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Abstract

This report was carried out at Gleechi, a Swedish start-up company working
with implementing hand use in Virtual Reality. The thesis presents hand
models used to generate natural looking grasping motions. One model were
made for each of the thirty-three different grasp types in Feix’s The GRASP
Taxonomy.

Each model is based on functional principal components analysis which
was performed on data containing recorded joint angles of grasping motions
from real subjects. Prior to functional principal components analysis, dy-
namic time warping was performed on the recorded joint angles in order to
put them on the same length and make them suitable for statistical analysis.
The last step of the analysis was to project the data onto the functional
principal components and train Gaussian mixture models on the weights ob-
tained. New grasping motions could be generated by sampling weights from
the Gaussian mixture models and attaching them to the functional principal
components.

The generated grasps were in general satisfying, but all of the thirty-three
grasps were not distinguishable from each other. This was most likely caused
by the fact that each degree of freedom was modelled in isolation from each
other, so that no correlation between them was included in the model.





Modellering av Naturliga Handrörelser för
Greppanimationer

Johannes Jeppsson

Abstract

Denna rapport utfördes på Gleechi, ett svenskt start-up företag som job-
bar med att implementera handrörelser i Virtual Reality. Uppsatsen presen-
terar statistiska modeller för att generera handrörelser som utför olika typer
av grepp och som ser naturliga ut. En modell skapades för alla trettiotre
grepptyp i Feixs The GRASP Taxonomy.

Varje modell bygger på funktionell principalkomponentsanalys som utför-
des på data innehållande inspelade vinklar från fingerleder från personer som
utförde olika grepp på föremål. Innan funktional principalkomponentanalys
utfördes så genomfördes dynamic time warping på datan för att få de inspe-
lade greppen på samma längd och göra den lämplig för statistisk analys. Det
sista steget i analysen var att projicera ned datan på principalkomponenter-
na och träna Gaussian mixture models på vikterna som erhölls. Nya grepp
kunde då genereras genom att dra vikter från Gaussian mixture models och
skapa linjärkombinationer med de funktionella principalkomponenterna.

De genererade greppen var generellt sett tillfredställande, men alla tret-
tiotre grepptyper var inte särskiljbara från varandra. Detta berodde med
största sannolikhet på att varje frihetsgrad modellerades isolerat från de
andra så att ingen korrelation mellan dem var inkluderad i modellen.
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Chapter 1

Introduction

This degree project aims to use a data-driven approach to generate natural
looking hand motions in the process of reaching to grasp objects in the
context of Virtual Reality applications.

Realistic hand grasp animation is an important aspect for an immersive
Virtual Reality experience, as grasping objects is one of the most important
ways humans interact with the world. This report focuses on the generation
of the hand and finger motions in the process of grasping objects, but not
the process of establishing a realistic grip on the object. This degree project
was carried out at Gleechi; a Swedish start-up company producing software
for realistic hand interaction in real-time; http://www.gleechi.com.

The task of this project was to use a data-driven technique for generating
natural looking human hand motion in the context of grasping objects in
order to investigate if this could be a viable approach for future use.

1.1 Background

Humans are very good at perceiving details in hand gestures, e.g. Jörg et
al. found in [18] that hand and finger motion is important for conveying the
intended meaning of a scenario. Being able to produce accurate and realistic
hand motions is therefore important for increasing the feeling of presence in
using Virtual Reality.

Generating realistic hand motions in Virtual Reality is however a difficult
task. And there are several obstacles connected with generating accurate and
realistic hand movements.

1.1.1 High Degree of Freedom

The human hand itself is a very complex organ that consists of twenty-
seven bones with interlinking joints. Any mechanical model attempting to
represent the hand with its dynamic properties is bound to be complex.
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Animating hand motion is thus a very difficult task since there are a high
number of interdependent degrees of freedom to be controlled for.

The fact that the hand has many degrees of freedom must be taken into
account in the data collection process, i.e. the more dimensions that are
taken into account, the more data needs to be collected to account for the
extra dimensions.

1.1.2 Naturalness

Generating hand motions that look realistic to humans pose another demand
on the generation process. Movements that for some reason are perceived as
artificial will get in the way of the Virtual Reality experience. In continuous
use, it might also be necessary for movements performing a similar task to
exhibit some variation, in order to not look artificial. Naturalness is the
benchmark of generated motions, but it is also the hardest to pinpoint.

1.1.3 Data driven

There are hand models that use databases as starting points and search them
for similar motions that might be configured for the task at hand. However,
the aim of this thesis is to produce a model that can sample data without
using a database. This means that a probabilistic distribution that reflects
hand motions must be estimated.

1.1.4 Real-time generation

It is the goal of Gleechi to obtain a model that is able to sample new motions
in real-time. This puts an upper bound on how complicated the model can
be in terms of computer power. Since the task of this thesis is exploratory in
its nature, this aspect is not of immediate importance. But when choosing
a model it should be considered whether it is possible to make real-time
simulations eventually.

1.1.5 Non-linearity

Hand motions are intrinsically non-linear, and thus a model for generating
hand motions should preferably also be able to generate non-linear motions.

1.2 Related Work

There have been several different approaches on how to go about gener-
ating natural-looking hand motions in Virtual Reality. The most promi-
nent methods, which have been considered in this thesis, can be categorized
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into techniques based on principal component analysis (PCA), Gaussian pro-
cess latent variable machines (GPLVMs) and restricted Boltzmann machines
(RBMs) respectively.

1.2.1 Grasp taxonomies

An important aspect of analyzing grasping of objects has been the effort of
creating grasp taxonomies, such as the Cutkosky grasp taxonomy [2]. For
instance Feix et al. in has provided a list in [32] of thirty-three different
grasps, when only considering the hand and not the object shape and size.
Figure 1.1 below contains images of the thirty-three grasp types of the Feix
taxonomy. Taxonomies are considering the final hand posture when a grip is
established, but by that virtue they are also important for how reaching to
grasp motions differ. Taxonomies provide the foundation for differentiating
between grasp types.
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Figure 1.1: The thirty-three grasp types of the Feix grasp taxonomy.
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1.2.2 PCA based approaches

PCA based techniques arise mainly from the effort to tackle the many degrees
of freedoms in the hand.

In [3], Santello et al. explored the idea of lack of individuation in finger
movements. They asked five right-handed subjects to grasp each of fifty-
seven imaginary objects five times. They recorded the final posture of the
hand with fifteen degrees of freedom and then performed discriminant analy-
sis, regression analysis, and principal components analysis. They found that
the first two principal components accounted for more than eigthy percent
of the variance in hand shapes.

