RMSE) which is a very common and standardized measure for
regression analysis. It is the standard deviation of the prediction errors, i.e. the
residuals. Intuitively, it shows how concentrated the data is around the line of
fit. A smaller value on RMSE means that the residuals are less spread out and
the regression line is more precise to the data. The mathematical formula is
given by

RMSE =

√√√√ 1

n

n∑
i

(ŷi − yi)2
, (3.18)
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where ŷi and yi are the predicted and observed values respectively and n is the
sample size of test data [2].
At times, the mean absolute deviation (abbreviated MAD) can be used to evalu-
ate regressions. It is simply the mean deviating absolute value of the predictions
from the observed data. The lower value on MAD, the closer on average are the
predicted values to the observed values. In terms of a formula, it is written (as
outlined in [1])

MAD =
1

n

n∑
i=1

|ŷi − yi|. (3.19)

3.2.4 Hellinger’s Distance

If we assume P and Q denote two probability distributions that are absolutely
continuous with respect to a third Lebesque measure denoted as λ, a measure
of the distance between these is the metric Hellinger’s distance. The derivatives
of P and Q with respect to λ are probability density functions which allows us
to express the squared Hellinger’s distance (in L2 sense) in terms of a regular
calculus integral. More precisely, we obtain

H2(P,Q) =
1

2

∫ (√
dP

dλ
−
√
dQ

dλ

)2

dλ, (3.20)

where we square for convenience. Hellinger’s distance is a quantification of
the similarity between probability distributions. For the definition above, the
Hellinger’s distance will take a value between 0 and 1, where 0 means that the
two distributions are equal almost everywhere and a higher value indicates that
the distributions are more separated. Thus will Hellinger’s distance tell us how
much the distributions are overlapping [4].
This is illustrated in Figure 3.3 where two one-dimensional distributions are
displayed in different cases.
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Figure 3.3: Three different cases of overlapping for two one-dimensional distri-
butions:
upper plot: P and Q are completely separated: H(P,Q) = 1.
middle plot: P and Q are partly overlapping: 0 < H(P,Q) < 1
lower plot: P and Q are completely overlapping: H(P,Q) = 0

For two discrete probability distributions, equation (3.20) become

H(P,Q) =
1√
2
· ||
√
P −

√
Q||2 =

1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)2 (3.21)

3.2.5 Hellinger’s Distance for Empirical Data

In reality, we can only work with discrete probability distributions since the
number of observations is finite. We want to determine the probability of
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each observation in our data set. Each observation can be viewed as an em-
pirical outcome of some multidimensional probability distribution, i.e. if x =
(x1, x2, . . . , xp) is an outcome of p features or variables then the probability
of observing x is P (x) where P is some p-dimensional probability distribution
representing the data. To determine P (x) we can use the empirical probabil-
ity distribution. For continuous data, the probability of each observation is
infinitely small which in practice mean that the continuous features must be
discretized into levels on an interval spanning the range of values of the con-
tinuous features. This will yield each continuous valued observation a discrete
probability. In the multidimensional case, we can then group both continuous
and nominal features to obtain a count for each type of observation, i.e. the
number of occurrences in the data set for each type of observation. If we divide
each count by the total sample size, we obtain the discrete probabilities for each
observation. Hellinger’s distance can then be computed using equation (3.21)
where P will be the probability distribution of the set of observation when we
include observed values on the response variable and Q is the probability distri-
bution of the set of observation with predicted values on the response variable.
When discretizing the continuous data, the grid will consist of homogeneous
step sizes where each step corresponds to a discrete level in the continuous in-
terval. The number of steps reflects the fineness of the grid and finer grid means
a more extensive observation region. Hellinger’s distance will be plotted against
the total number of steps which varies from 2 to 100 where the step sizes are
scaled towards the empirical quantiles of the continuous data meaning the entire
continous interval is taken into account. These plots are presented in the result
section of this paper.

