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Sammanfattning

I detta examensarbete utforskas nya lösningar till Simultaneous Loca-
lization and Mapping (SLAM) problemet baserat på partikelfilter- och
partikelglättnings-metoder. I sin grund består SLAM problemet av två
av varandra beroende uppgifter: kartläggning och spårning. Tre lös-
ningsmetoder som använder olika glättnings-metoder appliceras för
att lösa dessa uppgifter. Dessa glättningsmetoder är fixed lag smoot-
hing (FLS), forward-only forward-filtering backward-smoothing (forward-
only FFBSm) och the particle-based, rapid incremental smoother (PaRIS).
I samband med dessa glättningstekniker används den väletablerade
Expectation-Maximization (EM) algoritmen för att skapa maximum-likelihood
skattningar av kartan. De tre lösningsmetoderna utvärderas sedan och
jämförs i en simulerad miljö.
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Abstract

In this thesis, we explore novel solutions to the Simultaneous Local-
ization and Mapping (SLAM) problem based on particle filtering and
smoothing methods. In essence, the SLAM problem constitutes of
two interdependent tasks: map building and tracking. Three solu-
tion methods utilizing different smoothing techniques are explored.
The smoothing methods used are fixed lag smoothing (FLS), forward-
only forward-filtering backward-smoothing (forward-only FFBSm) and the
particle-based, rapid incremental smoother (PaRIS). In conjunction with
these smoothing techniques the well-established Expectation-Maximization
(EM) algorithm is used to produce maximum-likelihood estimates of
the map. The three solution method are then evaluated and compared
in a simulated setting.
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Chapter 1

Introduction

The Simultaneous Localization and Mapping (SLAM) problem origi-
nates from the field of robotics and the need of autonomous robots to
be able to accurately orient themselves in an unknown environment.
It is the problem of constructing a map of the surrounding area while
simultaneously tracking the robots position on said map. Focus lies on
the word "simultaneous" as interdependent localization and mapping
can be viewed as a catch-22 problem since accurate estimates of the
robots position requires a map of the environment and vice versa. By
concurrently performing localization and map building it is possible
to overcome this obstacle.

SLAM is commonly applied in situations where no, or little previous
knowledge of the environment is available. Often it is not possible to
engineer the environment (such as by placing beacons) to aid in the
process. An example of an application where these restrictions are
prevalent is that of indoor-mapping. However, SLAM has also seen
applications in outdoor, aerial and sub sea environments [8].

At disposal is commonly a robot with on-board sensors. These sen-
sors detects environmental features from which landmarks are later
abstracted. In order to more accurately determine the robots state
the control input dictating the robots movement is known. In simpler
SLAM models the robot state consist of its position and bearing while
the map consist solely of the positions of stationary landmarks. How-
ever, it is possible to include other state variables such as the robots
velocity or to take dynamic landmarks into consideration.

1



2 CHAPTER 1. INTRODUCTION

Typically, a SLAM system can be divided into two modules, the front-
end and the back-end [3]. The front-end is responsible for feature ex-
traction and data association. More specifically, given sensor data the
front-end must be able to extract relevant features, such as the range
and bearing of landmarks in relation to the robot. It must also manage
to identify new, and recognize old landmarks whilst correctly associat-
ing the extracted features to the observed landmarks.The recognition
of old landmarks (also referred to as loop-closure) is a key component
to decrease errors and produce a cohesive map. The information of
which landmarks were observed and the corresponding features are
handed to the back-end of the SLAM system. The responsibility of the
back-end is to estimate the map and robot state given previous esti-
mates and features with landmark correspondence produced by the
front-end. The estimated map and robot state are usually handed back
to the front-end in order to support the data association process. The
focus of this thesis is the back-end of the SLAM system.

An important distinction to make is the that between the online SLAM
problem and the offline, or full SLAM problem. In the online problem
formulation any parameter estimates need to be updated as new data
is gathered. Whereas in the offline problem formulation any parame-
ter need only be estimated after all the input and output data has been
collected. This thesis will explore solutions to the later, but have the
online problem in mind as it is prominent in many real life applica-
tions.

1.1 Previous work

One of the earliest prominent solutions to the SLAM problem was in-
troduced by Smith, Self and Cheeseman [20]. Their solution is often
referred to as the EKF-SLAM method and made use of the extended
Kalman filter (EKF) to incrementally estimate the landmark and robot
positions. In short, the extended Kalman filter is an adaptation of the
Kalman filter to nonlinear models. As the original Kalman filter [13]
requires linear models the EKF utilizes Taylor expansions in order to
linearize the nonlinear models. A Kalman filter is then applied to solve
the resulting linear system. Furthermore any system noise is, by ap-
plication of the Kalman filter, presumed to be Gaussian.This method
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had a computational complexity of O(N

2
), where N is the number of

landmarks. Hence for environments for a large amount of landmarks
the computation time proved to be an hindrance. Furthermore, the
use of linearization and the underlying assumption that all included
distributions are Gaussian could cause problems with regards to con-
sistency [2].

These hurdles were later overcome with the introduction of the Fast-
SLAM algorithm [16]. The FastSLAM algorithm introduced a Bayesian
standpoint to the SLAM problem and could handle non-Gaussian dis-
tributions better than EKF-SLAM. Key to the FastSLAM algorithm was
the observation that the landmark readings could be considered con-
ditionally independent given the robots position. This meant that the
problem could be divided into N + 1 smaller estimation problems.
With this approach the robots trajectory and the maps were estimated
in different fashion. The trajectory was estimated using a particle filter,
which is Monte Carlo-based estimation method that can handle non-
linear models as well as non-Gaussian noise terms. The map on the
other hand was estimated analytically using N separate EKFs, one for
each landmark. Still, consistency problems persisted. In the long run
the FastSLAM method does not produce consistent estimates as the
algorithm was shown to degenerate over time [1]. The computational
complexity of FastSLAM was originally O(N

2
), but later reduced to

O(N logN) with the introduction of FastSLAM 2.0.

Nowadays, the de-facto standard method for solving SLAM is based
on viewing the problem as a factor graph [3], also referred to as Graph-
Based SLAM. In short, a factor graph is a visual tool where every fac-
tor, such as the robots state or the landmark position, is represented
as a node. These nodes are then connected by lines representing a
function describing a relation between the connected factors. This can
for instance be the observed distance from the robot to a landmark.
With this perspective, all robot transitions and landmark observations
are viewed as soft constraints. By resolving these constraints a map
and trajectory estimation can be obtained. If there are many such con-
straints, this results in solving a very large least square problem. Using
naive methods this is computationally heavy problem. However, by
utilizing the sparsity of the constraint matrix the problem can in some
cases be solved in linear time with respect to the number of robot tran-
sitions and landmarks [21]. This sparsity also allows for online solu-
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tions such as the iSAM algorithm [12].

1.2 Objective

The aim of this paper is to explore new, and compare solutions to the
back-end part of SLAM using particle-based methods (also refereed to
as sequential Monte Carlo methods). The use of particle-based meth-
ods to solve the back-end problem is not a novel approach. However,
in the light of advancements in particle based smoothing techniques
with lower computational complexity we find it fruitful to explore
these techniques in the SLAM setting.

1.3 Limitations

In this paper we will only take the problem of offline SLAM into con-
sideration. However, we note that it is possible to put all the used
smoothing algorithms in an online setting or use an online counter-
part of the algorithm. Furthermore, this paper will only focus on the
SLAM back-end. Hence we assume an ideal front-end module, i.e.,
perfect landmark detection and data association. For ease of mathe-
matical formulation and implementation the number of landmarks is
assumed to be known and fixed, which is not the case in most applica-
tions.

We also assume that the only unknown parameters are the landmark
locations and the robot trajectory. Hence the variances related to land-
mark observation and the robots dynamics are considered known. Note
that in a real life applications these parameters can often be calibrated
beforehand.



Chapter 2

Background

This section aims to present some of the theoretical framework behind
the methods used in this thesis.

2.1 Hidden Markov Models (HMM)

In this paper the SLAM problem is formalized using an Hidden Markov
Model (HMM). A HMM consists of a Markov process with initial prob-
ability density function p(X

X

X0) and transition probability density p(X

X

X

t

|XXX
t�1 =

x

x

x

t�1). The Markov process generates a state sequence x

x

x0:T that cannot
be directly observed and is therefore "hidden" from view. However,
the state XXX

t

can be indirectly observed through the corresponding ob-
servation variable Z

Z

Z

t

. The observation variables are conditionally in-
dependent given the corresponding state and are determined by the
probability density function p(Z

Z

Z

t

|XXX
t

= x

x

x

t

) known as the emission den-
sity function. Figure 2.1 presents an illustration of an HMM.

5



6 CHAPTER 2. BACKGROUND

Figure 2.1: An illustration of a general HMM. The hidden statesXXX
j

are
only indirectly observable through the random variable Z

Z

Z

j

. The blue
arrows indicate interdependencies between the random variables.

In regards to HMMs one is often interested in estimating the sequence
of hidden states x

x

x0:T or a function of said states. Broadly speaking
there are three types of problem formulations that are common in re-
gards such estimation; the prediction problem, the filtering problem
and the smoothing problem. The difference between the three is the
amount of observational data that is used to support the estimate.
In the prediction problem we look for the best estimate of a function
f(X

X

X

t

) based on past data points. I.e. we wish to form an estimator tar-
geting E [f(X

X

X

t

)|ZZZ0:⌧ = z

z

z0:⌧ ] where ⌧ < t. Similarly in the filtering prob-
lem we look for an estimator using past and present data points target-
ing E [f(X

X

X

t

)|ZZZ0:t = z

z

z0:t] and in the smoothing problem we make use of
all available data to form an estimator targeting E [f(X

X

X

t

)|ZZZ0:T = z

z

z0:T ]

where T > t. Between the three SLAM solving methods explored
in this paper the main difference is the technique used to solve the
smoothing problem. As such we will not compare different filtering
techniques or solve the prediction problem. However, as all of the em-
ployed smoothing techniques require filter estimates we will need to
solve the filtering problem as well.

