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Abstract

Modern mätteknologi tillåter att generera och lagra gigantiska mängder
data, varav en stor andel är redundanta och varav bara ett fåtal är an-
vändbara för ett givet problem. Områden där detta är vanligt är till
exempel inom genomik, proteomik och astronomi, där stora multi-
pla test ofta behöver utföras, med förväntan om endast några fåsig-
nifikanta effekter. Ett antal nya testprocedurer har utvecklats för att
testa dessa så-kallade svaga och glesa effekter i storskalig statistisk in-
ferens. Den mest populära av dessa är troligen Higher Criticism, HC
(se Donoho och Jin (2004)). En ny klass av goodness-of-fit-testvariabel
döpt CsCsHM har nyligen blivit härledd (se Stepanova och Pavlenko
(2017)) för samma typ av multipla testscenarion och har bevisat bättre
asymptotiska egenskaper än den traditionella HC-metoden.

Den här rapporten utforskar det empiriska beteendet för båda test-
metodikerna i närheten av detektionsgränsen, vilken är tröskeln för
detektion av glesa och svaga effekter. Den här teoretiska, skarpa gränsen
delar fasrymden, vilken är uppspänd av gleshets- och svaghetsparame-
trarna, i två delområden: det detektionsbara och det icke-detektionsbara
området. Testsvariablernas metodik tillämpas även för variabelselek-
tion för storskalig binär klassificering. Dessa tillämpas, förutom simu-
leringar, på riktig data. Resultaten pekar på att testvariablerna är jäm-
förbara i prestation.
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Abstract

High-throughput measurement technology allows to generate and store
huge amounts of features, of which very few can be useful for any
one single problem at hand. Examples include genomics, proteomics
and astronomy, where massive multiple testing often needs to be per-
formed, expecting a few significant effects and essentially a null back-
ground. A number of new test procedures have been developed for
detecting these, so-called sparse and weak effects, in large scale sta-
tistical inference. The most widely used is Higher Criticism, HC (see
e.g. Donoho and Jin (2004)). A new class of goodness-of-fit test statis-
tics, called CsCsHM, has recently been derived (see Stepanova and
Pavlenko (2017)) for the same type of multiple testing, it is shown to
achieve better asymptotic properties than the traditional HC approach.

This report empirically investigates the behavior of both test proce-
dures in the neighborhood of the detection boundary, i.e. the threshold
for the detectability of sparse and weak effects. This theoretical bound-
ary sharply separates the phase space, spanned by the sparsity and
weakness parameters, into two subregions: the region of detectabil-
ity and the region of undetectability. The statistics are also applied
and compared for both methodologies for features selection in high
dimensional binary classification problems. Besides the study of the
methods and simulations, applications of both methods on realistic
data are carried out. It is found that the statistics are comparable in
performance accuracy.
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Chapter 1

Introduction

As storage grows cheaper and data exponentially bigger, fast com-
putational methods are needed to keep up. When acquiring data it
is, with the availability of large storage and modern high throughput
measurement technology, easy to measure a large number of variables
without necessarily expecting a signal in any but a few of them. This
phenomenon is sometimes called data glut and gives rise to a new kind
of problem of massive multiple testing for significances against a null
background. For some data types, such as microarrays of DNA or
proteins, which are naturally huge in dimension, sometimes having as
many as ∼ 106 entries, this is an essential part of the analysis.

When testing multiple hypotheses, i.e that we have a non-zero sig-
nal in any of the variables, we need to take into consideration the pos-
sibility that one or several of the variables are significant as by chance,
and not by merit. John Tukey suggested a testing method on a meta
level or a higher level, which he called Higher Criticism (HC) to account
for this phenomenon. Its purpose was to test the overall body of tests
for a fixed significance. This idea was the basis for the HC type statistic
proposed by Donoho and Jin in 2004 [1].

HC has since evolved and today there exists many different adap-
tations for various applications, two of these applications are signal
detection [1] [2] and feature selection for classification [3] [4] [5]. See
the symposium by Donoho and Jin for a comprehensive overview [6].
The HC framework has proved especially useful for very large data,
because of its cheap computational properties, light overhead and sta-
tistical interpretability. It is a non-parametric method so it requires
little to no tuning.
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2 CHAPTER 1. INTRODUCTION

However there is a known problem with the asymptotics of HC,
where the test statistic goes to infinity in probability as the sample
size goes to infinity under H0. To amend this problem Stepanova and
Pavlenko used results from studies of empirical weighted processes
to suggest a new statistic which has better asymptotical properties,
see [2]. This new statistic is called after the mathematicians Csörgos,
Csörgos, Horváth and Mason, abbreviated CsCsHM.

1.1 Problem statement

In this report we aim to answer how CsCsHM behaves for finite sam-
ple size in comparison to HC. This is done in a way inspired by Blomberg
[7], with the the primary tool being heat maps of an empirical error
measure over the phase space spanned by the sparsity and weakness
parameters.

Two scenarios are considered: signal detection and variable selec-
tion for binary classification. The second is in some way an extension
of the former, for which CsCsHM is adapted. Besides simulations, ap-
plications of both HC and CsCsHM on realistic data are performed for
variable selection for classification.

1.2 Outline

This report consists of three main parts, the chapter 2: Background
where the theoretical justifications for the work is presented alongside
some orienting results on related topics. After this starting point, in
the chapter 3: Numerical study the simulations and experiments per-
formed are presented with methods and results. Finally the results are
discussed and some conclusions are drawn in chapter 4: Discussion.



Chapter 2

Background

In this section an introduction to the theoretical results and definitions
underlying the experiments are presented. For a more thorough back-
ground, see the cited sources, especially the works by Donoho and Jin.

2.1 Higher criticism in signal detection

Signal detection is the task of finding whether there exists a signal
among the noise in a dataset. This can be formalized as a hypothesis
testing scenario where the null hypothesis H0 is that there is no signal,
so the distribution consists of only noise. The alternative hypothesis
H1 is that a small fraction of the signals come from another separate
distribution.

2.1.1 A general framework for signal detection

In the introduction it was mentioned that HC is used in scenarios
where we have weak and sparse signals. This is formalized as the
rare and weak (RW) framework which is based on two hypotheses.

