
IN DEGREE PROJECT MATHEMATICS,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2018

A self-normalizing neural network
approach to bond liquidity
classication

GUSTAV KIHLSTRÖM

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ENGINEERING SCIENCES

A self-normalizing neural network
approach to bond liquidity
classication

GUSTAV KIHLSTRÖM

Degree Projects in Mathematical Statistics (30 ECTS credits)
Degree Programme in Applied and Computational Mathematics (120 credits)
KTH Royal Institute of Technology year 2018
Supervisors at Kidbrooke Advisory: Björn Bergstrand, Edvard Sjögren
Supervisor at KTH: Henrik Hult
Examiner at KTH: Henrik Hult

TRITA-SCI-GRU 2018:231
MAT-E 2018:39

Royal Institute of Technology
School of Engineering Sciences
KTH SCI
SE-100 44 Stockholm, Sweden
URL: www.kth.se/sci

Abstract

Bond liquidity risk is complex and something that every bond-investor
needs to take into account. In this paper we investigate how well a self-
normalizing neural network (SNN) can be used to classify bonds with
respect to their liquidity, and compare the results with that of a simpler
logistic regression. This is done by analyzing the two algorithms’ predic-
tive capabilities on the Swedish bond market. Performing this analysis
we find that the perfomance of the SNN and the logistic regression are
broadly on the same level. However, the substantive overfitting to the
training data in the case of the SNN suggests that a better performing
model could be created by applying regularization techniques. As such,
the conclusion is formed as such that there is need of more research in
order to determine whther neural networks are the premier method to
modelling liquidity.

2

Sammanfattning

Likviditeten hos obligationer är komplicerad och ett fenomen som varje
obligationsinvesterare m̊aste ta itu med. I den här rapporten undersöks
hur pass väl ett själv-normaliserande neuralt nätverk kan användas för
att klassifiera obligationer med avseende p̊a deras likviditet, samt jämförs
detta resultat med när en simplare logistisk regrsession används. Detta
görs genom att analysera de tv̊a algoritmernas prediktiva kapacitet p̊a
den svenska obligationsmarknaden. Efter genomförd undersökning finner
vi att SNN och logistisk regression presterar p̊a liknande niv̊aer. I fallet
med SNN finns dock en stor overfit till träningsdatan, vilket indikerar
att en bättre modell möjligtvis skulle kunna n̊as om vanliga regulariser-
ingsmetoder skulle användas. Slutsatsen blir därmed att det finns behov
av mer forskning p̊a ämnet för att dra en konklusion huruvida neurala
nätverk är den bäst lämpade samlingen av algoritmer för modellering av
likviditet.

3

Contents

Introduction 5

Background 7

Liquidity . 7
Measures of liquidity . 7
Drivers of liquidity . 8
Value at Risk . 8
Empirical distribution and quantiles 9
Empirical VaR . 9

Neural Networks Classifiers . 10
Backpropagation . 10
Cross entropy . 12
Softmax . 12
Self-normalizing neural networks 12

Stochastic gradient descent . 13
Adam optimizer . 13
Model fit . 14
Logistic regression . 15

Method 16

Experiment . 16
Data preparation . 16
Model setup . 18
Evaluation . 18

Results 20

Self-normalizing Network . 20
Logistic Regression . 21
Comparative results . 22

Discussion 26

Self-normalizing neural network . 26
Logistic regression . 27
Model comparison . 28