A recurring theme in this paper will be to estimate smoothed expecta-
tions of additive functionals. That is, computing functions on the form

ˆ

S

T

= E [S

T

(X

X

X0:T )|ZZZ0:T = z

z

z0:T ] (2.1)
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where

S

T

(X

X

X0:T ) =

TX

t=1

s

t

(X

X

X

t�1,XXX t

) (2.2)

and {s
t

}1tT

is a sequence of measurable functions. Functions of this
form are often encountered when estimating model parameters of an
HMM using maximum likelihood methods. In this paper, this is espe-
cially relevant to the estimation of landmark locations.

2.2 Importance sampling (IS)

Given the observation sequence realization Z

Z

Z0:T = z

z

z0:T we want to be
able to compute

E[f
t

(X

X

X0:t)|zzz0:t] =
Z

f

t

(x

x

x0:t) p(xxx0:t|zzz0:t) dxxx0:t (2.3)

for some integrable function f

t

(X

X

X0:t), for instance the sequence of hid-
den states X

X

X0:t. Utilizing Bayes theorem and properties of the HMM
the probability density function of the joint smoothing distribution can
be expressed as

p(x

x

x0:t|zzz0:t) = p(x

x

x0)p(zzz0|xxx0)
Q

t

k=1 p(xxxk

|xxx
k�1)p(zzzk|xxxk

)

p(z

z

z0:t)
(2.4)

where

p(z

z

z0:t) =

Z
· · ·

Z
p(x

x

x0)p(zzz0|xxx0)

tY

k=1

p(x

x

x

k

|xxx
k�1)p(zzzk|xxxk

)dx

x

x0 . . . dxxxt

(2.5)

is the likelihood function. Unfortunately the likelihood function is gen-
erally intractable making analytical solutions unviable. One method of
dealing with this problem is the importance sampling method. Assume
that we have a known proposal distribution ⇡(x

x

x0:t) with a support that
includes the support of p(x

x

x0:t|zzz0:t). Then we can form the following
expression

E[f
t

(X

X

X0:t)|ZZZ0:t] =

R
f

t

(x

x

x0:t)!(xxx0:t)⇡(xxx0:t) dxxx0:tR
!(x

x

x0:t)⇡(xxx0:t) dxxx0:t
(2.6)
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where

!

t

(x

x

x0:t) =
p(x

x

x0)p(zzz0|xxx0)
Q

t

k=1 p(xxxk

|xxx
k�1)p(zzzk|xxxk

)

⇡(x

x

x0:t)
(2.7)

is known as an importance weight. Hence if can draw M independent
samples {xxxj

0:t}1jM

(hereby referred to as particles) from our proposal
distribution ⇡(xxx0:t), we can form the Monte Carlo estimate

ˆE[f
t

(X

X

X0:t)|ZZZ0:t] =

MX

j=1

f

t

(x

x

x

j

0:t)Wt

(x

x

x

j

0:t) (2.8)

where

W

t

(x

x

x

j

0:t) =
!

t

(x

x

x

j

0:t)P
M

j=1 !t

(x

x

x

j

0:t)
(2.9)

is the normalized importance weight. Note that the denominator of the
normalized importance weight forms a Monte Carlo estimate of the
likelihood function p(z

z

z0:t).

However, the importance sampling algorithm as presented here is not
suitable for recursion. This is because the estimation process requires
all the observational data z

z

z0:t for every time step t. If, for example, we
are interested in estimating the underlying state sequence x

x

x0:t, then
for each new observation z

z

z

t+1 we must redraw the particle sample
{xxxj

0:t}1jM

. Hence as t increases, the complexity increases.

2.3 Sequential importance sampling (SIS)

In order to allow the use of importance sampling method in a recursive
setting we introduce the sequential importance sampling (SIS) method
[15]. Key to the method is the specification of the proposal distribution
as a sequence of conditional distributions such that

⇡(x

x

x0:t) = ⇡(x

x

x0)

tY

k=1

⇡(x

x

x

k

|xxx0:k�1). (2.10)

Thus we are able to propagate the particles by sampling {xxxj

t

}1jM

from ⇡(x

x

x

t

|xxxj

0:t�1) and without needing to redraw {xxxj

0:t�1}1jM

. These
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new samples can then be used to form filter estimates by again us-
ing equation (2.8). However to do so we also need to compute the
associated importance weights. Using equations (2.7) and (2.10) the
importance weights can be determined recursively using

!

t

(x

x

x0:t) =
p(x

x

x0)p(zzz0|xxx0)
Q

t�1
k=1 p(xxxk

|xxx
k�1)p(zzzk|xxxk

)

⇡(x

x

x0)
Q

t�1
k=1 ⇡(xxxk

|xxx0:k�1)| {z }
!t�1(xxx0:t�1)

p(x

x

x

t

|xxx
t�1)p(zzzt|xxxt

)

⇡(x

x

x

t

|xxx0:t�1)

= !

t�1(xxx0:t�1)
p(x

x

x

t

|xxx
t�1)p(zzzt|xxxt

)

⇡(x

x

x

t

|xxx0:t�1)
. (2.11)

Notably if we let the proposal distribution ⇡(x

x

x0:t) be distributed ac-
cording to p(x

x

x0:t), then the recursion formula simplifies to

!

t

(x

x

x0:t) = !

t�1(xxx0:t�1)p(zzzt|xxxt

). (2.12)

This formula lends itself open to an intuitive interpretation of the im-
portance weight as a measure of the combined likelihood of an obser-
vation sequence outcome given a underlying state sequence. Unfortu-
nately the SIS algorithm degenerates over time. The problem is that as
t increases the variance of the weights increases [15]. After some time
any estimate will be dominated by a few particles with relatively large
weights. Hence only a few particle trajectories will mainly contribut-
ing to the estimate. Again this lends itself to an intuitive explanation.
As the particles are only directed by the transition density there is no
control mechanism guiding any stray particle trajectory to states with
higher importance weights. Hence the simulated particle trajectories
are likely to deviate more from the true trajectory as more steps in time
are taken.

2.4 Sequential importance sampling with re-
sampling (SISR)

In order to address the weight degeneracy problem prevalent in SIS
a resampling step is employed, leading to the sequential importance
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sampling with resampling (SISR) algorithm (also known as the boot-
strap filter)[11]. The filtering procedure of the SISR algorithm is of-
ten described as being performed in two steps; the mutation step and
the selection step. The mutation step is simply the SIS method de-
scribed earlier in this paper. The selection step is a resampling pro-
cedure where the goal is to eliminate particles with low importance
weight and duplicate the ones with a high importance weight. The
rationale behind this being that by resampling the particles will not
be able to deviate as far from more likely states. Therefore filter esti-
mates will not be dominated by only a few particles and the weight
degeneracy problem is solved. More specifically selection step is pre-
formed using the following resampling procedure. Assume that we
are given a particle set {xxxj

0:t} and associated normalized importance
weights {W j

t

}1jM

(see equation (2.9)). We then sample with replace-
ment a new particle set {˜xxxj

0:t}1jM

from the original set {xxxj

0:t}1jM

.
The sampling probability of a particle x

x

x

j

0:t is equal to the correspond-
ing normalized importance weight W j

t

. Thus we end up with a new
particle set {˜xxxj

0:t}1jM

. Lastly, these new particles are all given equal
importance weights of !

t

(

˜

x

x

x

j

0:t) = 1. The new particle set is then used
in the next mutation step and the old set is discarded.

The selection step may not necessarily be performed after every mu-
tation step. One reason for not liberally performing resampling is that
this limits the explored state space by the particles. One way to deter-
mine when to resample is to consider some form of threshold criteria
depending on the importance weight variance.

Figure 2.2: An illustration of the genealogical trace generated by SISR.
The circles represents particles and the lines represents the particle his-
tory for the samples at time t. Note that there is less particle diversity
further in the past and more diversity closer to the present time t. This
is what as known as the path degeneracy problem
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Any estimate using SISR can be formed in the same way as in SIS us-
ing equation (2.8). Interestingly, the selection step entails that the ge-
nealogical track, or trajectory, of the particles x

x

x

j

0:t are realizations of
the joint smoothing distribution defined by p(x

x

x0:t|zzz0:t). However, esti-
mates depending on past states become worse the further back we go.
This is due to the collapse in the genealogical track of the particles (i.e.
particles history) induced by the resampling mechanic. An illustration
of this phenomena is presented in Figure 2.2. It is therefore ill-advised
to simply use the genealogical particle history of current particles in
order to approximate smoothed expectations, such as smoothed state
expectaions E[XXX

t

|ZZZ0:T ]. Thus SISR is most useful when determining
filter estimates, i.e. estimates on the form E[f

t

(X

X

X

t

)|ZZZ0:t]. Other meth-
ods are required in order to obtain more reliable smoothed estimates.
The employed version of SISR in this paper is described in Algorithm
2 in Appendix A.