3.3 Ensemble Methods

This section will outline the ideas behind the ensemble methods and explain
the advantages and disadvantages of proposing these kind of classifiers as well
as the differences between them.

3.3.1 RMSE based Ensemble Method

One way to optimize the use of multiple regression models is to implement an
algorithm that tries to find the best weighted combination of these. Let us
assume we want to find the best prediction model with respect to the RMSE
value. By intuition, the simplest way would be to calculate the RMSE using
training and test data for the different models and choose the model that yields
the smallest value on the RMSE. It might be more accurate, however, to calcu-
late the RMSE when considering a linear combination of the predicted values
from each model, where the coefficient are weight parameters. More precisely,
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we investigate the following problem,

minimize
RMSE

ŷ
(tot)
i =

p∑
k=1

wkŷ
(i)
k i = 1, . . . , n

subject to

p∑
k=1

wk = 1, wk ≥ 0,

(3.22)

where p and n are the number of classifiers and the sample size of test data
respectivley. We want to find values on the parameters w1,w2, . . ., wp such that
the RMSE for prediction ytoti is minimized. Incorporating the linear combination

of classifiers into the formula of RMSE, here denoted RMSE
∧

, we obtain

RMSE
∧

=

√√√√ 1

n

n∑
i=1

(ŷtoti − yi)
2

=

√√√√ 1

n

n∑
i=1

(
p∑

k=1

wkŷ
(i)
k − yk

)2

(3.23)

Equations (3.22) and (3.23) compose an optimization problem that can be solved
numerically using e.g. a multidimensional grid on the possible parameter val-
ues and then looping through each point in the grid until a minimum on the
RMSE has been found. Then we choose that point as the optimal one. In this
thesis however, a more sophisticated method known as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm will be used for this purpose. It is a part of
the quasi- Newton family of algorithms and is an iterative method mainly used
to solve nonlinear optimization problems. Like many Newton-like algorithms,
it seeks to find stationary points where the gradient of the of objective function
has to be zero in order to satisfy the optimality condition. For a more mathe-
matically rigorous motivation of the BFGS algorithm, see papers by Hongzhou
Lin et al [11].

The advantages of using this method is that it will always yield an equivalent
or smaller RMSE value than using only one prediction model. Suppose that the
best prediction is given by only using a linear regression model. Then we will
not lose any performance when using this approach since the weight parameters
will adjust towards the linear model and yield a classifier that is essentially
the same as a linear model. The lesser methods will be neglected or have very
little impact. The disadvantages of this is the risk of getting biased results
since the parameter values obtained for a specific set of training data might not
be optimal in general. This risk is thoroughly reduced by implementing k-fold
cross validation i.e. optimizing the weights over k -folds of the data and then
averaging the results.

3.3.2 Cross-entropy based Ensemble Method

It is also desirable to find a corresponding method for multinomial dependent
variables. As opposed to regression models, the prediction values from a clas-
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sification cannot be weighted and summed. It is therefore not plausible to use
mathematically convenient measures such as RMSE or mean absolute devia-
tion. Instead we resort to cross-entropy which is somewhat more refined than
the aforementioned Accuracy measure since the log part in equation (3.24) takes
into account the closeness of a prediction which makes evaluation more consis-
tent [12].
Suppose we have predicted the outcomes of a categorical target variable with
j class labels using p different classification models. From each model, we can

extract the class probabilities p
(n)
jp , which is the probability that model k has

predicted observation i to be in class j. The class that is ultimately chosen as
an outcome in each test data is the class with highest probability. Moreover,

the cross-entropy for a predictor p
(i)
k∗ is given by:

H
(
y(i)|p(i)

k∗

)
= −

J∑
j=1

y
(i)
j log p

(i)
kj , for i = 1, . . . , n. (3.24)

If we consider the whole test data sample, we take the mean of the of all test
observation, i.e.