A follow up study on Santello et al. [3] was later performed by Dai et al.
[26]. They performed PCA and found that eighty-three percent of the vari-
ance was captured by the first three principal components. After this they
performed functional principal components analysis on the projected data
and found that the first two functional components accounted for about
ninety-five percent of variation in the grasping motion. The subjects per-
formed fifteen different grasps from the Cutkosky grasp taxonomy, and they
suggest four different groups of motion based on k-means-clustering.

Ciocarlie et al. [9] used the first two principal components for grasp
synthesis of four different hand models. In order to find a conforming grasp,
they formulated an energy function that described the distance of previously
selected contact points on the hand model to the object. The energy function
was then minimized using Simulated Annealing. As a feasibility test, they
took the grasp found by minimizing the energy function and use inverse
kinematics to find an arm position. If an arm position was found without
any collision, the configuration was chosen. Using the first two principal
components, the resulting grasp did not always conform to the surface of
the object. In those cases they closed each finger until it fully enclosed the
object.

Amor et al. [13] collected a wide range of possible hand shapes, on
which they then performed PCA to achieve low-dimensional grasp space. To
discriminate to hand positions that are anatomically feasible, they learnt
a Gaussian Mixture Model (GMM) on the PCA space. The number of
Gaussians used in the GMM was chosen using the Bayesian Information
Criterion. To synthesize new grasps, they stipulated a grasp metric based
on the distance of the sensors to the object, an estimate of the stability of
the grasp, and a penalty value. To find a suitable grasp they minimized
the metric using Dynamic Hill Climbing technique. The grasp found was
accepted if it also satisfied that the probability of the grasp was above a
certain threshold, according to the GMM.

Zhao et al. [27] divided a grasping hand motion into reaching, closing
and manipulating phases. They obtained grip-dependent probabilistic mo-
tion models for closing motion. Training data was labeled with the type of
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grasp used (e.g. pinch grasp) and the final database included motion cap-
ture data from hands grasping ten different objects using ten different grip
modes. To process the data, dynamic time warping was used to warp the
geometric and temporal training data respectively into comparable time se-
ries of equal length. FPCA was then applied to the warped time series to
obtain a low-dimensional, parametric representation for closing motion. Fur-
thermore, they learn a joint probability distribution to model the correlation
between the geometric and timing variations. The prior distributions were
modeled using a Gaussian mixture model. The parametric representation
and the joint probability distribution define a generative model for closing-
phase motion synthesis. Synthesizing new motion was done by sampling the
joint probability distribution and inserting the samples into the parametric
representation. For synthesizing the reaching motion motion, they searched
for a similar motion from the database and confined it to the first frame of
the closing motion using smoothing techniques.

In [31] Du et al. extended FPCA by scaling, a method they call SFPCA.
They applied FPCA on weighted data, where the weights were found such
that they minimized the error in Euclidean joint space.

1.2.3 RBMs

RBMs are a form of neural networks that have been used extensively in
modeling locomotion.

In [11] Taylor et al. introduced the Conditional Restricted Boltzmann
Machine (CRBM) to model different styles of human motion. The CRBM is
a two-layer neural network that extends the Restricted Boltzmann Machine
(RBM) by taking into consideration the temporal aspect of the data. This
is done by also taking as input the previous n configurations, making the
input have autoregressive connections. In their experiment they included the
previous three time steps. The model was then trained by a method called
contrastive divergence. The trained CRBM is a probability density model
of sequences, thus the CRBM can be used to synthesize new motions by
initializing with the first n time steps. Sampling from the joint distribution
was done by performing alternating Gibbs sampling. The resulting model
was able to model different styles of motion that were present in the training
data. To generate a motion of a specific style, the model was initialized with
the first n time steps of that style, e.g. jogging or walking.

In [17] Taylor and Hinton presented an extension to the CRBM, called the
Factored CRBM. The factored CRBM aims to improves the ability to blend
motion styles or to transition smoothly between them, and it also lowers the
computational load from O(N3

) to O(N2
). For purposes of comparison, they

also used a two-layer CRBM which successfully models ten different styles
of walking. The factored CRBM was also able to model the ten different
motion styles, as well as blending and transitioning between styles.
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In [19] Taylor et al. presented another extension to CRBM that in-
cludes latent style variables, which they call Implicit Mixture of CRBMs
(imCRBM). imCRBMs can be trained unsupervised, in which case the model
detects atomic motion primitives in the data.

Chiu and Marsella [20] made use of the property of stacking RBMs.
They introduced a hierarchical factored conditional Restricted Boltzmann
Machine (HFCRBM) which consisted of two layers. The first layer is a
restricted CRBM which extract patterns of the motion and the second layer
is an FCRBM. By this structure they are able to generate motion styles as
well as blending of styles with better performance than a single FCRBM.

In [21] Chiu and Marsella modified the HFCRBM by stacking an FCRBM
on top of a CRBM. The modified HFCRBM was used to generate a gesture
motion from speech.

1.2.4 GPLVMs

GPLVMs is a dimensionality reduction technique that generalizes PCA to
represent the data with Gaussian Processes, this provides for non-linear map-
ping from the latent space to the data space [5]. GPLVMs has been used to
model human poses in [6].

In [8] Wang et al. introduced Gaussian Process Dynamical Models (GPDMs),
which extend GPLVMs with an autoregressive component which allows to
model the temporal aspect. Wang et al. later used GPDMs with style-
specific factors to model human locomotion of different styles in [12] and
[14].

Chiu et al. generated gestures based on speech labels in [29] with the use
of GPDMs. In their approach, each point in the reduced space corresponds
to a motion frame in the observed space; to generate gestures, they sampled
a trajectory in the reduced space and mapped it back to the observed space.
In particular they interpolated trajectories to generate smooth transitions
between gestures connected to different speech labels.

1.3 Outline

In chapter two, the choice of model is presented, specifically in section 2.2 the
model for generating hand motions is described. In chapter three, the theo-
retical background for dynamic time warping, principal component analysis
and functional principal component analysis is presented. In chapter four,
the methodology of the analysis is discussed. In chapter five, the results of
the analysis are presented.
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Abbrevations

DoF Degree of freedom

DTW Dynamic time warping

FPCA Functional principal component analysis

FPCs Functional principal components

GMM Gaussian mixture model

LOOCV Leave-one-out cross-validation

PCA Principal component analysis

PCs Principal components
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Chapter 2

Model

In this chapter, the choice of using a model based on FPCA is argued for on
the basis of the literature study. Next, the general outline of the model is
presented.

2.1 Choice of model

The main reason a model based on GPLVMs was not chosen is that they only
provide a mapping from latent space to observed space, and no mapping in
the opposite direction. While this is what is desired in generation of grasps,
it is not suitable for classification purposes; i.e. given an observed grasp,
find the mapping to latent space.

CRBMs have the advantage that all DoFs come to use, so that no di-
mension reduction is needed. However, CRBMs studied in the literature
review are not deterministic in the sense that they are not guaranteed to
stay within the type they are initialized in. This makes CRBMs problematic
for generating grasps of specific types.

