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Abstract
Nowadays banks are more reliant on the use of models and many of these models depend on each
other. In this thesis techniques from graph theory are used to depict and study the network caused
by these dependencies. This is done by creating a portfolio that corresponds to a simpli�ed ver-
sion of a bank and then selecting models appropriate to evaluate the portfolio. The importance of
each model in the network is then measured using the centrality measures; degree centrality, Katz
centrality and Page rank. The model risk associated with speci�c models can di�er depending on
the interested party’s views. These views can be re�ected in the Katz and Page rank measure-
ments by slightly modifying them. In this thesis three perspectives representing possible views
of interested parties are investigated. The perspectives were focused on the amount valued by
each valuation model, the sensitivity and the complexity of the models. The results indicate that
the connections between the models a�ect the centrality measures to a greater extent than the
risk introduced dependent on the di�erent perspectives. Moreover the results indicate that the
centrality measures used are more appropriate to identify potential victims of contagion rather
than sources of contagion.
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Ommodellers risk och inbördes samband i banker

Sammanfattning
På senare tid har banker blivit alltmer beroende av användandet av modeller och många av dessa
modeller är ofta beroende av varandra. I den här uppsatsen används tekniker från grafteori för
att framställa och undersöka det nätverk som uppstår på grund sambanden. Detta görs genom
att skapa en portfölj som motsvarar en förenklad version av en bank och sedan välja modeller
lämpliga för att utvärdera portföljen. Vikten av varje modell undersöks med hjälp av de följande
centralitetsmåtten; gradcentralitet, Katz-centralitet och Page Rank. Modellrisken associerad med
speci�ka modeller kan skilja sig åt beroende på den intresserade partens åsikter. Genom viss
modi�ering av Katz och Page rank måtten är det möjligt att spegla dessa åsikter. Tre perspektiv
som kan motsvara olika intressenters åsikter undersöks och dessa fokuserar på hur mycket som
värderas av värderingsmodellerna, känsligheten samt komplexiteten hos varje enskild modell.
Resultaten tyder på att sambanden mellan de olika modellerna har större betydelse än den risk
som introduceras med hjälp av de modi�erade centralitetsmåtten. Resultaten tyder även på att de
använda centralitetsmåtten är mer lämpliga för att identi�era modeller som blivit påverkade av
andra modellers risk än de modeller som sprider risk i nätverket.
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1 Introduction
The interconnectedness between banks in a system has been a well known phenomenon for quite
some time and after the �nancial crisis of 2008 where chain reactions between banks caused im-
mense �nancial distress, the topics of interconnectedness and contagion became prevalent.

The usage of models in a modern bank is vast and models are used for everything from valua-
tion to credit exposure. Among all these models there exist dependencies due to the fact that a
model often depends on one or multiple other models, this leads to the occurrence of an intricate
network. In 2011 the U.S O�ce of The Comptroller of the Currency (OCC) and the Board of Gov-
ernors of the Federal Reserve System released a supervisory guidance letter regarding model risk
management. The letter addressed the concept of risk for individual models as well as model risk
caused by interconnectedness of models. This lead to the topic of interconnectedness discussed
in networks of banks was raised for networks of models used in banks.

The interconnectedness of the network of models leads to a risk of contagion, if one model fails it
could greatly impact the rest of the network which could lead to signi�cant �nancial losses. Hence
it is of interest for a bank to analyse the interconnectedness of their models in order to evaluate
and manage the aggregate model risk. Since there are so many models with di�erent levels of
complexity used in a modern bank it is di�cult to get an overview of all the dependencies and
their magnitudes. Therefore it is di�cult to determine which model has the most impact on the
network and therefore has the largest potential to cause contagion.

The purpose of this thesis is to create a simpli�ed version of a bank and evaluate the network of
models used. Focus will be on the in�uence each model has on the network and how the in�uence
might di�er dependent on an interested party’s view on risk.

The following research questions have been formulated with a network of models used in a bank
in mind:

• What models are used in a simpli�ed version of a bank and how are they connected?

• Which models are the most in�uential and how do they vary depending on di�erent per-
spectives of an interested party?

This thesis will only study a smaller network of models which corresponds to simpli�ed version
of a bank. The data used will be simulated and will represent a �xed timespan. The reason behind
this is that the focus of the study is the interactions between the models and given the scope of a
master thesis the delimitation enables a more in depth study of these interactions.
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2 Techniques from graph theory

2.1 De�nition and terminology

A graph is de�ned byG = (V,E) where V and E are two sets. The elements of V are the graphs
vertices, or nodes, and the elements of E are its edges, or lines. E is de�ned such that its elements
are 2-element subsets of V and an edge between the vertices i and j is de�ned as (i, j). A graph is
usually pictured with its vertices represented by dots and its edges represented by lines between
the dots [3]. The rest of the de�nitions given in this section are given by Newman (2010) [9].

2.2 Adjacency Matrix

To represent a graph mathematically an adjacency matrix A can be constructed. The elements of
the adjacency matrix are de�ned as follows

A

ij

=

(
1 if there is an edge between vertices i and j

0 otherwise
(2.1)

If there exists multiple edges, so called multiedges, between two vertices i and j then A

ij

= A

ji

will be equal to the number of edges connecting the two vertices. If there exists a edge that goes
from vertex i to i, a so called self-edge, then A

ii

= 2 since the edge has two ends which are both
connected to vertex i.

2.3 Types of graphs

There are di�erent types of graphs with di�erent properties in this section the graphs types rele-
vant to this thesis are presented.

2.3.1 Directed

In some situations the connection between two vertices does not go in both directions. In such a
situation the edges are said to have a direction and the edges are often represented as lines with
arrows on them. Graphs containing directed edges are referred to as directed graphs.

2.3.2 Acyclic

In a directed graph the term cycle refers to a closed loop of edges which have the same direction
around the loop. If there does not exist a cycle in a directed graph it is called an acyclic graph.
Worth noting is that since a self-edge meets the requirement of being a cycle, hence a graph
containing a self-edge can not be acyclic.

2.3.3 Weighted

In some situations it is useful to represent edges as having a weight to them. This can be repre-
sented by giving the elements of the adjacency matrix values equal to the corresponding weight
of the edges. These graphs are referred to as weighted graphs.
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2.4 Centrality

The ability to deduce which vertices are the most in�uential in a graph is often desirable. The
concept of which vertices are the most in�uential is referred to as centrality. In this section the
measures of centrality used in this thesis will be presented.

2.4.1 Degree centrality

One of the simplest way to measure centrality in a graph is to look at how many edges are con-
nected to each vertex, i.e the degree of each vertex and hence the name degree centrality. The
downside of this measure is that it does not take into consideration the e�ect of vertices being
connected to other in�uential vertices are more likely to be more in�uential themselves.

