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Abstract

This paper is about automatizing parameter estimation of GARCH type conditional volatil-
ity models for the sake of using it in an automated risk monitoring system. Many challenges
arise with this task such as guaranteeing convergence, being able to yield reasonable results
regardless of the quality of the data, accuracy versus speed of the algorithm to name a few.
These problems are investigated and a robust framework for an algorithm is proposed,
containing dimension reducing and constraint relaxing parameter space transformations
with robust initial values. The algorithm is implemented in java with two models, namely
the GARCH and gjr-GARCH model. By using real market data, performance of the algo-
rithm are tested with various in-sample and out-of-sample measures, including backtesting
of the widely used risk measure Value-at-Risk. The empirical studies conclude that the
more complex gjr-sGARCH model with the conditional student’s t distribution was found
to yield the most accurate results. However for the purpose of this paper the GARCH or
gjr-GARCH seems more appropriate.
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Automatiserad approximation av GARCH parametrar

Sammanfattning

Denna uppsats undersöker möjligheten att automatisera approximationen av GARCH
parametrar, där syftet är att använda algoritmen till ett automatiserat riskhanteringssys-
tem. Med detta uppst̊ar flera utmaningar som att garantera konvergens, kunna erh̊alla
rimliga resultat oavsett datakvalitet, avvägning mellan algoritmens snabbhet och preci-
sion för att nämna n̊agra. Uppsatsen undersöker dessa problem och föresl̊ar ett robust
ramverk för en algoritm som inneh̊aller transformationer av parameterrymden. Där dessa
transformationer reducerar dimensionen av problemet samt reducerar antalet randvillkor.
Algoritmen är implementerad i java med tv̊a modeller, GARCH och gjr-GARCH. Vidare
s̊a är algoritmen testad genom att använda riktig marknadsdata, där olika metoder använts
för att utvärdera algoritmen. Modellerna som används backtestas p̊a historisk data och det
empiriska resultatet av detta talar för att gjr-sGARCH modellen med student’s t fördelning
levererar noggrannast resultat. Det är dock den mest komplexa modellen som används i
denna uppsats och för denna uppsats ändam̊al anses GARCH eller gjr-GARCH modellerna
mer passande.
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1 Introduction

Ever since Engle [4] introduced the autoregressive conditional heteroscedasticity model or
commonly referred to as the ARCH model, it has been generalized and modified in various
ways for modeling financial time series. Where the ARCH model tries to capture the
volatility clustering that financial time series often exhibit, that is, large volatility tends to
be followed by large volatility and small volatility tends to be followed by small volatility.
This is captured in the model by letting the variance of the current residuals be a function
of the past squared residuals. Thus the model allows for time varying conditional variance,
which arguably is the case of financial time series.

The model was then generalized by Bollerslev in [2], extending it by letting the current
conditional variance be a weighted combination of past squared residuals and conditional
variances allowing for longer memory. This extended model is commonly referred to as
GARCH and has become very popular in financial applications. The GARCH model has
then received several extensions to capture various types of ”stylized facts” that financial
time series exhibit. Some of those are the gjr-GARCH, EGARCH, IGARCH, TGARCH,
to name a few. Using different types of GARCH models to account for volatility clustering
in historical price data has been found to increase the accuracy of Value-at-Risk models.
With main applications of the algorithm constructed in this paper being risk management,
the GARCH models play a key role.

The purpose of this paper is to create a robust algorithm, capable of automatizing the
parameter estimation of various GARCH type models, to be implemented in an automated
risk monitoring system. GARCH parameter estimation can be solved by various meth-
ods. In this paper the most common one, being the maximum likelihood estimation, is
covered, which is a non-linear optimization problem prone to spurious solutions. Typically
in literature on the subject of GARCH models the technicalities and difficulties arising
in the optimization problem when using the maximum likelihood approach are not cov-
ered. Some of the issues was addressed by Zumbach in [10] where he proposed a parameter
space transformation reducing the dimension and relaxing the constrained optimization
problem. This paper provides an extensive study of the optimization problem, covering
the additional challenges that arise with automatizing the parameter estimation of the
GARCH process, such as the trade-off problem between accuracy and time, guaranteeing
convergence and handle different types of data sets. The trade-off problem lies not only
in the algorithm itself, it is also a problem on how complicated models to employ, where
the potential accuracy gained with more complicated models may not justify the use of
it in an automated risk monitoring system since it takes too long time to estimate the
parameters. The problems of convergence are addressed in this paper by constructing a
method of choosing initial values for the maximum likelihood estimation and a fallback
solution for the worst case scenario, being the case when the algorithm does not converge.
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Furthermore the problem on handling various types of data sets does not only depend on
the sample size of the data, also other problems arise such as data sets consisting of illiquid
financial instruments.

The paper is organized as following. First the implemented models are defined in Section 2.
Then the method for estimating the parameters, covering all the details of the maximum
likelihood approach and a parameter space transformation together with a algorithm of
choosing initial values is included, all of this are provided in section 3. Followed by section 4
and 5 with a topic on the assumption of i.i.d residuals and defining the methods to evaluate
the forecast accuracy of each employed model. Finally a empirical study is provided in
section 6, including two data sets with real market data.

2 Model specification

In this section the conditional volatility models used in this paper are specified. Starting
with the standard GARCH model and proceeding with the more complex gjr-GARCH
model. Followed by a specification of the conditional distributions considered. All data
used in this paper are mean adjusted to contain zero mean, thus the models specified omits
the mean. Through out this paper GARCH will refer to GARCH(1, 1) and small case, s,
indicates the use of student’s t distributed residuals.

2.1 GARCH

The generalized autoregressive conditional heteroscedasticity or commonly referred to as
GARCH(p, q) is a parametric conditional volatility model and may be defined by

rt = σtεt,

σ2
t = ω +

n∑
i=1

αir
2
t−i +

n∑
i=1

βiσ
2
t−i,

(1)

where {εt} is a set of i.i.d. random variables with zero mean and unit variance, ω > 0,
α ≥ 0, β ≥ 0 are the parameters of the process. Although through out this paper the
GARCH(1, 1) model, defined by

σ2
t = ω + αr2

t−1 + βσ2
t−1, (2)

will be used. The process is further assumed to be stationary with finite variance i.e.
E[σ2

t ] <∞ which implies α+ β < 1.
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2.2 gjr-GARCH

The gjr-GARCH model proposed by Glosten, Jagannathan and Runkle in [5], extends the
GARCH model by capturing the stylized fact that negative shocks at time t − 1 impacts
the volatility at time t more than the positive shocks. This is captured by defining the
model

rt = σtεt,

σ2
t = ω + (α+ γIt−1)r2

t−1 + βσ2
t−1,

(3)

where {εt} is a set of i.i.d. random variables with zero mean and unit variance. Note that
with the introduced parameter γ = 0 we obtain the standard GARCH model. It−1 is the
indicator function defined by

It−1 =

{
0, rt−1 ≥ 0,
1, rt−1 < 0,

(4)

thus the model captures negative shocks with coefficient α + γ and α for positive shocks.
The process is further assumed to be stationary.

2.3 Conditional distributions

This section covers the distributions considered in this paper. The standard assumption is
that the observed returns are conditional normally distributed. However returns observed
in real market data often exhibit the stylized fact of fat tails, that is, the distribution
exhibits large skewness or kurtosis. Thus the student’s t distribution is widely used in
financial applications since it is a leptokurtic distribution that captures the excess kurtosis
in the distribution, meaning that it has fatter tails.