FPCA does not show the obstacles presented for GPLVMs or CRBMs
above which is why it is the chosen methods of this thesis.

With respect to the obstacles for generating hand motions presented in
the previous chapter, FPCA is a good candidate. First, FPCs are able to
describe non-linear motions. Second, only the FPCs are needed to be kept
in the computer memory, so real-time generation is most likely possible.
Third, it is a data driven approach which fits into the objectives of Gleechi.
Finally, in order to handle the high amount of DoFs, FPCA has been applied
individually to each DoF. This approach is obviously a simplification of the
hand motions since correlation between joint angles are not accounted for by
this approach.
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2.2 Description of model

In order to apply FPCA, the first step was to divide the data by grasp type,
and within each grasp type divide the data by DoF, so that FPCA could be
applied to each DoF separately. The second step was to get the data on the
same length; for this purpose DTW was applied to all grasps within a grasp
type. DTW resulted in two datasets; one containing the warped motions,
and the other containing the time warping functions.

Next, FPCA was applied to each DoF for each grasp type. Each DoF,
✓
i

(t), describes a one-dimensional angle in a finger joint, and the change over
time in the angle could thus be modeled by a linear combination of the mean
motion and the FPCs as

✓
i

(t) = p
i,0(t) + ↵

i,1pi,1(t) + · · ·+ ↵
i,k

p
i,k

(t) (2.1)
= p

T

i

(t)↵
i

, (2.2)

where p

i

(t) contains the FPCs and of which p
i,0(t) represents the mean

function.
Then FPCA was performed on the time warping functions, ⌧

i

(t), as well.
Temporal variations could be modeled similarly as

⌧
i

(t) = q
i,0(t) + �

i,1qi,1(t) + · · ·+ �
i,l

q
i,l

(t) (2.3)
= q

T

i

(t)�
i

, (2.4)

where q

i

(t) contains the FPCs and of which q
i,0(t) represents the mean

function.
In the analysis, two FPCs was used for joint angles and one FPC was

used for time warping functions, hence k was set to 2 and l was set to 1.
The end result was one model for each grasp type of Feix’s grasp tax-

onomy, thirty-three models in total. A parametric model for generating
motions for each grasp type was obtained by

⇥(t) =

0

B@
p

T

1

�
q

T

1 (t)�1

�
↵1

...
p

T

16

�
q

T

16(t)�16

�
↵16

1

CA , (2.5)

where variations of the grasp type were obtained by providing different
weights, ↵

i

and �

i

.
The last step of the model was to train GMMs to be able to estimate

the weights ↵

i

and �

i

. This was done by projecting the recorded grasps in
the data onto the FPCs and train the GMMs on the projected weights. One
GMM was trained for DoF.

For generating new grasps, estimate weights, ˆ

↵

i

and ˆ

�

i

, were sampled
from the GMMs and inserted into the parametric model 2.5.
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Chapter 3

Theory

In this section, the theory of DTW and FPCA, which are central to the
model, will be briefly explained.

3.1 Dynamic Time Warping for One-dimensional
Sequences

DTW [1, 24] is a technique for measuring similarity between two temporal se-
quences. The intuition is that the sequences are aligned by locally stretching
and shrinking until they are as similar as possible.

In its basic form, DTW takes two sequences, {x
i

}M
i=1 and {y

j

}N
j=1, and

finds a new set of indices {m
k

}L
k=1 and {n

k

}L
k=1 of same length L such that

LX

l=1

d(x
ml , ynl), (3.1)

is minimized for some distance function d(·, ·) (e.g. Euclidean distance).
The two sequences {x

mk}L
k=1 and {y

nk}L
k=1 are referred to as the warped se-

quences, and the indices {m
k

}L
k=1 and {n

k

}L
k=1 are referred to as the warping

paths.
The warping paths must satisfy the following conditions

1. 1  m
k

 M , 1  n
k

 N

2. m1 = n1 = 1 and m
L

= M , n
L

= N ,

3. (m
k+1 �m

k

, n
k+1 � n

k

) = (0, 1), (1, 0) or (1, 1).

The first condition assures that the warping paths are defined on the same
interval as the original sequences. The second condition assures that the
boundary conditions are honored, i.e. the warped sequences have the same
starting and ending point as the original sequences. The third and final
condition assures that at least one of the warping paths are increasing all
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the time in order to avoid that the warping paths result only in repeating
the indices that produce the smallest distance.

Let us reformulate DTW slightly to link it to the multivariate case. Let
x 2 RM and y 2 RN represent the sequences to align. Finding the warping
paths is equivalent to finding matrices W

x

2 RM⇥L and W

y

2 RN⇥L with
columns containing only zeros except for a single one such that the conditions
above are fulfilled and

d(xW
x

, yW

y

) (3.2)

is minimized.

3.2 Dynamic Time Warping for Multivariate Se-
quences

In the multivariate case, the multivariate sequences to be aligned can be
represented by matrices. Let us also allow for there to be N different se-
quences to align. For an informative approach to multivariate DTW [25] can
be consulted.

Let the original sequences be represented by a set of d-dimensional ma-
trices {X

i

}N
i=1, Xi

2 Rd⇥ni , where n
i

represents the length of matrix X

i

.
As in the one-dimensional case the objective is to find a set of matrices
{W

k

}N
k=1, with columns containing only zeros except for a single one such

that

NX

i=1

NX

j=1

d(X
i

W

i

, X

j

W

j

), (3.3)

is minimized. The warped sequences are represented by the set {X
k

W

k

}N
k=1

which consists of d-dimensional matrices of equal length L. The warping
paths are represented by the set {W

k

}N
k=1.

3.3 Principal Components Analysis

Principal components analysis (PCA) is a technique that converts a set of
observations into a set of linearly uncorrelated variables. PCA is commonly
used for dimensional reduction.

Given N observations of a d-dimensional variable represented in a matrix
X 2 RN⇥d, PCA finds the orthogonal basis in Rd, where each basis vector,
in descending order, explains as much variance as possible in the sampled
data X.

What PCA does in particular is to find the eigenvectors of the sample
covariance matrix 1

N

X

T

X (assuming that X has zero mean). The largest
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eigenvalue corresponds to the basis vector that explains the most variance
in the collected data. Thus choosing any subset of the eigenvectors corre-
sponding to the largest eigenvalues is going to span a subspace of Rd that
explains the most variance possible in X for that amount of basis vectors.

3.4 Functional Principal Components Analysis

Function principal component analysis (FPCA) is a generalization of PCA
in the Hilbert space L2(T ). Any of [34, 30, 28] can be consulted, where the
last gives a very good explanation of the more general case.