2.4.2 Eigenvector centrality

The philosophy of Eigenvector centrality is giving vertices a centrality score proportional to the
sum of scores of its neighbours. Mathematically this is solved using eigenvector, hence the name,
and for a given graph G = (V,E) with adjacency matrix A the eigenvector centrality for the
vertex v is given by

x

v

=
1

�

X

t

A

v,t

x

t

(2.2)

where � is a constant and A

v,t

is de�ned by equation 2.1. The equation can also be written in
matrix notation referred to as the eigenvector equation as follows

Ax = �x (2.3)

where � is the eigenvector.

Theoretically eigenvector centrality can be calculated for both undirected and directed graphs,
however complications arise in the case of directed graphs. The adjacency matrix of a directed
graph is asymmetric which leads to two sets of eigenvectors, a left and a right set. Most commonly
the right set is used due to the fact that centrality is usually bestowed by other vertices pointing
towards a vertex. Another complication is that a vertex with only outgoing edges will be given the
eigenvector centrality zero, due to the formulation of equation 2.2. The case of vertices receiving
the eigenvector centrality zero also occurs in the case of an acyclic graph since such a graph has
no strongly connected components except one vertex.

2.4.3 Katz centrality

Katz centrality is a way to counteract the problem of vertices receiving zero in eigenvector cen-
trality discussed in section 2.4.2. This is implemented by giving all vertices in a graph a small
amount of centrality � > 0, which yields a slightly modi�ed version of equation 2.2. Using the
same notation as in equation 2.2 the modi�ed version is given by

x

v

= ↵

X

t

A

v,t

x

t

+ � (2.4)

where ↵ is a constant. In matrix notation the equation is de�ned as

x = � (I� ↵A)�1
1 (2.5)
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The parameter ↵ governs the balance between the eigenvector term and a value must be chosen
for the parameter. If ↵ = 0 then only the constant term is left which will lead to all vertices
having the same centrality �. As ↵ increases from zero the centralities x

v

will grow until a point
at which they will diverge. This point occurs when (I� ↵A) diverges and can be written as

det
�
I� ↵

�1
A

�
= 0 (2.6)

which is the characteristic equation whose roots are equal to the eigenvalues of the adjacency
matrix. With an increasing ↵ the �rst time equation 2.6 occurs is when ↵ = �

�1
max where �max is

the largest eigenvalue of the adjacency matrix. From this reasoning it is clear that 0 < ↵ < �

�1
max.

Beyond these restrictions ↵ can be chosen freely however it is common to chose an ↵ that is close
to �

�1
max in order to place the maximum amount of weight on the eigenvector term.

2.4.4 Page rank

One feature of the Katz centrality that sometimes is undesirable is that a vertex with high Katz
centrality that points to many other vertices will give all these vertices a high centrality. It is
possible to remedy this by using a slightly modi�ed version of Katz centrality where the centrality
of each vertex is divided by their out-degree. This will reduce the centrality transferred from a
vertex with high centrality and many adjacent vertices. This modi�ed version of Katz centrality
is called Page rank and using the same notation as in section 2.4.3 it is de�ned as

x

v

= ↵

X

t

A

v,t

x

t

k

out
t

+ � (2.7)

where kout
t

is the out-degree of vertex t. If a vertex t has no outgoing edges then A

v,t

= 0 and
more importantly kout

t

which leads to division with 0. This is remedied by setting kout
j

= 1, or any
other non-zero value. Since A

v,t

= 0 the vertex t will still not contribute with centrality to any
other vertices, which is expected since it has no outgoing edges. In matrix notation the equation
is de�ned as

x = ↵AD

�1
x+ �1 (2.8)

where D is the diagonal matrix with elements D
i,i

= max
�
k

out

i

, 1
�
. To solve for x the equation

is rearranged as follows

x = �

�
I� ↵AD

�1
��1 (2.9)

since � is simply a overall multiplier for the centrality it can be set to 1 giving

x = D (D� ↵D)�1
1 (2.10)
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3 An overview of model risk

3.1 Model risk

The risk coherent with models is often refered to as model risk. What model risk and its conse-
quences entails is not always clear however a often used de�nition is the one given by the OCC
and the Federal Reserve quoted below [12]:

”The use of models invariably presents model risk, which is the potential for adverse
consequences from decisions based on incorrect or misused model outputs and reports.
Model risk can lead to �nancial loss, poor business and strategic decision making, or
damage to a bank’s reputation.”

The guidelines given by the OCC and the Federal Reserve also the state that the primary reasons
behind the occurrence of model risk is that the model has fundamental errors or the model may
be used incorrectly/inappropriately. Generally quantitative models are based upon application of
theory, choice of sample design, section of inputs, estimation and implementation. During any of
these steps errors can occur which would be considered a fundamental error in the �nal model.
Even if a model is fundamentally correct it will not give reliable outputs if it is not used properly
or if the quality of the underlying data is comprised [12].

The causes behind model risk mentioned above are generally speaking di�cult to quantify, how-
ever there are studies that breach the subject. The article Model Risk - Daring To Open Up the
Black Box by Aggarwal et al. (2015) introduces the concept of model risk as well as di�erent ways
to analyse it [1]. In the article real life cases are presented and both qualitative and quantitative
measures are discussed. Aggarwal et al. also discusses model risk associated with speci�c types
of models. The article also found that model risk can be caused by both human and programming
errors, which is in line with the OCC and the Federal Reserves views. The article speci�es that
di�erent methods for quantifying the model risk is appropriate depending on which business line
is concerned. In other words depending on which party is interested in the model risk, di�erent
measures are appropriate. The article also states that the correlation between the error in the
model and the loss of a �rm is not always clear, e.g a large error might not lead to a large loss.
This depends on how the model risk is mitigate as well as how important the model is for the �rm.

In the article The quanti�cation and aggregation of model risk: perspectives on potential approaches
by Jacobs (2015) the quanti�cation process of model risk is discussed [6]. The article states that
the models described in the OCC and Federal Reserves supervisory guidance letter [12] can be
described by three components; inputs, processing apparatus and reporting component. Each
of these components can cause model risk. According to the article the �rst step of quantifying
model risk is to identify the model risk sources in the following categories;

• Data errors, missing values, insu�cient sample.

• Estimation uncertainty or model error, computational complexity, invalid assumptions

• Incorrect use of model or execution error.