2.5 Fixed lag smoothing (FLS)

One method for acquiring smoothed estimations is the fixed lag smooth-
ing (FLS) technique presented in [6] and further studied in [19]. FLS
aims to work around the path degeneracy problem of SISR by retriev-
ing approximate smoothed estimates before the path trajectories fully
collapses. This technique relies on the so called forgetting properties
of the conditional underlying Markov chain. I.e that the distributions
of two Markov chains with the same transition density but with differ-
ent initial distributions will, as time passes, approach each other [19].
FLS takes advantage of this forgetting property by making the approx-
imation

E[s
t

(X

X

X

t�1,XXX t

)|ZZZ0:T ] ⇡ E[s
t

(X

X

X

t�1,XXX t

)|ZZZ0:h(�T )] (2.13)

where h(�

T

) = min(t + �

T

, T ) and �

T

 T � t is a lag parameter
which dictates how many future data points we consider. Given parti-
cles {xxxj

0:h(�T )}1jM

and associated importance weights {!j

h(�T )}1jM

generated from the SISR algorithm we can construct smoothed esti-
mates of some function f

t

(X

X

X

t

) according to
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ˆE[f
t

(X

X

X

t

)|ZZZ0:T ] =

MP
j=1

!

j

h(�T )ft[xxx
j

0:h(�T )(t)]

MP
j=1

!

j

h(�T )

(2.14)

where xxxj

0:h(�T )(t) is the state at time t for the particle trajectory x

x

x

j

0:h(�T ).
1 Smoothed estimates of the of the sum of additive functionals as pre-
sented in equation (2.2) can be obtained using

ˆ

S

T

= E
"

TX

t=1

s

t

(x

x

x

t�1,xxxt

)|ZZZ0:T

#
⇡

TX

t=1

MX

j=1

!

j

h(�T )st[xxx
j

0:h(�T )(t� 1 : t)]

MP
j=1

!

j

h(�T )

.

(2.15)

Fixed lag smoothing has a computational complexity with respect to
particles of O(M), but requires a recent history of all particles ge-
nealogical trace of size �

T

⇥ M to be stored in memory. Choosing
the lag �

T

may not be trivial due to a bias-variance trade-off inherit in
the method. A low value of the lag �

T

will lead to a bias being present
as the approximation in equation (2.13) becomes coarse. On the other
hand, a too high value of the lag �

T

might decrease the particle diver-
sity used in the estimation due to the collapse of the path trajectories.
Leading to not only higher estimation variance but also an increase
in bias [19]. If there are many additive functionals to be computed,
then it might be less cumbersome to simply calculate smoothed expec-
tation of the underlying state variable X

X

X

t

by utilizing equation (2.14).
The smoothed state estimates can then be used to estimate the additive
functionals directly.

1Note that trajectory sample x

x

x

j
0:h(�T )(t) may be different from the particle filter

sample x

x

x

j
t . The difference can be seen in Figure 2.2 where x

x

x

j
0:t(t � 3) has the state

value of the orange samples for all indices j. Whereas the particle filter samples xxxj
t�3

are all the state values (orange and grey) at time t� 3.
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2.6 Forward-filtering backward-smoothing (FF-
BSm)

As mentioned in Section 2.4, one can form smoothed estimates using
SISR. However due to the path degeneracy problem these estimates
are often poor. The forward-filtering backward-smoothing (FFBSm) al-
gorithm seeks to remedy this by reevaluating the importance weights
generated by SISR in a backwards pass of the data set.

Key to the FFBSm algorithm is the following decomposition of the
smoothing distribution

p(x

x

x

t

|zzz0:T ) = p(x

x

x

t

|zzz0:t)
Z

p(x

x

x

t+1|zzz0:T )p(xxxt+1|xxxt

)

p(x

x

x

t+1|zzz0:t) dx

x

x

t+1. (2.16)

Note that p(xxx
t

|zzz0:t) is the filtering distribution, which can be accurately
approximated using SISR. In order to present the algorithm in a more
intuitive way we first present the first backward step, approximating
p(x

x

x

T�1|zzz0:T ) in a similar way to [7]. Given a observation sequence re-
alization Z

Z

Z0:T = z

z

z0:T a forward pass of the data is made using SISR,
storing the particle filter samples {xxxj

t

}1jM

and their associated nor-
malized importance weights {W j

t

}1jM

for every time step t. Using
the decomposition presented in equation (2.16) we have that

p(x

x

x

T�1|zzz0:T ) = p(x

x

x

T�1|zzz0:T�1)

Z
p(x

x

x

T

|zzz0:T )p(xxxT

|xxx
T�1)

p(x

x

x

T

|zzz0:T�1)
dx

x

x

T

. (2.17)

By applying the Monte Carlo estimate described in equation (2.8) we
can form the following approximation

Z
p(x

x

x

T

|zzz0:T )p(xxxT

|xxx
T�1)

p(x

x

x

T

|zzz0:T�1)
dx

x

x

T

=

Z
p(x

x

x

T

|xxx
T�1)

p(x

x

x

T

|zzz0:T�1)
p(x

x

x

T

|zzz0:T )dxxxT

. ⇡
MX

j=1

W

j

T

p(x

x

x

j

T

|xxx
T�1)

p(x

x

x

j

T

|zzz0:T�1)
(2.18)

Where, again using the Monte Carlo filter estimation, we have that can
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approximate p(x

x

x

j

T

|zzz0:T�1) via

p(x

x

x

j

T

|zzz0:T�1) =

Z
p(x

x

x

j

T

|xxx
T�1)p(xxxT�1|zzz0:T�1)dxxxT�1

⇡
MX

l=1

W

l

T�1p(xxx
j

T

|xxxl

T�1). (2.19)

Using equations (2.17) - (2.19) we can form the following smoothed
estimate

ˆE[f
T�1(XXXT�1)|ZZZ0:T ] =

MX

i=1

W

i

T�1

"
MX

j=1

W

j

T

p(x

x

x

j

T

|xxxi

T�1)P
M

l=1 W
l

T�1p(xxx
j

T

|xxxl

T�1)

#
f

T�1(xxx
i

T�1)

(2.20)
where f

T�1(XXXT�1) is an integrable function. By defining the reevalu-
ated importance weight at time T � 1 as

W

i

T�1|T :

=

MX

j=1

W

j

T

W

i

T�1p(xxx
j

T

|xxxi

T�1)P
M

l=1 W
l

T�1p(xxx
j

T

|xxxl

T�1)
(2.21)

we end up with the following shorter formulation of equation (2.20)

ˆE[f
T�1(XXXT�1)|ZZZ0:T ] =

MX

i=1

W

i

T�1|TfT�1(xxx
i

T�1). (2.22)

In general, any reevaluated importance weight can be computed using
the following recursive formula

W

i

t|T :

=

MX

j=1

W

j

t+1|T
W

i

t

p(x

x

x

j

t+1|xxxi

t

)

P
M

l=1 W
l

t

p(x

x

x

j

t+1|xxxl

t

)

(2.23)

with W

i

T |T :

= W

i

T

. Using this recursive expression smoothed estimates
of any integrable function f

t

(X

X

X

t

) can be retrieved using

ˆE[f
t

(X

X

X

t

)|ZZZ0:T ] =

MX

i=1

W

i

t|Tft(xxx
i

t

). (2.24)

FFBSm is not an online algorithm as it requires all particle filter sam-
ples {xxxj

t

}1jM

and their associated normalized importance weights
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{W j

t

}1jM

for every time step t to be computed before the backwards
pass. FFBSm also suffers from high computational complexity with
respect to the number of particles M of O(M

2
).

2.7 Forward-only forward-filtering backward-
smoothing (forward-only FFBSm)

Since application areas, such as SLAM, often require smoothed estima-
tions to be performed online we will present the forward-only FFBSm
algorithm proposed in [17]. Using this algorithm it is possible to re-
cursively compute smoothed expectations of additive functionals (see
equation 2.1) in a single forward pass of the data. However, unless we
specifically target every single underlying state XXX

t

(which is impracti-
cal), we sacrifice information of the complete smoothed state sequence
X

X

X0:T |ZZZ0:T .

We define the following auxiliary function ⌧
t+1(xxxt+1) := E[S

t

(X

X

X0:t)|XXX t

=

x

x

x

t

, z

z

z0:t] and note that this function can be updated recursively using the
tower rule of conditional expectations by

⌧

t+1(xxxt+1) =E[S
t+1(XXX0:t+1)|XXX t+1 = x

x

x

t+1, zzz0:t+1]

=E[s
t+1(XXX t

,X

X

X

t+1) + E[S
t

(X

X

X0:t)|XXX t

= x

x

x

t

, z

z

z0:t]|XXX t+1 = x

x

x

t+1, zzz0:t+1]

=E[s
t+1(XXX t

,X

X

X

t+1) + ⌧

t

(x

x

x

t

)|XXX
t+1 = x

x

x

t+1, zzz0:t+1]

=

Z
[⌧

t

(x

x

x

t

) + s

t

(x

x

x

t

,x

x

x

t+1)] p(xxxt

|zzz0:t,xxxt+1)dxxxt

. (2.25)

One can then form a smoothed estimate of an additive functional as

ˆ

S

t

= E[E[S
t

(X

X

X0:t)|XXX t

= x

x

x

t

, z

z

z0:t]|zzz0:t]
= E[⌧

t

(x

x

x

t

)|zzz0:t] =
Z
⌧

t

(x

x

x

t

)p(x

x

x

t

|zzz0:t)dxxxt

(2.26)

As the function ⌧

t

(x

x

x

t

) can be computed recursively using equation
(2.25) we now have an online method for determining ˆ

S

t

. Using Bayes
theorem we have that

p(x

x

x

t

|zzz0:t,xxxt+1) =
p(x

x

x

t

,x

x

x

t+1|zzz0:t)
p(x

x

x

t+1|zzz0:t) (2.27)
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where again by Bayes and conditional independence we have that

p(x

x

x

t

,x

x

x

t+1|zzz0:t) = p(x

x

x

t+1|xxxt

)p(x

x

x

t

|zzz0:t) (2.28)

and

p(x

x

x

t+1|zzz0:t) =
Z

p(x

x

x

t

,x

x

x

t+1|zzz0:t)dxxxt+1

=

Z
p(x

x

x

t+1|xxxt

)p(x

x

x

t

|zzz0:t)dxxxt+1. (2.29)