Let L2(T ) be a Hilbert space of square integrable functions with respect
to Lebesgue measure dt on an interval T = [a, b], a < b. The inner product
on L2(T ) is defined as

hf, gi =
Z

T

f(t)g(t)dt. (3.4)

Further, each element f 2 L2(T ) has a continuous mean function µ(t) =

E[f(t)], and a continuous covariance function K
f

(s, t) = Cov(f(s), f(t)).
For an arbitrary random variable X 2 L2(T ), define Z as

Z(t) = X(t)� µ(t). (3.5)
Since Z is square integrable, has zero mean, is defined over a closed and
bounded interval and has a continuous covariance function, the Karhunen-
Loève theorem implies that Z has the representation

Z(t) =
1X

r=1

⇠
r

�
r

(t), (3.6)

where {�
r

}1
r=1 is an orthonormal basis of L2(T ) and ⇠

r

= hZ,�
r

i.
Further, the orthonormal basis {�

r

}1
r=1 are the eigenfunctions of the

linear operator T
KZ formed by the covariance kernel of Z, defined as

T
KZf =

Z
Cov(Z(s), Z(·))f(t)dt (3.7)

= hK
Z

(s, ·), fi. (3.8)

That is to say that T
KZ admits eigenfunctions �

r

2 L2(T ) satisfying

T
KZ�r

= �
r

�
r

(s). (3.9)
Using (3.5) and (3.6) gives a representation of X expressed in the basis

{�
r

}1
r=1 as

X(t) = µ(t) +
1X

r=1

⇠
r

�
r

(t). (3.10)
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Here �
r

is referred to as the r:th FPC. The coefficients {⇠
r

}1
r=1 in (3.10)

minimize the expression

kX � µ�
1X

r=1

⇠
r

�
r

(t)k. (3.11)

Assuming that the eigenvalues {�
r

}1
r=1 are expressed in non-increasing

order, X can be readily approximated by

X(t) ⇡ µ(t) +

pX

r=1

⇠
r

�
r

(t), (3.12)

for some finite p 2 N.
FPCA is a useful technique to obtain a small dimension space which

captures much of the variability in the data. The first FPC accounts for
the most variation, while the second FPC accounts for the largest variation
orthogonal to the first FPC, and so on. Much of the variation in the data
can be captured by only using a few FPCs as in (3.12).
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Chapter 4

Method

In this chapter, the procedure in each step of the method is described in
more detail. First, the treatment of data is described, then how the time
warping was performed followed by the application of FPCA and PCA to
the treated data, and lastly how the classification was performed.

4.1 Implementation

The purpose of the analysis was to create generative models for natural hand
motion as described in chapter two.

In order to accomplish this goal, the data was grouped by grasp types
after which DTW was performed. Next, FPCA was performed on the data
within each grasp type. Lastly one GMM was trained on the FPC weights
for each DoF. In order to generate motions, weights could be sampled from
the GMMs.

An alternative approach was tested where additionally PCA was per-
formed in each time step after DTW. FPCA was then performed on the
PCA weights instead. One GMM was trained on the FPC weights for each
degree of freedom as in the first approach. This second approach reduces the
DoFs and the computational load, but in turn it also contains less informa-
tion than the first model and was expected to be less accurate.

Finally, a classification approach was taken to compare the models’ abil-
ity to distinguish between different grasp types. The classification was done
by simply calculating the the L2-distance between a grasp and its projec-
tion in each model. The grasp was considered to belong to the type which
accounts for the lowest distance. For comparison, a similar classification
approach was taken where PCA was performed on the last frame and the
Euclidean distance was calculated of the last frame instead.
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4.1.1 Data

In essence, hand motion data are joint angle values in the form of time series.
In this report, the data used was from the HUST dataset [33]. The HUST

dataset contains recorded data from thirty subjects performing grasps from
Feix’s grasp taxonomy [32]. Images of the thirty-three different grasp types
in Feix’s taxonomy is found in figure 1.1 above.

HUST dataset

The HUST dataset contains data from thirty subjects performing all thirty-
three grasp types from Feix’s grasp taxonomy. Each grasp was performed
on three objects of different sizes and shapes. For each object, the grasp
was performed three times to depress random error. This resulted in ninety
grasps for each object, 270 grasps for each grasp type, and 8910 grasps in
total in the HUST dataset.

The data was recorded using sixteen degrees of freedom, and was recorded
at fifty hertz. Each grasp was saved as a comma-separated file with sixteen
columns representing degrees of freedom, and succeeding rows representing
measured joint angles at an interval of 0.02 seconds (50 Hz).

The HUST dataset only provides angles for each performed grasp. Knowl-
edge about e.g. hand sizes, object sizes, distance to object or definition of
zero angles are not provided. This lack of information made the visualiza-
tion hard to make exact, since the hand model had to be tuned on how the
final configuration was supposed to look. Another reason for difficulty in
tuning the visual model was that the two angles CMC1 and ABD1 were not
orthogonal.

4.1.2 Time Warping

For DTW, the software written in MATLAB provided by [25] was used.
In general the recorded samples had different length, i.e. the number of

frames for each recorded grasping differed. In order to be able to perform
FPCA and PCA in each time frame, the grasps had to be aligned in a way
that made comparison at each frame meaningful.

The grasps were grouped by grasp type and then further grouped by
which of the three objects was grasped. This further grouping was needed
in order for the time warping software to be able to handle the amount of
data.

Before warping, any recorded grasp with significantly longer frame count
than the rest was removed. Typically ten recorded grasps for each grasp
type were removed in this manner.

For each grasp type, the mean frame count was used as the target length
for warping. All three objects were warped separately to this length, and
the warped grasps were stored together for further analysis.
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no. joint
1 CMC1
2 ABD1
3 MCP1
4 IP1
5 MCP2
6 PIP2
7 DIP2
8 MCP3
9 PIP3
10 DIP3
11 MCP4
12 PIP4
13 DIP4
14 MCP5
15 PIP5
16 DIP5

Figure 4.1: Description of the sixteen DoFs used in the HUST dataset. The
numbering of joints (e.g. PIP4) is referring to the corresponding finger; 1 =
thumb, 2 = index finger, 3 = middle finger, 4 = ring finger, 5 = little finger.

The DTW procedure resulted in the warped grasps as well as their warp-
ing paths, where the latter were mappings between warped frames and orig-
inal frames. Thus statistical analysis could be carried out on the warped
grasps as well as the warping paths separately.

4.1.3 FPCA implementation

From DTW, a collection of warped grasps of the same length for each grasp
type was provided. To get data which was suitable for FPCA, the warped
data was divided by DoF. So in each grasp type, the data was divided into
sixteen datasets, each one describing realizations of one degree of freedom.

FPCA was performed separately on each DoF. This means that for each
grasp type, FPCA was performed sixteen times, once for each DoF. The
first two FPCs were used for each DoF. For FPCA, the R package fda.usc
provided by [23] was used.