Some of themethods that can be used to quantify themodel risk in these sources aremeasuring the
output sensitivity to potential �uctuations in the inputs, statistical estimations and benchmarks
[6].
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3.2 Interconnectedness

In a modern bank the usage of models is vast and the models more often than not depend on
each other. This phenomenon can be referred to as interconnectedness. The importance of this
phenomenon for the aggregate model risk is mentioned by the OCC and the Federal Reserve and
can be clearly shown with the following quote [12]:

”Aggregate model risk is a�ected by interaction and dependencies among models; re-
liance on common assumptions, data, or methodologies; and any other factors that could
adversely a�ect several models and their outputs at the same time.”

The subject of interconnectedness between the models used in a bank is relatively new and there-
fore not a lot of research have been done. In the article This tangled web: banks seek to contain
systemic model risk from risk.net the topic is discussed [13]. In the article di�erent professionals
from the banking industry are interviewed for their opinion about the subject. The interviewees
present the importance as well as the di�culty of mapping and understanding the model risk
caused by the interconnectedness of models. The article mentions that the company Wells Fargo
has used graph theory and more speci�cally Katz centrality to map and evaluate their network of
models.

As mentioned earlier the subject of interconnectedness between models is lacking in research,
however the interconnectedness between banks is a relatively well studied area. Since these areas
are based on the same phenomenon, methods used to study one of them might be applicable to
the other. In articles by Gai & Kapdia (2010), Bianchi et al. (2015) and Kanno (2015) directed
graphs were used to map the interconnectedness between banks [4][2][7]. Further Kanno (2015)
uses centrality measures to investigate the implied systemic risk between banks in the Japanese
banking market [7].
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4 Methodology for creating and studying a network of models
In this section the process of creating and studying the network of models used in a simpli�ed
version of a bank will be discussed. Below all the steps of the process are listed in order.

1. Creating the portfolio corresponding to a simpli�ed version of a bank.

2. Deciding on models that can appropriately evaluate the portfolio.

3. Creating the network given by the connections between the models.

4. Deciding on centrality measures that can be used to examine the in�uence each model has
on the network.

5. Modifying the centrality measures in order to incorporate an interested party’s view on
model risk.

4.1 Creating the portfolio

In order to �nd a suitable network of models that can represent a simpli�ed version of a bank a
portfolio of instruments is created. The idea is that the weights of the portfolio should somewhat
depict how much of each instrument a real bank holds. The idea behind having a portfolio with
reasonable weights is to enable a more adequate assessment of the magnitude the models have on
the bank. For example if the majority of the banks holding is in bonds the errors in the valuation
model for bonds is going to have greater impact on the banks balance sheet than errors in models
pertaining instruments which are a small part of the total holdings.

Real banks use somewhat di�erent strategies formaking pro�ts. The strategy that is to be re�ected
in the simpli�ed bank is a bank with a business model focused on net interest income. In other
words the bank is focused on lending and borrowing, hence the chosen instruments and their
balance should re�ect this. Therefore basic instrumentsmainly focused on interest rate are chosen,
in this case; loans, bonds, swaps and options. Options are included in order to increase the variety
and to include a more exotic instrument.

4.2 Deciding on models needed to asses the portfolio

When choosing models the simplicity of the model is prioritized over the accuracy. The reasoning
behind this is to avoid too complex models which generally are more di�cult to analyse due to
their intricacy. Moreover the data set that will be used will be simulated for a set timespan. Since
the interaction between the models is the main focus of the thesis, not the models themselves,
this reasoning is motivated.

In order to evaluate the portfolio certain types of models are needed. The models needed to asses
the portfolio can be categorized in to the following areas; economic situation, valuation, sensitivity,
portfolio risk and counter-party risk. In this section all the models decided upon are discussed.

4.2.1 Inputs

The models referred to as inputs are the models that depict the macroeconomic and market pa-
rameters that constitutes the current economic situation. These inputs are modelled as normally
distributed stochastic variables with distributionN(µ

i

,�

i

), where µ
i

is the expected value and �
i

the standard deviation for input i. These will be used to simulate the current economic situation.
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4.2.2 Scenario

The scenario model is used to create di�erent scenarios of the economic situation and the model
used will be a copula. A copula is a way of modelling the dependencies between stochastic vari-
ables. Since the inputs are macroeconomic andmarket parameters they will in someway correlate
andmoreover they aremodelled as normally distributed stochastic variables, hence a copula seems
appropriate.

To model the dependencies a Gaussian copula is used. For a d-dimensional standard normal dis-
tribution with linear correlation matrix R the Gaussian copula CGa

R

is the distribution function
of the random vector (�(X1), ...,�(X

d

)), where � is the univariate standard normal distribution
function and X is N

d

(0,R). Then the copula is de�ned as [5]

C

Ga

R = �d

R

�
��1(u1), ...,�

�1(u
d

)
�

(4.1)

where �d

R is the distribution of function of X . This is applied using the function normalCopula
from the R package copula.

4.2.3 Bond valuation

The bond on the asset side is considered to be a bond traded in a foreign currency and the bond
on the liability side is traded in domestic currency. To value a bond in general a discounting of
cash �ows is used. For a bond with face value FV , �xed annual coupon payment c and time to
maturity T the value V

fixed

is obtained by

V

fixed

=
TX

t=1

c

(1 + r

t

)t
+

FV

(1 + r

T

)T
(4.2)

where r

t

is the discount rate for year t. This model was applied in R using a �at discount rate
curve. For the bond traded in foreign currency the money invested will be exchanged to foreign
currency then the valuation of the bond will be made and �nally the value will be exchanged to
domestic currency again.

If a bond has �oating payments, i.e the coupon payments c
t

depend on time t, the valuation is
done by the same model as for a bond with �xed payments except the coupon c

t

is di�erent for
each time period t. This yields the following equation

V

floating

=
TX

t=1

c

t

(1 + r

t

)t
+

FV

(1 + r

T

)T
(4.3)

where �oating amount c
t

is given by a forward curve of an Interbank O�er Rate (IBOR).

4.2.4 Swap valuation

The swap considered is a simple �xed for �oating, i.e one party pays a �xed amount for a �oating
amount or vice versa. This can be valued by valuing a �xed and a �oating bond with the same
face value then calculating the di�erence in value, i.e

V

swap

= V

fixed

� V

floating

(4.4)
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or

V

swap

= V

floating

� V

fixed

(4.5)

depending on which side of the contract the party is.

4.2.5 Option valuation

The options on the asset side are considered to be calls and the options on the liabilities side are
considered to be puts. The most common method to value both call and put options is the Black-
Scholes formula, or a variation of it. In this thesis the standard formula will be used. The price
of an European call option C(S

t

, t) and an European put option P (S
t

, t) with underlying stock
with spot price S

t

at time t is [8]

C(S
t

, t) = N(d1)St

�N(d2)Ke

�r(T�t) (4.6)

P (S
t

, t) = N(�d2)Ke

�r(T�t) �N(�d1)St

(4.7)

d1 =
1

�

p
T � t

✓
ln

✓
S

t

K

◆
+

✓
r +

�

2

2

◆
(T � t)

◆
(4.8)

d2 = d1 � �

p
T � t (4.9)

where T is the maturity, N(·) is the cumulative distribution function of the standard normal
distribution, K is the strike price, r is the risk-free rate and � is the volatility of the underlying
stock.