H
(
{y(i)}|{p(i)

k∗}
)

=
1

n

n∑
i=1

H
(
y(i)|p(i)

k∗

)
. (3.25)

Cross-entropy can intuitively be said to measure the randomness or the disorder
of the prediction. A classification model is said to perform well if its entropy

is small. We can propose a new classifier based on p̂
(i)
j =

∑p
k=1 wkp

(i)
kj which is

the weighted sum of the class probabilities for each method. More precisely

H
(
{y(i)}|{p̂(i)}

)
=

1

n

n∑
i=1

H
(
y(i)|p(i)

k∗

)
= − 1

n

n∑
i=1

J∑
j=1

y
(i)
j log

(
p∑

k=1

wkp
(n)
kj

)
.

(3.26)
In other words, for each predicted class probability in each test observation
we seek to find the optimal value on the weights wk so that the total sum of
probabilities is weighted to the class probability yielding the smallest cross-
entropy. The BFGS algorithm has been used for finding the optimal point.
Similar to the weighted continuous case, including classifiers that perform poorly
should not be a problem since the weights will lean towards superior classifiers.
In order to reduce the risk of biased optimization, one can implement k-fold
cross validation and average the result.
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Chapter 4

Results

4.1 Classification of Consumer Drinking Habits

The first fused data set used to evaluate prediction and imputation of missing
data points is a survey regarding the drinking habits of the consumers. It
contains a total of 6718 observations from 14 different features where both social-
demographic variables and alcohol consumption variables have been combined
and matched to respondents. These are summarized in Table 4.1 where some
details have been omitted due to confidentiality.
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Features Description

Age The age of the respondent.
Gender The gender of the respondent, 1 is male and 2 is female

Working Status

The current working status of respondent. The available
classes here are employed full time, employed part time,
retired, Housewife / househusband, Self-employed,
unemployed (looking for work), Student /at school full
time and other.

Level of Education
Respondent education and training. Levels here include
e.g. high school graduate, college graduate etc.

Ethnicity
The race or ethnicity of the respondent. Levels are e.g.
Asian alone, Black or African American alone etc.

Place of Residence
Where the respondent resides. Levels are Large city,
Medium-sized city, Town or Village.

Life Stage

Current relationship status for respondent. Levels are
Married / co-habiting children at home, married /
co-habiting no children, Single, living alone with
children (single parent), Single living alone, no children.

Household Income
House hold income of respondent. Levels are e.g. ”less
than 50000”, ”50000-74999”, etc.

Segment Social behavior of respondent. Confidential.

Vodka Consumption
The consumption of vodka for respondent. Levels are
Less often, Never, Once per month and once per quarter.

Rum Consumption
The consumption of rum for respondent. Levels are Less
often, Never, Once per month and once per quarter.

Cordials Liqueurs Consumption
The consumption of Cordials liqueurs for respondent.
Levels are Less often, Never, Once per month and once
per quarter.

Cordials Liqueurs Shots Consumption
The consumption of Cordials liqueurs shots for
respondent. Levels are Less often, Never, Once per
month and once per quarter.

Occasion
Last occasion of drinking for the respondent.
Confidential.

Table 4.1: Explanation of features used in the first data set from the grocery
store company.
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The imputation variable here is the last feature in Table 4.1, labeled Occasion.
The first step is to choose the most informative features according to the pro-
cess described in Section 2.2. From the decision tree based algorithm, that
took roughly 10 minutes to run, the following feature were deemed as signifi-
cant: Age, Gender, WorkingStatus, LevelOfEducation, Ethnicity, PlaceOfResi-
dence, LifeStage, HouseholdIncome, Segment, VodkaConsumption and Cordial-
sLiqueursShotsConsumption. The difference in importance for the chosen set of
features is most easily presented graphically as in Figure 4.1.
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Figure 4.1: Importance of explanatory variables using decision tree based algo-
rithm.