FPCA on Warping Paths

FPCA was also carried out on the warping paths of each grasp type. For
this analysis only one FPC was used since it preserved one hundred percent
of the variation. Thus each warping path could be represented by the linear
combination of the mean function and the first FPC of its grasp type.
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FPCA with preceding PCA

An alternative approach was attempted, wherein FPCA was preceded by
PCA. The purpose of this approach was to further reduce the dimensionality
of the data, resulting in less variables to control for.

After DTW, PCA was performed in each successive frame. The first
PCs of every frame were concatenated together in chronological order, and
the same thing was done to the second PCs and so on. The purpose of
this procedure was to create a time dependent function of how the grasp
changed over time with lower dimensionality. FPCA was then applicable to
the weights of the concatenated PCs.

Given a discrete measurement of a grasp in T time frames, g = {g
t

}T
t=1,

g
t

2 R16, the first step was to carry out PCA in each time frame, t, so that

g
t

⇡
dX

i=1

↵
i,t

p

i,t

, (4.1)

where p

i,t

is the i :th PC at frame t, d is the number of PCs and ↵
i,t

is the
projection of g

t

onto p

i,t

(assuming that p

i,t

is chosen so that kp
i,t

k2 = 1).
The next step was to concatenate each PC’s projections as ↵

i

= {↵
i,t

}T
t=1

to get the evolution of the projections over time. Then ↵
i

was approximated
as a continuous function and FPCA was performed on it, so that

↵
i

(⌧) ⇡
kX

j=1

�
i,j

f

i,j

(⌧), (4.2)

where f

i,j

is the j :th FPC for ↵
i

, k is the number of FPCs and �
i,j

is the
projection of ↵

i

onto f

i,j

(assuming that kf
i,j

k
L2 = 1).

In summary, combining (4.1) and (4.2) gives

g
t

⇡
dX

i=1

⇣ kX

j=1

�
i,j

f

i,j

⌘
(t) p

i,t

. (4.3)

4.1.4 GMMs

From FPCA, each DoF of the warped grasp could be approximately repre-
sented by the mean function and a linear combination of FPCs. For each
DoF, two FPCs were used and hence two weights were needed for represen-
tation. The way in which new grasps was generated was through sampling
FPC weights from GMMs.

In order to train GMMs for this purpose, all grasps was projected on the
FPCs of their own grasp type in order to obtain their FPC weights. For each
DoF, the set of all two-tuples containing the two weights for a projected DoF
were used to train a two dimensional GMM with two components. When
the GMMs were trained, weights could be sampled from them.

20



To generate new grasps, weights were sampled from the GMMs and used
to make linear combinations of FPCs as described in (2.5).

For training GMMs, the R package mixtools provided by [15] was used.
In this package, the expectation-maximization (EM) algorithm is used to
find the parameters for normal distributions contained in the GMMs.

4.1.5 Visualization

For visualizing grasping motions, the page http://www.mymodelrobot.appspot.
com/ was used [35]. To use this site a model had to be defined, which was
provided by Gleechi. Grasping motions could then be visualized by providing
comma separated files with angles of each joint defined in the model.

4.2 Classification

For evaluating how well each model was at representing its specific type of
grasp, a classification scheme was performed in which all unwarped grasp
were fed into each model to determine how well that model was able to
represent the grasp.

When a grasp was fed to the model, the first step was to warp the grasp to
the warped time of the model. The warping was done by the mean function
obtained from FPCA on warping paths.

Next, the warped grasp was projected on the FPCs and the L2 distance
was calculated between the warped grasp, g, and its projection,

kg �
kX

i=1

hg,f
k

if
k

k
L2 , (4.4)

where f

k

is the k:th FPC of the model.
For comparison, a classification based on PCA of the last frame of each

grasp type was performed. Similarly to the first approach, the Euclidean
distance between the last frame of each grasp and its projection was calcu-
lated.
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Chapter 5

Results

In this chapter the results of the analysis are presented and discussed.
In the first section the results of each individual implemented technique

is presented, then in the next section the results from generating grasps are
presented, finally the results of the classification is presented.

5.1 Result of implemented techniques

In this section, the result of each implemented technique is presented. An
overlook of time warping and GMM training can be found in table 5.1 below,
of which the details will be further discussed in the following sections.
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Object Target frames Warping EM-algorithm
1 Large Diameter 43
2 Small Diameter 41 linear
3 Medium Wrap 42
4 Adducted Thumb 40 linear
5 Light Tool 38
6 Prismatic 4 Finger 42
7 Prismatic 3 Finger 44
8 Prismatic 2 Finger 40
9 Palmar Pinch 32 Fail on DoF 13
10 Power Disk 47 linear
11 Power Sphere 43 linear
12 Precision Disk 44
13 Precision Sphere 41
14 Tripod 39
15 Fixed Hook 37
16 Lateral 37 linear
17 Index Finger Extension 40
18 Extension Type 39
19 Distal Type 54
20 Writing Tripod 39 linear
21 Tripod Variation 44 linear
22 Parallel Extension 34 Fail on DoF 9, 10, 13
23 Adduction Grip 42
24 Tip Pinch 36
25 Lateral Tripod 38
26 Sphere 4 Finger 42
27 Quadpod 41
28 Sphere 3 Finger 46
29 Stick 41 linear
30 Palmar 37
31 Ring 39 Fail on dof 10, 13, 15, 16
32 Ventral 37
33 Inferrior Pincer 40 Fail on dof 10, 13, 14, 15

Table 5.1: Summary of warping and GMM training for each model. In the
column Warping it is stated if linear warping had to be used as described in
section 5.1.1. In the column EM-algorithm it is stated if problems occurred
when training the GMMs due to EM-algorithm diverging as described in
section 5.1.4.
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5.1.1 Time warping

Time warping was performed on each grasp type with target length set to
the mean frame length of data of that grasp type.

The warping was not always satisfactory for all grasps. This manifested
itself as a repetition of a single time frame in the warped grasp, as can be
seen in fig 5.1. Any grasp that was warped in this manner was removed. The
amount of unsatisfactory warps was typically one or two for each object.

Figure 5.1: Example from time warping of medium wrap. The left subfigure
shows a histogram of sample lengths before warping. The right subfigure
shows warping paths, where two paths can be seen to be stationary in long
intervals. In this example all warping paths are defined between frame zero
and forty-two

In eight cases out of thirty-three, the warping software failed altogether
and was unable to produce results. In these cases, a simpler form of warping
was used instead, where the warping paths were linear. An example of
this can be seen in fig 5.2. The models in which linear warping had to be
used were small diameter, adducted thumb, power disk, power sphere, lateral,
writing tripod, tripod variation and stick.
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Figure 5.2: Example from time warping of power sphere when linear warping
paths were used. The left subfigure shows a histogram of sample lengths
before warping. The right subfigure shows warping paths, which can be seen
to be linear. In this example all warping paths are defined between frame
zero and forty-three

5.1.2 FPCA with preceding PCA

This approach did not work well, and was abandoned after initial results
showed none to little resemblance with the grasp they were supposed to
mimic.

