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Abstract

In this paper we derive and analyze the usefulness of a prospect theory based

model for selecting optimal portfolios with respect to multiple investment goals.

The focus is to determine whether or not the model would be suitable for the

advisory process by investigating the result given by the optimal portfolio

values and proportion in risky assets in continuous time. The model is based

on the framework proposed by Berkeelar et al. [1] and De Giorgi [2] and

follows a two step approach. It starts by finding the optimal terminal portfolio

value for each investment goal and secondly determines the optimal initial

funding for each investment goal based on the optimal terminal portfolio value.

We have shown that the initial funding is monotone in the long term investment

goal, in other words the investor initially puts all capital in that goal and

therefore neglect remaining goals. Moreover we have shown that the model,

assuming evenly distributed initial capital among investment goals, results

in the investor reaching the short term goal only, for median risk profile but

reaching all investment goals for the extreme loss averse profile. Lastly we also

point out that the model holds very high leverage in risky assets for the median

risk profile and less in risky assets when the investor is considered extreme

loss averse. We conclude that this model is not suitable for the financial

advisory process mainly because the median risk profile does reach her long

term goal.





Sammanfattning

I det här dokumentet tar vi fram och analyserar användbarheten av en prospect

theory baserad modell för att välja optimala portföljer, med avseende på flera

investeringsmål. Fokus var att avgöra om modellen skulle vara lämplig för en

rådgivningsprocess, genom att undersök resultatet från optimala portföljvärden

och andelar i risktillgångar, för kontinuerlig tid. Vår modell är baserad på

ramverket framtaget av Berkeelar et al. [1] och De Giorgi [2] och följer en

tvåstegsmetod. Den börjar med att hitta det optimala terminala portföljvärdet

för varje investeringsmål och för det andra bestämmer den optimala finansierin-

gen av varje investeringsmål, baserat på det optimala terminala portföljvärdet.

Vi har visat att den initiala finansieringen är monoton i det långsiktiga målet,

vilket innebär att investeraren initialt allokerar allt kapital på det långsiktiga

målet och därmed försummar resterande mål. Vidare har vi visat att modellen,

förutsatt initialt fördelat kapital bland målen, resulterar i att investeraren endast

når det kortsiktiga investeringsmålet för en median riskprofil men uppnär alla

mål för extrem förlustmotvilja. Slutligen påpekar vi även att investeraren tar

väldigt hög leverage när vi antar riskprofilen för en medianinvesterare och

investerar mindre i risktillgångar när investeraren anses ha extrem förlusträdsla.

Vi drar slutsatsen att denna modell inte är lämplig för den finansiella rådgivn-

ingsprocessen på grund av att en median riskprofil inte uppnår det långsiktiga

investeringsmålet.
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1 Introduction

Prospect theory was first formulated in 1979 by Kahneman and Tversky [3] as

an improved alternative to expected utility theory in the area of decision mak-

ing under risk. The theory and utility value function developed to describe risk

behaviour is based on gains and losses, unlike expected utility theory where

utility is determined with respect to the total portfolio value. The research con-

cluded that people value gains and losses differently and in most cases losses

has a greater impact than gains. Another key part in prospect theory is the sug-

gestion that people weight probabilities differently. According to Kahneman

and Tversky, people are more sensitive to changes in high probabilities than

lower probabilities. This is called the certainty effect and leads to people be-

ing risk seeking when facing sure losses and vice versa regarding sure gains [4].

Within financial advisory it is import to know what the customer wants. De-

pending on what risk profile they have, the investment strategies proposed

ought to be adapted accordingly. One problem with this is that it will take a

considerable amount of time in order to evaluate and determine each customer’s

risk profile through meetings. Instead, customers can answer questionnaires

that will determine their risk profile based on the framework of prospect theory.

This data can then be used in order to implement portfolio optimization using

the utility value function proposed in prospect theory [4]. The output of this

model will suggest a specific portfolio. With this tool the advisor can get an

understanding about how to invest in order for the customers to obtain what

they want.

The purpose of this thesis is to apply the framework given in prospect theory

to portfolio optimization and derive a model that can be used in the advisory

process as described earlier. There has in fact already been many applications

to prospect theory including two similar models developed by Berkelaar et al.

[1] and De Giorgi [2], where the latter is an extension to the former. We focus

on evaluating these models in our thesis.
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2 Methodology

This section describes why the specific method is chosen and briefly its advan-

tages in comparisons with other similar methods.

People have different perceptions of risk and when it comes to the advisory

process it is important to get a grasp of to what extent a customer is willing

to be exposed towards risk. Simply maximizing a portfolio according to, for

instance modern portfolio theory [5], is a generally acknowledged method to

select a portfolio. A disadvantage with this method is that it does not consider

what specific risk profile an individual may have but instead what risk level a

portfolio must have. By maximizing utility we can customize a portfolio for an

investor depending on its specific risk profile. There are of course problematic

parts for these kind of models as well, one of the problems lie in the process

of quantifying risk profiles. Expected utility theory and prospect theory are

two well known models that takes this into account in their respective utility

functions.

In expected utility theory the risk profile can be regarded as the concavity of the

utility function which is quantified or demonstrated through the Arrow-Pratt’s

risk aversion coefficient. It is also assumed that people have a rational mind

and therefore make rational decisions under uncertainty, this is however not

the case. A well known contradiction is the Allai paradox which violates the

independence axiom and therefore violates the framework of expected utility

maximization [6].

The previously mentioned assumption in expected utility theory has been

examined and rejected as an economic behavioural model, by Kahneman and

Tversky [3]. They have concluded that people make irrational choices under

uncertainty. In their research they propose that people’s risk profile depend on

changes during the investment horizon, i.e. gains and losses and not to total

value of portfolios. Since expected utility theory demand every investor to

rationally obey the standard axioms of expected utility one conclude that this

maximization approach is naive and has a very small realistic value. Kahneman
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and Tversky showed that when people face loss they tend to behave different

in comparison to gains as mentioned earlier. This assumption is incorporated

in prospect theory but not in expected utility theory. Thus by adapting prospect

theory to describe investor’s risk profile we can possibly improve the portfolio

selection based on utility maximization.
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3 Theory

In this section the theory behind the applied model is explained and derived.