4.2.6 Loan valuation

Depending on if the bank is creditor or debtor of loan a di�erent models was applied. If the bank
is the debtor the loan is value as a bond using the model described in section 4.2.3 where the loan
amount is the face value, the interest payments are the coupon payments and the cost of debt is
the discount rate.

When the bank is the creditor a di�erent model is used in order to include counter-party risk. The
majority of these loans are considered to be mortgage loans. The value of the loan V

t

at time t is
de�ned as

V

t

=
PD(1� LGD) + (1� PD)(c+ r +E[V

t�1])

1 + r

(4.10)

where PD is the probability of default (see 4.2.10), LGD is the loss given default (see 4.2.11), c is
the amortization rate, r

t

is the interest rate and E[V
t�1] is the expected value of the loan at time

t� 1. PD, LGD, c and r are assumed to be the same for all time periods. Since the loan at time
t = 0 is worth the remaining loan amount after the yearly amortization the formula can be solved
recursively.

4.2.7 Sensitivity measures

In �nance di�erent measurements representing the sensitivity of the price of a instrument to a
change in a underlying parameter is often referred to as Greeks. In this thesis only the �rst order
measurements delta � and vega ⌫ will be used.
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Delta, �, is the sensitivity of the price with regards to a change in the price of the underlying.
In this case the underlying will considered to be the interest rate. The de�nition of delta �

i

for
instrument i used in this thesis is given by

�
i

=
V

i

(r + dr)� V

i

(r)

dr

(4.11)

where V
i

(r) is the value of asset i given the interest-rate r.

Vega, ⌫, is the sensitivity of the price with regards to a change in the volatility � and is de�ned in
the same way as� except with regards to the volatility � instead of the interest-rate r i.e:

⌫

i

=
V

i

(� + d�)� V

i

(�)

d�

(4.12)

where V
i

(�) is the value of asset i given the volatility �.

4.2.8 Value-at-Risk

There are di�erent models to assess the risk of a portfolio, where one commonly used model is
value-at-risk also known as VaR. In this thesis value-at-risk and the closely related model Expected
Shortfall will be used.

The idea behind value-at-risk is giving an indication of how much a portfolio might lose during
a speci�ed time period with a given con�dence level ↵. Mathematically the value-at-risk for a
portfolio with value X at time 1 at level ↵ 2 (0, 1) is speci�ed as [5]

V aR

↵

(X) = min{m : P (mR0 +X < 0)  ↵} (4.13)

where R0 is the percentage return of the risk-free asset.

In practice value-at-risk can either be estimated through historical data or using parametric values.
In this thesis a parametric value-at-risk will be used which for portfolioX composed of assets V

i

with holding period t = 1 year is formulated as [11]

V aR

↵

(X) = �
NX

i=1

V

i

µ

i

t+ z

p
t

vuut
NX

i=1

NX

j=1

⇢

ij

V

i

V

j

�

i

�

j

(4.14)

⇡ z

↵

p
t

vuut
NX

i=1

NX

j=1

⇢

ij

V

i

V

j

�

i

�

j

(4.15)

where µ
i

is the growth rate for asset i, z
↵

is the (1� ↵) quantile of N(0, 1) and ⇢

ij

is the corre-
lation between asset i and j. Note that V

i

is positive if i is a long position and negative if i is a
short position.

In the case of instruments mostly dependent on interest-rate (i.e loans, bonds, swaps) the standard
deviation �

i

of instrument i is estimated by using the Greek�
i

and the standard deviation of the
underlying interest rate �

r

. Using the same notation as in section 4.2.7 the standard deviation �

i

of instrument i is then de�ned as

�

i

=
|�

i

|�
r

V

i

(r)
(4.16)
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For the instruments not mainly dependent on interest-rate, in this case options, vega ⌫ will be
used instead of �.

Since� re�ects the sensitivity of the price to the interest-rate and most of the chosen instruments
are mainly dependent on the interest-rate � can be used to model the correlation between the
instruments. The correlation ⇢

ij

between instrument i and j will be modelled as

⇢

ij

=
�

i

V

j

�
j

V

i

(4.17)

4.2.9 Expected Shortfall

The weakness of value-at-risk is that it ignores the left tail beyond level ↵ of the distribution of
the portfolio X . A way to remedy this is to look at the average value-at-risk values below level
↵. This risk measure is called expected shortfall (ES) and using the same notations as in 4.2.8 it is
de�ned as follows [5]

ES

↵

(X) =
1

↵

Z
↵

0
V aR

u

(X)du (4.18)

4.2.10 Probability of Default

The probability of default is simply the probability that the creditor can not pay the loan and hence
the loan will default. In order to calculate the probability of default a model based upon a previ-
ously made regression will be used. This might not be exactly accurate for this network however
it enables some re�ection of the dependencies between probability of default and macroeconomic
factors. The model is stated as

PD = N(↵+ �1GDPgrowth+ �2unemployment) (4.19)

whereN(·) is the cumulative standard normal distribution and the parameters ↵,�1�2 are based
on the article previously mentioned, see Table 1 below for the values.

Parameter Value
↵ �2.5

�1 �1.4

�2 0.08

Table 1: The values of the parameters used for estimation of the probability of default

4.2.11 Loss Given Default

The loss given default re�ects howmuch the lender loses if the creditor defaults. Since themajority
of the loans that are valued are considered to be mortgages the loss given default that will be used
is an average loss given default for mortgages. Speci�cally LGD = 25%will be used and is based
upon the average loss given default on American mortgages [10].

4.2.12 Exposure at Default

The exposure at default (EAD) di�ers depending on which instrument is considered. However
for this thesis only loans are considered and the EAD will be set to the loan amount, i.e what the
banks is owed.
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4.2.13 Expected Loss

The expected loss (EL) is the amount a bank can expect to lose due to credit events and is de�ned
as

EL = PD · LGD · EAD (4.20)

4.3 Building the network

By mapping all the inputs and outputs of the chosen models it is possible to create a network
using techniques from graph theory. However in order to do this it is needed to assert which
other models the inputs and outputs of each model are connected to. Since the �ow of most of the
connections are limited to one direction a directed graph will be used. The visualisation of the
network of models is done by using the R-package igraph.

4.4 Centrality measures

It is of interest to be able to identify which models are the most in�uential in the network. A
way to �nd the most central vertices in a network is comparing all the vertices using centrality
measures. Depending on the type of network di�erent centrality measures are appropriate. The
following three measures will be applied; degree centrality, Katz centrality and Page rank.