The first hypothesis is of effect sparsity. It states that only a few of
the observed signals are expected to differ from a global null hypothe-
sis that everything is noise, meaning that the true signals are rare. The
second hypothesis is of effect weakness, and states that the signals are
hard to detect since they are weak.

Together these two hypotheses give us the challenging situation of
having only a few informative signals among many non-informative,
and these signals are hard to distinguish from each other.

3



4 CHAPTER 2. BACKGROUND

This framework can be incorporated into a mixture model of two
distributions F and G, where the former is the non-informative, and
the latter is the informative distribution. This can be written as

X ∼ (1− ε)F + εG, (2.1)

meaning that a vector X = (X1, . . . , Xn) has each component indepen-
dently and identically distributed drawn from one of the two distribu-
tions. The number of components of the feature vector, n, is large. The
epsilon denotes the fraction of the components which are informative
ε ∈ (0, 1), and is according to the sparsity hypothesis small.

For our purposes we will look at a mixture of the same type of dis-
tribution, where G has a slightly shifted mean but the same variance.
Using the notation from 2.1 and integrating the mixture model into the
hypothesis testing of signal detection, it can be written as

H0 : Xi ∼ F, (2.2)

H
(n)
1 : Xi ∼ (1− ε)F + εG. (2.3)

By specifying the distributions of F and G as normal distributions, we
arrive at the n individual tests,

H0,i : Xi ∼ N (0, 1), (2.4)
H1,i : Xi ∼ N (µ0, 1), µ0 > 0. (2.5)

Here the null hypothesis H0 is that there are no signals among all the
signals, so the intersection of H0,1 ∩H0,2 ∩ · · · ∩H0,n. The alternative is
that there are signals, so that some H1,i is true. We write this as

H0 : Xi ∼ N (0, 1), (2.6)

H
(n)
1 : Xi ∼ (1− ε)N (0, 1) + εN (µ0, 1), (2.7)

where µ0 is a small shift in mean and ε is as above. Further we as-
sume that the signals are independently and identically distributed,
and share a common amplitude and variance. In this framework,
which we call RW (ε, µ0) we can test the null hypothesis, that the ob-
servations only consist of noise.
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The phase space of β and r

A natural way to investigate the results of signal detection is to look
at the borderland where the signals are so weak or sparse that it be-
comes nearly impossible to separate signal from noise. However the
parametrization of RW (ε, µ0) makes for awkward values in the area
close to where detection is impossible. Introducing the sparsity pa-
rameter β and strength parameter r in the following way allows for a
more handy phase space on the domain (0, 1)× (0, 1).

The sparsity parameter β is defined by

ε = n−β. (2.8)

This parameter leads to a natural partition of a dense region where
0 < β ≤ 0.5 and a sparse region where 0.5 < β < 1. In these two
regions the strength parameter is chosen differently, since different
growth rates are interesting for the two paradigms. The strength pa-
rameter r is defined by

µ0 =

{
n−r 0 < β ≤ 0.5, 0 < r < 0.5,√

2r log(n) 0.5 < β < 1, 0 < r < 1.
(2.9)

This gives us a region of undefined quadratical space in the dense
region 0 < β < 0.5 where 0.5 < r < 1, where the signals are too weak
with this parametrization to be interesting. See Figure 2.1 below for a
visualization of the different areas.
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Figure 2.1: The phase diagram for signal detection with the detection
boundary for the dense and sparse areas. Blue denotes the area of
detectability, and red the area of non-detectability.

The detection boundary

In the phase space spanned by these two parameters a theoretical limit
called the detection boundary, deduced by Ingester [8], separates the
space into two regions: a region of undetectability and a region of
detectability. Detection is impossible below and possible above this
threshold, why the areas are sometimes called the regions of failure
and success respectively.

For the normal mixture case the detection boundary has been proven
to be
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ρ∗(β) =


1− β 0 < β ≤ 0.5,

β − 0.5 0.5 < β < 0.75,

1− (1−
√
β)2 0.75 < β < 1.

(2.10)

Detection is thus possible wherever this boundary is exceeded by r, i.e
r > ρ∗(β), see [1].

2.1.2 Higher criticism

Donoho and Jin suggested in 2004 a procedure called "Higher Criti-
cism", or HC, for testing in the RW -scenario of normal distributions
[1]. Inspired by and named after John Tukey’s ideas of a higher-order
testing, the motivation for the proposed statistic was to compare the
expected number of significant tests to the actual number. Instead of
looking at individual tests’ significance, the significance of the overall
body of tests is used, making it a second-order or higher type of testing.

In Tukey’s proposed method, one decides upon a significance level,
say α = 0.05, and the statistic is then formed as

HCn,0.05 =
√
n

(Fraction significant at 5%− 0.05)√
0.05× 0.95

. (2.11)

Donoho and Jin generalized this to include a wider range of signif-
icances, over all levels with a selected upper bound α0, letting their
HC-statistic become

HCn,α =
√
n

(Fraction significant at α− α)√
α× (1− α)

. (2.12)

If the body of tests is significant, then this statistic is expected to be
large for some α, and if it is not, then it is expected to be small for all
α:s. Thus the maximum value over all ranges of α was chosen as the
test statistic for the significance of the body of tests:

HC∗n = max
0<α<α0

{
HCn,α

}
. (2.13)

This test statistic is then compared to a critical value, and if this value
is exceeded the null hypothesis is rejected and a signal is considered
detected.
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Under the assumptions detailed in the previous section 2.1.1, a test-
ing procedure for signal detection in the case of a mixture of Gaussians
was suggested as follows. For every datapoint xi in a vector X a p-
value πi is calculated as

P (N (0, 1) ≥ xi) = 1− Φ(xi) = πi, (2.14)

where Φ is the cumulative density function of the standardised nor-
mal distribution. These values are then sorted in ascending order,
π(1), . . . , π(p), and are used to define an objective function and a test
variable as

HCn,i =
√
n

i/n− π(i)√
π(i)(1− π(i))

, i = 1, . . . , n, (2.15)

HC∗n = max
0<i<α0n

{HCn,i}. (2.16)

The null hypothesis can then be rejected if the test variable HC∗n ex-
ceeds a critical value. This raw form of HC-statistic is referred to as
"Orthodox higher criticism" by Donoho and Jin, and several amend-
ments to its heavy tails have been proposed, see below. In Figure 2.2
the results of this procedure has been visualized for simulated data.