The theory is mainly based on the research regarding prospect theory developed

by Tversky and Kahneman [4]. We derive models that are used in research

done by Berkelaar et al. [1] and mainly the results derived by De Giorgi

[2].

3.1 Prospect Theory

In order to account for the violation of the standard axioms of expected utility

theory, Kahneman and Tversky mention five important phenomena. According

to them, these cases must be considered in order to be a sufficiently descriptive

theory of decision making under risk. First of all they bring up the framing

effect. The result of a choice problem may be different depending on how the

problem is formulated [7]. The second phenomena regards nonlinear prefer-

ences where expected utility theory assumes linear probability. Camerer and

Ho [8] discovered nonlinear weighting in probability regarding choices that

do not involve sure things. People tend to overweight lower probabilities and

underweight higher probabilities. Thirdly they mention source dependence,

which implies that people are more willing to bet on events they know more

about. Ellsberg [9] found in an experiment that people preferably bet on an

urn containing equal numbers of red and green balls over an urn with unknown

number of red and green balls. The fourth phenomena regards risk seeking

choices where Kahneman and Tversky claims that risk seeking behaviour

occurs in two situation. First of all they state that when people evaluate a small

probability of winning a large price or the expected value of that prospect, they

choose the former. Second, when faced with choosing between a sure loss and

an even greater loss with a substantial probability people tend to gamble. The

fifth and last phenomena, loss aversion, states that losses have a greater impact

than gains for people in general [4].
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To clarify the usage of prospect theory we can consider the following ex-

periment performed by Kahneman and Tversky on a group of students. The

experiment is based on the Allai paradox which is explained in further de-

tail by Hult et al. [6]. Consider two set of gambles with the following prospects

Gamble 1:

A: 4000, 0.80 or B: 3000, 1.00

and,

Gamble 2:

C: 4000, 0.20 or D: 3000, 0.25

where the first number corresponds to the profit and the second to the probabil-

ity of that prospect. In this experiment 80% of the students selected prospect B

in Gamble 1 even though the expected utility of prospect B is less than prospect

A. In Gamble 2 on the other hand, 65% of the students chose the prospect

with greater expected utility, i.e. prospect C. This clearly demonstrates the

contradiction related to the general assumptions that people are rational when

facing decision making under risk, stated in expected utility theory.

3.2 The utility function

In order to account for the violations in expected utility theory, Kahneman

and Tversky suggested a new utility function that incorporates the investors

uncertainty when facing losses. They found that the value function have three

distinguishable properties that are important to point out and that is (i) it

is evaluated over gains and losses instead of final states. (ii) The function

is convex for losses and concave for gains. (iii) The function derivative is

higher on the loss side, i.e. losses have greater impact than gains. The

basic perception that individuals value outcomes based on a reference point

and not on final states can be exemplified through the notation that changes

in temperature depends on the adaption to that temperature. For example

Scandinavian individuals may hold a lower reference point of "hot" than

Mediterranean individuals. The same notion applies to wealth where poverty
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for one individual may stand for reference as richness for another individual.

Khaneman and Tversky define the prospect theory utility function [4] as

u(X) =

8
><

>:

X

↵
, X � 0

��(�X)

↵
, X < 0

(1)

where they found, through non linear regression of the experimental data, that

the parameter values of the median investor corresponds to ↵ = 0.88 for both

gains and losses and the loss aversion � = 2.25.

Figure 1: Utility function proposed by Kahneman and Tversky [3] where ↵ = 0.88,

� = 2.25

In Figure 1 we see the behaviour of the utility function described with the

properties (i), (ii) and (iii). In order to better analyze the change of individual

risk profiles the utility function 2 could be reformulated according to [1] in the

following way

u(X) =

8
><

>:

�

+

X

↵
, X � 0

��

�
(�X)

↵
, X < 0

(2)

where ↵ corresponds to the risk aversion and the loss aversion parameter is

redefined as

� = � =

�

�

�

+

.
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In this case we set ��
= 2.25 and �

+

= 1 in order to make the function

correspond to the utility function defined in 1.

Assumptions

Regarding prospect theory and risk preferences we will mainly examine the

median investor which are based on results from Kahneman and Tversky

[4]. Furthermore we ignore the probability distortion function that describes

how an individual weight probabilities. In general a person overweight lower

probabilities and underweight medium to high probabilities [4]. For further

details on how to incorporate the probability distortion into the framework of

portfolio maximization see Jin and Zhou [10].

3.3 Dynamics

First of all we need to establish the dynamics of which the portfolio value, stock

and the bank account follows. First we use the well established dynamics of the

bank account and the stock, i.e. risky asset. The stocks, under the probability

measure P , has the following dynamics as stated by Björk [11]

dSi,t = µi,tSi,tdt+ �i,tSi,tdW
P
t (3)

furthermore we have the bank account dynamics

dBt = rtBtdt. (4)

Now we notice that the portfolio dynamics must depend on the amount invested

in the risky assets and the amount invested in the risk-free assets and therefore

we get

dVt = �i,tVt
dSi,t

Si,t
+ Vt(1� �i,t)

dBt

Bt
(5)

If we now insert (3) and (4) into (5) we obtain the following portfolio dynamics

under probability measure P

dVt = rtVtdt+ (µi,t � rt)�i,tVtdt+ �i,t�i,tVtdW
P
t . (6)
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In order to clarify, we have that Vt is the total portfolio value at time t, µi,t is

the expected return for risky asset Si, rt is the risk free rate at time t, �i,t is the

volatility for the risky asset Si,t and �i,t is the fraction invested in risky asset

Si,t at time t.