Conclusion 31

Extensions 33

Appendix A 36

4

Introduction

Fixed income is a type of investment in which the investor receives a predeter-
mined return either periodically or at some set time T in the future. Depending
on the type of fixed income financial derivative, the risk associated with the
derivative can vary significantly. As an example, a SEKEUR3M (cross-currency)
swap, an instrument in which two parties agrees to swap the interest rate attain-
able in SEK for the interest rate attainable in EUR every 3 months, and a US6M
treasury bill (also known as T-bill) in which an investor agrees to pay X to the
US Treasury today in return for receiving X + c in 6 months time, clearly have
di↵erent levels of risk associated with them. Risk associated with fixed income
is traditionally divided into two categories: market risk, and credit risk, where
(unsurprisingly) market risk is the risk associated with the movements of the
market(s) and credit risk is the risk associated with the creditworthiness of the
counter party of an agreement. In the case of the currency swap and the T-bill
described above, the value of the swap will change if (when) the interest rates
attainable in the two currencies change. Thus, the swap is subject to market
risk. The T-bill on the other hand will pay X + c, as long as the US Treasury
does not default. This risk of default also applies to the counter party in the
swap-agreement. As such, the T-bill is only subject to credit risk, whereas the
swap is subject to both types of risk. Note that in the case of swaps, one party
will often pay some extra basis points on top of the actual rate, so that the
(expected) cash flows in both directions equal each other at the beginning of
the swap’s life, and as such the cost of entry into the agreement is zero for both
parties.

The view on risk within fixed income presented above is broadly true, but
limited. In reality it is more complicated. Market risk is of course not confined
to changing interest rates, for example the risk of not being able to liquidate
an asset is very real. We call this risk liquidity risk. In the case of bonds, as is
the focus of this paper, there is reason to believe that the liquidity is a↵ected
by the credit rating of the issuer. This connection between liquidity and credit
risk indicates the interconnectedness and complexity of understanding and con-
trolling financial risk.

Given initiatives from the European Banking Authority [1] to regulate the
capital requirements of financial institutions based on the level of liquidity of the
institutions’ assets, there has arisen a greater need for tools to evaluate liquidity.
In their literature study on the subject Sommer and Pasquali [2] come to the
conclusion that machine learning has potential to tackle this complex problem.
The aim of this project is thus to create an algorithm that will be able to classify
bonds into di↵erent levels of liquidity. This will be done by using machine
learning methods on both fundamental and market characteristics. This task is
interesting for two reasons; it will bring insights into which parameters/inputs
e↵ect the liquidity of the bonds, and perhaps more importantly it will provide
a method to classify individual bonds, an action which could be relevant in

5

performing other tasks, i.e. prediction where some or much data is missing. In
order to tackle this problem neural networks will be used.

6

Background

Liquidity

There is no precise, generally accepted, definition of liquidity. However, impre-
cisely liquidity can be described as the ability for an investor to quickly buy
(sell) a large quantity of a financial asset at (or close to) the asset’s fair value.
Liquidity is a major concern for financial institutions in the risk management of
their financial liabilities and investments. Research in liquidity stretches back
into mid 20th century. In 1968 Demsetz [3] was the first to conjecture the bid-ask
spread as a consequence of (a lack of) liquidity and in 1970 Black [4] suggested
that liquidity is the price above the fair value of an asset. Grossman and Miller
[5] proposed that liquidity is the manifestation of the immediacy of the market
(or rather it’s participants). Harris [6] built upon this notion and defined liq-
uidity as the width, depth, immediacy, and resilience of the market. In the last
few years the importance of liquidity as a driving factor in times of crises has
become more apparent (Mehrling [7]). This, has lead to new regulations from
institutions such as the EBA and the Basel Committee [1], for example with
the introduction of the high quality liquid asset (HQLA) classification. Even
so, with or without regulation, liquidity is an issue that any institution-level
investor needs to take seriously.

Measures of liquidity

An obvious problem with working with, and thus regulating, liquidity is that
it’s not a measurable quantity, but rather needs to be approximated through
a proxy. In the research on liquidity many such proxies have been proposed.
In fact, the EBA [8], in their appendix Annex 5: A survey of liquidity metrics,
they present 24 di↵erent metrics that aim to approximate liquidity, or at least
some aspect of it. We will present some of these here.

Bid-Ask spread,
S(t) = pask(t)� pbid(t), (1)

is the di↵erence in lowest asked price and the highest o↵ered price of the bond
at time t.