The imputation is then done according to Section 2.3 and the results are pre-
sented in Table 4.2.
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Method Accuracy Kappa Time [s] Weight

KNN 0.33 0.27 6.16 1.68 ∗ 10−6

CART 0.30 0.21 2.11 2.13 ∗ 10−1

Naive Bayes 0.38 0.32 0.04 5.89 ∗ 10−1

Neural Networks 0.34 0.27 213 1.75 ∗ 10−1

Random Forest 0.37 0.30 994 2.29 ∗ 10−2

Table 4.2: Accuracy and Kappa values for each set of predictions as well as time
consumption and the weight values from the ensemble optimization.

Furthermore, let us examine what happens when we incorporate the cross-
entropy based ensemble classifier presented in Section 3.3.2. Here all models
are considered in the optimization. This is a classification and thus we want to
minimize the cross-entropy. The results are presented in Table 4.3.

Added Time [s] Cross-entropy Accuracy Kappa

102 1.83 0.39 0.33

Table 4.3: Values on Accuracy, Kappa, Cross-entropy and added time consump-
tion when using ensemble method.

It is also desirable to investigate Hellinger’s distance as explained in Section
3.2.5. The results are presented in Figure 4.2 where it is also included a scatter
plot visualization of the Accuracy and Kappa measures.
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Figure 4.2: Upper plot : Hellinger’s distance for some models
Lower plot : Graph of Kappa and Accuracy values.

4.2 Classification of Consumer Satisfaction In-
dex

In this section, we will investigate the possibility to make precise predictions on
consumers satisfaction with specific stores using data that is based on consumer
attitude and purchase history. The goal here is to obtain a perception on how
consumers generally rate their stores from a grocery chain in the cases where
they have not responded to the question in the survey. Instead of repeating the
survey multiple times, we try to fit a statistical model to the data and investi-
gate how well we can predict respondents opinions. The first data set contains
12000 observations from 24 different features. These are described in tables 4.4
and 4.5.
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Features Description

Gender The gender of the respondent, 1 is male and 2 is female

Purchase Power
A grouping of consumers purchasing power which is
categorized from 1-8. The higher number a respondent has
on this scale, the higher the income.

Mosaic Grouping
A categorization of the Social-demographic background of
the respondent.

Total Price
The total amount of money spent on products half a year
prior to march 2016.

Store Format
This is the most frequently visited store type in the grocery
chain for the respondent.

Total Quantity
Total number of products the respondent has purchased
during a one year period prior to march 2016.

Life Stage
The current life phase of respondent. Levels are e.g.
“Young Single”, “Singles and couples without kids”,
“Young family”, “Established family”, etc.

Kids at Home Having kids at home. Binary variable for yes (1) and no (0).

Year of Birth Birth of year of respondent.

Visits
How many visits the consumer has done to stores during a
one year period prior to march 2016. Binary feature for
regular visitor (1) and ordinary visitor (0).

Number of Weeks

How many different weeks the respondent has made
purchases in the grocery chain one year prior to march
2016.

Table 4.4: Explanation of features used in the first data set from the grocery
chain.
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Features Description

Membership points
How much points the consumer has collected during
a one year period prior to march 2016.

Standard Food
Proportion spent on standard labeled food during a
one year period prior to march 2016.

Ecologic Food
Proportion spent on ecologic food during a one year
period prior to march 2016.

Campaigned Food
Proportion spent on campaigned food during a one
year period prior to march 2016.

OB Food
Proportion spent on OB food during a one year
period prior to march 2016.

OB Food, not from brand 1
Proportion spent on OB food but not from brand 1
(confidential brand) during a one year period prior
to march 2016.

Premium Food
Proportion spent on premium labeled food during a
one year period prior to march 2016.

Fair Trade Food
Proportion spent on fair trade labeled food during a
one year period prior to march 2016.

Basis Food
Proportion spent on basis food during a one year
period prior to march 2016.

Niche Food
Proportion spent on niche labeled food during a one
year period prior to march 2016.

Category Medal
Represents the loyalty of the consumer during a one
year period. A higher value indicates a more loyal
customer in terms of amount of purchased products.

Share of Wallet
This represents the share of money the consumer
spends on sale products in relation to the consumers
purchasing power.