Assumptions

In this report we will assume market completeness. It therefore exists a unique

pricing kernel under the probability measure Q. In more detail this assumption

means that the drift term, µt, under the probability measure P can be eliminated

when changing measure from P to Q using the Girsanov kernel. Thus the drift

term is replaced by the risk free rate of return, rt. Furthermore the diffusion

term is also deterministic and represent the standard deviation, �i,t, (volatility)

of the risky asset [11].

3.4 Stochastic discount factor

In this chapter we will use the notation used by Björk [11] and continue to use

these throughout the report.

In order to price a contingent T-claim, X , under the probability measure Q, it

is well known that it can be priced according to

⇡t,X = E

Q
[e

�
R T
t rsds

X|Fs]. (7)

To make it more general and price it under the probability measure P instead,

we can do this by using the measure transformation from P to Q which is

defined by 8
><

>:

Lt =
dQ
dP

dQ = LtdP

(8)

where Lt is the likelihood process and follows the SDE
8
><

>:

dLt = 'tLtdW
p
t

L

0

= 1
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and 't is the Girsanov kernel that takes us from the probability measure P to

probability measure Q, by eliminating the drift via deterministic values of µ, r

and �, i.e

't =
µt � rt

�t
.

In order to make a more confortable comparison we can express the relation

(8) in expected values
Z

dQ =

Z
LtdP

E

Q
[X|Ft] = E

P
[LtX|Ft]

by comparing this with (7) we can write

E

Q
[e

�
R T
t rsds

X|Ft] = E

P
[e

�
R T
t rsds

L(t)X|Ft] = E

P
[⇤tX|Ft]. (9)

Now we start by solving the SDE (8) by using the natural logarithm ansatz

and applying the Ito’s formula and the Girsanov kernel. Then one will arrive

at

L(t) = e

� 1
2

R t
0 '2

sds+
R t
0 'sdWP

s
.

Lastly we use the result from (9) and find that the stochastic discount factor ⇤t

can be expressed as

⇤t = e

�
R t
0 rsds

Lt

= e

�
R t
0 rsds

e

� 1
2

R t
0 '2

sds+
R t
0 'sdWP

s

= e

�
R t
0 (rs+

1
2'

2
s)ds+

R t
0 'sdWP

s

Further by visual inspection of ⇤t we see that its dynamics can be expressed

as

d⇤t = �rt⇤tdt� 't⇤tdW
P
t (10)

We have now deduced an explicit expression for the stochastic discount factor

and stated the dynamics of the stochastic discount factor. Throughout the

report we will use the stochastic discount factor in order to price the claim

X which will consist of a portfolio. Lastly we point out that (9) ensures that

we price under Q when multiplying an arbitrary claim X with the stochastic

discount factor.
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3.5 Optimal terminal portfolio value

The principal optimization problem is that we want to maximize the utility

for an investor’s portfolio based on the utility function formulated in Prospect

Theory [4]. The investor can have several investment goals, i.e. payoffs, where

she distributes her initial capital between. In other words, we want to determine

the optimal terminal portfolio value for each goal, that maximizes the expected

value of each investment goal’s utility with respect to the difference in terminal

portfolio value and investment goal, i.e. gains/losses. Considering the above

objective function with the constraint that the expected value of the discounted

terminal portfolio has to be funded by the initial capital, i.e., the budget

constraint and that the terminal portfolio value is non-negative, we get the

following problem

max

Vj(Tj)

E

P
[u(Vj,Tj � V j)]

s.t. E

P
[⇤j,TjVj,Tj ]  ⇤

0

wj,0V0

Vj,Tj � 0

(11)

where j corresponds to different investment goals with time horizon Tj , V j

is the investment goal or desired payoff for each goal j at given time horizon,

which in turn is a constant value. V
0

is the initial capital invested and wj,0 is

the initial weight of total invested capital, V
0

, allocated to each investment

goal j. The optimization problem stated above is the same as used by both

Berkelaar et al. [1] and De Giorgi [2].
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Rewriting optimization problem

From now on we drop investment goal notation j, in order to simplify the

notations and to focus on one investment goal. (11) can be simplified if we let
ˆ

VT represent the optimal solution and VT be any feasible solution that satisfies

the budget constraint EP
[⇤TVT ]  ⇤

0

w

0

V

0

. We consider the difference

between the two solutions, which we know has to be greater than, or equal

to zero since the objective function of a optimal solution in a maximization

problem obviously is greater than or equal to any other feasible solution,

i.e.

E

P
[u(

ˆ

VT � V )] � E

P
[u(VT � V )]. (12)

Now, consider the Lagrangean relaxation of optimization problem (11), corre-

sponding to

E

P
[u(VT � V )]� y(E

P
[⇤TVT ]� ⇤

0

w

0

V

0

). (13)

Using the properties stated in (12) we know that the objective function is

greater than, or equal to any other feasible solution. Thus must the optimal

solution to the relaxed problem stated in (13) also be greater than, or equal to

any other feasible solution and therefore we get

E

P
[u(

ˆ

VT � V )]� y(E

P
[⇤T

ˆ

VT ]� ⇤

0

w

0

V

0

)

� E

P
[u(VT � V )]� y(E

P
[⇤TVT ]� ⇤

0

w

0

V

0

).

(14)

By removing the constant y⇤
0

w

0

V

0

from both sides we get

E

P
[u(

ˆ

VT � V )]� yE

P
[⇤T

ˆ

VT ]

� (E

P
[u(VT � V )]� yE

P
[⇤TVT ]) � 0

(15)

which in turn, by rewriting the expectation value, becomes

= E

P
[u(

ˆ

VT � V )� y⇤T
ˆ

VT ]� E

P
[u(VT � V )� y⇤TVT ]

= E

P
[u(

ˆ

VT � V )� y⇤T
ˆ

VT � (u(VT � V )� y⇤TVT )] � 0.