4.5 Dependence on the perspective of the interested party

Evaluating the importance of a model in a network can give an indication of how substantial the
model risk associated with a model is to the network. In other word it gives an indication of the
magnitude the model risk associated with a model has on the entire bank. However it is possible
from the get go that certain models are considered more important to the bank. It is also possible
that di�erent parties in the bank may view the model risk in di�erent ways. Hence there are many
di�erent views on what is the most important factor when considering the model risk of a model
in a network, however in this thesis the focus will be on following three perspectives; balance,
sensitivity and complexity.

To be able to introduce individual importance to a model when using centrality measures the
measure needs to be able to be modi�ed. For the three centrality measures used only Katz cen-
trality and Page rank can be modi�ed in such a way that it can re�ect di�erent importance of
each vertex. This is due to the fact that degree centrality simply is the number of edges connected
to each vertex, which does not change. In order to implement the score given to each model the
added centrality given by the term � for Katz centrality and Page rank in equation 2.4 and 2.7
respectively will be individual and dependent on the importance of each model instead of being
constant.

4.5.1 Balance

How much balance is related to a model simply depends on how much money is invested in the
instrument valued by the model. This is of interest because model risk related to models with
larger balance will likely have a larger impact on the bank then model risk related to models with
small balances. In order to re�ect the balance related to each model each model will be given a
score depending on how much of the total balance is related to each model.
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This will be done by increasing the � of the the valuation models by an amount corresponding to
the balance evaluated by that model, all other models will still receive a � = 1. The new � will be
given by

�

w

j

= �(1 +
X

wi2W
w

i

) (4.21)

whereW is the set of all the instruments that have balance related to model j andw
i

is the weight
of instrument i given by the following

w

i

= b

i

0

@
X

bi2{A,L}

b

i

1

A
�1

(4.22)

where b
i

is the balance for instrument i,A the set of balances for all the assets,L the set of balances
for all the liabilities. The formula can be interpreted as the balance of instrument i divided by the
sum of all assets and liabilities. The reason that assets and liabilities are not separated is since the
valuation of the balance for both are important.

4.5.2 Sensitivity

The sensitivity of a model that is referred to here is how sensitive a model is to its inputs. This
is relevant since a model with high sensitivity will also be more a�ected by the model risk of its
input models. In other words if a model has a high sensitivity to its inputs an error term in the
input stemming from model risk will be more noticeable.

In order to investigate how sensitive each model is to changes in each input a small change will be
introduced to each model used as an input. This will be done one at a time to see how change in
each individual input impacts the model. The small change that is added can either be relative to
the inputs value or just be a speci�c amount. Here a relative change will be used since the values
of the models vary a lot. The logic behind this decision can be shown with the following example:
if the speci�c amount is set to 1 it will greatly change the value of an interest rate but not a loan
amount.

To evaluate the impact the small changes has a benchmark case is needed. The benchmark case
that will be used is when the inputs are set at their mean. Then a number of cases for each input
j will be tested. The cases are de�ned by � · input

j

where � 2 {0.99�10
, . . . , 1, . . . , 1.0110}. In

other words � will be increased and decreased by 1% 10 times respectively. Given the cases the
value of the model dependent on all inputs j can be calculated. This will then be repeated for all
models in the network.

The changes of model k when all models are given by the benchmark case except input j will be
calculated by

change

i

k

=
model

k

(�
i

· input
j

)�model

k

(input
j

)

model

k

(input
j

)
(4.23)

where i 2 {1, . . . , 21} are all the cases of �
i

. These changes of model kwill then be plotted against
each corresponding �

i

. The changes will also be �tted to a linear regression model given by

change

k

= �̂0 + �̂1� (4.24)

13



The coe�cient �̂1 will then be an indication of how sensitive model k is to input j. This coe�cient
will then be used in order to given each model k a speci�c centrality �

k

given by

�

k

=
1

N

NX

j=1

|�̂j

1| (4.25)

where j = 1, . . . , N are all the inputs needed for model k and �̂

j

1 their corresponding regression
coe�cient.

4.5.3 Complexity

The complexity of the model could be of interest when judging the model risk of a network. The
reason behind this is that a model that is complex mostly likely is harder to fully understand and
evaluate, in other words there is more room for error. Depending on the views of the interested
party the complexity of a model will be judged di�erently therefore each party should be able to
decide on the complexity individually.

The evaluation of the complexitywill be done by a scoring system. The idea is that interested party
will give a score from 0 to 5 on how complex they believe each model is. This will then allow for
the interested party’s views to be incorporated in to the centrality measures. In order to keep
roughly the same magnitude of the increases to � for all the di�erent perspectives the complexity
score cs

i

for model i will be translated to corresponding �
i

using the following formula

�

i

= 1 +
cs

i

5
(4.26)

In other words a complexity score {0, 1, ...} corresponds to a � = {1, 1.2, ...}
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5 Results
In this section all the results given from using the methods described previously will be presented.
First the connections between all the models will be mapped in order to create the network which
in turn will be investigated using centrality measures. Then the di�erent perspectives will be
discussed and their corresponding network investigated using centrality measures.

5.1 Mapping the connections

By mapping the inputs and outputs given by each model chosen to asses the portfolio all the con-
nections between the models can be found. In Table 2 below all the connections for each model
are listed. For model i the upstream models are models that model i need results from in order to
function and downstream refers to the models which need the results from model i.

Model Abbreviation Upstream Downstream
Exchange-rate FX - Scen
Stock price Stock - Scen
Risk-free rate IR - Scen
Interbank o�ered rate IBOR - Scen
GDP growth rate GDP - Scen
Unemployment rate Unemp - Scen
Volatility Vol - Scen
Scenario Scen FX, Stock, IR, IBOR,

GDP, Unemp, Vol
Bond, Swap, Option,
Loan, VaR, Greeks,
PD, LGD, EAD

Bond valuation Bond Scen VaR, Greeks, Swap
Swap valuation Swap Scen, Bond VaR, Greeks
Option valuation Option Scen VaR, Greeks
Loan valuation Loan Scen, PD, LGD VaR, Greeks
Sensitivity measures Greeks Scen, Bond, Swap,

Option, Loan
VaR

Value-at-risk VaR Scen, Bond, Swap,
Option, Loan, Greeks

ES

Expected shortfall ES VaR -
Probability of default PD Scen Loan, EL
Loss given default LGD Scen* Loan, EL
Exposure at default EAD Loan EL
Expected loss EL PD, LGD, EAD -

Table 2: The connections between all the models.
* Even though LGD is set to a speci�c number it will be considered to be dependent on the scenario
since that number is based on the economic situation.