Needs Segment The company’s segmentation of consumer needs.

CSI

The respondents overall satisfaction with their most
frequently visited store. Levels are the different
grades on a scale from 1-10. Prediction variable.

Table 4.5: Explanation of features used in the first data set from grocery chain.

As stated in table above, the imputation variable here is ”CSI” which is the
consumer overall satisfaction of their most frequently visited store. The next
step is to choose which of the features in Tables 4.4-4.5 are informative in terms
of predicting ”CSI”. The rest of the features are discarded. The decision tree
based algorithm is implemented and the results are plotted in Figure 4.3. The
algorithm deemed variables that have to do with the proportion of money spent
on different food products as well as the total money spent in the stores as
the most relevant features for their store opinions. The variables concerning
the respondents personal information such as gender, year of birth and kids at
home were less informative. The running time of the tree based feature selection
clocked in at roughly 15 minutes.
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Figure 4.3: Feature importance from decision tree based algorithm

The results of the model predictions are summarized in Table 4.6.

Method Accuracy Kappa Time Weights

KNN 0.30 0.14 29.23 1.4*10−3

CART 0.26 0.016 6.795 1.0*10−6

Naive Bayesian Classifier 0.22 0.04 0.32 1.0*10−6

Neural Networks 0.31 0.13 267 1.4 * 10−3

Random Forest 0.57 0.46 2326 0.99

Table 4.6: Accuracy and Kappa values for each set of predictions.
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The cross-enropy based ensemble method is applied once again and the results
are presented in Table 4.7. The value on the weights are noted in the previous
table.

Added Time [s] Cross-entropy Accuracy Kappa

1233 1.25 0.57 0.47

Table 4.7: Values on Accuracy, Kappa, Cross-entropy and added time consump-
tion when using cross-entropy based ensemble method.

Also, Hellinger’s distance is investigated and presented in Figure 4.4 along with
a scatter plot of Accuracy and Kappa.
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4.3 Regression of Consumer Satisfaction Index

In the second data set, there will be more emphasis on combining consumer
attitude and transaction history from a time dependent perspective. Instead of
considering data from a one year period prior to march 2016, we will consider
half a year prior to march 2016. The response will once again be the consumers’
grading of their most commonly visited store but the features will be fewer
and somewhat modified. Moreover, the prediction will be a regression and
thus differently evaluated. There will be 15000 observation from 13 features
that directly connects transaction history during a specific time period with
corresponding attitude. A more thorough description is given in Table 4.8.

Features Description

Gender The gender of the respondent, 1 is male and 2 is female

Purchase Power
A grouping of consumers purchasing power which is
categorized from 1-8. The higher number a respondent has
on this scale, the higher the income.

Mosaic Grouping
A categorization of the Social-demographic background of
the respondent.

Total Price
The total amount of money spent on grocery products half
a year prior to march 2016.

Category medal
This represents the share of money the consumer spends on
sale products in relation to the consumers purchasing
power. Value on levels ranges from ”1” to ”4”.

Total Quantity The total number of grocery products purchased.

Life Stage

The current life status of respondent. Levels are “Young
Single”, “Singles and couples without kids”, “Young
family”, “Established family”, “Parent(s) with kids that
have moved out” and “Seniors and retired”.

Kids at Home Having kids at home. Levels are yes (1) and no (2).

Year of Birth

Birth of year of respondent. This feature, which originally
took numerical values, has been decomposed into four
levels represented by numbers from 1 to 4. The levels are:
Child/Youth (age 1-20), Young Adult (age 21-40). Middle
aged Adult (age 41-60) and Senior Adult (age 61+).

Needs Segment
Segmentation of respondent needs. Confidential. Three
levels.

Visits Total number of visits for a specific time period

Share of Wallet
This represents the share of money the consumer spends on
sale products in relation to the consumers purchasing
power.

CSI
The respondents overall satisfaction with their most
commonly visited store. Prediction variable.