(16)

Now, we let û(⇤T ) = u(

ˆ

VT � V )� y⇤T
ˆ

VT represent the optimal solution and

obtain

E

P
[û(⇤T )� (u(VT � V )� y⇤TVT )] � 0. (17)

11



In order to simplify the expression we only consider the term inside the

expectation and get that

û(⇤T ) � u(VT � V )� y⇤TVT (18)

which is obvious since the optimal solution is greater than or equal to all

feasible solutions. We want to find the feasible solution that corresponds to

û(⇤T ) and can write this as the following maximization problem

û(⇤T ) = max

VT�0

{u(VT � V )� y⇤TVT} (19)

This can now be divided into two parts for the utility function, uP
(x) for losses

and u

N
(x) for gains with respect to given goal.

12



Optimal conditions

In order to find the optimal solution to problem (19) we need to compare local

optimal solution for the positive part and the negative part. In our case the

function is both convex and concave and therefore we need to find the optimal

solution for each part separately and then compare the local optimal solutions.

For convex problems every local optimal solution is a global optimal solution

so therefore we will find the local optimal solution for the convex part at the

boundaries ˆ

V = 0 or ˆ

V = V by pure inspection of the function. Finding the

local optimal solution for the concave part must fulfill the Karush-Kuhn-Tucker

(KKT) conditions. Applying the KKT conditions, defined e.g. in Christer

Svanberg’s optimization book [12], to our maximization problem (19) we get

the following equations that needs to be fulfilled
8
>>>>>>>><

>>>>>>>>:

u

0
P (

ˆ

X)� y⇤T + � = 0

ˆ

X � 0

� � 0

�

ˆ

X = 0

(20)

Combining the conditions in (20) we obtain the following local optimal solu-

tion
ˆ

X = u

0
P
�1

(y⇤T )

where the derivative with respect to X of the positive utility function is

uP (X) = ↵�

+

X

↵�1

then solving for the inverse function and evaluating the function for ⇤T yields

the result

u

0
P
�1

(X) =

X

↵�

+

1
↵�1

=) u

0
P
�1

(y⇤T ) =
y⇤T

↵�

+

1
↵�1

.

Lastly using the notation that X is the change in portfolio value relative the

goal, i.e. ˆ

X =

ˆ

V � V , in combination with the earlier results, gives the final

solution for the optimal terminal portfolio value

ˆ

VT = V +

y⇤T

↵�

+

1
↵�1

. (21)
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Furthermore we compare the local maximas in order to find the global maxi-

mum. Let ˆV N
T represent the optimal solution to the negative part of the utility

function, uN , and let ˆ

V

P
T represent the optimal solution to the positive part,

u

P . To find the global optimal solution we examine the difference between û

P

and û

N , from (19). From this we determine when ˆ

V

P
T is the global maximum,

since we are interested in finding out when gains are optimal. The so called

global optimal function [1] could then be defined in the following way

g(y,⇤T ) = u

P
(

ˆ

V

P
T � y⇤T

ˆ

V

P
T )

�[u

N
(

ˆ

V

N
T )� y⇤T

ˆ

V

N
T ] � 0

and if the function is greater than or equal to zero we know that ˆ

V

P
T is the

global optimal solution.

By inserting the local maximums from the negative (convex) part of the utility

function we could study the global optimal function g in order to find the

global optimal solution when the function changes sign. Here we study the

two local maximas from the negative part separately.

ˆ

V

N
T = V :

g(y,⇤T ) = �

+

(y⇤T )
↵

↵�1

⇣
1

↵�

+

⌘ ↵
↵�1 � (y⇤T )

↵
↵�1

⇣
1

↵�

+

⌘ 1
↵�1

= (y⇤T )
↵

↵�1

h
�

+

⇣
1

↵�

+

⌘ ↵
↵�1 �

⇣
1

↵�

+

⌘ 1
↵�1
i

=

1� ↵

↵

y⇤T

⇣
y⇤T

↵�

+

⌘ 1
↵�1

.

At the local maximum ˆ

V

N
T = V it is obvious that the function is positive for

all values of ⇤T , thus ˆ

V

P is the global optimal condition.

ˆ

V

N
T = 0 :

g(y,⇤T ) =
1� ↵

↵

y⇤T

⇣
y⇤T

↵�

+

⌘ 1
↵�1 � y⇤TV + �

�
V

↵ � 0.

We find that this equation is not always positive and therefore want to determine

when g(y,⇤T ) = 0. This is not easily determined and to simplify this problem

we notice that function variables y and ⇤T always occur as a product. By

14



letting a = y⇤T as done by De Giorgi [2] we get the following equation

g(a) =

1� ↵

↵

a

⇣
a

↵�

+

⌘ 1
↵�1 � aV + �

�
V

↵ � 0. (22)

Now we can easier examine function g(a) since it is only dependent of variable

a, and not y which is unknown at this step. By solving g(a) = 0 numerically

we get the optimal solution â. From this we can determine for what interval

on ⇤T the global optimal function is positive, making ˆ

V

P the optimal solution.

Let the variable ⇤T in the solution g(â) = 0 be represented by ˆ

⇤y = â/y, we

know that since g(a) is strictly decreasing then if ⇤T  ˆ

⇤y the global optimal

function is positive and as mentioned ˆ

V

P becomes the optimal solution.

We now present the global optimal solution to maximization problem (11),

using the knowledge from (21) and (22). The solution include for what

conditions we obtain our investment goal at time horizon T , we have

ˆ

VT =

 
V +

✓
y⇤T

↵�

+

◆ 1
↵�1

!
{⇤T  ˆ

⇤y} (23)

where ˆ

⇤y =
â
y and â is obtained by solving (22) numerically and y is obtained

by solving the budget constraint in problem (19). Notice that if the constraint

in the indicator function is not fulfilled then the optimal terminal portfolio

value is zero.

Budget constraint

In order to find an analytic expression for the budget constraint we can insert

the optimal terminal portfolio value given by (23) into the budget constraint.