When all the connections between the models are mapped it is possible to model and visualise the
network. This visualised network can be seen in Figure 1 where the inputs are coloured orange,
the scenario yellow, the valuation models green and the risk models blue.
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Figure 1: The visualised network of the chosen models.

5.2 Centrality measures

Using the modelled network it is possible to calculate centrality measures for each model in order
to evaluate the in�uence each model has on the network. When calculating degree centrality no
parameter choices are required. However when Katz centrality and Page rank is to be calculated
the parameters ↵ and � needs to be chosen. The restrictions for ↵ is 0 < ↵ < �

�1
max and � can be

chosen freely. For this network the largest eigenvalue of the adjacency matrix is �max ⇡ 0.408
hence 0 < ↵ < 2.45. Since there is no exact science to which ↵ should be chosen two cases will be
tested, one in the lower end of the interval and one in the upper end, speci�cally ↵ 2 {0.3, 2.1}.
Since � is a certain amount given to all nodes and at this stage the centralities will be calculated
without any thoughts on the importance of each model � = 1 will be used for simplicity. The
centralities of each model is presented in Table 3, note that Page rank is abbreviated PR.

From Table 3 it is noticeable that all inputs have low centralities, this is expected due to the fact
that they only have one edge which is downstream to the scenario model. For all three centralities
the scenario, loan valuation, sensitivity measures and value-at-risk models are considered in�uen-
tial. Worth noting is that the scenario model is less signi�cant when looking at the Katz centrality
and Page rank, this is expected since a large portion of the edges connected to the scenario are
from the inputs which as mentioned earlier have low centralities.
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↵ = 0.3 ↵ = 2.1

Model Degree Katz PR Katz PR
Exchange-rate 1 1.00 1.00 1.00 1.00
Stock price 1 1.00 1.00 1.00 1.00
Risk-free rate 1 1.00 1.00 1.00 1.00
Interbank o�ered rate 1 1.00 1.00 1.00 1.00
GDP growth rate 1 1.00 1.00 1.00 1.00
Unemployment rate 1 1.00 1.00 1.00 1.00
Volatility 1 1.00 1.00 1.00 1.00
Scenario 13 2.80 1.26 13.6 2.80
Bond valuation 4 1.84 1.13 29.6 2.96
Swap valuation 4 2.39 1.36 91.6 7.05
Option valuation 3 1.84 1.19 29.6 3.94
Loan valuation 6 2.94 1.19 154 8.48
Sensitivity measures 5 3.70 2.51 640 48.1
Value-at-risk 7 5.66 3.64 2014 155
Expected shortfall 1 2.70 2.09 4230 326
Probability of default 3 1.84 1.19 29.6 3.94
Loss given default 3 1.84 1.19 29.6 3.94
Exposure at default 2 1.88 1.88 324 18.8
Expected loss 3 2.67 2.14 805 57.0

Table 3: Centrality measures when all models are considered equally important.

In Table 3 it is noticeable that the models with the largest centralities receive a signi�cantly larger
centrality when ↵ = 2.1. It is also noticeable that the models downstream from in�uential mod-
els receive higher centralities than their in�uential upstream neighbours. This is due to the fact
that when ↵ > 1 the centrality received from of a neighbour is multiplied, which is especially
apparent when a neighbour has a substantial centrality.

In order to get a better comparison of the centralities they will be visualised by resizing each ver-
tex in network in accordance with its centrality. See Figure 2 for the visualisation of the degree
centrality and Figure 3 and 4 for the visualisation of the Katz centrality and Page rank. The text
for each model is omitted to avoid clutter and since the main goal of the visualisation is simply to
get a more concrete comparison between the more and less in�uential vertices.

In Figure 4 the e�ects of the multiplication property when ↵ = 2.1 is clearly visible. In the future
only ↵ = 0.3 will be used in order to avoid the multiplication property as well as to keep central-
ities in a smaller range which makes a comparison both in graphs and numbers more perspicuous.
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Figure 2: Visualisation of the network resized using the degree centrality.

(a) Katz centrality (b) Page rank

Figure 3: Visualisation of the network resized using centralities when ↵ = 0.3.
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(a) Katz centrality (b) Page rank

Figure 4: Visualisation of the network resized using centralities when ↵ = 2.1.

5.3 Di�erent perspectives

Now that the the network has been evaluated with all models considered equally important the
network will be evaluated using di�erent perspectives to evaluate the importance of the models.
The perspectives that will be analysed are balance, sensitivity and complexity. The methodology
used can be seen in section 4.5.

5.3.1 Balance

In order to evaluate the network dependent on the balance of the portfolio a balance needs to be
assumed. Since the portrayed bank is focused on pro�ts from the interest rate spread the balance
of the bank should mainly consist of interest related instruments. The balance is chosen such
that the bank at the moment has more assets than liabilities, this could be considered as previous
pro�ts have been invested in di�erent instruments. The decided balance for each instrument is
displayed in Table 4 below.

Instrument Assets Liabilities
Loans 80 40
Bonds 5 30
Swaps 5 8
Options 10 2

Table 4: The balance of the portfolio.

As visible in Table 4 the majority of the balance is invested in instrument associated with interest
rates, in line with previous statements, however the balance for options on the asset side is not
unsubstantial. The reason behind this is to introduce a little more volatility to the assets which
seems reasonable since the bank currently has more assets than liabilities and therefore has the
possibility to take on more risk.

Given the decided balance of the portfolio in Table 4 the weights are calculated and can be seen
in Table 5.
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Instrument Weight
Loans as creditor 0.444
Loans as debtor 0.222
Bonds 0.194
Swaps 0.0722
Options 0.0667

Table 5: The weights of the portfolio.

Using the weights it is possible to calculate the importance �w

i

given to each model i as well as
the Katz centrality and Page rank, see Table 6 for the results.

Model � Katz PR
Exchange-rate 1 1.00 1.00
Stock price 1 1.00 1.00
Risk-free rate 1 1.00 1.00
Interbank o�ered rate 1 1.00 1.00
GDP growth rate 1 1.00 1.00
Unemployment rate 1 1.00 1.00
Volatility 1 1.00 1.00
Scenario 1 2.80 1.26
Bond valuation 1.416 2.26 1.54
Swap valuation 1.0722 2.58 1.49
Option valuation 1.0667 1.91 1.26
Loan valuation 1.444 3.39 1.81
Sensitivity measures 1 4.04 2.83
Value-at-risk 1 6.09 4.05
Expected shortfall 1 2.83 2.22
Probability of default 1 1.84 1.19
Loss given default 1 1.84 1.19
Exposure at default 1 2.02 1.54
Expected loss 1 2.71 2.18

Table 6: Centrality measures dependent on the balance of the portfolio.
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5.3.2 Sensitivity

To implement the sensitivity methodology the parameters for the normal distributions of the
inputs needs to be assumed. The parameters are chosen to be somewhat realistic and are displayed
in Table 7.