Using equation (2.28) and (2.29) we can rewrite equation (2.25) as

⌧

t+1(xxxt+1) =

Z
[⌧

t

(x

x

x

t

) + s

t

(x

x

x

t

,x

x

x

t+1)]
p(x

x

x

t+1|xxxt

)p(x

x

x

t

|zzz0:t)R
p(x

x

x

t+1|xxxt

)p(x

x

x

t

|zzz0:t)dxxxt+1
dx

x

x

t

(2.30)
Assuming that we have particle samples {xxxj

t

,x

x

x

j

t+1}1jM

with associ-
ated normalized importance weights {W j

t

,W

j

t+1}1jM

targeting the
filter distribution and previous estimates {⌧̂

t

(x

x

x

j

t

)}1jM

of {⌧
t

(x

x

x

j

t

)}1jM

.
Then we can form smoothed Monte Carlo estimates of additive func-
tionals using the relationships expressed in equation (2.26) and (2.30)
via

ˆ

S

t

⇡
MX

i=1

W

i

t+1⌧̂t+1(xxx
i

t+1) (2.31)

where

⌧̂

t+1(xxx
i

t+1) =

P
M

j=1 W
j

t

p(x

x

x

i

t+1|xxxj

t

)

⇥
⌧̂

t

(x

x

x

j

t

) + s

t+1(xxx
j

t

,x

x

x

i

t+1)
⇤

P
M

l=1 W
l

t

p(x

x

x

i

t+1|xxxl

t

)

. (2.32)

This recursive formula is initialized by setting {⌧0(xxxj

0)}1jM

= 0. The
computational complexity of this algorithm is its native form is O(M

2
).

However according to [17], it is possible to reduce this to O(M logM)

using techniques discussed in [14]. The forward-only FFBSm algo-
rithm used in this paper is given in Algorithm 4 in Appendix A.
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2.8 Forward-filtering backward-simulation (FF-
BSi)

Similarly to the FFBSm algorithm presented in Section 2.6 the forward-
filtering backward-simulation (FFBSi) algorithm [10] relies on first per-
forming a forward filtering pass of the data and then a smoothing
backwards pass. However, rather than reevaluating the importance
weights the smoothing in the FFBSi algorithm is performed by reeval-
uating the particles. This is done by simulating path trajectories from
the time-reversed discrete Markov chain with the M ⇥ M transition
matrix {⇤M

t

(j, i)}1iM,1jM

given by

⇤

M

t

(j, i)

:

=

W

j

t�1p(xxx
i

t

|xxxj

t�1)P
M

l=1 W
l

t�1p(xxx
i

t

|xxxl

t�1)
. (2.33)

The Markov chain starts by drawing a particle index J

T

such that
p(J

T

= i) = W

i

T

. It proceeds by drawing J

t

according to p(J

t

= j|J
t+1 =

i) = ⇤

M

t

(j, i) for t  T�1. Hence, the joint probability density function
for the index sequence J0:T :

= {J0, J1, . . . , JT} becomes

p(J0:T = j0:T ) = W

jT
T

T�1Y

t=0

⇤

M

t

(j

t

, j

t+1). (2.34)

The particle path {xxxj0
0 ,xxx

j1
1 , . . . ,xxx

jT
T

} is then a realization of the joint dis-
tribution defined by p(x

x

x0:t|zzz0:t). Therefore, by simulating ˆ

M such sam-
ples producing the index sequences {j⌘0 , j⌘1 , . . . , j⌘

T

}1⌘M̂

we can form
the following smoothed estimate for additive functionals

ˆ

S

T

=

ˆ

M

�1
M̂X

⌘=1

S

T

(x

x

x

j

⌘
0
0 ,x

x

x

j

⌘
1
1 , . . . ,x

x

x

j

⌘
T
T

). (2.35)

FFBSi is not an online method as we require a complete sequence of
particles and importance weights generated by the forward filtering
process. The computational complexity of this method with respect
to the particle number is O(M

ˆ

M). In the case that ˆ

M = M the FFBSi
algorithm will therefore have quadratic complexity.
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2.8.1 Fast version of forward-filtering backward-simulation
(fast FFBSi)

One mayor hindrance to lowering the complexity is the need for cal-
culating the normalizing constant

P
M

l=1 W
l

t�1p(xxx
i

t

|xxxl

t�1) present in equa-
tion (2.33) for every index i and time step. Following [5], this computa-
tion can be avoided by utilizing an accept-reject-based approach which
yields a lowered computational complexity of, in best case, O(M).

In order to sample from the time-reversed transition matrix ⇤

M

t

(j, i)

without computing the normalizing constant, the accept-reject method
described in Section 2.11 is utilized. This accept-reject-based approach
relies on the assumption that there exists a number ✏+ 2 R+ such that
for all possibles values of (xxx

t

,x

x

x

t�1) we have that p(xxx
t

|xxx
t�1)  ✏+. Us-

ing similar notation as in Section 2.11, we draw a candidate proposal
J

⇤
t

from the proposal distribution defined by p(J

⇤
t

= j) = W

j

t

. This
proposal is accepted with probability p(x

x

x

Jt+1
t+1 ,xxx

J

⇤
t

t

)/✏+. In the context of
Section 2.11, this follows from letting g(j) = W

j

t

define our proposal
distribution and ⇡(j) = W

j

t

p(x

x

x

Jt+1
t+1 ,xxx

j

t

) define our unnormalized target
distribution

2.9 The particle based, rapid incremental smoother
(PaRIS)

The PaRIS algorithm is an online smoothing algorithm based on the
same decomposition and recursive formula as forward-only FFBSm.
However, compared to the forward-only FFBSm algorithm, the PaRIS
algorithm has lower computational complexity of O(M). This is achieved
by implementing an accept-reject-based sampling method similar to
that of the fast version of the FFBSi algorithm. Instead of computing
the probability

⇤

M

t

(j, i)

:

=

W

j

t�1p(xxx
i

t

|xxxj

t�1)P
M

l=1 W
l

t�1p(xxx
i

t

|xxxl

t�1)
(2.36)
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present in equation (2.32) directly we (given a previous estimate {⌧̂
t

(x

x

x

j

t

)}1jM

of {⌧
t

(x

x

x

j

t

)}1jM

) form the estimate

⌧̂

t+1(xxx
i

t+1) =
˜

M

�1
M̃X

⌘=1

✓
⌧̂

t

(x

x

x

K

i,⌘
t+1

t

) + s

t+1(xxx
K

i,⌘
t+1

t

,x

x

x

i

t+1)

◆
(2.37)

where {Ki,⌘

t+1}1iM,1⌘M̃

are particle indices drawn with a probabil-
ity

p(K

i,⌘

t+1 = j) = ⇤

M

t+1(j, i). (2.38)

This sampling of particle indices is done by using the accept-reject-
based sampling method described in Section 2.11 in a similar manner
as for fast FFBSi. In equation (2.37) ˜

M is a design parameter deter-
mining the amount of backward samples used in the estimation. It is
advised by the authors to let ˜

M � 2 in order to keep numerical stabil-
ity (see page 13 in [18] for discussion as to why).

The accept-reject sampling algorithm in PaRIS also includes a thresh-
old mechanic on the number of rejected samples. This is implemented
in order to ensure more consistent computation times. This thresh-
old is suggested to be set to

p
M , which is a rule of thumb value by

the authors (page 22, [18]). Pseudocode for the accept-reject sampling
algorithm and the PaRIS algorithm used in this paper is given in algo-
rithm 5 and 6 respectively in appendix A.

2.10 Expectation-maximization (EM)

Expectation-maximization (EM) is an iterative method for finding max-
imum likelihood estimates of model parameters ✓. It is divided into
two steps, the expectation step (E-step) and the maximization step (M-
step). In the E-step the intermediate quantity defined as

Q(✓|✓i) := E
✓

i
[log(L(✓|XXX0:T ,ZZZ0:T ))|ZZZ0:T ] (2.39)

is calculated, where E
✓

i specifies the expectation given a previous model
parameter estimate ✓i and L(✓|XXX0:T ,ZZZ0:T ) is the complete data likelihood
function. Note that ✓ can be a vector valued parameter, as is the case
later in this paper. For an HMM model, the complete data likelihood
function is given by
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L(✓|XXX0:T ,ZZZ0:T ) = p

✓

(X

X

X0)p✓(ZZZ0|XXX0)

TY

t=1

p

✓

(X

X

X

t

|XXX
t�1)p✓(ZZZt

|XXX
t

) (2.40)

where p

✓

(·) denotes a probability density function under a model pa-
rameter ✓. In the M-step the parameter value ✓i+1 which maximizes Q
given a previous estimate ✓i is calculated. In other words, one finds
✓

i+1 such that

✓

i+1
= argmax

✓

Q(✓|✓i). (2.41)

Of specially interest is the case that the complete data likelihood L(✓|XXX0:T ,ZZZ0:T )

is part of the exponential family of distributions. This means that the
complete data likelihood function can be written as

L(✓|XXX0:T ,ZZZ0:T ) = h(x

x

x0:T ) exp(h�(✓), S(xxx0:T )i � c(✓)) (2.42)

where h·, ·i denotes the scalar product, �(✓) and c(✓) are known func-
tions and S(x

x

x0:T ) is a sufficient statistic. S(xxx0:T ) being a sufficient statis-
tic means that there is no other function of the data set xxx0:T that pro-
vides additional information about the parameter ✓. Notably, S(xxx0:T )

can be of the form of an additive functional. Due to the structure of
equation (2.42) the maximization performed in the M-step only re-
quires that one maximizes

h�(✓), S(xxx0:T )i � c(✓) (2.43)

with respect to ✓. Conveniently, one can often find a closed form so-
lution to the maximization of equation (2.43). If such a closed form
solution does not exist or is not easily obtainable, then one may use
numerical methods to perform the M-step or apply Taylor series ap-
proximations to force a closed solution. The E- and M-step are then
repeated until convergence.