We start by rewriting the budget constraint in the following way

w

0

=

E

P
[⇤TVT ]

⇤

0

V

0

. (24)
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Now we insert (23) into the numerator, EP
[⇤TVT ] , and simplify the expression

in the following way

E

P

"
⇤T

 
V +

y⇤T

↵�

+

1
↵�1

!
{⇤T  ˆ

⇤y}
#

= E

P

"
⇤T V {⇤T  ˆ

⇤y}+ ⇤T

✓
y⇤T

↵�

+

◆ 1
↵�1

{⇤T  ˆ

⇤y}
#

= V E

P
[⇤T {⇤T  ˆ

⇤y}] +
✓

y

↵�

+

◆ 1
↵�1

E

P
[⇤

↵
↵�1

T {⇤T  ˆ

⇤y}]

(25)

We know that ⇤T is log-normally distributed with parameters mT and s

2

T where

m = �(r+

1

2

'

2

) and s = ', then let mT = mT and sT = mT , as denoted by

De Giorgi [2].

Let Z = log(⇤T ) which then is normal distributed with the same parame-

ters as ⇤T . We start by considering E

P
[⇤T {⇤T  ˆ

⇤y}] and rewrite it in the

following way

E

P
[⇤T {⇤T  ˆ

⇤y}] = E[e

Z {eZ  ˆ

⇤y}]

= E

P
[e

Z {Z  log(

ˆ

⇤y)}]
(26)

where the indicator function is a function of the random variable Z, thus

implying certain limits for the definition of expected value, we obtain

Z
log(

ˆ

⇤y)

�1
e

z 1

st

p
2⇡

e

✓
� (z�mT )2

2s2
T

◆

dz

=

Z
log(

ˆ

⇤y)

�1

1

sT

p
2⇡

e

✓
� (z�(mT+sT ))2

2s2
T

+mT+

s2T
2

◆

dz

= e

✓
mT+

s2T
2

◆ Z
log(

ˆ

⇤y)

�1

1

sT

p
2⇡

e

✓
� (z�(mT+sT ))2

2s2
T

◆

dz

(27)

and now we see that the integral in the last expression in (27) corresponds

to the probability density function of a normal distribution with parameters

mT + s

2

T and sT , i.e., N(mT + s

2

T , sT ). Thus we input Z = log(⇤T ) and get

that

E

P
[⇤T {⇤T  ˆ

⇤y}] = e

✓
mT+

s2T
2

◆

N

 
log(

ˆ

⇤y)�mT � sT

sT

!
(28)
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Now we want to rewrite the second expectation in (25), i.e.

E

P
[⇤

↵
↵�1

T {⇤T  ˆ

⇤y}]. Here we have that ⇤
↵

↵�1

T is log-normally distributed

with parameters ↵mT
↵�1

and
�
↵sT
↵�1

�
and by applying the same method as earlier

we obtain

E

P
[⇤

↵
↵�1

T {⇤T  ˆ

⇤y}]

= e

✓
↵mT
↵�1 +

1
2

↵2s2T
(↵�1)2

◆

N

 
log(

ˆ

⇤y)�mT � ↵
↵�1

s

2

T

sT

!
(29)

Finally we can input the result from (28) and (29) into (25) which then is

inserted in the budget constraint, (24). We get that w
0

can be written as

w

0

(y) = AN

 
log(

ˆ

⇤y)�mT � sT

sT

!

+By

1
↵�1

N

 
log(

ˆ

⇤y)�mT � ↵
↵�1

s

2

T

sT

! (30)

where 8
><

>:

A =

V
⇤0V0

e

(

mT+

1
2 s

2
T )

B =

1

⇤0V0
(�

+

↵)

1
↵�1

e

✓
↵mT
↵�1 +

1
2

↵2s2T
(↵�1)2

◆

.

(30) now represent the budget constraint depending on y with fixed initial

funding for each goal.
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The expected optimal portfolio value

The optimal terminal portfolio value can now be explicitly expressed by taking

the expected value of (23), which then will result in the following expres-

sion

E

P
[

ˆ

VT ] = E

"
V {⇤T  ˆ

⇤y}+
✓
y⇤T )

↵�

+

◆ 1
↵�1

{⇤T  ˆ

⇤y}
#

= E

P
h
V {⇤T  ˆ

⇤y}
i
+ E

P

"✓
y⇤T )

↵�

+

◆ 1
↵�1

{⇤T  ˆ

⇤y}
#

using the result from the deduction of (30) we get the resulting explicit ex-

pression for the optimal terminal portfolio value for each investment goal to

be

E

P
[

ˆ

VT ] = V N

 
log(

ˆ

⇤y)�mT

sT

!

+ Cy

1
↵�1

N

 
log(

ˆ

⇤y)�mT +

s2T
1�↵

sT

! (31)

where the constant C corresponds to

C = (�

+

↵)

1
1�↵

e

mT
↵�1+

1
2

s2T
(↵�1)2
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3.6 The expected optimal portfolio value at any time

By defining the budget constraint from (11) so it holds for any time t, we

get

E

P
[⇤TVT ] = ⇤twtVt

ˆ

Vt =
1

⇤t
E

P
[⇤T

ˆ

VT ]

(32)

now using (30) and multiplying the equation with the product ⇤
0

V

0

yields

the expression E

P
[⇤T

ˆ

VT ] and by inputting this into (32) we get the following

result for the optimal portfolio value for any time t 2 [0, T ]

ˆ

Vt = V e

�r(T�t)
N(d

1

(

ˆ

⇤y, t)) +

⇣
y⇤t

�

+

↵

⌘ 1
↵�1

e

�t
N(d

2

(

ˆ

⇤y, t)) (33)

where
8
>>>>><

>>>>>:

�t =
↵

1�↵

⇣
r +

1

2

'

2

⌘
(T � t) +

1

2

⇣
↵

1�↵

⌘
2

'

2

(T � t)

d

1

(⇤y, t) =
log(

ˆ

⇤(y))+(r� 1
2'

2
)(T�t)

'
p
T�t

d

2

(⇤y, t) = d

1

(⇤y, t) +
'
p
T�t

1�↵ .