2.3.1 Normal distribution

Assume that {εt} is a set of i.i.d. random variables drawn from the standard normal
distribution. Let Ft = σ{rs : s ≤ t} denote the sigma algebra representing the information
of the process up to time t so that {Ft}t∈Z>0 is the natural filtration. Then the conditional
distribution of rt in equation 2 follows the normal distribution as following.

rt | Ft−1 ∼ N (0, σ2
t ),

f(rt | Ft−1) =
1√

2πσ2
t

e
− r2t

2σ2t , t = 1, 2, ..., n,
(5)
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where Ft−1 is the natural filtration containing the information of the process up through
time t− 1 and let the parameter space be denoted by Θ = {ω, α, β}.

2.3.2 Student’s t distribution

Now let {εt} be a set of i.i.d. random variables drawn from the student’s t distribution.
First we need to scale εt with a factor to preserve the property Var(rt|Ft−1) = σ2

t ,

ηt =

√
ν − 2

ν
εt,

rt = σtηt,

(6)

where ν is the shape or degrees of freedom parameter, now the conditional distribution of
rt follows the standardized student’s t distribution with variance σ2

t

fν(rt | Ft−1) =
Γ(ν+1

2 )√
σ2
t (ν − 2)πΓ(ν2 )

(
1 +

r2
t

σ2
t (ν − 2)

)− ν+1
2

, t = 1, 2, ..., n

ν > 2

(7)

and the parameter space is denoted by Θ = {ω, α, β, ν}.

3 Estimation

In order to estimate the parameters of the conditional volatility models in this paper
maximum likelihood estimation is used, which is a constrained non-linear optimization
problem. There exists many different algorithms to solve this problem. The focus in this
paper lies on a line search algorithm, that is the non-linear conjugate gradient method,
see [9]. Since the aim is to automate the process of estimating GARCH parameters, the
algorithm is implemented in java. However before maximum likelihood estimation some
preparatory work is done including parameter transformations and study of initial values
in sections 3.1, 3.2 respectively to construct a robust framework for the algorithm.

3.1 Parameter transformation

In line with the findings of Zumbach in [10], some parameter transformations are done
to reduce the dimension of the parameter space Θ and thereby reducing the number of

8



parameters θ ∈ Θ to estimate by maximum likelihood estimation. Also by doing this trans-
formations the original constrained optimization problem transforms to a unconstrained
optimization problem to some extent.

3.1.1 GARCH

By rewriting the conditional variance in equation 2 to

σ2
t = σ2(1− µcorr) + µcorr(µemaσ

2
t−1 + (1− µema)r2

t−1)

= σ2 + µcorr(µemaσ
2
t−1 + (1− µema)r2

t−1 − σ2),
(8)

with the corresponding parameter transformation

σ2 =
ω

1− α− β
, σ2 > 0,

µcorr = α+ β, 0 < µcorr < 1,

µema =
β

α+ β
, 0 < µema < 1.

(9)

With some algebra and using the fact that E[εt] = 0, Var(εt) = 1 and that the process is
stationary to calculate the unconditional variance of rt, the advantages of this parameter
transform starts to show

Var(rt) = E[r2
t ]− E[rt]

2

= E[σ2
t ε

2
t ]− 0

= E[σ2
t ] · 1

= E[ω + αr2
t−1 + βσ2

t−1]

= ω + (α+ β)Var(rt),

(10)

and thus the unconditional variance is obtained as

Var(rt) =
ω

1− (α+ β)
= σ2, (11)

and now the unconditional variance of rt appears explicit as the mean of the conditional
variance in the process. By estimating the unconditional variance σ2 with the unbiased
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sample variance of the returns the parameters to estimate by maximum likelihood are
reduced to (µcorr, µema) and also used as an initializer of the process i.e. σ2

0 = σ2. Further-
more µcorr acts as a decay parameter that determines how fast the conditional variance
converges to the unconditional variance. This may be seen by looking at the t + h step
forecast

σ̂2
t+1 = σ2 + µcorr(µemaσ

2
t + (1− µema)r2

t − σ2)

= σ2 + µcorr(µemaσ
2
t + (1− µema)E[r2

t |Ft−1]− σ2)

= σ2 + µcorr(σ
2
t − σ2)

...

σ̂2
t+h = σ2 + µhcorr(σ

2
t − σ2).

(12)

Hence for large h

lim
h→∞

σ̂2
t+h = σ2, (13)

which is why the unconditional variance are commonly referred to as the long term variance.
and the last parameter µema acts like a weight between the past conditional variance and
squared return, similarly as the exponential moving average. With this parameters we still
have a constrained optimization problem, thus another transformation is proposed as

µcorr = e−e
−zcorr

µema = e−e
−zema

}
⇐⇒

zcorr = log
(
− 1

log (µcorr)

)
zema = log

(
− 1

log (µema)

)
,

(14)

resulting in an unconstrained optimization problem. For completeness equation 8 is rewrit-
ten in the z coordinates

σ2
t = σ2 + e−e

−zcorr
(e−e

−zema
σ2
t−1 + (1− e−e−zema )r2

t−1 − σ2). (15)

For student’s t distributed residuals a transformation of ν is also done to relax the constraint
ν > 2 and for the sake of avoiding the possibility of dividing by zero

zν = log (ν − 2). (16)
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3.1.2 gjr-GARCH

Rewrite equation 3 in similar way as for the GARCH model to obtain

σ2
t = σ2 + µcorr

(
(1− µema)r2

t−1 + 2(µema − µasy)It−1r
2
t−1 + µasyσ

2
t−1 − σ2

)
, (17)

with the corresponding parameter transformation

σ2 =
ω

1− (α+ β + γ
2 )
, σ2 > 0,

µcorr = α+ β +
γ

2
, 0 < µcorr < 1,

µema =
β + γ

2

α+ β + γ
2

, 0 < µema < 1,

µasy =
β

α+ β + γ
2

, 0 < µasy < 1.

(18)

In the same way as in the previous section, it can be shown that unconditional variance
σ2 may be approximated by the unbiased sample variance of the returns as

Var(rt) = E[r2
t ]− E[rt]

2

= E[σ2
t ε

2
t ]

= E[ω + (α+ It−1)r2
t−1 + βσ2

t−1]

= ω + (α+ β)Var(rt) + γE[It−1]Var(rt)

= ω + (α+ β +
γ

2
)Var(rt),

(19)

and thus the unconditional variance is obtained as

Var(rt) =
ω

1− (α+ β + γ
2 )

= σ2, (20)

assuming that the conditional distribution of the returns are symmetric around zero i.e.
P (rt > 0) = P (rt < 0) = 1

2 . That works in the same matter as before, reducing the
dimension and serving as an initializer of the process. The parameter µcorr acts the same as
in the case of GARCH model and the parameters µema, µasy are somewhat more entangled
and does not provide a natural explanation. Proceeding by transforming to the z-space is a
straightforward matter and does not add anything new except the asymmetric parameter,
thus it is left out in this section.
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3.2 Initial values

Since the algorithm used in this paper to solve the non-linear optimization problem of
maximum likelihood estimation are based on a line search method the initial values have
a big impact on speed and convergence. This is of great importance in an automated risk
monitoring system. Therefore this part is about finding a good universal initial point for
the algorithm, in the sense that the initial point should not only be good for specific data
sets. By generating a sparse grid in the z-space and evaluating the likelihood function
in this grid a first maximum value is obtain. Then an iterative process is suggested by
creating a new refined grid with the same grid size around the area of the recent point
in the z-space found to maximize the likelihood function and re-valuate the likelihood
function in the new refined grid. Hence the iterations of refining the grid around the
previous found maximum works as a ”zoom”. By iterating this procedure for some given
number of iterations the z parameters found maximizing the likelihood function are passed
as initial values to the optimization algorithm. Furthermore with empirical applications of
GARCH volatility models the optimal z parameters is typically found around the region
1 ≤ zcorr, zema ≤ 4 see [10], thus the first generated grid is created with this region. This
method is also useful to use as a fallback solution in the worst case scenario of convergence
failure, that is the case if the algorithm fails to converge after feeding it with the initial
values, which should never occur but in an automatized system it is important to be on
the safe side. This procedure is perhaps a bit naive since the number of evaluations of the
likelihood function is growing exponentially with the number of parameters, k, with fixed
number of iterations, I, and grid size N as I · Nk. Hence this method is not suitable for
large models containing many parameters. Let µ denote the vector of parameters in the
µ-space, then the outline of the procedure can be summarized to

• Create the first grid with intervals {µ ∈ Rk|e−e−1 ≤ µ ≤ e−e
−4} and grid size N .