The most obvious reason for the failure of this approach was the extra
loss of information from the dimension reduction step in PCA.

Initial visualization of PCs showed them to be jerky in time. Since PCA
in one frame was done in isolation from the rest, there was no guarantee for
smoothness in transition with respect to neighbouring PCs.

Another source for jerkiness was that the PCs were switching sign in
succeeding frames as can be seen in fig 5.3. This was expected since the sign
of the PCs was arbitrary. The smoothness could be improved by manually
switching sign on some PCs; this was not affecting the analysis since the
negative of a vector is linearly dependent on the vector itself. Even though
this correction was made, the results were still unsatisfactory.
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Figure 5.3: Projections reveal sign changes in principal components at suc-
cessive frames.

5.1.3 FPCA

Considering all analyses, FPCA with two FPCs was able to explain between
86.00 and 99.89 percent of the variance in the data, with a mean at 95.90
percent. Thus the FPCs was successful in spanning a large subspace of the
data and consequently had the capacity of making good approximations of
joint angles. This means that successful grasp generation was most likely
not severely restricted by FPCs’ inability to reproduce certain grasp config-
urations lying outside FPC-space.

Variance explained by FPCs is presented in more detail in table 5.2 below.
An example of FPCA visualization together with data is presented in

fig 5.4. And an example of data expressed as linear combination of FPCs is
presented in fig 5.5. In these figures it can be seen that FPCs gives reasonably
good approximations of the curves.
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Figure 5.4: Example of samples of an angle and result of FPCA. Samples
are in grey and mean function added to FPCs are in red.
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Figure 5.5: Example of a sample and its projection on FPCs. Sample is in
grey and its projection is in red.

28



Model 1 Model 2 Model 3 Model 4 Model 5
Min 93.00 90.69 91.13 86.97 92.28

Median 95.03 92.62 94.17 93.21 95.92
Mean 95.20 93.26 94.13 93.48 95.84
Max 99.04 99.03 98.40 98.58 98.71

Model 6 Model 7 Model 8 Model 9 Model 10
Min 96.60 95.36 95.68 97.76 86.00

Median 97.49 97.72 98.05 98.96 92.55
Mean 97.63 97.33 97.80 98.70 92.03
Max 98.79 98.66 98.83 99.34 97.56

Model 11 Model 12 Model 13 Model 14 Model 15
Min 89.82 92.83 95.77 94.77 93.40

Median 93.58 96.84 97.75 97.86 96.39
Mean 93.27 96.62 97.55 97.69 96.25
Max 98.57 98.02 99.12 98.93 98.89

Model 16 Model 17 Model 18 Model 19 Model 20
Min 91.64 91.34 95.65 90.38 89.39

Median 96.28 94.79 96.91 95.31 94.79
Mean 95.75 95.20 96.96 95.20 94.01
Max 97.82 99.18 98.74 97.26 97.29

Model 21 Model 22 Model 23 Model 24 Model 25
Min 87.43 93.98 93.88 96.97 94.85

Median 91.90 97.49 96.73 98.66 97.44
Mean 92.22 97.19 96.64 98.48 97.44
Max 96.90 99.36 99.43 99.22 98.89

Model 26 Model 27 Model 28 Model 29 Model 30
Min 92.97 95.43 93.53 86.56 92.94

Median 95.19 98.12 96.45 94.59 95.34
Mean 95.39 97.94 96.21 94.22 95.65
Max 98.31 99.03 97.94 98.67 98.98

Model 31 Model 32 Model 33
Min 90.47 91.10 94.33

Median 96.62 95.79 98.22
Mean 96.02 95.65 97.77
Max 99.76 99.02 99.89

Table 5.2: Variance explained by FPCs in each model averaged over DoF.
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5.1.4 GMMs

Finding proper parameters for GMMs was in some cases unsuccessful, due to
the EM-algorithm diverging. In these cases a single two-dimensional Gaus-
sian distribution was used instead, with parameters sample mean and sample
covariance. The cases in which the EM-algorithm failed can be seen in table
5.1.

An example of how the probability distributions obtained for GMMs
could look is presented in fig 5.6.
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Figure 5.6: Example of probability distribution of GMMs. This plot shows
probability distribution function level curves of GMMs for grasp type writing
tripod. First DoF is shown in top left corner and following DoFs proceeds
from left to right.

The probability distributions had means centered at zero. Weights set
to zero corresponded to linear combinations of FPCs consisting only of the
mean function.

From inspection of the probability distributions, it could be seen that
the range of values likely to be obtained from the GMMs were relatively
large, which indicated some variation in the training data and consequently
variation in the generated weights.

Since the variance of weight values were relatively large, the FPCs were
thus significant in the linear combinations for generated grasps; contrary to
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weights being very small and generated grasps being mostly governed by the
mean functions.

One likely source for this variation is that hand sizes and shapes differ,
producing different sets of angles for the same task. Since the data set
contains data from thirty different subjects, it is very likely that some sets
of angles acted in unison in this way. Taking angle values from significantly
different hand shapes might also produce incorrect hand configurations for
the task to some degree.

In light of this, the absence of correlation between DoFs in the model
was likely to have an effect on the generated data.

5.2 Generating grasps

The grasps generated by the models were in general similar to the grasp types
they were supposed to mimic; they were able to capture distinct features.
However, more subtle features were not captured. For example, this was the
case for grasps that are only distinguished by how many fingers are in contact
with the object, e.g. grasp types prismatic 4 finger, prismatic 3 finger and
prismatic 2 finger. For comparison, appendix A contains images of the last
frame of generated grasps next to grasps from the training data of each type.

In general, there were two issues with the grasps generated by the models.
First, fingers did not move in unison, resulting in configurations where they
were not equally bent. Second, in many cases generated grasps looked similar
to generated grasps of other types, which made it hard to identify the specific
grasp. The second issue is most likely a consequence of the first since fingers
not moving in unison made some distinguishable features disappear. This
was for example the case for grasp types prismatic 4 finger, prismatic 3 finger
and prismatic 2 finger mentioned above.

As was mentioned earlier, it is important to note that the space rep-
resented by joint angles are not in one-to-one correlation with the hand
configuration space when considering many subjects. This is due to differ-
ences in hand shapes and sizes, i.e. when two individuals perform the same
type of grasp, the joint angles are not guaranteed to be the same. Thus it
was not expected that joint angles alone could sufficiently describe a hand
configuration. In light of this, the fact that each DoF was modeled sepa-
rately is most likely an important factor for the fingers not moving in unison
and for many grasp types being indistinguishable. This means that corre-
lation between DoFs was not included in the model, and in extension that
individual-specific variations were not accounted for.