Relative spread,

Smid(t) =
S(t)

pmid(t)
=

pask(t)� pbid(t)

pmid(t)
, (2)

is the bid-ask spread normalized with the mid-price.

Relative spread of log prices,

Slog(t) = log(
pbid(t)

pask(t)
), (3)

is the natural logarithm of the bid price divided by the ask price.

7

Drivers of liquidity

The measures mentioned above try to quantify liquidity, but do not explain what
it is or what is driving it. The Basel Committee [9], on the other hand, does
try to capture the essence of liquidity, where they suggest several characteristics
that highly liquid assets possess. These characteristics are divided in two groups;
fundamentals and market-associated. The fundamental characteristics are low
risk, how easy it is to value the asset, low correlation with risky assets, and
whether the asset is listed on a recognized exchange. The market-associated
characteristics are whether the market is active or not, low volatility, and if the
asset can be a ”flight to quality”-asset. Similarily to the Basel Committee’s
e↵ort, the EBA, as part in the process to define the Liquidity Coverage Ratio
(LCR), suggested that the following features could be used to brand bonds as
HQLA.

(a) minimum trade volume of the asset

(b) minimum outstanding volume of the asset

(c) transparent pricing and post-trade information

(d) credit rating

(e) price stability

(f) average volume traded and price

(g) maximum bid-ask spread

(h) time remaining to maturity

(i) minimum turnover ratio

Interestingly enough, these two major authorities on risk management for fi-
nancial institutions only seem to share some of the characteristics of what con-
stitutes a highly liquid bond. In addition, Friewald, et al [10] provides some
further, bond specific, metrics a↵ecting the liquidity of a bond, these include
the amount issued, maturity, age, rating, bid-ask spread, and volume traded. In
summary, there is no consensus in academia on exactly what e↵ects and drives
liquidity, however, the sources mentioned do agree on some metrics.

Value at Risk

A common way in financial mathematics and risk management to measure the
risk of some liability or asset that has a non-deterministic future value is to
calculate the associated value at risk (VaR). Let X be the stochastic asset, then
from [11] the value at risk, at level p is calculated as V aRp(X) = min{m :
P(mR

0

+X < 0) p}, where p 2 (0, 1) and R
0

is the discount rate associated
with the period in question. Writing X as X = V

1

� V
0

R
0

, the net value of the
asset from the perspective of the investor, and letting L = �X

R0
(in situations

8

where a risk-free alternative investment is not applicable, R
0

= 1 is used), the
VaR can be written as V aRp(X) = min{m : P(L m) � 1 � p}. Given that
the distribution function of L, FL, is continuous and strictly increasing we get
that

V aRp(X) = F�1

L (1� p). (4)

Empirical distribution and quantiles

Given a set of outcomes, X = (X
1

, X
2

, ..., Xn), assumed to be independent
and identically distributed, the empirical distribution is defined as Fn(x) =
1

n

Pn
i I(Xi < x), i.e. the fraction of points of the seen outcomes that are

less than x. Mathematically, empirical quantiles are defined just as normal
quantiles, F�1

n (p) = min{x : Fn(x) � p}. However, in the case of empirical
quantiles, this can be rewritten as a formula in terms of the seen outcomes X.
Let X

1,n, X2,n, ..., Xn,n be a perturbation of the set X such that X
1,n � X

2,n �
... � Xn,n, then

F�1

n = X
[n(1�p)]+1,n, (5)

where [•] indicates the integer part of •.