Input µ �

Exchange-rate 8.4 0.42
Stock price 5 0.5
Risk-free rate 0.015 0.0025
Interbank o�ered rate 0.03 0.009
GDP growth rate 0.02 0.01
Unemployment rate 0.07 0.014
Volatility 0.15 0.03

Table 7: Parameters for the normal distribution of the inputs.

The sensitivity to small changes in the inputs of each model will now be evaluated using the
method described in section 4.5.2. In Table 8 the regression coe�cients for each model are dis-
played and all the graphs depicting the correlation between the changes are displayed in the
appendix. Note that the inputs are set values and the scenario model is simply a way to variate
the inputs and therefore they are not included.

Looking at the sensitivity plots in the appendix it is clear that all the relations are linear for the
interval of the di�erent cases. Also worth noting is that for models with coe�cient 1 the change
in model and change in input is linear with proportions 1 : 1. This could be viewed as scaling
proportionate to the error in the input and by looking at some of the models it is easily under-
standable that is the case. For example in the expected shortfall model looking at the formulation
given by equation 4.18 it is clear that a percentage change in value-at-risk is simply a constant
that can be moved outside the integral sign, hence the proportion.

Using the coe�cients in Table 8 the centrality � that is to be added to eachmodel can be calculated.
All the �:s and the corresponding Katz centrality and Page rank for each model is shown in Table
9.
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Model Inputs Coe�cient �̂1
Bond valuation IR -0.0704

FX 1.00
Swap valuation IR -0.0439

IBOR 6.00
Bond 1.00

Option valuation IR 0.0821
Vol 0.913
Stock 1.00

Loan valuation IR 0.00159
PD -0.0117
LGD -0.0117

Sensitivity measures Bond 1.00
Swap 1.00
Option 1.00
Loan 1.00

Value-at-risk Bond 0.423
Swap 0.0148
Option -0.0260
Loan 0.588
Greeks 1.00

Expected shortfall VaR 1.00
Probability of default GDP -0.0796

unemp 0.0159
Loss given default - -
Exposure at default - -
Expected loss PD 1.00

LGD 1.00
EAD 1.00

Table 8: The regression coe�ecents �̂1 for the inputs of each model.
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Model � Katz PR
Exchange-rate 1 1.00 1.00
Stock price 1 1.00 1.00
Risk-free rate 1 1.00 1.00
Interbank o�ered rate 1 1.00 1.00
GDP growth rate 1 1.00 1.00
Unemployment rate 1 1.00 1.00
Volatility 1 1.00 1.00
Scenario 1 2.80 1.26
Bond valuation 1.54 2.38 1.66
Swap valuation 3.35 4.90 3.79
Option valuation 1.67 2.51 1.85
Loan valuation 1.01 2.97 1.38
Sensitivity measures 2 5.82 4.60
Value-at-risk 1.41 7.82 5.77
Expected shortfall 2 4.35 3.73
Probability of default 1.05 1.89 1.24
Loss given default 1 1.84 1.19
Exposure at default 1 1.89 1.41
Expected loss 2 3.69 3.15

Table 9: Centrality measures dependent on the sensitvity of each model.

5.3.3 Complexity

Judging the complexity of each model could be considered quite di�cult and can depend heavily
on who the judge is. The goal here is not to try and achieve as accurate judgement of each model
as possible but rather show how the concept could be used. Therefore the complexity scores will
be chosen somewhat arbitrarily. If this approach is implemented in reality it is probably wise
to either let each model developer or the department responsible for model development be the
judge. All the complexity scores, their corresponding � and the Katz centrality and Page rank is
displayed in Table 10.
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Model Complexity � Katz PR
Exchange-rate 0 1 1.00 1.00
Stock price 0 1 1.00 1.00
Risk-free rate 0 1 1.00 1.00
Interbank o�ered rate 0 1 1.00 1.00
GDP growth rate 0 1 1.00 1.00
Unemployment rate 0 1 1.00 1.00
Volatility 0 1 1.00 1.00
Scenario 5 2 3.80 2.26
Bond valuation 2 1.4 2.54 1.63
Swap valuation 1 1.2 3.10 1.78
Option valuation 5 2 3.14 2.34
Loan valuation 3 1.6 4.26 2.17
Sensitivity measures 3 1.6 5.51 3.98
Value-at-risk 4 1.8 8.51 6.05
Expected shortfall 3 1.6 4.15 3.41
Probability of default 2 1.4 2.54 1.74
Loss given default 2 1.4 2.54 1.74
Exposure at default 0 1 2.28 1.65
Expected loss 1 1.2 3.41 2.74

Table 10: Centrality measures dependent on the complexity of each model.

5.4 Comparing the results of the perspectives

In order to compare all the results from the di�erent perspectives the network will be visualised
using the di�erent centralities. The resized networks are displayed in Figure 5, 6, 7 and 8.

Viewing the networks for the perspective it seems that both Katz centrality and Page rank yields
similar results. However when the scenario model is given a higher individual centrality the cen-
tralities for most of the network increases more noticeably when using Katz centrality instead of
Page rank. The reason behind this is that the scenario model has many outgoing edges and is
therefore heavily penalized in the Page rank centrality formula.

In Figure 5, 6, 7 and 8 as well as Tables 6, 9 and 10 it is clearly displayed that the centralities of
the input models do not change for the di�erent perspectives. The reason behind this is that no
balance is connected to them directly and since they are chosen parameters they are not sensitive
nor considered complex models. The same argument can be used for the loss given default model.

Worth noting is that all the networks for the di�erent perspectives are relatively similar. The in-
�uence of certain models changes however the models with the highest centralities are often the
same. As a group of models the valuation models centralities seems to slightly increase for the
three di�erent perspectives.

The models with a high centrality across all perspectives is the value-at-risk and the loan valua-
tion model. One likely reason for this is that both models have many connections to other models.
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Moreover the value-at-risk model evaluates portfolio risk and therefore is connected to the entire
portfolio while the loan valuation model values a large portion of the balance.

A distinct special case is the centrality of the swap valuation model for the sensitivity perspective.
The value of the swap is given by the di�erence in value of a �xed and a �oating bond therefore
the swap value changes drastically if the value of only one of the bonds changes. In this case the
sensitivity comes from changes in the IBOR since only the �oating bond is dependent on the IBOR
whilst both of the bonds are dependent on the interest rate used for discounting.

(a) Katz centrality (b) Page rank

Figure 5: Visualisation of the network resized using centralities when all model are considered
equally important.