The version of the EM algorithm described in this section is sometimes
referred to as the batch, or offline EM algorithm. This is because one
needs to process all observational data z

z

z0:T before each update of any
parameters. Although not applied in this paper it is noted here that
there is also an online version of the EM algorithm proposed in [4].
The batch EM algorithm used in the context of this paper is presented
with pseudocode in Algorithm 7 in Appendix A.



CHAPTER 2. BACKGROUND 21

2.11 Accept-reject sampling

Suppose that we want to sample from a distribution with probability
density function p(y) given by

p(y) =

⇡(y)R
⇡(y)dy

. (2.44)

However, as the integral may be hard or computationally expensive to
determine, we want to circumvent a direct computation of the denomi-
nator. The accept-reject algorithms does so in the in the following way.
Assume that we can sample from a distribution with proposal density
g(y) and let there be a finite constant ✏+ such that 0  ⇡(y)  ✏+g(y)

for all values of y. Then we can generate samples from p(y) using the
following scheme.

1. Sample a proposal Y with density proportional to g(y).

2. Sample a threshold value U from a uniform distribution stretch-
ing between 0 and 1.

3. If
U  ⇡(Y )

✏+g(Y )

(2.45)

then we accept the proposal, else one repeats the process until
acceptance.

The accepted proposals will then be distributed according to p(y) [9].
We note that it is possible to preform this sampling method by choos-
ing ✏+ such that ⇡(y) < ✏+g(y). However, the closer the function ✏+g(y)
is to ⇡(y), the higher the probability of acceptance becomes and the
faster a sample can be drawn. It is therefore advantageous to let ✏+ be
as small as possible whilst still fulfilling the necessary condition.
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Methodology

This section seeks to present how the solution methods were struc-
tured and the necessary calculations made in order to utilizes them.

3.1 Definitions

We defined the following random variables and parameters.

• The state-space X :

= {(a, b, ) 2 R3| 2 [�⇡, ⇡)}.

• The observable space Z :

= {(a, ) 2 R2| 2 [�⇡, ⇡)}
• The set of random variables X

X

X0:T :

= {XXX0,XXX1, . . . ,XXXT

} that rep-
resented the hidden states. For t 2 {0, 1, . . . , T} we had that

X

X

X

t

=

2

4
X

t,1

X

t,2

X

t,3

3

5 2 X (3.1)

where (X
t,1, Xt,2) represented the robots position in the real plane

and X

t,3 2 [�⇡, ⇡) its orientation in in said plane.

• The set of landmarksmmm = {mmm1,mmm2, . . . ,mmmN

}. For i 2 {0, 1, . . . , N}
we had that

m

m

m

i

=


m

i,1

m

i,2

�
2 R2 (3.2)

where (m

i,1,mi,2) represented the i’th landmarks position.

22
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• The sets of indexes of observed landmarks {A
t

}0tT

such that if
the landmark was observed at time t, then i 2 A

t

else i 62 A
t

.

• The set of random variables ZZZ0:T = {ZZZ0,A0 ,Z
Z

Z1,A1 , . . . ,Z
Z

Z

T,At} that
represented the landmark observations such thatZZZ

t,At = (Z

Z

Z

t,i

)

i2At

where Z

Z

Z

t,i

was an individual landmark observation at time t. In
turn, we had that

Z

Z

Z

t,i

=


Z

t,i,1

Z

t,i,2

�
2 Z (3.3)

where Z

t,i,1 was the observed distance to the landmark m

m

m

i

and
Z

t,i,2 was the observed relative angle between the robots bearing
and the landmark m

m

m

i

.

• The set of control inputsuuu0:T = {uuu0,uuu1, . . . ,uuuT

}. For t 2 {0, 1, . . . T}
we had

u

u

u

t

=


v

t

�

↵

t

�
(3.4)

where v

t

2 R was the travel velocity at time t, � 2 {a 2 R|a > 0}
was the step size and ↵

t

2 [�⇡, ⇡) represented the desired change
in orientation at time t. For clarification, the step size � was a
measure of time distinct from the time index t. Furthermore, uuu0:T

was considered a known constant.

3.2 Procedure

We formalized the SLAM problem using an HMM where the robots
state sequence was modelled as a Markov chain {XXX

t

}0tT

and the se-
quence of landmark observations were considered a realization of the
observation variables Z

Z

Z0:T . As such, the initial distribution p(x

x

x0), the
transition probability p(x

x

x

t

|xxx
t�1,uuut

), the emission distribution defined
by p(z

z

z

t

|xxx
t

,m

m

m) and the sequence of control inputs u

u

u0:T were all con-
sidered known. The map m

m

m, however, was considered an unknown
model parameter.

To receive test data we used the HMM to simulate an observation and
a control sequence given a known map and trajectory. The aim was
then to use particle-based methods to estimate the hidden state se-
quence {XXX

t

}0tT

and the mapm

m

m given only the observation sequence
{zzz

t

}0tT

and the control sequence {uuu}0tT

. To gather filter estimates
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of the state sequence X

X

X0:T we used the sequential importance sampling
with resampling SISR algorithm. To produce the map estimates we
used the well-established offline EM algorithm. Hence we required
smoothed estimates of sufficient statistics with respect to the map m

m

m.
These estimates were determined using three different smoothing al-
gorithms. These were: the fixed lag smoothing (FLS) [19] algorithm,
the forward-only forward-filtering backward-smoothing (forward-only FF-
BSm) [17] algorithm and the particle-based, rapid incremental smoother
(PaRIS) algorithm [18]. Evaluations and comparison were then made
regarding the effectiveness of these three approaches given a time bud-
get.

A more in-depth description of the data generation process and the
simulation results is presented in Section 4. The overall solution method
is described in pseudocode in Algorithm 1 below and pseudocode for
all used algorithms is presented in Appendix A.

Algorithm 1 Particle-based SLAM procedure
1: Assume that an observation sequence z

z

z0:T , a control sequence u

u

u0:T

and an initial map estimate mmm0 are available.
2: forforfor k = 1! K

3: forforfor t = 0! T

4: Given an observation z

z

z

t

and a map estimate m

m

m

k�1 generate a
particle set {W j

t

,x

x

x

j

t

}1jM

and a filter estimate of the state ˆ

x

x

x

t

using
the SISR algorithm.

5: Given a particle set {W j

t

,x

x

x

j

t

}1jM

compute smoothed expec-
tations of S

t

(X

X

X0:t) using either FLS, forward-only FFBSm or PaRIS.

6: end forend forend for
7: Given a smoothed expectation of S

T

(X

X

X0:T ) produce a new map es-
timate mmmk+1 using the EM algorithm

8: end forend forend for
9: returnreturnreturn the latest map m

m

m

K and trajectory ˆ

x

x

x0:T estimates
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3.3 Transition and observation model

The state sequence was initialized by setting X

X

X0 =

~

0 and state transi-
tion model was defined according to

2

4
X

t,1

X

t,2

X

t,3

3

5
=

2

4
X

t�1,1

X

t�1,2

X

t�1,3

3

5
+

2

4
v

t

� cos(X

t�1,3)

v

t

� sin(X

t�1,3)

↵

t

3

5
+

2

4
✏

dt,1

✏

dt,2

✏

↵t

3

5 (3.5)

where ✏
dt,1 , ✏dt,2 , ✏↵t are normally distributed noise variables with stan-

dard deviation �
dt,1 , �

dt,2 and �

↵t respectively.

The observation model was given by

Z

Z

Z

t,i

=


Z

t,i,1

Z

t,i,2

�
=


⇢

⇤
(X

X

X

t

,m

m

m

i

) + !

⇢

�

⇤
(X

X

X

t

,m

m

m

i

) + !

�

�
=

"p
(X

t,1 �m

i,1)
2
+ (X

t,2 �m

i,2)
2
+ !

⇢

arctan

⇣
Xt,2�mi,2

Xt,1�mi,1

⌘
�X

t,3 + !

�

#

(3.6)
where !

⇢

and !

�

are normally distributed noise variables with stan-
dard deviation �

⇢

and �

�

respectively.

3.4 Analytical expression of the transition den-
sity

In order to utilize the forward-only FFBS algorithm we required the
analytical expression of the transition density p(X

X

X

t

|XXX
t�1 = x

x

x

t�1,uuut

).
We had that

p(X

X

X

t

|XXX
t�1,uuut

) = p(X

t,1, Xt,2, Xt,3|Xt�1,1, Xt�1,2, Xt�1,3,uuut

). (3.7)

Given the transition model presented in equation (3.5) we had due to
conditional independence that

p(X

t,1, Xt,2, Xt,3|Xt�1,1, Xt�1,2, Xt�1,3,uuut

) =

p(X

t,1|Xt�1,1, Xt�1,3,uuut

)p(X

t,2|Xt�1,2, Xt�1,3,uuut

)p(X

t,3|Xt�1,3,uuut

).

(3.8)

It was clear from the model that
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p(X

t,1|Xt�1,1, Xt�1,3,uuut

) =

1q
2⇡�

2
dt,1

exp

 
�1

2

(X

t,1 � (X

t�1,1 + v

t

� cos(X

t�1,3)))
2

�

2
dt,1

!