The result in (33) are derived by both Berkeelar [1] and De Giorgi [2] using

exactly the same approach as this article. In short we can explain (33) con-

sisting of two parts where the left part represent the investment goal and the

right hand side represent the surplus which is mainly based on individual risk

profile and the budget constraint (represented by y).
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3.7 Optimal proportion of risky assets

By studying (33) we notice that the function only depends on the time and

⇤t, thus we can express the optimal portfolio value in the form of a function

depending on t and ⇤t, i.e.

Vt = F (t,⇤t)

Applying Ito’s formula to this equation we get

dF (t,⇤t) =
@F (t,⇤t)

@⇤t
@⇤t +

1

2

@F

2

(t,⇤t)

@⇤

2

t

@⇤

2

t (34)

and using the dynamics of Vt in (6) we finally arrive at the following expres-

sion

dVt = G(t,⇤t)dt� 't⇤t
@F

@⇤t
dWt (35)

Where the function G(t,⇤t) is the function

G(t,⇤t) = �rt⇤t
@F

@⇤t
+

1

2

@

2

F

@⇤

2

t

(36)

Now we compare diffusion parts in (6) and (35), we arrive at an expression that

explicitly explains the proportion invested in risky assets at time t, i.e.

�t = �⇤t'

�Vt

@F

@⇤t

= �⇤t'

�Vt

@Vt

@⇤t

(37)

where the partial derivative of F with respect to ⇤t is found by taking the partial

derivative of (33) which then yields

@Vt

@⇤t
= �V e

�r(T�t)
'(d

1

(

ˆ

⇤y), t))

⇤tst
+

⇣
y�t

↵�+

⌘ 1
↵�1

e

�t
�(d

2

(

ˆ

⇤y), t))

⇤tst

�

⇣
y

↵�+

⌘⇣
y�t

↵�+

⌘ 1
↵�1�1

e

�t
N(d

2

(

ˆ

⇤y), t))

↵� 1
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Putting it all together results in the final expression of the proportion in risky

assets as

�t =
�

�Vt

"
V e

�r(T�t)
�(d

1

(

ˆ

⇤y), t))

st

�

⇣
y�t

↵�+

⌘ 1
↵�1

e

�t
�(d

2

(

ˆ

⇤y), t))

st

+

⇣
y�t

↵�+

⌘ 1
↵�1

e

�t
N(d

2

(

ˆ

⇤y), t))

↵� 1

#

(38)

3.8 Optimal initial funding for multiple investment goals

To solve problem (11) we need to determine the initial funding strategy, i.e.

initial weight of total invested capital wj,0 allocated to each goal j. In order

to find this, we consider the optimization problem formulated by De Giorgi

[2].

max

wj,0

nX

j=1

�

�Tj
E

P
[u(

ˆ

VTj � V j)]

s.t. wj,0 � 0, j = 1, ..., n

nX

j=0

wj,0  1

(39)

The objective function corresponds to the discounted optimal value for problem

(11) , summed over all investment goals. The discount factor is denoted as

�

�Tj . In other words, problem (39) determines the initial funding allocation,

ŵj,0, that obtains the maximal total utility where each investment goal is

discounted.

Rewriting weight optimization problem

Problem (39) can be reformulated by instead maximizing the expected value

of the optimal terminal portfolio value, as stated in (31), similarly to De Giorgi

[2].
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We now obtain

max

wj,0

nX

j=1

�

�Tj
E

P
[

ˆ

Vj,Tj ]

s.t. wj,0 � 0, j = 1, ..., n

nX

j=0

wj,0  1.

furthermore we notice that (31) depends on y so we can write it as a function

of y, i.e. EP
[

ˆ

Vj,Tj ] = Sj(y) = Sj(y(wj,0)) where y depends on wj,0. Now we

rewrite the optimization problem in the following way

max

wj,0

nX

j=1

�

�Tj
Sj(y(wj,0))

s.t. wj,0 � 0, j = 1, ..., n

nX

j=0

wj,0  1

(40)

The solution to the initial funding allocation for multiple investment goals,

ŵj,0, can then be applied to ˆ

Vt, through the calculation of y from the budget

constraint. This results in the optimal portfolio value for multiple investment

goals ˆ

Vj,t, from which we can derive the optimal proportion in risky assets ˆ�j,t

for each investment goal with the same approach as used in the case for one

investment goal.
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4 Result

In this section we will present results from the optimal initial funding, defined

in the maximization problem (40). Further we compare the relation between
ˆ

⇤T and ⇤T for different values on �

+ and lastly we present results that mainly

focus on comparing the optimal portfolio value at t 2 [0, T ] for different type

of risk profiles.

Table 1: Table of constants used throughout the result

r � µ �

�
V

0

↵

Values 0.03 0.2 0.07 2.25 0.75 0.88

In table 1 the constant values are presented that will be used throughout the

result section. The parameter �+ will hold the values [0, 1, 1.5, 2.25] and the

discount factor ⇤t will change over time t. Lastly each investment goal in

today’s value will be, V
0

= 1 and the forward discounted investment goal at

each time horizon will be V Tj = V

0

e

rTj .
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4.1 Optimal initial funding

Problem (40) maximizes the optimal portfolio value with respect to the initial

funding. The problem was solved by defining a grid representing combinations

of initial wealth allocation for each investment goal. For a fixed value on

fraction in investment goal 1, w
1,0, and when w

3,0 = 1� w

1,0 � w

2,0 different

combinations of w
2,0 were tried which resulted in the following figure.