Empirical VaR

Often time the true distribution of a financial asset’s or liability’s return is
unknown. In these situations it is common to either model the behaviour math-
ematically (theoretically) or using empirical methods (or a combination of both)
in order to quantify the risk analysis. In situations where there is little or no
prior information of the behaviour of the phenomenon one is trying understand,
but there is historical data available, an empirical analysis is necessary. In such

situations in quantitative finance the empirical VaR, or [V aR, approach is of-

ten used. In the context of Eq. (4) and Eq. (5), [V aR is easily defined. Let
Li = �Xi

R0
, and L

1,n, L2,n, ..., Ln,n be a perturbation of Li for i = 1, 2, ..., n, such
that L

1,n � L
2,n � ... � Ln,n, then

[V aRp(X) = L
[np]+1,n. (6)

As in the case of normal VaR, in situations where one is modelling risk in which
no return is present/expected we let R

0

= 1.

9

Neural Networks Classifiers

A neural network classifier is a type of machine learning algorithm that tries to
map a multi-dimensional input vector to a class. It can be viewed as a function
Rdreal ⇥Ndcat ! Ndclass , where dreal + dcat and dclass are the dimensions of the
the input and the output respectively. Note that we can have both categorical,
here of dimension dcat, and continuous, here of dimension dreal, input to the
same neural network.

Input feature#1

Input feature#2

Class #1

Class #2

Figure 1: An artificial neural network with 2 inputs and 1 hidden layer, con-
taining 3 nodes.

Neural networks (or rather artificial neural networks) get their name from
the fact that they are inspired by biological neural networks (i.e. brains), having
neurons sending electrical signals to each other in a vast network in order to
process information. Figure (1) shows an example of a simple neural network
with one hidden layer containing 3 nodes, and an input and output space of 2
dimensions. Letting every node in the network represent a neuron, and every
edge signal-receptors, the analogy to biology becomes clear. In this example
only one hidden layer is used, however, the choice of number of hidden layers
as well as the number of nodes in these are arbitrary.

The transitions in Figure (1) can be described mathematically. If we let x
be the vector of inputs, the values of the hidden layer will be a = �(w>x+ b),
where a is the vector of values for the hidden layer, w is the weights associated
with the first (and in this case, only) ”step” in the model, b is the associated
bias, and � is an non-linear activation function. The application of � turns the
model non-linear, and hence gives it a much greater expressive power. In a more
complex neural network, with more layers, a would be propagated through the
network and some ã = �̃(w̃>a + b̃) would be calculated, which in turn would
be further propagated and so on and so forth, until the end of the network was
reached.

Backpropagation

In order for a neural network to have any predictive power, it needs to be
trained on some data set. Training of the model is done via an optimiza-

10

tion problem, namely we want to minimize a loss function, L : RNOut ! R,
that takes the predicted probability of outputs and the actual outputs and
calculates the error, where NOut is the number of classes used in the model.
The simplest loss function is the mean square error (MSE); L(a(NL),y) =

1

NdataNy

PNdata

j=1

PNy

i=1

(a(NL)

i � yji)
2 is used, where y

(j) is the jth training data

point, Ny is the dimension of the training data (and the last activation layer
a(NL)), NL is the index of the last activation layer, and finally Ndata is the num-
ber of data points. More specifically, the weights, w(l), and biases, b(l), are what
needs to be optimized. We start by investigating the weights for some layer l,
w(l). Since we have that a(l) = �(l)(w(l)a(l�1) + b(l)), when using the MSE as
loss function we get that the derivative @L

@wl
j,k

, where (j, k) indicate that this

(scalar) weight is the weight between activation k in layer l � 1 and activation
j in layer l, is given by;

@L

w
(l)
j,k

=
@z

(l)
j

@w
(l)
j,k

@a
(l)
j

@z
(l)
j

@L

@a
(l)
j

.