Evaluate the likelihood function in this grid to find the parameters maximizing the
likelihood function.

• Let µ∗ denote the parameters found to maximize the likelihood function and create
the refined grid around µ∗ as [µ∗−∆,µ∗+∆] with the same grid size N . Where ∆ is
chosen to minimize the distance to the border of the µ-space i.e. ∆ = min(µ∗, 1−µ∗).

• Evaluate the likelihood function in the new refined grid, [µ∗ −∆,µ∗ + ∆], to obtain
a new maximum. Iterate the second and this step for a set number of iterations.

where likelihood evaluations are done in the z-space and the grids are constructed in the
µ-space to prevent under and overflows.
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3.3 Maximum likelihood estimation

With the preparatory work covered in previous sections 3.1, 3.2 this section provides the
mathematical background of the maximum likelihood estimation in the new parameter
space z. Consider the returns r1, ..., rn to be observations of independent and identically
distributed random variables R1, ..., Rn with the density function f(R|θ0), where θ0 ∈
Θ denotes the set of true unknown parameters. Thus the random distribution would
be completely characterized if we knew the set of parameters θ0. Maximum likelihood
estimation provides an estimate of the unknown parameters θ0, as the parameter values
θ ∈ Θ that maximizes the probability of the observed data. Through out this paper L(·)
and LL(·) denotes the likelihood function and the log-likelihood function respectively.

3.3.1 GARCH

Assume that εt in section 2.1 is normally distributed with zero mean and unit variance,
then by parameter transformations and estimating σ2 by the unbiased sample variance of
the returns corresponding to the preparatory work in section 3.1.1. The parameter space
is defined by

Θ = {ω, α, β} 7→ Θ =
{
σ2, zcorr, zema

}
.

Leaving the maximum likelihood estimation to the set of parameters, θ = (zcorr, zema).
Given the observations r1, ..., rn the conditional distribution of rt is defined as in equation
5, and by writing the joint distribution by the chain rule

fr1,r2,...,rn(θ) = frn|r1,r2,...,rn−1
(θ)frn−1|r1,r2,...,rn−2

(θ) · · · fr1(θ), (21)

the likelihood function is defined by

L(θ|r1, r2, ..., rn) =
n∏
t=1

1√
2πσ2

t

e
− r2t

2σ2t . (22)

Since it is more convenient to work with sums than products the logarithm is applied to
form the log-likelihood

LL(θ|r1, r2, ..., rn) =

n∑
t=1

[
log

(
1√

2πσ2
t

)
− r2

t

2σ2
t

]

= −n
2

log(2π)− 1

2

n∑
t=1

log(σ2
t )−

1

2

n∑
t=1

r2
t

σ2
t

,

(23)
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where the optimization problem that is finding the maximum of the log-likelihood function
may be summarized to

argmax
θ∈Θ

LL(θ|r1, r2, ..., rn). (24)

In order to solve this maximization problem the algorithm implemented in java is fed with
the analytic derivatives. Where the gradient and a scheme of chain rules for the partial
derivatives are obtained as

∇LL =

(
∂LL

∂zcorr
,
∂LL

∂zema

)
, (25)

∂LL

∂zcorr
=
∂LL

∂σ2
t

∂σ2
t

∂zcorr
,

∂σ2
t

∂zcorr
=

∂σ2
t

∂µcorr

∂µcorr
∂zcorr

∂LL

∂zema
=
∂LL

∂σ2
t

∂σ2
t

∂zema
,

∂σ2
t

∂zema
=

∂σ2
t

∂µema

∂µema
∂zema

,

(26)

where the algebra of calculating the gradient according to above are left out since it is a bit
tedious and does not add anything important, although the following partial derivatives
are obtained

∂LL

∂zcorr
= −1

2

n∑
t=1

[(
1

σ2
t

− r2
t

σ4
t

)(
µema(σ

2
t−1 + µcorr

∂σ2
t−1

∂µcorr
) + (1− µema)r2

t−1 − σ2

)
µcorre

−zcorr
]
,

∂LL

∂zema
= −1

2

n∑
t=1

[(
1

σ2
t

− r2
t

σ4
t

)(
σ2
t−1 + µema

∂σ2
t−1

∂µema
− r2

t−1

)
µcorrµemae

−zema
]
.

(27)

Now let ηt in equation 6 be scaled student’s t distributed with zero mean and unit variance.
Then by following the same procedure as above for the normally distributed innovations,
we have the parameter space defined by

Θ = {ω, α, β, ν} 7→ Θ =
{
σ2, zcorr, zema, zν

}
.

Again σ2 is estimated by the unbiased sample variance of the returns, resulting in the set of
parameters to estimate, θ = (zcorr, zema, zν). Although a transformation to zν = log(ν−2)
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is done with the sole reason to avoid the potential of dividing by zero, the zν values are
transformed back to ν when evaluating log-likelihood and derivatives in the algorithm,
therefore this transformation is ignored in the following equations. Using equation 7 with
ν > 2, the likelihood function is defined by

L(θ|r1, r2, ..., rn) =

n∏
t=1

Γ(ν+1
2 )√

σ2
t (ν − 2)πΓ(ν2 )

(
1 +

r2
t

σ2
t (ν − 2)

)− ν+1
2

, (28)

where Γ(·) denotes the gamma function. Then by applying the logarithm the log-likelihood
function is obtained as

LL(θ|r1, r2, ..., rn) =
n∑
t=1

log

(
Γ(ν+1

2 )√
σ2
t (ν − 2)πΓ(ν2 )

(
1 +

r2
t

σ2
t (ν − 2)

)− ν+1
2

)

= n log

(
Γ(ν+1

2 )√
π(ν − 2)Γ(ν2 )

)

− 1

2

n∑
t=1

log(σ2
t ) + (ν + 1) log

(
1 +

r2
t

σ2
t (ν − 2)

)
.

(29)

Thus the maximization problem may be summarized to

argmax
θ∈Θ

LL(θ|r1, r2, ..., rn), (30)

where the gradient is constructed by the partial derivatives

∇LL =

(
∂LL

∂zcorr
,
∂LL

∂zema
,
∂LL

∂ν

)
, (31)

and the partial derivative scheme of chain rules are the same as in equation 26 except
we have one more partial derivative to account for. Where we note that the conditional
volatility does not depend on the degrees of freedom, ν, and thus the partial derivatives
is the same as defined in equation 27 up to the factor of ∂LL

∂σ2
t

. With some algebra the

following partial derivatives are obtained

15



∂LL

∂zcorr
= −1

2

n∑
t=1

[(
1

σ2
t

− (ν + 1)r2
t

σ4
t (ν − 2) + r2

t σ
2
t

)
∂σ2

t

∂zcorr

]
,

∂σ2
t

∂zcorr
=

(
µema(σ

2
t−1 + µcorr

∂σ2
t−1

∂µcorr
) + (1− µema)r2

t−1 − σ2

)
µcorre

−zcorr ,

∂LL

∂zema
= −1

2

n∑
t=1

[(
1

σ2
t

− (ν + 1)r2
t

σ4
t (ν − 2) + r2

t σ
2
t

)
∂σ2

t

∂zema

]
,

∂σ2
t

∂zema
=

(
σt−1 + µema

∂σ2
t−1

∂µema
− r2

t−1

)
µcorrµemae

−zema ,

∂LL

∂ν
=
n

2

(
Ψ

(
ν + 1

2

)
−Ψ

(ν
2

)
− 1

ν − 2

)
− 1

2

n∑
t=1

[
log

(
1 +

r2
t

σ2
t (ν − 2)

)
− (ν + 1)r2

t

σ2
t (ν − 2)2 + r2

t (ν − 2)

]
,

where Ψ(·) denotes the digamma function.