(a) Katz centrality (b) Page rank

Figure 6: Visualisation of the network resized using centralities dependent on the balance of the
model.
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(a) Katz centrality (b) Page rank

Figure 7: Visualisation of the network resized using centralities dependent on the sensitivity to
small changes in the inputs of the model.

(a) Katz centrality (b) Page rank

Figure 8: Visualisation of the network resized using centralities dependent on the complexity of
the model.
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6 Discussion

6.1 Centrality measures

When comparing the visualisations of the resized networks using the models centrality measures
for all the di�erent perspectives the proportions between the vertices seemed fairly similar. Since
the di�erence between the perspectives is the individual centrality � given to each model this give
some indication that the connections between models, i.e the eigenvector part of the centralities,
are more important than the individual centrality given to each model. The balance between how
much weight should be given to the eigenvector centrality over the individual centralities is given
by the parameter ↵. For the di�erent perspectives ↵ = 0.3 was used which could be considered
fairly low and in spite of that the eigenvector centrality seemed to a�ect the centrality measures
more than the individual centrality �. This indicates that the factor that is the main predictor
of a models centrality is its connections. One way to test this in the future could be to increase
the magnitude of the individual � given to each model dependent on the chosen perspective and
investigate if this causes a di�erent outcome.

Since the connections between models seems to be the most important factor in the centrality
given for each model it is worth noting the importance of model choice and formulation. The im-
portance of this is due to the fact that use di�erent models and model formulations will result in
di�erent connections between the models. For example the value-at-risk model used in this the-
sis is a parametric approach dependent on the sensitivities of each instrument, if the value-at-risk
was instead estimated using historical data the connections to the model would be di�erent thus
the centralities would likely be di�erent. In other words the centralities for a speci�c network
may signi�cantly vary dependent on the choice of models.

Using centrality measures to evaluate a network of models will for some models give somewhat
misleading results. For example the centrality measures for the expected shortfall model across
all perspectives are relatively high. However the model is almost only what could be considered a
reformulation of the value-at-risk model. Therefore one might argue that the model itself does not
have any real model risk on its own and all of the risk is inherited from the value-at-risk model. In
other words when looking at the centralities the model looks interesting and worth investigating
when in reality it is the value-at-risk model that should investigated. This mostly shows that this
approach of judging a network of models requires some fundamental understanding of the models
contained by the network. However these results could be modi�ed to remedy the misleading
results in order to present it to a more general audience. However their is a clear downside of this
since it introduces more bias to the results which in itself can causes errors.

6.2 Contagion of model risk

From the results it is apparent that models with many upstream connections generally receive
a high centrality. This is somewhat expected given how the selected centrality measures work.
When the centrality measures act this way a model with high centrality probably is more likely to
be a�ected by an overall contagion of model risk since the model risk from each upstream model
will a�ect the model. By knowing which models are highly a�ected by contagion it is possible
to inform the decision makers of the increased uncertainty of the results given by those models.
However it does not remedy the cause of the problem which is the contagion.
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The �rst step to minimize the contagion in a network would be identifying the models that are the
main sources of it. Likely sources of contagion are models which results are used by many other
models, simply put models with many downstream connections. In order to �nd these models
one possible solution could be to �nd and use centrality measures that are based on the reverse
idea of the centrality measure used in this thesis, in other words models with many downstream
connections receive a high centrality. Another approach to identifying the sources of contagion
could be using a similar approach as the one used in the sensitivity perspective except varying
the outputs from models further upstream. Doing this it would be possible to see how an error in
a model a�ects other models further downstream.

When looking at the network used in this thesis the scenario model would most likely be given
a signi�cantly higher centrality when the number of downstream connections are valued higher.
That assessment would probably hold in reality as well since the scenario model relays informa-
tion to a lot of other models. In reality the input models would most likely also be considered
more interesting than they have been deemed in this thesis. The reason behind this is that in
reality the inputs are generally based on market data and their values play an important role for
many models while in this thesis the inputs for the most part been considered numbers that are
needed use all the other models and focus have not been on the accuracy of these numbers.

If it was possible to completely remove the contagion there would be no need for �nding the
models mostly a�ected by it. However in reality achieving this seems highly improbable. There-
fore being able to identify the cause of contagion as well as the victims of the contagion are both
important ways to enable management of model risk.

6.3 Conclusions

When analysing the connections between models used in a bank techniques from graph theory
are pro�cient in creating a perspicuous overview of the corresponding network. In graph theory
centrality measures are used to identify in�uential nodes in a network and can be applied to a
network of models used in a bank. The centrality measures can be used to identifying the models
mostly a�ected by the contagion of model risk and it might also be possible to use a similar
approach to identify the sources of said contagion. Further it is possible to add an individual’s
view on the model risk associated with each model to the centrality measures. However the
used centrality measures seem to mainly depend on the connections between the models rather
than individual centrality given based on the views of said individual. Therefore being diligent
in choosing models as well as mapping the connections of each model is important to receive
adequate result.

6.4 Future research

Since this thesis was done without the use of real data a similar approach would be interesting to
further investigate using real data. It would also be interesting to apply this data to the models
more focused on accuracy than simplicity. Using real life data would also enable a more realistic
study, especially when considering the di�erent perspectives. It would be particularly enlighten-
ing to do a similar study using the network of models used in a modern day bank.

It would also be interesting to investigate how the dynamics of the network and centrality mea-
sures changes with time. This might enable identi�cation of how the contagion spreads over time.
If done with real data it would also present a better opportunity to study how changes in the mar-
ket situation caused by time a�ects the network.
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Another interesting possibility for future studies is �nding centrality measures, or similar meth-
ods, to better enable the identi�cation of the sources of contagion. Since the �rst step of avoiding
contagion is identifying it such a study would be a start to minimize the aggregate model risk in
a network.
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8 Appendix
The graphs depicted here represent how small deterministic changes in each of the inputs of a
model a�ects the output. The purpose of the graphs are to visualise the sensitivity of the models
as well as the relation between input and output. See section 4.5.2 for further details.
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Figure 9: The sensitivity of the bond model given its di�erent inputs.
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Figure 10: The sensitivity of the swap model given its di�erent inputs.
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Figure 11: The sensitivity of the option model valuing a call option given its di�erent inputs.
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Figure 12: The sensitivity of the option model valuing a put option given its di�erent inputs.
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Figure 13: The sensitivity of the loan model given its di�erent inputs.
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Figure 14: The sensitivity of the value-at-risk given its di�erent inputs.
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Figure 15: The sensitivity of the expected shortfall given its di�erent inputs.
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Figure 16: The sensitivity of the probability of default given its di�erent inputs.
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Figure 17: The sensitivity of the expected loss given its di�erent inputs.
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