The first two factors in the right hand side above can readily be computed as
@z

(l)
j

@w
(l)
j,k

= a(l�1) and
@a

(l)
j

@z
(l)
j

= �(l)0(z(l)j). We leave @L

@a
(l)
j

as it is for now. In a similar

fashion we find that
@L

b
(l)
j

=
@z

(l)
j

@b
(l)
j

@a
(l)
j

@z
(l)
j

@L

@a
(l)
j

,

where again
@z

(l)
j

@b
(l)
j

is easily computable as
@z

(l)
j

@b
(l)
j

= 1. Returning to @L

@a
(l)
j

, we must

take two cases into account, one in which l = NL and one on which l < NL.
If, assuming the simple mean square error as loss function, l = NL, or in other
words, a(l) = a(NL) is the last activation layer, then we have that

@L

@a
(l)
j

=
2

N

NX

i=1

(a(l)j � yij). (7)

It is a bit more complicated when l < NL. Unlike the weights and biases, each
activation (or node in the network) has edges to each of the activations (nodes)
in the next layer of the network. As such, when calculating the derivative we
need to take these activations into account. Thus we get that,

@L

a
(l)
j

=

n(l+1)X

i=0

@w
(l+1)

(i,j)

@b
(l)
j

@a
(l)
j

@z
(l)
j

@L

@a
(l)
j

.

The backpropagation algorithm [12] computes the gradient for each activation,
weight and bias, and updates these according to some optimization algorithm.
Since the gradient activations are ”nested” the method firstly computes the gra-
dient of the last layer activations, stores these values in a memoization matrix,
then computes the second-to-last layer dynamically, etc.

11

Cross entropy

The cross entropy, H, between two probability distributions, p and q, de-
fined on the same set of outcomes X , is mathematically defined as H(p||q) =
�
R
X p(x) log(q(x))dx. In the discrete case this is easily converted to H(p||q) =P

X p(x) log(q(x)). However, since H is a non-negative, convex, function it can
be reinterpreted as a cost function. Let y be some true value represented by a
vector containing 0s and one 1 (in the index representing the right class) and

a
(NL)

j be the jth output neuron in a neural network. The cost function can then

be defined as L = �
P

j

⇣
yj log(a

NL
j) + (1 � yj) log(1 � aNL

j)
⌘
. It is clear then

that, using a cross entropy loss function Eq. (7) can then instead be written as
@L

@a
NL
j

= �
P

j

⇣
yj

a
NL
j

� 1�yj

1�a
NL
j

⌘
.

Softmax

The softmax function, often denoted by �, maps an N -dimensional vector
from IRN to [0, 1]N , such that the sum of the vector components equal one,PN

i=1

�i(x̂) = 1. This means that the outcomes from the softmax function can
be interpreted as probabilities. As such, the softmax function is often used
in the setting of classification using neural networks, where the last layer of
activations of the network uses the softmax function. The last/output layer
thus assigns the probability of each class given the input, and the data point
is assigned as the class with the highest probability. The ith component of
the resulting vector of probabilities is given by �i(x̂) = exp x̂iPN

j=1 exp x̂j
. In or-

der to utilize this for learning in the backpropagation setting the derivative
is needed. To simplify notation, let Sj = exp{aj}P

k exp{ak} , i.e. the jth entry in

the ”probability vector” generated by using the softmax function. Then, @Sj

@aj
=

exp{aj}
P

k exp{ak}�exp{2aj}
(

P
k exp{ak})2 = exp{aj}P

k exp{ak}
�
1� exp{aj}P

k exp{ak}
�
= Sj(1�Sj), and anal-

ogously @Sj

@ai
= � exp{aj} exp{ai}

(

P
k exp{ak})2 = � exp{aj}P

k exp{ak}
exp{ai}P
k exp{ak} = �SjSi. It is now

simple to implement the softmax function into the neural network training set-
ting described earlier.

Self-normalizing neural networks

Self-normalizing neural networks (SNNs) are a special type of feed-forward neu-
ral networks introduced with the aim to reduce overfitting in deeper neural
networks. SNNs were developed as a response to the need to specially design
a network structure for feed-forward networks with limited overfitting without
using standard regularization techniques, such as discussed above. The main
di↵erence between an SNN and any other type of feed-forward neural network
is the scaled exponential linear unit (SELU) activation function [14].