3.3.2 gjr-GARCH

Similarly as the procedure in section 3.3.1, provided by the log-likelihood function in equa-
tion 23 and 29 from that section and the conditional volatility defined as in equation 3, the
log-likelihood function for the gjr-GARCH and gjr-sGARCH are defined. Then by follow-
ing the parameter space transformation in section 3.1, the parameter space for gjr-GARCH
with normally distributed residuals is defined by

Θ = {ω, α, β, γ} 7→ Θ =
{
σ2, zcorr, zema, zasy

}
.

With the set of parameters to estimate, θ = (zcorr, zema, zasy). Moreover, the gradient is
defined by

∇LL = (
∂LL

∂zcorr
,
∂LL

∂zema
,
∂LL

∂zasy
), (32)

with the partial derivatives obtained from following the partial derivative scheme defined
in equation 26 to
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∂LL

∂zcorr
= −1

2

n∑
t=1

[(
1

σ2
t

− r2
t

σ4
t

)
∂σ2

t

∂zcorr

]
,

∂σ2
t

∂zcorr
=

(
(1− µema)r2

t−1 + 2(µema − µasy)It−1r
2
t−1 + µasyσ

2
t−1 + µcorrµasy

∂σ2
t−1

∂µcorr
− σ2

)
µcorre

−zcorr ,

∂LL

∂zema
= −1

2

n∑
t=1

[(
1

σ2
t

− r2
t

σ4
t

)(
(2It−1 − 1)r2

t−1 + µasy
∂σ2

t−1

∂µema

)
µcorrµemae

−zema
]
,

∂LL

∂zasy
= −1

2

n∑
t=1

[(
1

σ2
t

− r2
t

σ4
t

)(
σ2
t−1 − 2It−1r

2
t−1 + µasy

∂σ2
t−1

∂µasy

)
µcorrµasye

−zasy
]
.

For the student’s t distributed residuals we have the addition of the parameter ν to the
parameter space, which is then defined by

Θ = {ω, α, β, ν, γ} 7→ Θ =
{
σ2, zcorr, zema, zν , zasy

}
.

Thereby the set of parameters to estimate, θ = (zcorr, zema, zν , zasy). Furthermore the only
difference from the partial derivatives obtained with normally distributed residuals except
for the addition of a new parameter, is the factor ∂LL

∂σ2
t

which is given by

∂LL

∂σ2
t

=

(
1

σ2
t

− (ν + 1)r2
t

σ4
t (ν − 2) + r2

t σ
2
t

)
, (33)

and the partial derivative of the log-likelihood function w.r.t the degrees of freedom ν is
given by

∂LL

∂ν
=
n

2

(
Ψ

(
ν + 1

2

)
−Ψ

(ν
2

)
− 1

ν − 2

)
−

1

2

n∑
t=1

[
log

(
1 +

r2
t

σ2
t (ν − 2)

)
− (ν + 1)r2

t

σ2
t (ν − 2)2 + r2

t (ν − 2)

]
.
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3.3.3 Conjugate gradient method

There are various ways to solve the optimization problem of maximum likelihood estima-
tion, in this paper the optimization problem is solved by using the non-linear conjugate
gradient method. With the advantage over Newton-based methods of only requiring gradi-
ent computations, while Newton-based methods also requires the computational expensive
Hessian. The optimization problem may be described by letting f(x) = −LL(x) as

minimize f(x)

subject to x ∈ Rn,
(34)

and the non-linear conjugate gradient method is then defined by the iterative scheme,

xk+1 = xk + αkdk, (35)

where αk is the step size and dk is the search direction. αk is obtained by a line minimiza-
tion, that is

f(xk + αkdk) = minimize
α

f(xk + αkdk), (36)

and dk by the following

dk = −∇f(xk) + βkdk−1. (37)

There are various ways of determine βk but the most common ones are Polak–Ribière

βk =
∇f(xk)′(∇f(xk)−∇f(xk−1))

∇f(xk−1)′∇f(xk−1)
, (38)

and Fletcher–Reeves

βk =
∇f(xk)′∇f(xk)

∇f(xk−1)′∇f(xk−1)
. (39)

18



4 On the assumption of i.i.d. residuals

The work done in this paper heavily relies on the assumption that the residuals are i.i.d.
random variables. In order to test this assumption the sample autocorrelation function,
referred to as ACF, is used through out this paper. Let {x1, ..., xn} be observations of a
time series with zero mean. Then by [3] the sample autocorrelation function is defined
by

γ̂(h) =
1

n

n−|h|∑
t=1

xt+|h|xt, −n < h < n,

ρ̂(h) =
γ̂(h)

γ̂(0)
, −n < h < n,

(40)

where h is the lag, γ̂(h) is the sample autocovariance function and ρ̂(h) is the sample
autocorrelation function. the sample autocorrelations of a large sample of an i.i.d. sequence
are approximately i.i.d. N(0, 1/n). Thereby, the 95% confidence interval of the sample

autocorrelations can then be computed as
[
−1.96√

n
; +1.96√

n

]
. Consequently, for any sample

of an i.i.d. sequence, approximately 95% of the sample autocorrelations should reside
within the confidence interval, or conversely, no more than 5% should exceed the interval
boundaries. Hence, the null hypothesis that the sample are i.i.d. is rejected if more than
5% of the sample autocorrelations fall outside the confidence interval. In this paper the
sample ACF is used to check for independence in the residuals and typically normally
distributed residuals are assumed, which can be tested with the normal Q-Q plot. If the
assumption of normally distributed residuals is appropriate the normal Q-Q plot should
approximate a straight line through the origin with slope one.

5 Forecast evaluation

To measure the forecast accuracy of the employed conditional volatility models some kind
of out-of-sample testing is needed. In-sample performance are all fine and dandy but in
reality it is the out-of-sample performance that are of most interest. Thus the out-of-
sample performance of the models are obtained by constructing a backtest. This is done
by using a rolling window. Let n be the sample size and create a window of size w < n.
Now by letting the first window contain the first w data points of the sample and use
this data to estimate the parameters of the GARCH model, a h-day-ahead forecast can be
made. Proceeding by letting this window of size w ”roll” through the sample, by letting
the second window contain the second data point up through w+ 1 and so on. Thus using
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one-day-ahead forecast, i.e h = 1, the data set will be partitioned into ns = n − w + 1
subsets although the last subset is redundant since we do not have market observations
to measure the forecast accuracy, hence n − w subsets are used. This procedure makes it
possible to construct different forecast accuracy measures since the out-of-sample data are
known but not used in the parameter estimation of the models. The procedure may be
summarized as

For each subset:

• estimate model parameters based on data of the current subset

• estimate the h-day-ahead forecast

• calculate forecast measures

Where the various forecast measures are defined in the sections below.