Figure 2.2: The ordered z-scores, p-values and corresponding HC ob-
jective function for simulated data. The red line indicates the test vari-
able, and the z-score giving rise to it.
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Two attractive properties of this method is firstly that it does not
require any information about the parameters ε or µ0 in contrast to
other approaches such as likelihood-ratio tests. This is dubbed opti-
mal adaptivity. Secondly, the testing is performed at a moderate cost,
O(n log n).

Properties of higher criticism

To better understand the objective function we can see it as a compar-
ison of the expected fraction of observed significances under the null
hypothesis to the actual fraction of observed significances. The nomi-
nator thus captures the difference between this expected behaviour of
the p-values and their actual behaviour, and is similar to the Kolmogorov-
Smirnov (KS) statistic.

A KS test variable Kn over a continuous variable x ∈ R is formed
as

Kn :=
√
n sup

x
|Fn(x)− F (x)|, (2.17)

where F (x) is the theoretical cumulative density function in x, and Fn
is the empirical distribution function (EDF) defined as

Fn(x) =
1

n

n∑
i=1

1{Xi < x}. (2.18)

Closely related is the goodness-of-fit measure suggested by Anderson
and Darling [9] which utilizes a similar structure, but squared instead
of absolute valued and with a normalizing function ψ(x),

ADn,ψ = n

∫ ∞
−∞

(Fn(x)− F (x))2ψ(F (x))f(x)dx. (2.19)

Here the ψ(x) is introduced as a type of normalizing function, and
f(x) is the probability density function in x. Under the null hypoth-
esis we have that nFn ∼ Bin(n, F (x)), so the variance is known to be
V ar(Fn(x)) = 1

n
F (x)(1−F (x)). With this as normalizing function, and

using an L∞ norm we arrive at the HC statistic with α0 = 1. For details
see [10]. HC is thus rooted in similar statistics and not an isolated idea.

Donoho and Jin suggests two different normalizations for HC of
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this form,

HC2004 = max
{1<i<α0n}

√
n

i/n− π(i)√
π(i)(1− π(i))

, (2.20)

HC2008 = max
{1<i<α0n}

√
n
i/n− π(i)√
i
n
(1− i

n
)
. (2.21)

For an approach from the goodness-of-fit angle, see [11] where several
different normalizations are considered and analyzed.

Under the global null the expected distribution of the p-values is
uniform, so we expect to see Un(u) = 1

n

∑n
i=1 1{Ui < u}, where Ui ∼

U(0, 1) being iid random variables, as the EDF. For a sequence of iid
random variables X1, X2, . . . Xn with a continuous cumulative distri-
bution function F on R the EDF can then be approximated as Fn(i) =

i/n for the i:th p-value, according to the assumption that the p-values
are uniformly distributed.

It has been noticed that convergence of test statistics on this form
HC(u) =

√
n(Un(u) − u)/

√
u(1− u) depend on their behaviour close

to one and zero. Therefore a practical modification is to truncate the
lower interval over which the u:s are taken, for example (1/n, α0). This
gives rise to a new test variable

HC+ = max
1/n<u<α0

HCn(u), (2.22)

where the right hand side can be on the form of any of HC2008 or
HC2004. However this alleviates the problem for finite samples sizes
only, as it has been shown that

lim
n→∞

P (an sup
0<u<α0

√
n

(Un(u)− u)√
u(1− u)

− bn ≤ x) = e−
1
2
e−x

, (2.23)

where an =
√

2 log log n and bn = 2 log log n+1/2 log log log n−1/2 log(4π).
The right hand side is the Gumbel distribution. Similar results can be
shown for other truncated intervals, see [2]. This means that no matter
the chosen interval, the extreme value distribution is reached and the
statistic will tend to infinity for large enough n under H0.

This has motivated research to find other statistics either by a dif-
ferent normalization, like the CsCsHM-statistic [2], or by ordered statis-
tics such as the exact Berk-Jones statistic [10].
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Determining the critical value and choice of test statistic

To use HC as a test on significance level α, we need a critical value
h(n, α) that satisfies

P (HC∗n > h(n, α)|H0) = α. (2.24)

As usual in hypothesis testing, the test statistic is calculated and if it
exceeds this critical value, then the null is rejected in favour of the
alternative hypothesis. To find this threshold, Theorems 1.1 and 1.2
from Donoho and Jin [1] are used. The former theorem states that
under the null hypothesis H0 the following holds,

HC∗n√
2 log log n

p→ 1, n→∞. (2.25)

The second theorem states that for a sequence of problems indexed by
n where αn → 0 so slowly that h(n, αn) =

√
2 log log n(1 + o(1)), then a

HC-test that rejects the null H0 when HC∗n > h(n, αn), has full power
when every alternative H(n)

1 is defined so that r > ρ∗(β). This means
that the probability of rejecting the null hypothesis goes to one under
every H(n)

1 in the region of detectability as n goes to infinity,

P (Reject H0|H(n)
1 )→ 1, n→∞. (2.26)

The HC test procedure is consistent against all alternatives and has full
power in the region of detectability, if the threshold is taken for a fixed
α as

h(n, α) =
√

2 log log n(1 + o(1)), (2.27)

where the o(1) is a buffer since the results are asymptotical. Numerical
simulations show that this estimation can be of varying satisfaction.
However this means that HC has the property of optimal adaptivity.

The error rate of the HC procedure in the area of detectability is
not necessary zero for finite size samples. It has been shown that there
is no perfectly sharp boundary where it suddenly becomes impossible
to detect signals, but rather a blurry area of transition between success
and failure, see [7].