In table 5.3, the mean L2-distances between grasps and its projections
are presented. In each row, the values have been divided by the frame
length of the model to facilitate comparison between rows. This table gives
an indication of how well the different models were performing. In twenty-
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eight cases the model had its lowest mean distance for its own grasp type.
In fourteen cases the grasp type had its lowest mean distance for its own
model. And in twelve cases it happened simultaneously that the model had
its lowest mean distance for its own grasp type and that the grasp type had
its lowest mean distance for its own model. Worth noting is that nine grasp
types had their lowest mean distance for model nine, palmar pinch, while
sixteen models were not the minimum mean distance of any grasp type.

These observations indicate that the set of models does not amount to
a very good distinction between grasps. From visual inspection, there were
several groups of grasps that were hard to discern from one another. One
such group of grasps that was not easily distinguishable from one another
consists of grasp types adducted thumb, light tool and fixed hook. Another
group consists of types prismatic 4 finger, prismatic 3 finger. prismatic 2
finger and writing tripod. A third group consists of grasp types precision
disk, precision sphere and tripod.
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5.2.1 Temporal comparison

Disregarding how well the grasp type was captured by the model, the tem-
poral aspect was in general well captured in the models. There was no signif-
icant issues in this aspect, like e.g. fluctuations or jerkiness. The generated
grasps lacked a little bit in smoothness compared to the training data.

Two grasp types have been selected for illustrating temporal comparison.
The first case, which is shown in table 5.4, shows grasp type index finger

extension, in which the grasp type was successfully modelled. This case fits
well in the overall description above, since there is a distinctive feature which
was well captured, namely the extended index finger.

The other case, which is shown in table 5.5, shows grasp type lateral
tripod, in which the grasp type was not successfully modelled. This case
gives an example of how small variations in bending between fingers was not
well captured.

Data sample Generated sample

1

2

3

4
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5

6

7

Table 5.4: Temporal comparison between data sample and generated sample
of grasp type index finger extension. In this comparison it can be seen that
the generated sample did well in capturing the distinct feature of the grasp.

Data sample Generated sample

1

2
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3

4

5

6

7

Table 5.5: Temporal comparison between data sample and generated sample
of grasp type lateral tripod. In this comparison it can be seen that the
generated grasp failed to capture the variations in bending between fingers.

5.3 Classification

In this section the results of the two classification approaches using FPCA
and last frame PCA are presented.
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5.3.1 FPCA

Using the models for classification was not successful. For some grasp types,
grasps were more often classified outside their own type than not. It was
however expected that the classification would perform badly for two reasons.
First, in the classification procedure, all DoFs were weighted equally, so that
the overall hand posture was considered for classification. This approach
was clearly not proficient at identifying distinctive features of each grasp.
Second, the FPCA-based classification used the whole temporal movement
of the hand, but grasp types are identified by the final configuration only
and much of the initial movement was similar for all the grasps. Thus the
identifying posture was a smaller part of the movement. The confusion
matrix for classification is presented in table 5.6 below.

The worst case was grasp type stick, which was only correctly classified
six times. The most successful case was grasp parallel extension, with two-
hundred and fifteen correctly classified grasps. These results are reasonable
when comparing to the other grasps; parallel extension is very distinct in
the sense that there are no other grasps in which almost all fingers are fully
extended, thus creating a big difference in terms of joint angles. Grasp type
stick on the other hand has a similar configuration to many other grasp
types, e.g. light tool and fixed hook.

As in table 5.3, some models are overrepresented in classification, most
prominently model nine, palmar pinch, which nine grasp types were most
often classified as. There were however less grasp types more often classified
outside their own model in the confusion matrix compared to how many
grasp types had their lowest mean distance outside their own model.

In general, the confusion matrix in table 5.6 shows a similar pattern as
in table 5.3 above. Grasp types classified in models correspond in general
to grasp types having low mean L2-distances in that model compared to
others. This is expected since the the L2-distance between grasps and their
projections was used in both cases. Numbers were not divided by frame
length in the confusion matrix as in table 5.3.
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5.3.2 Last frame PCA

PCA-based classification performed much better than FPCA-based classi-
fication. This was expected since only the final position of the hand was
considered, which is also the position that identifies the grasp type. Five
PCs were used for the PCA-based classification. A confusion matrix of the
classification is found in table 5.8 below.

In table 5.7 the cumulative sum of variance explained by using up to
all sixteen PCs is shown. It can be seen that using five PCs amount to
explaining more than eighty percent of the variance for most grasp types.

Number of PCs

Grasp type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0.555 0.695 0.755 0.806 0.848 0.881 0.912 0.936 0.955 0.967 0.976 0.984 0.990 0.994 0.997 1.000
2 0.363 0.576 0.675 0.754 0.811 0.860 0.898 0.921 0.944 0.964 0.974 0.982 0.989 0.994 0.997 1.000
3 0.384 0.599 0.687 0.748 0.802 0.846 0.883 0.918 0.941 0.961 0.972 0.981 0.989 0.994 0.998 1.000
4 0.295 0.471 0.598 0.684 0.753 0.810 0.859 0.903 0.927 0.948 0.961 0.974 0.983 0.990 0.995 1.000
5 0.327 0.611 0.718 0.781 0.834 0.880 0.918 0.944 0.961 0.972 0.980 0.986 0.992 0.995 0.998 1.000
6 0.478 0.619 0.696 0.765 0.830 0.882 0.908 0.931 0.949 0.964 0.976 0.984 0.990 0.994 0.997 1.000
7 0.412 0.615 0.721 0.784 0.833 0.876 0.907 0.934 0.953 0.968 0.978 0.986 0.991 0.994 0.997 1.000
8 0.451 0.683 0.760 0.825 0.862 0.891 0.918 0.938 0.956 0.968 0.977 0.985 0.992 0.995 0.998 1.000
9 0.543 0.692 0.807 0.862 0.896 0.921 0.941 0.955 0.966 0.975 0.983 0.988 0.993 0.997 0.998 1.000