5.1 Latent volatility

A mayor issue with volatility or variance forecast evaluation is the fact that the true
underlying volatility is not observable, hence to construct a forecast accuracy measure a
proxy of the latent volatility has to be estimated. Historically the latent volatility has
been derived by using squared daily returns or other estimates where daily prices are
used, however this has lead to the assumption that GARCH type models does not produce
accurate volatility forecasts. In [1], Torben G.andersen and Tim Bollerslev argued and
demonstrated that this is not the case and that the poor volatility forecast accuracy was
due to the method of extracting latent volatility, where the proxies for the latent volatility
was too noisy, thus they propose the use of high frequency data to extract the latent
volatility. The realized variance using intraday returns, assuming there are m number of
observations per trade day, are defined by

σ̂2
t+1 = RV

(m)
t+1 =

m∑
i=1

r2
i,m,t+1, (41)

however using high frequency data can be computational heavy and complex market mi-
crostructure effects arise. Also high frequency data is costly and hence not accessible for
this paper, however the intraday high low prices are typically accessible. Therefore the
unbiased proxy proposed by Parkinson in [7], based on intraday high low prices are used.
The estimate of latent variance based on high low prices is defined by

σ̂2
t+1 =

1

4 log 2
(log (Ht+1/Lt+1))2. (42)
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Now to evaluate the forecast accuracy of the conditional volatility models, the robust and
homogeneous loss functions, MSE and QLIKE, proposed by Patton in [8] is employed.
That is,

MSE : L(σ̂2
t+1, ĥ

2
t+1) = (σ̂2

t+1 − ĥ2
t+1)2,

QLIKE : L(σ̂2
t+1, ĥ

2
t+1) =

σ̂2
t+1

ĥ2
t+1

− log
σ̂2
t+1

ĥ2
t+1

− 1,
(43)

where σ̂2
t+1 denotes the latent variance proxy defined by equation 42 and ĥ2

t+1 denotes the
conditional variance forecast. Furthermore since the MSE loss function will have a variance
proportional to the square of the variance of returns, i.e. σ4, it is somewhat sensitive to
extreme observations while the QLIKE loss function does not inherit this property due to

the use of standardized error (
σ̂2
t+1

ĥ2t+1

).

5.2 Value-at-Risk

Value-at-Risk, referred to as VaR in this paper, is a widely used risk measure for financial
applications. Although there are some shortcomings of this risk measure, such as hiding
large potential losses in the tails and it does not encourage diversification since it is not a
subadditive risk measure, it has the strength of being intuitive and backtestable. In this
paper the VaR is calculated on losses to keep it intuitive. Now given the distribution of
the potential loss L, Value-at-Risk at level p is simply the (1− p) quantile of the potential
loss, see [6], that is

VaRp(X) = F−1
L (1− p), p ∈ (0, 1), (44)

where X is the value of a portfolio, L = −X/R0 with the natural interpretation as the
discounted loss where R0 is the percentage return of a risk-free asset. The interpretation
of VaR is that the probability of a loss greater than VaRp(X) is p. Further the assumed
distributions in previous section 3.3.1 are only used to estimate the parameters of the
GARCH models and for the VaR calculations in this paper the empirical counter part are
used, defined in section 5.3, and the percentage return of a risk-free asset is for simplicity
assumed to be zero i.e. R0 = 1. Furthermore a violation or breach of a one-day-ahead VaR
forecast, meaning that the actual loss is larger than the one-day-ahead VaR forecast, may
be described by the indicator function defined by

It+1 = I(lt+1 > VaRt+1|t
p ), (45)
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where lt+1 is the loss and the probability of a loss exceeding VaRp
t+1|t is p, that is

P (It+1|Ft) = p, (46)

and thus the expected number of breaches is defined by

E[It+1|Ft] = p · 1 + (1− p) · 0 = p. (47)

With this the expected number of breaches for a backtest with n numbers of VaR forecasts
is therefore given by

n∑
i=1

E[It+1|Ft] = np. (48)

5.3 Empirical distribution

Let {X1, X2, ..., Xn} be a sample of i.i.d. random variables with some unknown distribu-
tion function FX , then the empirical distribution Fn,X function may be approximated by
assigning a probability weight of 1/n to each of the Xk ≤ x, that is

F̂n,X =
1

n

n∑
i=1

I{Xk ≤ x}. (49)

Furthermore by ordering the sample of {X1, X2, ..., Xn} such that X1,n ≥ · · · ≥ Xn,n the
empirical quantile estimate can be shown to be given by

F̂−1
n,X(p) = Xbn(1−p)c+1,n, (50)

where b·c denotes the floor function. Hence the empirical counterpart of VaR in equation
44, given a sample {L1, ..., Ln} of independent copies of L, ordered as L1,n ≥ · · · ≥ Ln,n is
thus given by

V̂aRp(X) = F̂−1
n,L(1− p) = Lbnpc+1,n, (51)

and therefore the V̂aRp(X) is simply the bnpc+ 1 worst outcome of the loss sample.
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6 Empirical studies

This section covers the empirical studies, consisting of two different data sets, where the
data sets are chosen for different reasons. The first data set contains the Brent crude oil
spot price and the second contains front month lumber futures price. Front month refers
to the shortest duration contract that can be purchased.

6.1 Brent crude oil

For the sake of testing the algorithm the first data set containing the ten year daily spot
price of Brent crude oil, presented by the left plot in Figure 1, was chosen on the basis
that crude oil is one of the more volatile financial instruments on the market. The data
set consist of a total number of 2524 daily historical spot prices that are converted to log
returns by rt = logPt/Pt−1, furthermore the returns are mean adjusted to contain zero
mean. By inspection it is evident that the data exhibit volatility clustering, that is the
time series exhibit conditional heteroscedasticity and by inspection of the autocorrelation
function in Figure 10a in Appendix A.3.1, a significant autocorrelation in the squared log
returns are evident, indicating that volatility clustering is present.

0

50

100

150

2008 2010 2012 2014 2016

Date

$ 
S

po
t p

ric
e

Brent crude oil

-0.1

0.0

0.1

2008 2010 2012 2014 2016

Date

Lo
g 

re
tu

rn

Log return

Figure 1: The plot to the left depicts ten year Brent crude oil daily spot price and to the
right the log return, dating from 2007-05-01 to 2017-05-01.
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6.1.1 Robustness of solution

It is of no secret that optimization of GARCH parameters by maximum likelihood esti-
mation is numerically difficult due to spurious solutions leading to sub-optimal solutions.
Thus the robustness of the solution is examined by using different initial values according
to 3.2, where a GARCH model is fed with the initial values and fitted to the data set with
normally distributed and student’s t distributed residuals. Figures 2a and 2b depicts the
increase in accuracy in the sense of log-likelihood values by using the method in 3.2 for
choosing the initial values. Worth mentioning is that without using the method for initial
values the fit with normally distributed residuals a log-likelihood of 6435.51 is achieved
while with student’s t distributed residuals the algorithm struggles to converge.