Figure 2: Utility for different combinations of initial funding. Fraction w
0,1 is iterated

over the x-axis and symbols for each step represents different combinations of w
0,2

and w
3,0 where w

3,0 = 1� w
1,0 � w

2,0. The red * corresponds to �+ approximately

zero and the black + corresponds to �+ = 1

In Figure 2 we see that the combination of initial capital allocation that cor-

responds to [w

1,0, w2,0, w3,0] = [0, 0, 1] clearly maximizes the utility for the

investor given the parameters presented in the introduction of Section 4. Fur-

ther we see that the monotonocity also holds for the long term goal when

�

+ ⇡ 0. Because of the result obtained above the remaining results will as-

sume the following initial funding strategy where w

0

= [1/3, 1/3, 1/3]. Here

the initial capital is evenly distributed between all investment goals.
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In order to strengthen the monotonocity argument we computed the derivatives

of E

p
[

ˆ

Vj,Tj ] corresponding to Sj(y(wj,0)) in (40). In order to get a visual

presentation of the derivatives the goal horizons were set to T = 1,5,10 due

to the derivative of the long term goal being a factor 1000 larger than for the

short term goal and the mid term goal, when using T = 20 for the long term

goal.

Figure 3: Left figure: Expected optimal portfolio value for the median investor with

different goal horizons, T = 1, 5, 10, and different initial portfolio weights. Right

figure: Derivatives of expected optimal portfolio value presented in the left figure

In Figure 3 we clearly see that the derivative for the long term goal, T = 10 in

this case, is much larger then for the short term goal and the mid term goal.

Further we see that this is in line with the expected portfolio value, presented

in the left plot. Further more we see that the result in Figure 3 is consistent

with the result presented in Figure 2, i.e. the optimization problem (40) is

monotone in the long term goal and thus no inner solution exists.
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4.2 Global optimal conditions

Here we present the result from evaluating the global optimal condition by

comparing ˆ

⇤y and the expected value of ⇤T , that constitutes a constraint in

(23). As previously mentioned in the budget constraint section, ⇤T is log-

normally distributed with paramters mT and s

2

T . The constraint were examined

by varying the goal horizon for different �+ where a higher value of �+ can

be viewed as higher risk appetite.

Figure 4: Comparing the expected value of ⇤(t) (representing the full line) and ⇤̂(y)

(representing the dashed line) for different time horizons and different values of �+

As we can see in Figure 4, ˆ⇤(y) > ⇤(T ) appear when the ratio � = �

�
/�

+

is low. The condtion seems to be fulfilled for all time horizons between

T 2 [0, 20] when �

+ ⇡ 0. This state, �+ ⇡ 0, can be regarded as an investor

that is extreme loss averse. The figure also shows that for �+

= [1, 1.5, 2.25]

the factor ⇤⇤
y accelerates faster towards zero than ⇤T .
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4.3 Optimal portfolio value and proportion in risky assets

Median loss aversion

In order to get an understanding of the behaviour of optimal portfolio value

and the proportion in risky assets for different goals and time horizons, three

goals with corresponding time horizons, T = [1, 5, 20], were plotted. The risk

profile of the investors corresponds to �

+

= 1 which can be regarded as a

median loss averse investor according to Kahneman and Tversky [3].

Figure 5: The expected optimal portfolio value and the expected proportion in risky

assets for t 2 [0, T ] when �+ = 1 and T = 1

Using the risk profile suggested by Kahneman and Tversky [3] representing

the median investor we see that in Figure 5, the goal is reached when the

time horizon is set to T = 1. For this case the leverage in risky assets is large,

furhermore we can see that the proportion in risky assets decline as t approach

the time horizon.
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In the next case we have time horizon T = 5 which results in the following

figure.

Figure 6: The expected optimal portfolio value and the expected proportion in risky

assets for t 2 [0, T ] when �+ = 1 and T = 5

The goal is obtained, similarly to T = 1 but in this case with higher leverage.

We notice that the optimal portfolio value initially decreases to then start

increasing at around t = 1.5 and finally reach the investment goal as mentioned.

The shape of the risky assets curve is similar to the optimal portfolio value

except at the end where it quickly goes to zero.
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In the last case we have time horizon T = 20 which results in the following

figure

Figure 7: The expected optimal portfolio value and the expected proportion in risky

assets for t 2 [0, T ] when �+ = 1 and T = 20

The portfolio value goes to zero relatively fast. Moreover we see that the

proportion in risky assets drastically increases as t approach the time hori-

zon.

Extreme loss aversion

Now similar comparisons will be made but considering the case of an extreme

loss averse investor. This investor is described with preferences according to

�

+ ⇡ 0. The investor is considered conservative and thus do not want to be

exposed to as mush risk as, for instance the median loss averse investor.

29



We start by examining the investment goal with time horizon T = 1 which is

similar to Figure 5 except using extreme loss aversion.

Figure 8: The expected optimal portfolio value and the expected proportion in risky

assets for t 2 [0, T ] when �+ ⇡ 0 and T = 1

As we can see in Figure 8 the investment goal is reached and hold relatively

high leverage at the beginning but then level out towards the time horizon end.

For T = 5 the investor also reaches the goal, as we can see in Figure 9.

Figure 9: The expected optimal portfolio value and the expected proportion in risky

assets for t 2 [0, T ] when �+ ⇡ 0 and T = 5

For this time horizon, presented in Figure 9, the model invest less in risky assets

and the proportion invested level out earlier than for the 1 year goal.
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Lastly we have the investment horizon T = 20 for the case �

+ ⇡ 0.

Figure 10: The expected optimal portfolio value and the expected proportion in risky

assets for t 2 [0, T ] when �+ ⇡ 0 and T = 20

Similar to the other cases we see that the investment goal is reached with zero

surplus and we also notice that the investor holds lower proportion in risky

assets than for investment goals T = 1 and T = 5. The portfolio level out all

investment in risky assets towards the time horizon.
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5 Discussion

In this section we will discuss and interpret the result presented in Section

4 and possible problems with the model that do not make it suitable for the

advisory process.