2.1.3 CsCsHM as an alternative testing procedure

A solution to the problem of the HC-statistic converging to an extreme
value distribution was proposed by Stepanova and Pavlenko in [2]. By
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using a normalization with roots in results for weighted empirical pro-
cesses, the test variable converges to a brownian bridge in distribution
as the sample size goes to infinity. The new statistic is named after the
mathematicians Csörgő, Csörgő, Horváth and Mason, or CsCsHM for
short.

The results are based on what are called Erdős-Feller-Kolmogorov-
Petrovski (EFKP) upper class functions of Brownian bridges, {B(u), 0 ≤
u ≤ 1}, of which an important one is

q(u) =
√
u(1− u) log log(1/(u(1− u))). (2.28)

This example comes from Khinchine’s local law of the iterated loga-
rithm which states that

lim sup
u→0

W (u)√
u log log(1/u)

a.s.
=
√

2, (2.29)

whereW (u) is a standard Wiener process starting at zero. Relating this
to the Brownian bridge, {B(u), 0 ≤ u ≤ 1} D

= {W (u)− uW (u), 0 ≤ u ≤
1}, we have that

lim sup
u→0

|B(u)|√
u(1− u) log log(1/(u(1− u))

a.s.
=
√

2. (2.30)

Using these observations as a starting point in the testing scenario H0 :

F = F0 versus the alternative H1 : F > F0, the following test statistic
is suggested

T+
n (q) = sup

0<F0(t)<1

√
n
Fn(t)− F0(t)

q(F0(t))
. (2.31)

As detailed in Proposition 3.1 in [2], it is shown that this statis-
tic with slightly different demands on F0(t) will converge in distri-
bution to a normalized Brownian bridge. If q is an EFKP upper-
class function of a Brownian bridge, then under H0 for any numbers
0 ≤ a < b ≤ 1 as n→∞,

sup
a<F0(t)<b

√
n

(Fn(t)− F0(t))

q(F0(t))

D→ sup
a<u<b

B(u)

q(u)
. (2.32)

This gives us a theoretical justification of truncating the interval over
which the statistic is formed, (0, α0), and the interpretation of this in-
terval as the body of significances which are becomes clearer.
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For this setting, a test of asymptotic level α that rejects H0 when

T+
n (q) ≥ t+α (q), (2.33)

where t+α (q) is chosen such that P (sup0<u<1B(u)/q(u) ≥ t+α (q)) = α.
Then for every alternative H i

n in the area of detectability, i.e r > ρ(β),
the test based on T+

n (q) has full power, meaning that

P (T+
n (q) ≥ t+α (q)|H i

n)→ 1, n→∞. (2.34)

This means that asymptotically, the CsCsHM testing procedure will
be able to perfectly separate cases where there are signals and where
there are not, as long as the strength of the signal exceeds the detec-
tion boundary. This means CsCsHM also has the property of optimal
adaptivity.

To choose the specific threshold, there are tabulations of the distri-
bution of the random variable sup0<u<1B(u)/q(u).

Two applied variants of this proposed statistic, with the same test-
ing procedure for signal detection as the one for HC described previ-
ously, are

CsCsHM1(π(i)) =

√
n(i/n− π(i))√

πi(1− π(i)) log(log( 1
π(i)(1−π(i))

))
1 ≤ i ≤ n,

(2.35)

CsCsHM2(π(i)) =

√
n(i/n− π(i))√

πi(1− π(i)) log(log( 1
π(i)(1−π(i))

))
, 1 ≤ i ≤ n,

(2.36)

where the difference lies in the square root in the denominator. When
finding the maximum of these two a restriction of size of the π(i):s,
similar to the one for HC, can be enforced. For a similar depiction of
the z-scores and p-values as previously shown for HC, see Figure 2.3
below.
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Figure 2.3: The ordered z-scores, p-values and corresponding
CsCsHM1 objective function for simulated data. The red line indicates
the test variable, and the z-score giving rise to it.

2.2 Variable selection with higher criticism

Two natural extensions of signal detection are to be able to identify
variables containing a signal, and to recover these signals. The focus is
still on the interesting rare and weak framework with the dimension-
ality being much larger than the number of samples, p >> n. Notice
that we revert to the notation of dimension as p and samples as n.

In binary classification we have n samples from a population. Each
one of these consists of p dimensions, where each individual sampleXi

comes from one of two classes, Yi ∈ {c1, c2}. To represent this a matrix
of size (n × p), called X = (X1, . . . , Xn)T is used, where every row
Xi = (xi1, . . . , xip) represents one sample. We will assume that each
row of X is independently and identically distributed. The correlation
matrix will be assumed to be identity.

The goal of classification is to learn a predictor from training data,
that determines the classes of test data as well as possible.

According to the hypotheses of sparsity and weakness only a small
number of the p variables will be informative, and among these the
contrast mean (the difference in mean between the classes) will be
small. Instead of using all the variables when performing classifica-
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tion, which could potentially be very computationally costly, variable
selection opts to find the ones that seem to impact the choice of class of
the samples the most. To select the variables, the HC framework can
be employed.

2.2.1 Phase diagram for classification

While the scenario is similar for the two cases of variable selection and
signal detection, the detection boundary will be slightly different for
classification. This is because the number of samples will influence
the boundary in the phase diagram spanned by (β, r). The effect is
depicted in Figure 2.4. The phase diagram will include several regions
where success is possible, probable or outright impossible.

Figure 2.4: The effect of θ on the detection boundary for classification.

The question is whether a trained classifier can successfully clas-
sify data given a set of parameters in the phase space. As mentioned
the amount of samples n comes into play, so a new parameter θ link-
ing dimensionality and sample size is defined as n = pθ. We assume
balanced data between classes n1 = n2 = pθ/2.

HC thresholding achieves the optimal detection boundary for clas-
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sification, which can be written for 0 < β < 1− θ as

ρ∗C(β) = (1− θ)ρ∗( β

1− θ
), (2.37)

as proved by Donoho and Jin [3]. Below this boundary all classifiers’
misclassification rate tends to 1/2, which is equivalent to guessing the
labels of the test data. For different growth rates of θ, see [5] for a
detailed exposition.