The left hand plots in Figures 2a and 2b corresponds to log-likelihood as a function of
time where each point represents a grid size increasing as (10 × 10, 20 × 20, ...) for the
two dimensional space (zcorr, zema) with normally distributed residuals, and (10× 10× 10,
15×15×15, ...) for the three dimensional space (zcorr, zema, zν) with student’s t distributed
residuals and no iterations of refining grid around previous found maximum are done in
these plots. The right hand plots corresponds to holding a constant grid size of (10× 10)
and (10 × 10 × 10) for respectively parameter spaces and each point represents increased
number of iterations of refining grid around previous found maximum, starting with no
iteration and increasing with one for each point. The Figures shows that the solution
are dependent of the initial values, meaning that both increasing grid size and number
of iterations introduces new maximums. Where the iteration method clearly outperforms
increasing grid size both in time and log-likelihood values, although they don’t differ that
much in the case of normally distributed residuals, they differ by a significant amount in the
case of student’s t residuals. Due to the trade-of problem of accuracy vs speed, a grid size of
(20×20) for (zcorr, zema) and (20×20×20) for (zcorr, zema, zν) with 20 iterations is proposed
for this data set in order to preserve speed and obtaining good enough accuracy.
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Figure 2: (a) Log-likelihood as a function of time with normally distributed residuals, Left
plot: increasing grid size and no iterations, right plot: increasing number of iterations while
holding grid size constant. (b) same as plot (a) for student’s t distributed residuals.
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6.1.2 Sensitivity analysis

Let the vector θ∗ denote the optimal solution found by using the method proposed in the
section above. Since the global optimal solution is most certainly not going to be obtained
by the algorithm a sensitivity analysis of θ∗ is conducted. By looking at the normal-
ized sensitivity describing the percentage difference in log-likelihood value per percentage
difference in parameter variable defined by

∆LL
LL
∆θi
LLi

=
θ∗i

LL(θ∗)

∂LL

∂θi

∣∣∣∣
θ∗
, (52)

in order to capture relative sensitivity. Figure 3 depicts the relative sensitivities for each
employed model, showing that the log-likelihood value is more sensitive to the parameter
zema for the GARCH model with normally and student’s distributed residuals and zasy for
the gjr-GARCH model. Further by looking at the gradient of the log-likelihood function
evaluated at the optimal solution θ∗ presented in Table 5 in Appendix A.4, it is obvious
that the gradient does not equal to zero in any of the employed optimizations, indicating
that a spurious solution is found. There is various reasons of why spurious optimal solutions
may arise, and to name a few:

• the log-likelihood function is almost flat around the optimal solution θ∗, resulting in
algorithm stopping before reaching global optimum due to stopping criteria.

• the log-likelihood function is in fact not ”well behaved” around the optimal solution
θ∗, meaning that the function is not approximately quadratic near the optimum and
thus the gradient are in fact not equal to zero at the optimal solution.

• the step size of the algorithm is to large, meaning that the global optimum is not
reachable.

where the first case is the most probable since the percentage differences in log-likelihood
value per percentage difference in parameter variable are small, see Figure 3. Since the
number of parameters of GARCH models tend to be high it is hard to visualize the log-
likelihood function, although with normally distributed residuals we can visualize it in
the z-space. In Figure 4a and 4b the log-likelihood surface around the found optimal
solution θ∗ is presented, where an almost flat ”ridge” in the zcorr direction is apparent,
containing spurious solutions making it complicated to locate the global optimum. In order
to understand how big impact these spurious solutions has on the conditional volatility
process, the partial derivative of the sample average of the conditional variance σ2

t with
respect to the parameters, given the information Ft−1, are defined by

∂ < σ2
t >

∂θi
=

1

n− 1

n∑
t=1

∂σ2
t

∂θi
, (53)
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where < · > denotes the sample average and the resulting partial derivatives evaluated at
the found optimal solution θ∗ are presented in Table 6 in Appendix A.4. These results
indicate that the conditional volatility process does not vary much within this ”ridge” and
the found solution are for the applications of this paper considered as good enough.
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Figure 3: Normalized sensitivities for each employed conditional volatility model.
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Figure 4: Log-likelihood as a function of zcorr and zema for the GARCH model with
normally distributed residuals.

6.1.3 In-sample fit

In Table 1 the parameter estimates are presented, where also for a soundness check the
solutions obtained when using the Rugarch package in R are included. The Rugarch pack-
age provides various optimization algorithms and in this paper, ”solnp” are used, that is
based on the augmented Lagrangian method. Although the values obtained in R is of no
guarantee to be the optimal solution and the definition of the likelihood function may vary.
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For in-sample fit the Akaike information criterion (AIC), defined in Appendix A.1, is pro-
vided for model selection purposes and accordingly the gjr-GARCH model with student’s
t distributed residuals are preferred by (AIC) due to the lowest value of −5.141. Thus
the data set seems to contain the stylized facts of fat tails and that bad news impacts
the volatility more than good news. The fat tails can be seen in the normal Q-Q plot
presented in Figure 11a in Appendix A.3.1 and the estimated positive values of γ indicates
asymmetry between negative and positive shocks of same magnitude.

Let < · > denote the sample average, the difference between the sample variance of the
data set and the conditional variance process are presented as < r2

t > − < σ2
t >, where

the GARCH model yields the lowest absolute value of 1.882E − 6 corresponding to a
difference of 0.3% between them. Figure 5 depicts the conditional volatility process with
superimposed absolute value of the log returns for each employed conditional volatility
model, where we see that the employed conditional volatility models capture the changes
in the returns.

Furthermore the log returns are filtered with the conditional volatility process σt of the
employed models to obtain the residuals { rtσt } and investigate the assumption off i.i.d.
residuals. Figure 13a through 13d in section A.3.1 presents the ACF for the residuals
obtained with the filters. By inspection the resulting autocorrelation is not zero for all
lag h 6= 0, however it is reasonably close with 3 sample autocorrelations falling outside the
confidence bounds where the expected number of sample autocorrelations to fall outside the
confidence boundaries would be 35 ∗ 0.05 ≈ 2. Thus the null hypothesis that the residuals
are i.i.d. are theoretically rejected. Although in this context the sample autocorrelations
are considered to be reasonably close to zero and therefore the residuals are considered to
be independent. Where the normal Q-Q plot in Figure 11a in Appendix A.3.1 showed the
need of a more heavy-tailed distribution than the normal distribution.
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Figure 5: Conditional volatility with superimposed absolute value of log returns in grey.
Although it is hard to distinguish the processes, red line corresponds to GARCH, blue for
sGARCH, green for gjr-GARCH and brown for gjr-sGARCH.

θ∗
LL AIC < r2

t > − < σ2
t > trun (s)

ω α β ν γ

GARCH
1.121e-6 0.04722 0.9505 - - 6435.946 -5.097 -1.882e-6 0.608
(1.042e-6) (0.04910) (0.9500) - - (6436.265) - - -

sGARCH
1.054e-6 0.04239 0.9555 7.209 - 6479.662 -5.131 -2.044e-6 7.347
(1.005e-6) (0.04404) (0.9550) (6.997) - (6479.809) - - -

gjr-GARCH
9.690e-7 0.01361 0.9561 - 0.05656 6459.568 -5.115 4.743e-6 7.179
(9.272e-7) (0.01408) (0.9555) - (0.05876) (6459.908) - - -

gjr-sGARCH
8.438e-7 0.01248 0.9615 7.480 0.04848 6492.929 -5.141 4.387e-6 61.93
(7.755e-07) (0.01265) (0.9612) 7.877 (0.05029) (6493.237) - - -

Table 1: Parameter estimates of each conditional volatility model employed, the letter, s,
in the model names indicates student’s t distributed residuals and the Akaike information
criterion (AIC) is also provided. Values in parentheses are values obtained by fitting the
conditional volatility models in R. The run time of the algorithm are provided as trun.

6.1.4 Forecast accuracy

Since the spot price of Brent crude oil is provided daily by U.S. Energy Information Ad-
ministration and are used as a benchmark for other financial instruments such as futures,
high-frequency data or high low prices are not available.