Table 4.8: The features used for the second data set from the grocery chain and
a description of what they quantify.
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Selection of significant variables is done with the decision tree based selection
algorithm. The result of the algorithm is plotted in Figure 4.5. A quick review
of this plot shows that features concerning the total amount of money spent on
grocery products (Total Price) as well as the total quantity of products (Total
Quantity) are most relevant for their satisfaction with their most frequently
visited store. Feature concerning gender and needs segment are less prominent.
The time consumption for the selection algorithm is roughly 9 min.
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Figure 4.5: Feature importance using decision tree based algorithm.

The imputation of consumer satisfaction of stores is done by fitting a re-
gression line to the data. The regression is evaluated using RMSE and mean
absolute deviation (MAD). Results are summarized in Table 4.9.
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Method MAD RMSE Time [s] Weights

KNN 1.65 2.09 6.2 0.069
CART 1.57 2.00 2.1 0

Linear Model 1.59 1.99 0.02 0.51
Neural Networks 1.58 2.01 213 0
Random Forest 1.58 1.99 1413 0.42

Table 4.9: MAD and RMSE for each model.

For this data set we want to apply the RMSE based ensemble method and inves-
tigate the performance of the proposed classifier. The weights are distributed
in Table 4.9 and prediction performance is shown in Table 4.10.

Added Time [s] MAD RMSE

2 1.57 1.98

Table 4.10: Values on RMSE and MAD as well as added time consumption
when using RMSE based ensemble method.

Finally, the Hellinger’s distance is plotted for different discretizations as men-
tioned in Section 3.2.5. This is seen in Figure 4.6.
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Chapter 5

Discussion

5.1 Remarks on the First Classification

A direct review of Table 4.2 shows that, in terms of Kappa and Accuracy, the
naive Bayesian classifier is the most superior one whereas ordinary (classifica-
tion) decision tree perform the worst. Examining the time consumption shows
that the naive Bayesian classifier is also the most efficient since it has by far the
shortest running time. The random forest model gives a decent performance
but the training phase takes a long time to complete. The method of nearest
neighbours is also worth noting but there is no reason to consider anything else
but the naive Bayesian classifier for this data set. The independence assumption
of naive Bayes’ does not seem to be as erroneous as in the data from the grocery
chain. When this holds, even if only to a certain extent, the naive Bayesian clas-
sifier performs well on smaller sets of data. The sample size of the training data
was limited to only 5000 observations which supposedly could be too sparse for
classifiers such as random forest. Moreover, this data set only contained a sin-
gle non-nominal feature which relaxes the very strong assumption of Gaussian
distributed (bell curved) continues data.

Moving on to the ensemble classifier (Table 4.3), both Kappa and accuracy were
increased as expected but not by a significant amount. It also added another
102 seconds to the time consumption in addition to the time required to train all
the other classifiers. There is a trade off dilemma here, where one has to decide
if it is worth training all the classifiers for a moderate increase in performance.
The increase in time might be reasonable for this particular data set but in a
more extensive context where the number of observation is large, the time du-
ration might become too overwhelming for such a small increase in performance.

From Figure 4.2 it seems that the Hellinger’s distance for each classifier agrees
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well with its corresponding Accuracy and Kappa where the neural network is
slightly preferred over KNN. The value on H does not seem to change much
when making the discretization less fine and its shows a fairly stable behaviour
for all values on the number of steps. The values ranges between 0.38 to 0.43
and the ensemble method gives the shortest distance which is expected since it
produced the most precise set of predictions.

5.2 Remarks on the Second Classification

From Table 4.6 we can see that random forest is by far the most superior model
in terms of prediction accuracy. The other model performances were quite poor
and their Kappa indicates that the number of correctly predicted outcomes is
close to what we can expect by chance. The Kappa of the random forest in-
dicates a more robust performance. This particular data set seem well suited
for the random forest model. Indeed, if we try to optimize an ensemble method
based on cross entropy, the parameter values are weighted almost entirely to-
wards random forest which is expected considering the prediction performance
in terms of Accuracy and Kappa. The resulting classifier from the ensemble
method will essentially be the same as random forest. The use of the ensemble
method is therefore impractical since it will add a lot to time consumption but
nothing to performance. However, it is a good example of how one does not
loose any performance when using the ensemble method even though it might
take longer time.