See Figure 2.5 below for a visualization of the different phase di-
agram regions, as proved by Ji and Jin in [12]. These regions come
from a measure of how many of the variables the procedure manages
to correctly recover. The lines in this figure in addition to the previous
detection boundary are r = β and the topmost is r = (1 +

√
1− β)2

which demarks the start of the "Exactly recoverable" region. It was re-
ported by Jin and Ke in [13] that Orthodox HC achieves these optimal
phase diagrams with hard thresholding.

Figure 2.5: Depiction of the regions of varying difficulty for signal re-
covery.
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2.2.2 Higher criticism thresholding

For HC thresholding (HCT), the labels will be defined as Y ∈ {−1, 1},
and the data modelled as coming from the following distribution,

Xi ∼ N (µi · Yi, In), (2.38)

where the covariance matrix In is identity, and µi is the contrast mean
between the two classes. We will also assume that the prior probability
for each class is equal.

A type of feature score similar to a t-statistic is formed, defined as

Zj =
1√
n

n∑
i=1

(Yi · xij), (2.39)

where the size of the score will be big in absolute terms if the con-
trast mean is big, and small otherwise. We obtain two-sided p-values
πi = P (|N (0, 1)| ≥ |Zi|) = 2Φ(|Zi|) for all the feature scores {Zj}pj=1.
Similarily to before, we sort these in ascending order, π(1), . . . , π(p) , and
form the HC objective function for the transformed scores:

HC(i, π(i)) =
√
p

i/p− π(i)√
i/p(1− i/p)

, 1 ≤ i ≤ p. (2.40)

This is the statistic we previously called HC2008 in Eq. 2.21 which was
proposed by Donoho and Jin in 2008 in [4]. This objective function can,
as discussed, be exchanged for another HC-type statistic with some
different normalization.

The maximizing index of the objective function is found,

îHC = arg max
1≤i≤p

HC(i, π(i)), π(i) ∈ (εs, 0.1) (2.41)

where we have introduced a restriction on the size of the p-values.
The value of the Z(j) (where we have an ordering in the same way as
for the S(i) values) corresponding to the index îHC is then taken as the
threshold value,

t̂HCp = |Z|(̂iHC). (2.42)

Once the threshold is decided, it is used in a threshold function that
chooses which variables to consider. A function of this kind is the hard
threshold function, defined as ηhardt (zi) = sgn(Zi)1{|Zi|>t}.



18 CHAPTER 2. BACKGROUND

One easy way to predict the classes when the interesting variables
have been selected, is by using a discriminant rule. Then the class of a
given sample is given by the sign of L(Xi), given by

L(Xi) =

p∑
j=1

wt(j)xij, (2.43)

where wt(j) = ηhardt (zj). This is a case of linear discriminant analy-
sis, LDA, see Hastie, Tibshirani, Friedman [14] and references therein.
There are other ways to treat the remaining selected variable but this
classifier will serve our purpose.

2.2.3 Variable selection using CsCsHM

Variable selection using the CsCsHM statistic is similar to the HCT
procedure. Some slight differences in notation are used: we now call
the class labels Yi ∈ {0, 1}, and our decision rule will be formulated
differently. In this section we will call the objective function T and the
test statistic T+ for CsCsHM to declutter the notation.

Feature scores {Zi}pi=1 are formed as for HCT, but instead of a two-
sided p-value, a one-sided transformation is used,

Si = 1− Φ(Zi), (2.44)

where Φ(t) is as before the CDF of a standardised normal distribution.
These are then sorted in ascending order as S(1), . . . , S(p) and the ob-
jective function is taken to be either (2.35) or (2.36), so that we have
{T (S(j))}pj=1.

The maximizing argument of the objective function is then found,

S∗ = arg max
S(i)

T (S(i)), 1 ≤ i ≤ p, (2.45)

where the test statistic for CsCsHM would be T+ = T (S∗).
The selection of variables is then decided by the threshold function

wi that is zero or one for every variable. Taking the threshold as τ̂ =

|Z∗|, where Z∗ is the z-score that is used to create the transformed S∗,
every variable that exceeds this value is chosen as

wi = 1{|Zi| > τ̂}, 1 ≤ i ≤ p. (2.46)

This procedure of selecting variables with CsCsHM can be summed
up by:



CHAPTER 2. BACKGROUND 19

• create z-scores {Zi}pi=1,

• transform these into p-values Si = 1 − Φ(Zi) for 1 ≤ i ≤ p and
sort them into ascending order S(1), . . . , S(p)

• form the objective function T (S(i)), 1 ≤ i ≤ p,

• find the maximizing argument S∗ = arg maxT (S(i)), 1 ≤ i ≤ p

and take its corresponding z-score’s absolute value as the thresh-
old τ̂ = |Z∗|,

• select variables that exceed the threshold in absolute value, wi =

1{|Zi| > τ̂}.

The predicted class label of a test data point X0, with calculated
selected variables as in wi, is given by

Ψ(X0) = 1{
p∑

i=1:wi>0

(x0i −
1

2
(µ̃1i + µ̃2i))(µ̃1i − µ̃2i) ≤ 0)}, (2.47)

where µ̃ki is the estimated mean of class k for the i:th variable.

2.3 Extensions of higher criticism

There are a wide range of applications for both signal detection and
binary classification in the rare and weak framework. Many are found
in the fields of genomics and proteomics, where the huge amount of
features can limit techniques with high computational costs.

As mentioned previously, the idea of HC is very flexible and has
been applied successfully to many different areas. Some extensions
that I neglect to address in this report are the big body of work on
correlated signals, including innovated HC, and the work on non-
gaussian mixtures.