SELU(x) = �

⇢
x ifx > 0
↵ exp{x}� ↵ ifx 0,

(8)

12

where ↵ and � are scalar hyperparameters. SNNs use the same idea of keep-
ing weights and biases in the network small in order to prevent overfitting, as
weight-penalties and dropout. SNNs, however, achieves this simply by using
the SELU function as the activation function for each hidden layer (with the
possible exception of the last layer). This works because, given that the mean
and variance of the previous activation are within a predefined fixed interval
[µmin, µmax], [�2

min,�
2

max], the SELU activation function will map the mean
and variance of the current activation back into these intervals. This means
that, given that the first and second moment of the first activation belongs
to these intervals, every consecutive first, second moment-pair will also belong
to them, which in turn means that all weights and biases will be limited in
norm. This leads to a similar e↵ect to that of normal regularization. Using
↵ = 1.673,� = 1.050, the intervals become µmin = 0.03106, µmax = 0.06773
and �2

min = 0.80009,�2

max = 1.48617.

Stochastic gradient descent

As described above, backpropagation provides the logical infrastructure nec-
essary to train a neural network. However, there is still a need to determine
precisely how to improve the accuracy of the network, given the calculated gradi-
ents, i.e. there is need for a numerical optimization algorithm. The most basic
of the optimization algorithms is stochastic gradient descent (SGD). Given a
vector of parameters ✓, standard gradient descent uses the following update-
equation: ✓t = ✓t�1

� ⌘Gt�1

, where Gt�1

is the gradient of ✓t�1

based on all
data available, and ⌘ is the learning rate, a scalar hyperparameter. Stochastic
gradient descent, on the other hand, uses only a fraction of the data to compute

the gradient, E[G(i)
t�1

] ⇡ Gt�1

. Here G
(i)
t�1

is the gradient based on a subset of
all available data. This approximation of the true gradient is necessary due to
the computational time needed when there is a large amount of information to
process.

Adam optimizer

There are however more advanced optimization algorithms than SGD. The adap-
tive moment estimation algorithm [13], frequently called the Adam optimizer,
is a numerical optimization algorithm. As the name suggests, Adam takes the
first and second moment into account when calculating the update equation. In
doing so, it also uses adaptive learning rates, i.e. it uses the momentum of the
trajectory of the values. Let mt and vt be the mean and variance estimations at
step t, and Gt the gradient of the objective function ✓ at this step. The update
equations for mt and vt are mt = �

1

mt�1

+(1��
1

)Gt, vt = �
2

vt�1

+(1��
2

)G2

t .
In order to have unbiased estimations one instead uses m̂t =

mt

1��t
1
, v̂t =

vt
1��t

2
.

The final update step is then to set ✓t = ✓t�1

� ⌘m̂tp
v̂t+✏

. Thus a full update step

looks as following:

13

mt = �
1

mt�1

+ (1� �
1

)Gt,

vt = �
2

vt�1

+ (1� �
2

)G2

t ,

m̂t =
mt

1� �t
1

,

v̂t =
vt

1� �t
2

,

✓t = ✓t�1

� ⌘m̂tp
v̂t + ✏

,

(9)

where ⌘ is the learning rate, 0 < ✏ << 1 is used to ensure that the last fraction
is well-defined, and �

1

, �
2

2 (0, 1) are learning parameters.

Model fit

There are many reasons as to why a machine learning algorithm may fail in mod-
elling data. Two major such categories are over- and underfitting. Underfitting,
as the name suggests, is the lack of signal found by the algorithm, i.e. that the
algorithm fails to map the input features to the right output. If possible, this
is usually mitigated by choosing a di↵erent learning algorithm, or in the case
of neural networks, the number of hidden layers and nodes could be increased
in hope of increasing the explanatory power of the model. Overfitting, on the
other hand, is the phenomenon of a model that performs well on a set of inputs
but generalizes poorly to other data sets. In machine learning classification one
method in order to combat overfitting, is to divide the data in to three subsets;
a training set, a test set and a validation set. The algorithm is trained using the
training set, and the trained model that performs best on the test set is chosen
as the optimal model. The validation set is then used in order to ensure that
the model is not overfitted on the test set.