Hence the perhaps more intuitive approach by backtesting Value-at-risk are conducted as
described in section 5. Now consider a portfolio consisting of a single contract on a barrel
of crude oil with spot price Pt at time t, with a portfolio value tomorrow of Pt+1 − Pt.
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Then the empirical estimate of the one-day-ahead VaR forecast for the subsets with size w
of the partitioned data set are estimated by creating independent copies of the potential
future loss L at time t+ 1, defined by

Lt+1 = −(Pt+1 − Pt) = −Pt(eRt+1 − 1) = g(Rt+1). (54)

Thus, under the assumption that the observations rt−j , for j = 0, ..., w−1 are independent
copies of Rt+1, the subsets of independent copies of L are created by

lt−j = −Pt(ert−j − 1), for j = 0, ..., w − 1, (55)

and the losses are further assumed to follow the model

lt = σtzt, (56)

where the set {zt} is assumed to be i.i.d. with zero mean and unit variance with the
unknown distribution approximated by the empirical distribution F̂n,Z . Given the infor-
mation Ft, the conditional volatility process σt is estimated by the GARCH models for
each of the subsets of historical losses and the potential loss L at time t+ 1 is then given
by

Lt+1|t = σt+1|tZ, for t = w, ..., n− 1. (57)

Thus by using equation 51 and filtering the historical losses with the conditional volatility
process σt (to obtain the residuals { ltσt }) and ordering them such that Z1,n ≥ · · · ≥ Zn,n,
the empirical estimate of the one-day-ahead VaR forecast for the subsets are obtained by
equation 51 and Proposition 1 in Appendix A.2 as

V̂aR
t+1|t
p = σt+1|tF̂

−1
n,Z(1− p) = σt+1|tZbnpc+1,n, for t = w, ..., n− 1. (58)

Although the empirical cdf and the quantile of the filtered losses are re-evaluated for each
subset, the right tail of the empirical cdf corresponding to the full data set of filtered
losses, filtered with the employed conditional volatility models are presented in Figure 12
in Appendix A.3.1 to get a less cluttered visualization of the empirical cdf.

The backtest is then conducted by evaluating VaR
t+1|t
0.01 by the procedure described above,

and the resulting one-day-ahead, 1% VaR forecast for each employed conditional volatility
model is presented in Figure 6 with superimposed losses. Clearly, by inspection, each
employed model yielded fairly accurate VaR forecasts. With a sample size of n = 2524 and
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a window size of w = 1000, the number of expected breaches of the backtest according to
equation 48, are obtained as nsp = 1524 · 0.01 ≈ 15. Let ε denote the difference between
the number of breaches acquired from the backtest and the expected number of breaches,
that is

ε =

ns∑
t=1

It − nsp. (59)

Which is summarized in Table 2, with the gjr-GARCH model yielding the lowest of 14
breaches. Furthermore the sample ACF of the squared losses and the filtered losses are
presented in Figures 10b and 14a through 14d in Appendix A.3.1. With the interpretation
that the losses exhibit volatility clustering and that the assumption of i.i.d. filtered losses
can not be rejected.
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Figure 6: One-day-ahead, 1 % VaR forecast for each employed conditional volatility model
with superimposed losses in grey. Red line for GARCH, blue for sGARCH, green for
gjr-GARCH and brown for gjr-sGARCH.

# ε

GARCH 15 0
sGARCH 15 0
gjr-GARCH 14 -1
gjr-sGARCH 15 0

Table 2: Number of breaches are denoted by # and ε is the difference from the expected
breaches
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6.2 Lumber

The lumber data set contains the two year front month daily futures price of lumber, where
left plot in Figure 7 depicts the historical daily futures price and the right plot depicts the
mean adjusted log returns. Lumber futures market is highly illiquid and the average daily
trading volume of the data set is 375 contracts with a minimum as low as 6 traded contracts.
illiquid markets are subject to large bid-ask spreads, high volatility etc. Hence this data set
is chosen to evaluate how the algorithm perform on illiquid instruments. Furthermore the
data set consists of 505 historical daily futures prices. By inspection of Figure 7 it is not
easily seen if the time series exhibit volatility clustering and Figure 15a in section A.3.2
shows that the sample autocorrelations of the squared log returns are not significantly
different from zero. Hence this data set may not be the ideal for GARCH models, however
the algorithm should yield reasonable results anyway.
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Figure 7: The left plot depicts the two year lumber daily futures price and the right plot
depicts the log returns, dating from 2015-06-09 to 2017-06-09.

6.2.1 In-sample fit

Figure 8 depicts the conditional volatility process of each GARCH model with superim-
posed absolute value of the log returns. The spikes in the data set seen in Figure 8 is
probably caused by large bid-ask spreads where the models seems to capture this pretty
well. Otherwise the volatility process is almost constant due to the lack of clustering.
Furthermore the parameter estimates of each model are presented in Table 3, where the
sGARCH obtained the lowest AIC value of −5.327 and gjr-sGARCH yielded the lowest
difference in sample variance of 4.546e − 7, corresponding to 0.15% of the data sample
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variance. Thus this data set also seems to exhibit fat tails, where the normal Q-Q plot in
Figure 16a found in Appendix A.3.2 confirms this.

The i.i.d. assumption of the residuals are tested similarly as in the crude oil section. The
ACF for the various filters are presented in Figure 18a through 18d in section A.3.2. Where
the expected number of atoucorrelations to fall outside the confidence bounds are 27∗0.05 ≈
1 and the obtained autocorrelations to fall outside the boundaries is 2. Thus the null
hypothesis that the residuals are i.i.d. is theoretically rejected. Although in this context
the sample autocorrelations are considered to be reasonably close to zero and therefore
the null hypothesis is not rejected and the residuals are considered as approximately i.i.d.
random variables.
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Figure 8: Conditional volatility with superimposed absolute value of log returns in grey.
Where red line corresponds to GARCH, blue for sGARCH, green for gjr-GARCH and
brown for gjr-sGARCH.

θ∗
LL AIC < r2

t > − < σ2
t > trun (s)

ω α β ν γ

GARCH 2.629e-4 0.1104 0.01064 - - 1333.445 -5.279 -5.870e-7 0.309
sGARCH 2.709e-4 0.09433 9.433e-7 6.350 - 1346.655 -5.327 -5.888e-7 2.244

gjr-GARCH 2.014e-4 3.268e-6 0.2449 - 0.1635 1333.701 -5.276 3.581e-6 2.269
gjr-sGARCH 2.541e-4 0.06806 0.05700 6.150 0.05078 1346.697 -5.324 4.546e-7 12.70

Table 3: Parameter estimates of all conditional volatility models employed, the letter, s,
in the model names indicates student’s t distributed residuals and the Akaike information
criterion (AIC) is also provided. The run time of the algorithm are provided as trun.
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6.2.2 Forecast accuracy

Evaluation of the one-day-ahead forecast accuracy of the models are conducted with both
the Parkinson estimate of the latent variance and VaR at level p = 0.01. The backtest is
constructed by using a window size of w = 200, thus the backtest consists of 304 one-day-
ahead forecasts. Figure 9 depicts the VaR forecasts and Table 4 presents the sample average
of the loss functions defined in section 5.1 and the obtained number of VaR breaches. Also
the right tail of the empirical cdf corresponding to the full historical set of filtered losses are
presented in Figure 17 in Appendix A.3.2. A check on the independence of the residuals
are provided by the sample ACF in Figure 19a through 19d which are considered as not
significantly different from zero and therefore considered as independent. The expected
number of breaches by using Equation 48 is 3, thus each employed model yields less breaches
than the expected. This was however an ”easy” loss sample for the VaR forecast since the
loss sample does not contain large fluctuations. For the variance forecast measures we see
that the gjr-sGARCH performs best both in the sense of MSE and QLIKE.