Higher criticism for heterogenous and heteroscedastic mixtures

The HC framework described in this chapter is grounded on the un-
derlying assumption that the informative signals have the same vari-
ance, σ = 1. This could be the case, but it is also likely that the signals
will add some type of variance to the table. A formal investigation by
Cai and Jin [15] derives the optimal detection boundary for this model.
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The model is defined by

H0 : Xi ∼ N(0, 1), (2.48)

H
(n)
1 : Xi ∼ (1− ε)N(0, 1) + εN(A, σ2), 1 ≤ i ≤ n, (2.49)

where A and σ are unknown, and all components are assumed iid.
With the same type of parametrization as for the homogenous case (A
is the same as µ0), the detection boundary was derived for the sparse
case to be,

ρ∗(β|σ) =

{
(2− σ2)(β − 1/2), 1/2 < β ≤ 1− σ2/4,

(1− σ
√

1− β)2, 1− σ2/4 < β ≤ 1,
0 < σ <

√
2,

(2.50)

and for slightly larger σ,

ρ∗(β|σ) =

{
0, 1/2 < β ≤ 1− 1/σ2,

(1− σ
√

1− β)2, 1− 1/σ2 < β ≤ 1,
σ ≥
√

2. (2.51)

This means that the higher the variance of the signals are, the lower
the detection boundary is "pushed" into the bottom right of the phase
diagram.

Cai and Jin also show that the HC-type testing has full power above
the detection boundary and keeps the property of optimal adaptivity
for the critical value τ =

√
2(1 + δ) log log n when the heteroscedastic

term is introduced. They suggest using an empirical threshold control-
ling for the Type I errors because of the slow asymptotics of the double
log term.

Higher criticism for χ2-mixtures

HC has also been applied to mixtures of χ2-distributions. One possible
such application suggested by Donoho and Jin [1] is covert operations,
where the degrees of freedom would be d = 2, corresponding to the
two parts of the communication.

The χ2-distribution is also useful when looking at gene-expression
data for example, where the genes are expected to be dependent in
some type of "blocks", but that these in turn are independent of each
other, see Pavlenko et al [16].
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This gives us the hypotheses

H0 : X ∼ χ2
d(0), (2.52)

H1 : X ∼ (1− ε)χ2
d(0) + εχ2

d(ω0), (2.53)

where ω0 is the shift and d are the degrees of freedom. Here we assume
that each block is independent of each other, have the same size p0 and
informative variables share a common amplitude ω2

0 .
Donho and Jin derived that the detection boundary is the same as

in the normal case, see [1], with a region of undetectability underneath
the detection boundary and a region of detectability above. HC keeps
its property of optimal adaptivity for this scenario.

GWAS and genetic applications

In a genome-wide association study, GWAS, a big set of gene expres-
sions (or single nucleotide polymorphisms, SNP) for different individ-
uals are studied. The hypothesis is that the expression levels are asso-
ciated with a trait that is often tied to a disease. This way, signal de-
tection can be used to tie genetic factors to diseases, or detect known
effects. Classification could possibly be used in preemptive diagnosis
of diseases for which the genetic expression is known. The data is col-
lected in microarrays, and these typically have a very large p, possibly
in the millions. For a more detailed account of signal detection and
variable selection in a genetic setting, see the article by Wu et al [17]
and references therein.

Two microarray datasets that have been successfully used for dif-
ferentiating patients with cancer and without cancer for colon cancer,
prostate cancer and leukemia have been described by Alon et al [18]
and Golub et al [19] respectively. Both Donoho and Jin [4] as well
as Dettling [20] have applied various techniques for classification on
these data sets.
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Numerical study

In this section the numerical studies performed are presented. The im-
plementations were made using the numpy-library for python. For
the phase diagram simulations the mpi4py-directive was used to par-
allelize the computations. These simulations were performed on re-
sources provided by the Swedish National Infrastructure for Comput-
ing (SNIC) at Tegner PDC.

The results of the simulations of the phase diagrams for signal de-
tection are presented in Section 3.1.2, while the results for classification
of cancer data as well as phase diagrams are found in Section 3.2.2.

3.1 Signal detection

For signal detection we want to investigate how the CsCsHM-statistic
performs in comparison to HC.

3.1.1 Methods

The most interesting area for signal detection is where the task is dif-
ficult, but possible, therefore making the phase diagram close to the
detection boundary an ideal place for numerical studies. To investi-
gate the empirical finite size behaviour of the procedures for different
test statistics, simulations were conducted in the region spanned by
(β, r).

22
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Defining an error measure

For the signal detection situation, we need to define an error measure
in order to evaluate the empirical properties of the methods at certain
points (β, r) in the phase space. We define this error in the same man-
ner as Blomberg did in [7],

Êrr =
#H0falsely rejected + #H1falsely rejected

#simulations
. (3.1)

This error is calculated by simulating equally many cases where
one of H0 or H1 is true, and noting how many times the correct hy-
pothesis is rejected.

Simulations of H0 and H1

For pseudocode of how Êrr is calculated for a (β, r) see Algorithm 1
below. Basically m simulations are performed, half of which the null
is true and half of which the alternative is true. The test statistic (ei-
ther HC or CsCsHMi) is calculated for these data and then the error
is the sum of all Type I (false positive) and Type II (false negative)
errors. Since the threshold is taken from asymptotic theory we allow
ourselves a tuning parameter δ ∈ (0, 1) which slightly shifts the thresh-
old to minimize the error.

Result: Êrr for one pair of (β, r)

for i = 1→ m/2 do
Simulate data where H0 is true.
Save T iH0

= test statistic
end
for i = 1→ m/2 do

Simulate data where H1 is true.
Save T iH1

= test statistic
end
Êrr =

∑m/2
i=1 1(T iH0

> τ + δ) + 1(T iH1
≤ τ + δ)

Algorithm 1: Algorithm for heat map simulations. τ is a critical value
and δ is chosen such that it minimizes the error.

The calculation of the statistics is done using the built-in algebra of
the numpy library. Since the iterations in this algorithm are completely
independent of each other, it is easily parallelized. Using the mpi4py
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directive, the code is executed on parallel processes and then the result
for each map-coordinate (β, r) was averaged from the results from all
runs. We then expect the error for each coordinate to converge to some
specific value depending on the location in the phase space.

3.1.2 Results

The behaviour of the finite size samples are characterized by the heat
maps created using Algorithm 1 described above, making them a good
starting point.

In Figure 3.1 the dense areas of the phase space are visualized for
the HC and CsCsHM statistic respectively. We see that there they are
quite similar with comparable errors. HC seems to be more certain
once we move away from the detection boundary, but the CsCsHM
performs a tiny sliver better close to the boundary.