In the setting of neural networks, two common approaches to limiting over-
fitting is to use regularization and dropout. Regularization is the technique of
adding a function f(✓) to the loss function, L + �f(✓), where � is a scalar
hyperparameter, and f(�) is a non-negative function based on the weights ✓,
typically the L2-norm. f serves as a penalty with the aim of preventing any
single weight in the network from becoming too large and as such decreasing
the risk of the network becoming too reliant on any one neuron. Dropout uses
the same idea of keeping all neurons relevant for the predictive ability of the
network, however instead of adding a penalty, the dropout technique ”drops”
neurons, during the learning process, from the network with a probability p.
This forces the learning to handle cases where some neurons are missing, and
in turn keeps the network from being too reliant on any one neuron. According
to Klambauer, et al [14] these types of techniques work well on recurrent- and
convolutional neural networks, but less so on feed-forward networks.

14

Logistic regression

Logistic regression, unlike the name infers, is a model used for binary clas-
sification. The model is based on using the sigmoid function to determine
the probability of a data point belonging to a class given some input fea-
tures, much like neural network classifiers. The sigmoid function is defined
as sigm(x|✓) = 1

exp{�✓>x} , where x is the input features, and ✓ are the pa-

rameters. In the simplest case ✓>x̄ = ✓
0

+
P n

i=1

✓ixi, however increasing the

complexity of ✓>x increases the expressive power of the model, but also the risk
of overfitting to the training data. Once ✓ = ✓̂ has been trained to fit a data set,
new data points, x̃, are classified as belonging to class 1 if sigm(x̃|✓̂) � 0.5, and
classified as class 0 if sigm(x̃|✓̂) < 0.5. The simple binary case can be extended
to multi-class classification by using the all vs. one logistic regression. In the
all vs. one method one binary logistic regression model is trained for each class
j, such that each model j models the probability of the data belonging to class
j or not. Once all models have been trained, new data points are tried on each
model and the data is classified as maxk{sigm(x̃)|✓̂k}, i.e. the model k that
generates the highest probability.

15

Method

Experiment

The aim of this thesis is to investigate how well neural networks can capture
the liquidity of bonds. To do this a neural network will be trained on some
fundamental aspects of bonds in order to classify them by di↵erent liquidity
measures. Since one of the use-cases of such a classification model is to use
the time series of bid/ask/prices of similar bonds for bonds where these are
unavailable, any data items based on these will be discarded as input variables.
This means that even though for example the bond yield most likely has a
significant explanatory power as to predict a bonds liquidity, since the yield is
based on the price of the bond it will not be used in this analysis. In order to
set the results of the neural network into context, a logistic regression will also
be performed and the performance of the fairly complex neural network and the
simpler logistic regression will be compared.

Data preparation

The data is taken from the Swedish bond market. The data is gathered using a
Thomson-Reuters Eikon terminal, which has information on circa 4000 Swedish
bonds with a maturity after 2018-01-01, and an issue date before 2017-08-30.
Out of these only 824 bonds had enough data (most often the bid-ask time series
were missing) to perform a relevant analysis. In Table (1) the data points that
were downloaded can be seen. The issue date and the maturity date are thus
far considered as categorical data points. However, this hides the underlying
natural order of dates. As such these are converted to continuous variables in
a manner such that the issue date was transformed into the number of days
from the issue date to 2018-01-01, and the maturity date is transformed to
the number of days from 2018-01-01 to the maturity date. Still, a majority of
these data items are of a categorical nature and need to be handled in some
way. In this paper, the choice taken is to use one-hot vectors to represent the
categorical data. This means that every categorical data item is split into several
data items (as many data items as the number of categories in the original data
item) that only take on the values 0 or 1. Thus, as an example, a data item D
with 3 categories D 2 (0, 1, 2) is turned in to 3 data items D

1

, D
2

, D
3

, with 2
categories Di 2 (0, 1), such that Di = 1 =) D 6i = 0. In order to keep the input
features to similar proportions, the original amount issued and the coupon were
both normalized by the largest value in each category.