(3.9)
and

p(X

t,2|Xt�1,2, Xt�1,3,uuut

) =

1q
2⇡�

2
dt,2

exp

 
�1

2

(X

t,2 � (X

t�1,2 + v

t

� sin(X

t�1,3)))
2

�

2
dt,2

!
.

(3.10)
However as {X

t,3}0tT

2 [�⇡, ⇡) we had that X
t,3|Xt�1,3,uuut

followed
a wrapped normal distribution. Therefore

p(X

t,3|Xt�1,3,uuut

) =

1p
2⇡�

2
↵t

1X

k=�1

exp

✓
�1

2

(X

t,3 + 2⇡k � (X

t�1,3 + ↵

t

))

2

�

2
↵t

◆
.

(3.11)
An approximate solution was thus given by

p(X

t,3|Xt�1,3,uuut

) =

1p
2⇡�

2
↵t

X

k=�

exp

✓
�1

2

(X

t,3 + 2⇡k � (X

t�1,3 + ↵

t

))

2

�

2
↵t

◆
.

(3.12)
where  is an integer. Using equations (3.8), (3.9), (3.10) and (3.12) we
could acquire the following lengthy approximation of the transition
density;

p(X

X

X

t

|XXX
t�1,uuut

) =

1

2⇡�

dt,1�dt,2

exp

 
�1

2

⌃

�1
X

X

X

✓
X

t,1

X

t,2

�
�

X

t�1,1 + v

t

� cos(X

t�1,3)

X

t�1,2 + v

t

� sin(X

t�1,3)

�◆2
!

· 1p
2⇡�

2
↵t

X

k=�

exp

✓
�1

2

(X

t,3 + 2⇡k � (X

t�1,3 + ↵

t

))

2

�

2
↵t

◆

(3.13)

where ⌃

X

X

X

=


�

2
dt,1

0

0 �

2
dt,2

�
.
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3.5 Selecting an upper bound for the transi-
tion density

In order to utilize the accept-reject sampling method as part of the
PaRIS algorithm we needed to determine an upper bound to the tran-
sition density. Using the analytical expression of the transition den-
sity presented in equation (3.13) we derived that an upper bound was
given by

max

x

x

xt

p(x

x

x

t

|xxx
t�1,uuut

) ⇡ 1q
2⇡�

2
dt,1

1q
2⇡�

2
dt,2

X

k=�

exp

⇣
� (2⇡k)2

2�2
↵t

⌘

p
2⇡�

2
↵t

=

1

(2⇡)

3/2
�

dt,1�dt,2�↵t

X

k=�

exp

✓
�(2⇡k)

2

2�

2
↵t

◆
(3.14)

Hence the constant ✏+ bounding the transition density could be set
to

✏+ =

1

(2⇡)

3/2
�

dt,1�dt,2�↵t

X

k=�

exp

✓
�(2⇡k)

2

2�

2
↵t

◆
. (3.15)

Note that this value is an underestimate and does not fulfill that p(xxx
t

|xxx
t�1,uuut

) 
✏+ due to  being a finite constant. However, this should not pose an
issue for sufficiently large values of a.

3.6 Derivation of EM updating formula

As we aimed to utilize the EM algorithm presented in Section 2.10 we
had to find a solution to the inherit maximization problem. Further-
more, we wished to find a closed form solution to ease implementa-
tion. Since the observations ZZZ0:T were considered conditionally inde-
pendent of the control uuu0:T given the state sequence X

X

X0:T we had by
Bayes theorem that

f(X

X

X0:T ,ZZZ0:T |mmm,u

u

u0:T ) = f(Z

Z

Z0:T |mmm,X

X

X0:T = x

x

x0:T )f(XXX0:T |mmm,u

u

u0:T ). (3.16)
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Given that XXX0:T was assumed to be independent of the map m

m

m we had
that f(XXX0:T |mmm,u

u

u

t

) = f(X

X

X0:T |uuut

) and thus

argmax

m

m

m

f(X

X

X0:T ,ZZZ0:T |mmm,u

u

u

t

) = argmax

m

m

m

f(Z

Z

Z0:T |mmm,X

X

X0:T = x

x

x0:T ). (3.17)

Since the observations at different times were assumed to be condi-
tionally independent given the map and state we had that

f(Z

Z

Z0:T |mmm,X

X

X0:T = x

x

x0:T ) =

TY

t=0

f(Z

Z

Z

t,At |mmm,X

X

X

t

= x

x

x

t

). (3.18)

This could be factorized further under the assumption that the differ-
ent landmark observations were conditionally independent given the
map and the state. Hence

TY

t=0

f(Z

Z

Z

t,At |mmm,X

X

X

t

= x

x

x

t

) =

NY

i=1

TY

t=0

i2Atf(ZZZt,i

|mmm
i

,X

X

X

t

= x

x

x

t

) (3.19)

where denotes the indicator function. Using our observation model
we had that

f(Z

Z

Z

t,i

|mmm
i

,X

X

X

t

= x

x

x

t

) =

=
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2⇡�

⇢

�

�
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(3.20)

where ⌃

Z

Z

Z

=


�

2
⇢ 0

0 �

2
�

�
. As the logarithm of a function is strictly increas-

ing we had that
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m

m

mi
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Z

Z
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. (3.21)

The probability density f(Z

Z

Z

t,i

|mmm
i

,X

X

X

t

= x

x

x

t

) is not part of the exponen-
tial family, partly due to the trigonometric expression in equation (3.6)
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and does not offer a closed form solution the problem of maximization.
As a remedy we approximated ⇢

⇤
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x

x

t

,m

m

m

i

) and �

⇤
(x

x

x
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) by the first or-
der Taylor series expansion. Hence given a previous map estimate m
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0
i

we had the linear estimates
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(3.22)

Inserting (3.22) in (3.21) yielded the intermediate quantity as Q(m|m0
) =P
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P
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Since ⇢̂⇤(xxx
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) and ˆ
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⇤
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x
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) are linear functions with respect
to m

i

we have that Q(m|m0
) is a quadratic function with respect to

m

i

. Hence a maximum of Q(m|m0
) was easily obtained by solving for

@Q(m|m0)
@mi

= 0 which resulted in the following updating formulas

m

i,1 =
d · c� e · b
a · d� b

2

m

i,2 =
e · a� b · c
a · d� b

2
(3.24)
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where a� e were defined as follows
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Although quite cumbersome as an expression we were only required
to compute the following sufficient statistics in order to utilize the up-



CHAPTER 3. METHODOLOGY 31

dating formulas given by equation (3.24):
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Note that the expressions above are all additive functionals on the
form mentioned in equation (2.2).



Chapter 4

Simulations

This section aims to provide a clear depiction of the performed exper-
iments and report the performance of the employed SLAM solution
methods.

4.1 Generation of observation and control se-
quences

In order to create fair comparisons between the algorithms we required
the inputted realizations of the observation sequence, zzz0:T and the con-
trol sequence u

u

u0:T to be the fixed and generated beforehand. Further-
more, as the SLAM problem is prevalent in a physical environment we
introduced units to make the results easily graspable.

The map of landmarks used is presented in Figure 4.1a together with
the waypoints, which the robot aims to traverse through. For the gen-
erated data set used, the robot looped through these waypoints three
times in an anti-clockwise fashion starting at the origin. The robot had
a top speed of 3m/s and would take readings and update the control
input every 0.1 s resulting in a total of 2771 readings. The robot had
a field of view of 30m and 180 degrees. Figure 4.1b shows the robot
trajectory generated in this setting.
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(a) The map with waypoints. (b) The map with the simulated robot
trajectory. The robot does three laps
anticlockwise starting at the origin

Figure 4.1: The map with and without the robot trajectory.

4.2 Design parameters

We considered the model described in Section 3.3 with noise standard
deviations set to (�

⇢

, �

�

, �

dt,1 , �dt,2 , �↵t) = (0.25m, 5⇡/180, 0.05m, 0.05m, 0.0175).
The three smoothing algorithms for computing the sufficient statistics
were restricted to an average runtime close to 277 seconds, which re-
sulted in the choices of design parameters presented in Table 4.1. The
runtime was determined such that the computations would keep up
with the data gathering pace required in an online setting.

Table 4.1: Design parameters with time restriction of 55 seconds

FLS FFBSM PaRIS
number of particles, M 3970 40 513
lag, �

T

20 - -
number of samples, ˜

M - - 2

The integer  used to approximate the maximum bound ✏+ of the tran-
sition density was set to  = 1 (see Section 3.5). The difference between
the approximate maximum bound for  = 1 and  = 2 was very low
(well below 10

�100). Hence the approximation was very close to the
true value.
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4.3 Map adjustment

As the estimated maps often are translated and/or rotated it can be
hard to assess and compare results. In order to ease interpretation the
maps were translated and rotated to best fit the maximum likelihood
map. The rotation was calculated by minimizing the mean adjusted
function

argmin
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where mmmML is the maximum likelihood map and � is the angle related
to the polar coordinate representation of the estimated map ˆ
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This least squares minimization problem was solved numerically.

4.3.1 Maximum likelihood map versus true map

As all three algorithms produce maximum-likelihood estimations of
the map and trajectory it is reasonable to compare the results to that of
the maximum-likelihood map and trajectory. The then difference be-
tween the true map and trajectory and the maximum-likelihood map
and trajectory is then another, separate comparison to make. Figure 4.2
shows the maximum-likelihood map with the true map. The maximum-
likelihood map was generated using the PaRIS algorithm with M =

1000 particles, ˜

M = 3 backward samples and 100 iterations of the EM
algorithm.
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Figure 4.2: The maximum-likelihood map versus the true map.