Figure 3.1: Empirical heat map of Êrr in dense region of the phase
space for CsCsHM1 to the left and HC to the right. The grid size is
(100 × 100) and n = 104. As usual the x-axis is spanned by β and the
y-axis by r.
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Figure 3.2: Empirical heat map of Êrr in sparse region of the phase
space for CsCsHM1 to the left and HC to the right. The grid size is
(100 × 100) and n = 104. As usual the x-axis is spanned by β and the
y-axis by r. Here α0 = 0.1 for CsCsHM and α0 = 0.5 for HC.

Moving on to the sparse heat maps, Figure 3.2, we see that the two
statistics are comparable here as well. Both seem to perform well once
it has some distance to the detection boundary. The HC statistic seems
to be better at weaker signals around β ∈ (0.5, 0.7) but CsCsHM is
better for larger β:s. This phenomenon remains unexplained. What
was noticed when experimenting was that the choice of α0 affected
the error rates, especially for CsCsHM, with higher α0:s giving much
worse results. HC was more resistant to this behaviour.

To explore the error we look at the test statistics’ values under H0

and H1. In Figure 3.4 we see the behaviour of the HC test variables,
and in Figure 3.3 for CsCsHM. For the latter we have removed the thin
but long upper tail of the alternative hypothesis to make the visualiza-
tion more clear. Under H0 it seems that CsCsHM has a heavy upper
tail, which makes it difficult to separate it from the alternative’s left
tail, which we can see in the bottom picture of the two figures. HC has
lighter left tail and is therefore more separable for when H1 or H0 are
true.
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Figure 3.3: Histograms of the CsCsHM1 test statistic for simulated
data. The orange bins correspond to when the alternative H1 is true
and the blue bins when H0 is true. The parameters in the phase space
are: top left (β = 0.55, r = 0.9), top right (β = 0.9, r = 0.3) and bottom
(β = 0.55, r = 0.3).
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Figure 3.4: Histograms of the HC test statistic for simulated data. The
orange bins correspond to when the alternative H1 is true and the blue
bins when H0 is true. The parameters in the phase space are: top left
(β = 0.55, r = 0.9), top right (β = 0.9, r = 0.3) and bottom (β =

0.55, r = 0.3).

3.2 Classification

For classification we want to investigate CsCsHM thresholding through-
out the phase space. In addition we want to investigate the perfor-
mance on some cancer data sets in comparison to HCT.
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3.2.1 Methods

To study the classification we will need an error measure to be able to
look at the finite sample size behaviour of the CsCsHM thresholding
procedure. To investigate the cancer data sets we need a procedure
that allows us to use the framework without violating our assump-
tions too much.

Error measure for the phase diagram

For the classification situation we want to measure the capability of
the classifier to correctly separate the two classes by selecting the in-
teresting variables. A natural way to measure this possibility is to see
how well it performs on a test data set. The error is thus taken as the
misclassification rate on a set of data not used in training,

Êrr =
#falsely classified points

#total points
. (3.2)

With this error, heat maps spanning over the phase space were plot-
ted with the intention to show how the boundary changes close to the
theoretical detection boundary. To do this we generate training and
test data of equal sizes with balanced distribution over classes, train
our classifiers on the training data and finally we apply them on the
test data. The color in the heat map is scaled after the error.

Procedure for the cancer data sets

In order to assess the classification procedures, they were tested on
some real data. The data sets chosen have been explored with various
techniques, where there are reported error rates for both simple and
complex classification methods.

Two microarray datasets that have been successfully used for dif-
ferentiating patients with cancer and without cancer have been de-
scribed by Alon et al [18] and Golub et al [19]. The first is for colon
cancer and the second for leukemia. Both Donoho and Jin [4] as well
as Dettling [20] have applied various techniques for classification on
these data sets. The colon cancer data set consists of n = 62 samples
distributed over the classes as n1 = 40 and n2 = 22 with dimension-
ality p = 2000, and the leukemia data set consists of n = 73 samples
distributed as n1 = 48 and n2 = 25 with dimensionality p = 7129.
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It is of course difficult to decide the sparsity β or signal strength
r for the data sets, but the setting is certainly p >> n for these data
sets. and the hypothesis is that only a few of the genes’ expressions
correlate with the disease.

In order to compare the CsCsHM to the HCT approach, both were
applied to the data sets. The testing procedure was kept simple, form-
ing z-scores, using the HC or CsCsHM procedure to find a threshold
value to select interesting variables from these, and then finally apply-
ing this classifier on a test set not used in training.

Calling the set of all data as the union of the set of data in each
class, C = C1 ∪ C2, and denoting the size of a set A as |A|, the z-scores
are formed as

z∗j =
1√

1/|C1|+ 1/|C2|
x̄j1 − x̄j2

sj
, 1 ≤ j ≤ p, (3.3)

where the standard deviation sj is estimated by

s2j =
1

|C| − 2

(∑
i∈C1

(xij − x̄j1)2 +
∑
i∈C2

(xij − x̄j2)2
)

and the class mean for class k as x̄ji = 1
|Ck|
∑

j∈Ck
xij . Since we do not

know the underlying distribution of the gene expressions, we look at
the difference of the class means which we can expect to be approxi-
mately normally distributed.

These scores are then normalized,

Zj =
z∗j − z̄∗

std(z∗)
, 1 ≤ j ≤ p, (3.4)

where std(z∗) is the standard deviation of the z-scores, and z̄∗ is their
mean.

Using either the HC or CsCsHM procedures, the threshold value is
found from these scores. This value is used to choose variables, which
are in turn used to classify each sample in a test set. The misclassifica-
tion rate was then calculated. To calculate the mean misclassification
rate, a 10-fold cross-validation split of the data was used: the classifier
was trained on 9/10th of the data and tested on the remaining 1/10th.
The testing set was rotated so that all parts was used for training and
testing. This was done for three procedures, first HCT with the HC+

statistic as defined in equation 2.22 with the normalization as in HC2008
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2.21, then for the alternative CsCsHM thresholding procedure with the
two statistics CsCsHM1 and CsCsHM2 as found in 2.35 and 2.36.