An inspection of the time consumption of all statistical models shows that the
random forest model, although the most precise, is the one that consumes the
most time. However, when the difference in performance is of this extent, a time
analysis might become redundant unless the running times are of extreme sizes.
We can take a note of the other models where neural networks and KNN per-
forms decently but the measures show dominating advantage for random forest
in this case. The complexity of this data (in comparison to other sets) seems
to only be captured by the random forest whereas it makes the other models
more crude. This palpable difference is noteworthy and somewhat suspicious. It
might be instructive to investigate the structure of this data set more carefully
to exclude any skewness in the data.

Hellinger’s distance (Figure 4.4) changes very little and is stable for all values
on the number of steps and it does not seem to matter which value we choose.
This might stem from the fact that we have many features in the data set and
the difference in probability distributions from different values on the response
variable is small. It shows, however, a distinction between the classifiers where
the random forest is giving the shortest distance by a large margin. The dis-
tances agrees well with the Kappa measure and the naive Bayesian classifier
gives the farthest distance 0.47 whereas the random forest gives roughly 0.38.
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5.3 Remarks on the Regression

In the previous data set, one classifier was vastly superior to the other but for
this regression, the case seem to be the opposite. An investigation of Table 4.9
shows that the classifiers are giving very similar results. The differences in both
RMSE and MAD are only of magnitude 10−2. Considering that the regression
variable takes values between 1-10, this small difference does not affect the pre-
dictions in a significant way. When evaluating only the performance, any model
will do for this particular data. This is therefore a case where the consumption
of time becomes the decisive factor. Fitting a linear model is by far the fastest
way to produce new CSI output. The small inferiority in RMSE and mean
absolute deviation is negligible in contrast to the much smaller consumption of
time.

When can see that, on average, the prediction will deviate around 1.58 from
the true observed value. This is an accurate enough prediction to distinguish
satisfied consumers from the unsatisfied. If a response is predicted to be 9 then
we can be comfortably sure that the respondent is at least not unhappy with the
store. Same argument holds for predicted low values. The ensemble classifier
barely makes any difference in terms of the performance measures. However, it
does not consume a significant amount of additional time. It might be worth
resorting to the ensemble method.

The Hellinger’s distance shows a more fluctuating and unstable behaviour for
this data set which most likely depends on the fact that the prediction vari-
able is also discretized in order to give the outcomes distinct probabilities. The
classifiers result gives both similar and more varied distances depending on the
quantile values. The most stable behaviour seem to be between 0.2 and 0.3
where the KNN classifier gives the shortest distance and decision trees shows
more separated probability distributions. When the other measures indicate in-
distinguishable performance levels, the Hellinger’s distance can be an instructive
way to choose a preferred classifier.

5.4 Future Work

This project lays the groundwork for future investigation of data fusion for
consumer behavioural data. It took an automated approach for combining data
sets where several models are used but not individually deeply investigated. An-
other plausible approach is to select only one or two of the listed models and put
more emphasis on parameter estimation and model design. Significant features
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were selected, in an automated way, using an iterative random forest algorithm
but this result in a feature space which might be biased towards random forest
and decrease the prediction power of the other models. Using different feature
selection methods for different models can possibly give more instructive results.

Alternative ensemble methods can also be suggested where instead of minimizing
the cross-entropy, we minimize Hellinger’s distance. There are other measures
that can be considered for this.

A more sophisticated research can be done for the trade off between model
performance and time consumption where the goal is to find an optimization
strategy for the gain in model performance versus the loss in time duration.
This can be investigated in relation to delivery deadlines on client projects that
use fused consumer data in order to find a model that is most appropriate for a
specific delivery. This was only discussed on a speculative level in this thesis.
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