-20

0

20

apr 2016 jul 2016 okt 2016 jan 2017 apr 2017

Date

$ 
Lo

ss

One-day-ahead, 1% VaR forecast

Figure 9: One-day-ahead, 1 % VaR forecast for each employed conditional volatility models
with superimposed losses in grey. Red line for GARCH, blue for sGARCH, green for gjr-
GARCH and brown for gjr-sGARCH.

MSE QLIKE # ε

GARCH 6.719e-08 0.4426 2 -1
sGARCH 6.611e-08 0.4453 2 -1
gjr-GARCH 5.358e-08 0.4440 2 -1
gjr-sGARCH 4.675e-08 0.4350 2 -1

Table 4: Sample average of the loss functions MSE and QLIKE for each employed con-
ditional volatility model. Also the number of VaR breaches are provided as # and the
difference between obtained number of breaches and the expected noted by ε.
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7 Conclusions

This paper provides the framework for a robust algorithm for automatizing the GARCH
parameter estimation. Where a parameter space transformation from the original param-
eter space to the z-space is conducted, resulting in a more robust algorithm. Meaning
that the dimension of the estimation problem is reduced, relaxed constraints and also the
mean of the conditional variance process σ2

t is approximated by the sample variance of
the data, thus the long term conditional variance is bounded by the sample variance of
the data. Then to deal with the potential problem of convergence, a method to obtain
initial values for the algorithm is proposed in Section 3.2, that is also used as a fallback
solution in the worst case scenario if the algorithm fails to converge. The robustness of
the solution is investigated in Section 6.1.1, where it is evident that the accuracy of the
solution obtained when solving the maximum likelihood optimization problem with the
nonlinear conjugate gradient method depends on the initial values. The causes for this
was found to be the complex surface of the maximum likelihood, see Section 6.1.2. The
approach in this paper is to find a ”good enough” solution for the applications intended
for the algorithm. Hence the grid size of the method for finding initial values to k number
of parameters in the z-space, was proposed as 20k and 20 iterations of refining the grid.
Where this scheme yielded no convergence failures and good enough accuracy versus speed
of the algorithm.

This paper includes testing the algorithm on two different data sets and the algorithm was
further tested on various types of data sets not included in this paper. In-sample fit and
out-of-sample forecast performance are evaluated on both data sets. Where the conclusion
is that there is no clear winner, however AIC seems to prefer the models with student’s
t distributed residuals. One can also see that the gjr-sGARCH model overall yielded the
best results. Indicating that the data sets considered in this paper exhibits the stylized
facts of fat tails and that bad news impacts the volatility more than good news. However
it is also the most complex model employed and is notably slower, given it has the most
parameters to estimate. This is due to the exponentially increasing number of evaluations
of the log-likelihood function that is performed by the method of finding initial values.
Noteworthy is that in the backtest of the one-day-ahead VaR all the employed models kept
the number of VaR breaches to the expected or less. Hence it is more tempting to use the
GARCH or gjr-GARCH model in this context to preserve speed of the algorithm. Also
both Polak–Ribi‘ere and Fletcher–Reeves formula for the conjugate gradient method was
tested with no notably difference in accuracy or speed for the data sets considered in this
paper. Furthermore the algorithm managed to handle illiquid assets and smaller data sets,
in the sense of yielding reasonable results.

For further research on this topic, the method of finding initial values can be improved.
Since the method included in this paper is quite naive and is not a good approach for
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large models. Of course there exist lots of algorithms to solve the optimization problem
and other algorithms may outshine the nonlinear conjugate method in this context, which
was chosen due to only requiring first order derivatives. In the perfect world it would
be preferred to construct a robust optimization algorithm that does not depend on the
initial values. Also there is the possibility of using other faster computer languages, such
as C.

As a final comment, the method used to construct the algorithm capable of automatizing
GARCH parameter estimation in this paper resulted in a powerful java implementation
of it. Showing great ability of volatility forecasting while handling the problems that arise
with automatizing the estimation.
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A Appendix

A.1 Akaike information criterion

AIC =
2k

n
− 2LL

n
(60)

where k is the number of parameters of the model and n is the sample size.

A.2 Propositions

Proposition 1
If g : R → R is non-decreasing and left continuous, then for any random variable Z it

holds that F−1
g(Z)(p) = g(F−1

Z (p)) for all p ∈ (0, 1).

Proposition 2
For any random variable X, F−1

−X(p) = −F−1
X ((1− p)+) for all p ∈ (0, 1). In particular, if

FX is continuous and strictly increasing, then F−1
−X(p) = −F−1

X (1− p).

A.3 Figures

A.3.1 Brent crude oil
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Figure 10: Plot (a) depicts sample ACF of the squared log returns and plot (b) depicts the
sample ACF of the squared losses.
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Figure 11: Plot (a) depicts the normal Q-Q plot of Brent crude oil filtered log returns (b)
depicts the normal Q-Q plot of Brent crude oil filtered losses. Where the filtering is done
with GARCH.
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Figure 12: Right tail of the empirical cdf of Brent crude oil filtered losses (residuals), where
the dashed line marks the 0.99 level. Red line for GARCH, blue for sGARCH, green for
gjr-GARCH and brown for gjr-sGARCH.
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Figure 13: Sample ACF of crude oil filtered log returns (residuals), plot (a) filtered with
GARCH, plot (b) filtered with sGARCH, plot (c) filtered with gjr-GARCH and plot (d) is
filtered with gjr-sGARCH.
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Figure 14: Sample ACF of crude oil filtered losses (residuals), plot (a) filtered with GARCH,
plot (b) filtered with sGARCH, plot (c) filtered with gjr-GARCH and plot (d) is filtered
with gjr-sGARCH.
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A.3.2 Lumber
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Figure 15: Plot (a) depicts sample ACF of the squared log returns and plot (b) depicts
sample ACF of the squared losses.
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Figure 16: Plot (a) depicts the normal Q-Q plot of lumber futures filtered log returns (b)
depicts the normal Q-Q plot of lumber futures filtered losses. Where the filtering is done
with GARCH.
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Figure 17: Right tail of the empirical cdf of Lumber futures filtered losses, where the dashed
line marks the 0.99 level. Red line for GARCH, blue for sGARCH, green for gjr-GARCH
and brown for gjr-sGARCH.
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Figure 18: Sample ACF of lumber futures filtered log returns (residuals), plot (a) filtered
with GARCH, plot (b) filtered with sGARCH, plot (c) filtered with gjr-GARCH and plot
(d) is filtered with gjr-sGARCH.
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Figure 19: Sample ACF of lumber futures filtered losses (residuals), plot (a) filtered with
GARCH, plot (b) filtered with sGARCH, plot (c) filtered with gjr-GARCH and plot (d) is
filtered with gjr-sGARCH.
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A.4 Tables

∇LLi
∂LL
∂zcorr

∂LL
∂zema

∂LL
∂zν

∂LL
∂zasy

GARCH -0.006006 1.804 - -
sGARCH -0.007995 -4.426 -0.07938 -
gjr-GARCH -0.002261 -0.01445 - -0.1653

Table 5: Gradient of the log-likelihood function evaluated at the optimal solution θ∗.

∂<σ2
t>

∂zcorr

∂<σ2
t>

∂zema

∂<σ2
t>

∂zasy
θ∗ = (zcorr, zema, zν , zasy)

GARCH 3.638E-9 8.796E-8 - (6.084, 3.026, -, - )
sGARCH 4.146E-9 9.376E-8 - (6.146, 3.139, 1.650, -)
gjr-GARCH -1.028E-8 -1.341E-7 -1.341E-7 (6.230, 4.288, -, 3.148)

Table 6: Partial derivatives of sample variance w.r.t parameters.
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