3.2.2 Results

Heat maps

The heat map, see Figure 3.5, shows that the CsCsHM1 classifier has a
decent behaviour in the area just above the detection boundary. As has
been noticed before for signal detection, there is no sharp boundary in
the case of classification either. The classifier has a "grey area" for finite
samples where classification is possible, but with a slightly elevated
error rate of roughly 0.25. This area is quite big when β > 0.5. We also
notice that the plot is quite non-smooth, despite the high number of
samples, meaning that the results have a high variance.

Figure 3.5: Empirical behaviour of finite sample size of CsCsHM1

thresholding near the detection boundary for classification. Here
θ = 0.4, α0 = 0.1, the grid size is (100× 100) and n = 103.

Cancer data classification

In Table 3.1 and Table 3.2 the results for the classification of the cancer
data sets are presented. As we can see, the statistics behave differently.
Although the error is comparable between all three classification pro-
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cedures, the number of selected variables varies widely. The CsCsHM2

statistic consistently chooses a lot more variables, while both HC and
CsCsHM1 choose fewer depending on the data set.

When looking at the objective function for all the feature scores (in
a way similar to what is done in [6]) for the cancer data, we notice that
they have peculiar s-shapes, see Figure 3.6. For both data sets we see
that the choice of α0 will heavily impact the test statistic. This is not a
desirable behaviour since we want the method to be non-parametric.

Figure 3.6: CsCsHM1 objective function for every feature score for the
two cancer data sets, leukemia to the left, and colon cancer to the right.
The x-axis is taken as the fraction of the features (to simplify the inter-
pretability of the effect of α0).

Table 3.1: Mean misclassification rates and mean number of variables
selected with standard deviation for the leukemia data set, with a size
of (73× 7129), for different procedures.

Method Misclassification rate N. variables selected
HC+ 0.024 (±0.00771) 151.4 (±4.35)

CsCsHM1 0.026 (±0.00284) 68.4 (±3.09)

CsCsHM2 0.0246 (±0.00437) 1275.3 (±661.37)
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Table 3.2: Mean misclassification rates and mean number of variables
selected with standard deviation for the colon cancer data set, with a
size of (62× 2000), for different procedures.

Method Misclassification rate N. variables selected
HC+ 0.1058 (±0.01024) 35.8 (±4.78)

CsCsHM1 0.1075 (±0.01176) 87.6 (±12.30)

CsCsHM2 0.1075 (±0.01115) 137.1 (±22.83)

Investigating the effect of α0

In an attempt to try to understand how many variables are chosen re-
lates to the position in the phase space, simulations for different points
were made. In Figure 3.7 we let r vary over ten points for a fixed β and
observe the behaviour of the error as well as the number of variables
chosen. In Figure 3.8 we let β vary instead for a fixed r and observe the
results. What can be noted is that when truncating the upper part of
the objective functions with a small α0, CsCsHM chooses fewer vari-
ables. The error behaves roughly the same.

Looking at Figure 3.8 we can see that for HC the number of vari-
ables selected as β is small seems to be the same as the number of
informative signals. This number decreases as the sparsity increases,
only to increase again when the sparsity is so high that the signals are
very few. The same behaviour in reverse can be observed in Figure
3.7, where we start with very weak signals so the signals cannot be
differentiated from the noise. For both images we notice that CsCsHM
performs consistently worse than HC in mean error.
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Figure 3.7: Mean error and mean number of selected variables for
CsCsHM1 thresholding and HCT for a fixed β = 0.5 on p = 103 di-
mensions and varying r for θ = 0.3. To the left: αCsCsHM0 = 0.1 and
αHC0 = 0.5 to the right αCsCsHM0 = αHC0 = 1

Figure 3.8: Mean error and mean number of selected variables for
CsCsHM1 thresholding and HCT for a fixed r = 0.8 on p = 103 di-
mensions and varying β for θ = 0.3. To the left: αCsCsHM0 = 0.1 and
αHC0 = 0.5 to the right αCsCsHM0 = αHC0 = 1.
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Discussion

In this section we attempt to explain the results and put them in a
proper context. Some suggestions for future work are also proposed.

Remarks and conclusions

The behaviour of the different statistics for finite sample sizes is key to
how useful they are in practice. These initial explorations done in this
report are a good starting point but it remains to do a more thorough
investigation where the connection of the statistics behaviour and the
parameter α0 is more precisely mapped out.

Heat maps of the empirical error show that the statistics are compa-
rable when it comes to signal detection. The impact of α0 was noted as
a big factor for the performance of the CsCsHM type statistics, which
puts them at a disadvantage for practical use. Moreover it seems that
for classification the HC type statistic manages to select the correct sig-
nals to a higher extent, giving the classifier a lower error. However,
CsCsHM has a similar error but slightly elevated, and chooses fewer
variables. To get a lightweight model with as few variables as possible,
one could argue that the easiest way is either using CsCsHM, or using
HC and choosing a subset of the selected variables.

Classification on real data sets is a very practical hands-on way of
comparing the classifiers, but the exact results are maybe not that inter-
esting. Since the data sets are special cases chosen because they have
been used before, there is nothing new brought to the table and the
results could be circumstantial. This part did contribute to the under-
standing the number of variables that are chosen by the statistics.

To sum up, the conclusion is that despite CsCsHM:s better asymp-

34
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totical properties, their performance are still in practice equal to slightly
worse than the HC type statistic for sample sizes up to 104.

Suggestions for future work

Future numerical studies could systematically investigate the CsCsHM
statistics behaviour for different α0:s on simulated data. The impact of
the sample size should also be more carefully investigated. For classi-
fication the number of correctly chosen variables from simulated data
could be taken as a more accurate and interesting measure of perfor-
mance than error on a test set. This would also lower the computa-
tional cost of the simulations.

In this report we have only considered the normal mixture case
with homoscedasticity, and this is only a special case. There are a
lot of interesting models including more challenging situations such
as non-gaussianity and heteroscedasticity. Since the CsCsHM statistic
was just recently proposed, there are not a lot of theoretical results in
these areas, but empirical investigations of finite size sample data for
HC and other statistics such as Berk-Jones would be interesting.
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