4.4 Simulation results

Figure 4.3 shows map and trajectory estimates for all smoothing algo-
rithms. The map estimates were taken after 10 iterations of the EM
algorithm using the three smoothing methods with the design param-
eters presented in Table 4.1.
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(a) FLS (b) FFBSm

(c) PaRIS

Figure 4.3: The maximum-likelihood map and trajectory and the es-
timated maps and trajectories computed using different smoothing
techniques.

Figures 4.4, 4.5, 4.6 and 4.7 presents boxplots related to the signed
error of landmarks estimates in relation to the maximum likelihood
estimate. The two targeted landmarks are placed at (�10, 50) and
(70,�10) (see Figure 4.2) and are the most and the least observed land-
marks respectively. The landmark estimates were generated from 10
simulations based on the same observation and control data. The al-
gorithms all performed 10 iterations with design parameters described
in Section 4.2. The landmark placements were adjusted as described
in Section 4.3.
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(a) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
X coordinate. The targeted land-
mark was the most observed land-
mark with 450 observations.

(b) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
Y coordinate. The targeted land-
mark was the most observed land-
mark with 450 observations.

(c) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
X coordinate. The targeted landmark
was the least observed landmark with
180 observations.

(d) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
Y coordinate. The targeted landmark
was the least observed landmark with
180 observations.

Figure 4.4: Box plots related to the error of landmark estimates ob-
tained using the FLS technique.
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(a) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
X coordinate. The targeted land-
mark was the most observed land-
mark with 450 observations.

(b) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
Y coordinate. The targeted land-
mark was the most observed land-
mark with 450 observations.

(c) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
X coordinate. The targeted landmark
was the least observed landmark with
180 observations.

(d) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
Y coordinate. The targeted landmark
was the least observed landmark with
180 observations.

Figure 4.5: Box plots related to the error of landmark estimates ob-
tained using forward-only FFBSM.
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(a) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
X coordinate. The targeted land-
mark was the most observed land-
mark with 450 observations.

(b) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
Y coordinate. The targeted land-
mark was the most observed land-
mark with 450 observations.

(c) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
X coordinate. The targeted landmark
was the least observed landmark with
180 observations.

(d) Signed error of estimated land-
marks position in relation to the max-
imum likelihood (ML) estimate in the
Y coordinate. The targeted landmark
was the least observed landmark with
180 observations.

Figure 4.6: Box plots related to the error of landmark estimates ob-
tained using PaRIS.
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Figure 4.7: The overall landmark mean squared error for different
smoothing methods and iterations. The boxplots are based on 10 sim-
ulations. Notably forward-only FFBSm has larger and more spread
mean squared error for all iterations.

Figures 4.8, 4.10 and 4.12 presents plots related to the convergence
of landmark estimates using FLS, forward-only FFBSm and PaRIS re-
spectively. The number of iterations was set to 60 and all algorithms
used the same input data set. The landmark placement was again ad-
justed to best fit the map for all iterations.
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(a) Estimates of the x position as a
function of iterations for the land-
mark located at (10, 10). The blue line
is the estimated position and the red
line is the maximum-likelihood posi-
tion.

(b) Estimates of the x position as a
function of iterations for the land-
mark located at (70, 70). The blue line
is the estimated position and the red
line is the maximum-likelihood posi-
tion.

Figure 4.8: Landmark estimates in the X-position obtained using the
FLS and EM algorithm as a function of iterations.

Figure 4.9: Plot of the mean squared error for estimated map in relation
to the maximum-likelihood map versus iterations of the FLS and EM
algorithm. There is a clear downward trend in mean squared error
apart from an increase at between around 10 and 20 iterations.
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(a) Estimates of the x position as a
function of iterations for the land-
mark located at (10, 10). The blue line
is the estimated position and the red
line is the maximum-likelihood posi-
tion.

(b) Estimates of the x position as a
function of iterations for the land-
mark located at (70, 70). The blue line
is the estimated position and the red
line is the maximum-likelihood posi-
tion.

Figure 4.10: Landmark estimates in the X-position obtained using the
forward-only FFBSm and EM algorithm as a function of iterations.

Figure 4.11: Plot of the mean squared error for estimated map in rela-
tion to the maximum-likelihood map versus iterations of the forward-
only FFBSm and EM algorithm. There is a clear downward trend in
mean squared error.
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(a) Estimates of the x position as a
function of iterations for the land-
mark located at (10, 10). The blue line
is the estimated position and the red
line is the maximum-likelihood posi-
tion.

(b) Estimates of the x position as a
function of iterations for the land-
mark located at (70, 70). The blue line
is the estimated position and the red
line is the maximum-likelihood posi-
tion.

Figure 4.12: Landmark estimates in the X-position obtained using the
PaRIS and EM algorithm as a function of iterations.

Figure 4.13: Plot of the mean squared error for estimated map in re-
lation to the maximum-likelihood map versus iterations of the PaRIS
and EM algorithm. There is a clear downward trend in mean squared
error.
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Discussion

The individual landmark estimates did not strictly converge to the
maximum likelihood placement, see for example Figure 4.4a or 4.5b.
Even the most observed landmark exhibited this behaviour, seemingly
independently of the method used (see for example Figure 4.4a, 4.5a,4.6a).
Although this can be somewhat alarming it is important to note that
the overall mean square error for all the landmarks is decreasing un-
der the same iteration period, see Figure 4.7. This is not a surpris-
ing result as we perform maximum-likelihood estimation with regards
to the whole map. However, there is an interesting increase in the
mean squared error for the FLS-based algorithm in the same figure.
This might be due to the process not "forgetting" previous states fast
enough for the approximation presented in equation (2.13) to be good.
It may also be due to the first order Taylor approximation present in
the EM algorithm or due to the filter and smoothing estimating pro-
cesses being stochastic in nature, thus creating some variation in the
map estimation process.

The in-sample variance was not strictly decreasing for the two chosen
landmarks as can be seen in Figure 4.4. This held true for all methods.
Overall, the most observed landmark (see Figure 4.4 (a)-(b), 4.5 (a)-(b)
and 4.6 (a)-(b)) had lower variance than the least observed landmark
(see Figure 4.4 (c)-(d), 4.5 (c)-(d) and 4.6 (c)-(d)) which is not a sur-
prising result. The spread in overall landmark mean square error was
highest for forward-only FFBSm, and lowest for FLS as visible in figure
4.7. This may be expected as when the number of particles used (see
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Table 4.1) increases, the consistency in the estimation process should
too. The reason for this is that having fewer particles would imply that
the state space is less explored, thus reducing consistency in the filter
estimation process of the robot trajectory.

As visible in Figure 4.9, 4.11 and 4.13 all algorithms converged towards
the maximum likelihood estimate with less clear convergence for in-
dividual landmarks (see Figure 4.8,4.10 and 4.12). There were mostly
small deviations from the downward trend of the means squared er-
ror for all methods, likely due to variation in the smoothing process
between EM iterations. However, again for the FLS method there was
a clear increase between the 10 and 20 iterations. As this increase was
much larger than for the other methods (which utilizes fewer number
of particles) it raises the likelihood that this is a phenomena specific
to the FLS process. However, it is noteworthy that this is based on
single, large runs of the algorithms. This behaviour might therefore
be universal for all algorithms and should probably be studied further
before drawing a clear conclusion.



Chapter 6

Conclusion

The aim of this paper was to explore new, and compare solutions to
the back-end part of SLAM based on particle methods. As such, three
different particle-based SLAM algorithms were implemented. The key
difference between the employed algorithms were the smoothing tech-
niques used. These smoothing techniques were fixed lag smoothing
(FLS) [19], forward-only forward-filtering backward-smoothing (forward-
only FFBSm) [17] and the particle-based, rapid incremental smoother
(PaRIS) algorithm [18]. All three methods were successful in construct-
ing maximum likelihood estimates of the map and robot trajectory.
Notably, with a runtime restriction of 277 seconds per smoothing iter-
ation, the forward-only FFBSm performed the worst with lower con-
sistency than both the other algorithms. This is likely because of the
lower particle number available due to the quadratic complexity of the
employed method. The most consistent estimator was the FLS-based
algorithm. However it also saw an increase in the mean squared error
of the map estimates, possibly due to biases present in the smooth-
ing method. In the window of 10 iterations, the FLS- and the PaRIS-
based algorithm performed considerably better than the forward-only
FFBSm algorithm. Although more research is required, both the FLS-
and the PaRIS-based algorithm shows some promising results for the
application of particle-based methods to the SLAM problem.
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6.1 Improvements

The SLAM model and estimation algorithms presented in this paper
has a high degree of freedom. There is therefore many possible aspect
to consider when comparing algorithms. Different algorithm-unique
design parameters such as the lag for the FLS algorithm could be op-
timized further. The forward-only FFBSm method used had quadratic
complexity, whereas it is possible to reduce this to O(M logM) [17].
Using the lower complexity version of forward-only FFBSm could rem-
edy the experienced relatively high in-sample variance.

Due to the large simulation times, only 10 samples from each algo-
rithm was used. A larger sample size would be appropriate to get
more easily interpreted results. It could also bring insight to whether
the increasing mean squared error is specific to the FLS-based method.

For the used model presented in Section 3.3 it is possible for the robot
to detect landmarks outside its field of view. This is because the max-
imum detectable range and angle is determined as a realization of a
Gaussian centered around the cut-off range and angle. As this might
not be possible in a real-world application the model can be improved
by more strictly enforcing the cut-off values such as by limiting the
observation distribution.