5.1 Remarks on market conditions

The market conditions is represented by the comparison between ⇤(T ) and
ˆ

⇤(y). When the market present good conditions for our goals the goal is

reachable, that is ⇤(T ) <

ˆ

⇤(y). By (23) we clearly see that the optimal

portfolio value at the time horizon, T, is equal to zero if good market conditions

are not fulfilled.

In Figure 4 we clearly see that bad states occur for �+ 2 [1, 1.5, 2.25], i.e. we

have bad market conditions.

5.2 Remarks on optimal initial funding

After solving the first optimization part (11) we obtain the optimal portfolio

value at the time horizon for each investment goal. Secondly we solve (40) in

order to find the optimal initial funding for each investment goal. As mentioned

in Section 4.1 we found that the initial funding is monotone in the long term

goal, i.e. the investor puts all her wealth in the long term goal and ignores the

other goals, having preferences according to table 1.

This result indicates that optimizing for initial funding is rather useless in

the sense that an investment goal must always be regarded as a goal to reach,

not a goal to neglect in favour for, in this case, the long term goal. With

respect to that we conclude that maximization problem (40) does not bring

any usefull insight into the advisory business. It is meaningful to point out

that this scenario changes with respect to risk profile, so for example when not

looking at the median investor, proposed by Kahneman and Tversky [3], the
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maximization problem may change. Therefore we emphasise that the result

in Section 4.1 holds for the median investor and not necessarily for other risk

preferences.

5.3 Remarks on optimal portfolio value

As derived in (23) the optimal terminal portfolio value is only reached under

the condition that ⇤T  ˆ

⇤y, where ˆ

⇤y =

â
y as mentioned in connection to

that equation. This means that for y ! 1 then ˆ

⇤y ! 0 and thus the above

condition is not fulfilled, at least for a fixed ⇤T > 0.

In Figure 4 we have showed that in all cases, except extreme loss aversion

(�+

= 0), both ⇤T and ˆ

⇤y decreases as the investment horizon T increases. We

also notice that ˆ⇤y accelerates faster towards zero than ⇤T and when ⇤T >

ˆ

⇤y

the investment goal will not be obtained. If we now, for example, consider the

median risk profile, i.e. �+

= 1 [4], that corresponds to the upper right graph

in Figure 4 we can see in Figure 5 and 6 that we obtain the investment goal

whereas in Figure 7 the optimal terminal portfolio value goes to zero.

Furthermore, the Lagrange multiplier y is determined in the budget constraint

presented in (30) and as previously discussed we do not obtain the investment

goal for large T , at least not for the median risk profile. For longer investment

horizons, the factor C in the budget constraint becomes very large. In order

to fulfil the constraint, y also becomes large since the factor y
1

↵�1 decreases

for increasing y when we consider the median risk profile. Although, in the

case of extreme loss aversion, we stated that the investment goal is obtained.

If we examine the budget constraint we notice that since �

+ is approximately

zero the factor C is also close to zero and thus y is not calculated to become

as large as for other �+. In other words the second term, corresponding to the

surplus, is neglected and the investor mainly focus on reaching the investment

goal alone. This makes it more likely to obtain the investment goal, which is

in accordance with ⇤T <

ˆ

⇤y for all T when � is approximately zero.

We mentioned earlier that when the factor C is not neglected, i.e. for �+

=
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[1, 1.5, 2.25] the investment goal is not always reachable. We also pointed

out that C becomes large for increasing T , in fact it increases exponentially.

Furthermore the Lagrange multiplier is estimated to be large for more risk

taking investors as well, i.e. higher values on �

+. This can be interpreted as

when an investor is risk taking and/or want to invest in a long term goal the

probability of reaching investment goal and surplus becomes very low as we

approach the time horizon. Thus the optimal terminal portfolio value is zero in

these cases.
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6 Conclusion

The purpose of this thesis have been to examine if the model derived above is

useful in the financial advisory process for private investors. We have during

the work come to the conclusion that this framework is not suitable in this

area.

First of all we discuss in Section 5.2 the initial funding strategy and that the

obtained result allocates all wealth in the long term goal, as shown in Figure

2. This is mathematically speaking a reasonable result but completely useless

in the sense that an investor can theoretically set up infinitely many goals

that all will be ignored in favour of the investment goal with longest time

horizon.

Secondly we have noticed, as discussed in Section 5.3, that for the median risk

profile [4] we do not obtain the long term investment goal. This is a strong

indication that this model might not be suitable for the purpose of advising

private investors even though we obtain the investment goal when an investor

is extreme loss averse.

Lastly, we also want to point out that the model propose high leverage in risky

assets in most cases which we consider not to be a reasonable suggestion for

a private investor. The only circumstances when proportion invested in risky

asset was below 1 were for the mid- and long term goals for extreme loss

aversion. However, since it is irrelevant for the median investor, it should not

be used in the advisory process at all.
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7 Extensions

We have showed, among many things, that the initial funding optimization is

monotone in the long term goal given the preference for a median investor,

developed by Kahneman and Tversky. Since this result covers the median

investor one may consider alternative values of risk and loss preferences. One

example could be investigating whether initial funding would change if we

assume different risk preferences, given by ↵, for the different goals. For

example one may assume that the 20 year investment goal could be a pension

funding goal and that the 1 and 5 year goals are goals involving material things,

i.e. not as important. Therefore loss aversion could be higher for the pension

goal and lower for the material goals. Doing these adjustments can change the

result for the initial funding optimization and instead the initial capital might

be distributed more even between investment goals.

Moreover, one might find that determining risk preferences for private investors

is difficult and can be biased if not done correctly. As a counterexample

Berkeelar [1] found that the VaR (Value at risk) model presented by Basak and

Shapiro [13] genereates similar result as the prospect theory model, present

here and by De Giorgi [2], as well. Using the VaR-model, one could instead

use lower bounds representing loss limits of investors instead, which in some

sense could facilitate the quantification of a private investor’s risk profile and

make it more accurate.
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