10 0.337 0.540 0.648 0.735 0.802 0.854 0.897 0.922 0.942 0.962 0.972 0.980 0.987 0.994 0.997 1.000
11 0.444 0.635 0.719 0.782 0.826 0.866 0.900 0.926 0.947 0.961 0.971 0.980 0.987 0.993 0.997 1.000
12 0.309 0.562 0.678 0.751 0.814 0.853 0.890 0.923 0.942 0.960 0.974 0.982 0.990 0.994 0.997 1.000
13 0.392 0.583 0.687 0.773 0.826 0.865 0.899 0.928 0.948 0.965 0.973 0.981 0.988 0.993 0.997 1.000
14 0.436 0.626 0.747 0.803 0.849 0.883 0.910 0.931 0.951 0.963 0.975 0.984 0.989 0.993 0.997 1.000
15 0.504 0.753 0.806 0.849 0.889 0.914 0.939 0.955 0.967 0.975 0.982 0.987 0.992 0.995 0.999 1.000
16 0.389 0.567 0.674 0.751 0.814 0.854 0.889 0.918 0.942 0.958 0.970 0.979 0.986 0.992 0.997 1.000
17 0.315 0.536 0.649 0.754 0.811 0.851 0.890 0.918 0.943 0.961 0.973 0.983 0.988 0.993 0.997 1.000
18 0.491 0.668 0.754 0.814 0.862 0.898 0.929 0.947 0.962 0.972 0.982 0.988 0.992 0.996 0.998 1.000
19 0.401 0.656 0.752 0.804 0.847 0.880 0.910 0.932 0.950 0.963 0.973 0.981 0.987 0.993 0.997 1.000
20 0.332 0.533 0.644 0.730 0.788 0.832 0.872 0.904 0.931 0.950 0.966 0.978 0.987 0.993 0.997 1.000
21 0.311 0.508 0.634 0.723 0.781 0.830 0.875 0.907 0.938 0.956 0.972 0.981 0.988 0.995 0.998 1.000
22 0.496 0.615 0.717 0.789 0.839 0.874 0.901 0.924 0.941 0.954 0.966 0.976 0.985 0.990 0.996 1.000
23 0.427 0.602 0.693 0.766 0.825 0.875 0.908 0.935 0.953 0.967 0.977 0.985 0.991 0.994 0.998 1.000
24 0.583 0.749 0.837 0.873 0.899 0.924 0.943 0.955 0.966 0.975 0.983 0.989 0.993 0.996 0.999 1.000
25 0.350 0.623 0.716 0.786 0.832 0.872 0.897 0.920 0.939 0.956 0.970 0.981 0.987 0.993 0.997 1.000
26 0.377 0.629 0.716 0.786 0.827 0.867 0.902 0.927 0.949 0.965 0.975 0.983 0.990 0.995 0.998 1.000
27 0.343 0.574 0.674 0.755 0.815 0.855 0.890 0.920 0.944 0.960 0.973 0.982 0.988 0.993 0.997 1.000
28 0.398 0.663 0.740 0.797 0.842 0.877 0.907 0.935 0.954 0.967 0.977 0.985 0.992 0.996 0.998 1.000
29 0.376 0.579 0.671 0.738 0.805 0.855 0.888 0.920 0.940 0.957 0.970 0.980 0.988 0.993 0.998 1.000
30 0.487 0.653 0.761 0.830 0.877 0.911 0.931 0.950 0.965 0.974 0.981 0.988 0.992 0.996 0.998 1.000
31 0.272 0.505 0.648 0.735 0.804 0.848 0.886 0.908 0.928 0.948 0.965 0.978 0.986 0.993 0.997 1.000
32 0.297 0.571 0.657 0.731 0.788 0.835 0.872 0.903 0.927 0.946 0.963 0.975 0.985 0.991 0.996 1.000
33 0.389 0.544 0.659 0.749 0.800 0.849 0.885 0.909 0.929 0.948 0.965 0.977 0.987 0.992 0.997 1.000

Table 5.7: Table showing the cumulative sum of variance explained by PCs
for last frame PCA of each grasp type.
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Chapter 6

Summary

In this report a statistical approach was taken to generate natural looking
grasp motions in a Virtual Reality context.

Training was made on data from the thirty-three grasp types of Feix’s
grasp taxonomy, and one model was built for each grasp type. The data con-
sisted of recordings of sixteen joint angles measured at fifty hertz. Grasping
motions of thirty subjects were included in the data.

Each model was created by first applying DTW to the data, then FPCA
was conducted, and finally GMMs were trained in order to be able to generate
grasps. In every model, each DoF was modeled separately.

The models were in general good at capturing distinctive features of grasp
types, but failed to capture more subtle features. The failing manifested
itself as an inability to produce finger movements moving in uniform. This
made grasp types with subtle differences hard to distinguish and made grasps
defined by how many fingers were in contact with the object in many cases
incorrect.

The underlying reason for failure to capture subtle features was likely
due to the fact that hand sizes and shapes differ, producing different sets
of angles for the same task between subjects. Since FPCA resulted in a
mean 95.9 percent explained of the variability in the data, successful grasp
generation was most likely not restricted by FPCs’ inability to reproduce
certain grasp configurations lying outside FPC-space. Instead, the fact that
each DoF was modelled separately was most likely the reason for failed grasp
generation. Since each DoF was modeled in isolation, no correlation between
DoFs was included in the models, thus differences in hand shapes and sizes
were not accounted for.

For future models, some correlation between DoFs should be included
in the model to be able to generate fingers moving in unison and generate
satisfying grasps for grasps types with subtle differences from each other.

A classification scheme was conducted where L2-distances was calculated
between a grasp and its projection on the FPCs in each model. For com-
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parison the Euclidean distance between the last frame of a grasp and its
projection on the first five PCs of each model was conducted. The PCA-
based scheme clearly outperformed the FPCA-based scheme, which did not
perform well.

It was however not surprising that the classification based on FPCA did
not work well for two reasons. First, all DoFs were weighted equally, thus
the overall hand posture was considered for classification instead of weighing
the distinctive DoFs more than the less distinctive DoFs. Second, the whole
temporal movement of the hand was included in the FPCs, but grasp types
are identified by the final position only, and much of the initial movements
were similar for many grasps. Thus the identifying posture was a smaller
part of the movement.

To remedy this failure, a future classification based on FPCA could bene-
fit from using larger weights on DoFs important for the grasp type. Another
improvement could be to use the final posture for classification, which was
shown in the PCA-based classification to be a more favorable approach.
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Appendix A

Generated grasps

Grasp type Data sample Generated sample

1 Large diameter

2 Small diameter

3 Medium wrap

4 Adducted thumb
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5 Light tool

6 Prismatic 4 finger

7 Prismatic 3 finger

8 Prismatic 2 finger

9 Palmar pinch

10 Power disk
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11 Power sphere

12 Precision disk

13 Precision sphere

14 Tripod

15 Fixed hook

16 Lateral
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17 Index finger
extension

18 Extension type

19 Distal type

20 Writing tripod

21 Tripod variation

22 Parallel extension

23 Adduction grip
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24 Tip pinch

25 Lateral tripod

26 Sphere 4 finger

27 Quadpod

28 Sphere 3 finger

29 Stick
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30 Palmar 4 finger

31 Ring

32 Ventral

33 Inferior pincer

Table A.1: Comparison of training data and generated samples. Middle
column contains images of the last frame of training data. Rightmost column
contains images of the last frame of generated grasps.
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