6.2 Further research

This paper was limited to investigating the performance of the meth-
ods compared to each other As such, there is room to compare these
techniques to other methods for solving the SLAM problem such as
graph-based SLAM methods or the FastSLAM algorithm [16]. In this
paper, we explored exclusively offline implementations. However,
in many practical applications of SLAM systems we require online
smoothing and estimation. Both the forward-only FFBSm and the
PaRIS algorithm are directly applicable in this setting and an online-
version of the FLS algorithm can also be constructed. Hence perfor-
mance of these algorithms in an online setting is a possible topic for
further research.
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Appendix A

Algorithms

This appendix presents in broad strokes the algorithms used in the
simulations. To make this appendix more clear the following random
variables and parameters are loosely specified.

• The set of state parameters XXX0:T = {XXX0,XXX1, . . . ,XXXT

}
• The set of landmarks mmm = {mmm1,mmm2, . . . ,mmmN

}.

• The set of indexes of observed landmarks A
t

, t 2 {0 : T}. Where
if the landmark was observed at time t, then i 2 A

t

else i 62 A
t

.

• The set of landmark observationsZZZ0:T = {ZZZ0,A0 ,Z
Z

Z1,A1 , . . . ,Z
Z

Z

T,At}
where ZZZ

t,At = (Z

Z

Z

t,i

)

i2At

• The set of control inputs uuu0:T = {uuu0,uuu1, . . . ,uuuT

}.

51
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A.1 Sequential importance sampling (SISR)

Algorithm 2 SISR

1: Initialize all particles {xxxj

0}1jM

and assign weights {!j

0}1jM

2: forforfor each time step t dododo
3: forforfor each particle j dododo

4: draw new particles ˜

x

x

x

j

t

with probability {W j

t

}1jM

=

!

j

t

⌦

t

where ⌦

t

=

MP
j=1

w

j

t

.

5: propagate by sampling x

x

x

i

t+1 from p(X

X

X

t+1|XXX t

=

˜

x

x

x

j

t

,u

u

u

t

)

6: update weights !j

t+1 = p(Z

Z

Z

t+1,At+1 |XXX t+1 = x

x

x

j

t+1,mmm)

7: end forend forend for
8: estimate the state ˆ

x

x

x

t

by

ˆ

x

x

x

t

=

MX

j=1

W

j

t

x

x

x

j

t

(k) (A.1)

.
9: end forend forend for

The algorithm is initialized by drawing M particles {xxxj

0}1jM

from
the initial distribution p(X

X

X0) and weighing the particles by !j

0 = p(z

z

z0|xxxj

0,mmm).
Apart from providing filter estimates of the state it also provides par-
ticles and associated weights which the smoothing algorithms are de-
pendent upon.
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A.2 Fixed lag smoothing (FLS)

Algorithm 3 FLS
1: Let h(�

T

) = min(t + �

T

, T ) where �

T

is an integer and a de-
sign parameter. Assume at time t � 1 that the particle trajectories
{xxxj

0:h(�T )}1jM

and associated importance weights {!j

h(�T )}1jM

computed from the SISR algorithm are available.
2: compute the particle filter approximations {W j

t

,x

x

x

j

t

}1jM

using
SISR.

3: compute smoothed expectations of the underlying state

ˆ

x

x

x

t

:

= E [X

X

X

t

|ZZZ0:T ] ⇡

MP
j=1

!

j

h(�T )xxx
j

0:h(�T )(t)

MP
j=1

!

j

h(�T )

(A.2)

where x

x

x

j

0:h(�T )(t) is the state at time t for the particle trajectory
x

x

x

j

0:h(�T ).
4: At any time t smoothed expectations of additive functionals can

estimated using

E [S

t

(X

X

X0:t)|ZZZ0:t = z

z

z0:t] ⇡ S

t

(

ˆ

x

x

x0, ˆxxx1, . . . , ˆxxxt

) (A.3)

The FLS algorithm above is based on the simpler,but more memory de-
manding approach where the additive functionals are not computed
for each iteration. Instead smoothed expectations of the underling
state sequence are computed and stored. These are later used to di-
rectly compute smoothed estimates of the additive functionals.
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A.3 Forward-only forward-filtering backward-
smoothing (Forward-only FFBSm)

Algorithm 4 Forward-only FFBSm
1: Assume at time t � 1 that particle filter approximations

{W j

t�1,xxx
j

t�1}1jM

of p(dxxx
t�1|zzz0:t�1,mmm,u

u

u0:t�1) and {⌧̂m
t�1(xxx

j

t�1)}1jM

of {⌧m
t�1(xxx

j

t�1)}1jM

are available.
2: compute the particle filter approximations {W j

t

,x

x

x

j

t

}1jM

of
p(dx

x

x

t

|zzz0:t,mmm,u

u

u0:t) using SISR.
3: forforfor j = 1!M dododo
4: compute

⌧̂

m

t

(x

x

x

j

t

) =

P
M

k=1 W
k

t�1p(XXX
j

t

|XXXk

t�1 = x

x

x

k

t�1,uuut

)

�
⌧̂

m

t�1(xxx
k

t�1) + s

t

(x

x

x

k

t�1,xxx
j

t

)

 
P

M

k=1 W
k

t�1p(XXX
j

t

|XXXk

t�1 = x

x

x

k

t�1,uuut

)

(A.4)

5: end forend forend for
6: estimate

ˆ

S

m

t

=

MX

j=1

W

j

t

⌧̂

m

t

(x

x

x

j

t

) (A.5)

The algorithm is initialized by setting {⌧m0 (x

x

x

j

0)}1jM

= 0. The compu-
tational complexity of this algorithm is this form is O(M

2
).
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A.4 Particle-based, rapid incremental smoother
(PaRIS)

Algorithm 5 Accept-Reject for PaRIS
1: Assume at time t � 1 that particle filter approximations

{W j

t�1,xxx
j

t�1}1jM

and {W j

t

,x

x

x

j

t

}1jM

are available and that there
exists ✏+ 2 R

⇤
+ such that p(XXX

t

|XXX
t�1 = x

x

x

t�1,uuut

)  ✏+ for all possible
realizations of XXX

t

,X

X

X

t�1 and values of uuu
t

.
2: forforfor j = 1! ˜

M dododo
3: set L [[1,M ]]

4: set tries 0

5: whilewhilewhile L 6= ; andandand tries  pM dododo
6: set n #L

7: draw (I1, . . . , IM) ⇠ p({wi

t�1}Mi=1)

8: draw (U1, . . . , UM

) ⇠ U(0, 1)

9: set L
n

 ;
10: forforfor k = 1! n dododo
11: ififif U

k

 p(X

X

X

L(k)
t

|XXXIk
t�1 = x

x

x

Ik
t�1,uuut

)/✏+ thenthenthen
12: set KL(k),j

t

 I

k

13: elseelseelse
14: set L

n

 L

n

[ {L(k)}
15: end ifend ifend if
16: end forend forend for
17: set L L

n

18: set tries tries + 1

19: end whileend whileend while
20: ififif L 6= ; dododo
21: set n #L

22: forforfor k = 1! n dododo
23: draw K

L(k),j
t

⇠ p({⇤M

t

(L(k), i)}M
i=1) directly

24: end forend forend for
25: end ifend ifend if
26: end forend forend for
27: returnreturnreturn {Ki,j

t

: (i, j) 2 [[1,M ]]⇥ [[1,

˜

M ]]}

The accept-reject algorithm above utilizes a threshold mechanic in or-
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der to avoid getting stuck. If the accept-reject sampling is not able to
produce a sample in

p
M attempts, the sample is instead drawn di-

rectly from the original distribution.

Algorithm 6 PaRIS
1: Assume at time t � 1 that particle filter approximations

{W j

t�1,xxx
j

t�1}1jM

of p(dxxx
t�1|zzz0:t�1,mmm,u

u

u0:t�1) and {⌧̂m
t�1(xxx

j

t�1)}1jM

of {⌧m
t�1(xxx

j

t�1)}1jM

are available.
2: compute the particle filter approximations {W j

t

,x

x

x

j

t

}1jM

of
p(dx

x

x

t

|zzz0:t,mmm,u

u

u0:t).
3: forforfor each particle j dododo
4: forforfor ⌘ = 1! ˜

M

5: draw K

j,⌘

t+1 ⇠ p(

W

k
t�1p(XXX

j
t |XXXk

t�1=x

x

x

k
t�1,uuut)

PM
l=1 W

l
t�1p(XXX

j
t |XXXl

t�1=x

x

x

l
t�1,uuut)

) using accept-reject
sampling method presented in algorithm 5.

6: end forend forend for
7: compute

⌧̂

m

t

(x

x

x

j

t

) =

P
M̃

⌘=1

⇣
⌧̂

m

t�1(xxx
K

j,⌘
t

t�1 ) + s

t

(x

x

x

K

j,⌘
t

t�1 ,xxx
j

t

)

⌘

˜

M

(A.6)

8: end forend forend for
9: estimate

ˆ

S

m

t

=

MX

j=1

W

j

t

⌧̂

m

t

(x

x

x

j

t

) (A.7)

The algorithm is initialized by setting {⌧m0 (x

x

x

j

0)}1jM

= 0. The compu-
tational complexity of this algorithm is this form is O(M).
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A.5 Expectation-maximization (EM)

Algorithm 7 Expectation Maximization (EM)

1: Assume that at iteration k previous map estimate m

m

m

k�1 and rele-
vant sufficient statistics are available .

2: update the map estimate according to

m

m

m

k

= argmax

m

m

m

Q(m

m

m|mmmk�1
) (A.8)

where

Q(m

m

m|mmmk�1
) = E

⇥
log(L(m

m

m,u

u

u0:T |XXX0:T ,ZZZ0:T ))|ZZZ0:T ,uuu0:T ,m
k�1

m

k�1
m

k�1
⇤

(A.9)

and L(m

m

m,u

u

u0:T |XXX0:T ,ZZZ0:T )) is the complete data likelihood function.
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