In addition to the data presented in Table (1), one year (or , if the bond was
younger than a year, all available historical values) of daily bid- and ask prices
were downloaded for each bond. Using these time series the following liquidity
measures were computed: average bid-ask spread, the (empirical) VaR

0.95 of the
bid-ask spread, the average mid bid-ask spread, and the average log-spread. For

16

Data item Description

Currency The currency that the bond was
issued in.

Industry Sector Description A description of the industry sec-
tor that the emitting does busi-
ness in.

Coupon Size of the coupon.
Coupon Type Description Description of bond structure.

Maturity date The date that the bond matures.
Is Perpetual Security If the bond has a maturity date

or not.
Issuer Rating S&P long-term rating of the

emitting company.
Day Count How time is calculated for

coupons.
Industry Sub Sector Description A more precise description of the

emitting company’s business sec-
tor.

Issue Date The date the bond was emitted.
Issuer Domicile The country in which the issuer

of the bond is based.
Asset Category Description The type of fixed-income asset.

Asset Type The type of bond.
Asset Sub Type Further classification of the type

of bond.
Capital Tier The capital tier under Basel III

that the bond falls under.
Issue Country Code Code of the country the bond

was issued in.
Coupon Class The high-level type of coupon

(e.g. fixed, floating, etc.)
Original Amount Issued Amount originally issued of the

bond.
Seniority Type The classification of the bond un-

der the LCR framework.
Worst Redemption Event Worst redemption event (in

terms of the investor).
Country of Risk The country in which the risk is

taken.
Flag Bullet Flag if the bond is a bullet-bond.
Flag Extend Flag if the bond is extendable.

Flag Refundable Flag if the bond is refundable.
Reversed Convertible Flag if the bond is reversed con-

vertible.
Type of Redemption Expected type of redemption of

the bond.
Redemption Put Flag if the bond is puttable.
Redemption Call Flag if the bond is callable.

Table 1: Data items used in the analysis.

17

each of these measures the total data set was sorted on the liquidity measure and
divided into 2,3,4, and 5 classes of equal size, depending solely on the liquidity
measure. I.e. 4⇥ 4 = 16 new (labeled) data sets were created.

Model setup

These newly created data sets is the data that the algorithms will train and
be evaluated on. The neural network that is used is a fully connected self-
normalizing neural network with 10 hidden layers. The hidden layers have 500,
400, 300, 300, 350, 250, 125, 75, 30 nodes respectively. Since an SNN is used, all
hidden layers have the SELU-activation function, however in the output layer
the softmax function is used. In addition the cross entropy function is used as
loss-function. The model is built, trained, and tested using Google’s machine
learning API TensorFlow, which handles backpropagation and implementation
of numerical optimization. To train the network the Adam Optimizer is used,
using �

1

= 1 � ⌘, �
2

= 0.9999, and ✏ = 10�8. The learning rate ⌘ is dy-
namically updated every 50 learning iteration according to the following rule
⌘ = 0.99i/50⌘

0

, where ⌘
0

= 0.001 and i is the current iteration.

The data is shu✏ed and split into a training set, a test set, and a validation
set, composed of 70%, 20%, and 10% of the data set respectively. For each data
set the model is then trained using 125000 training iterations. The model that
achieves the minimum classification error on the test set during these 125000
iterations is saved, along with the corresponding accuracy rate for the training
and validation sets, and the analysis is done on this model.

In addition to this, a logistic regression model is trained. Due to the lack
of need of a validation set in the training process for logistic regression models,
the data sets is split into two parts, one training set consisting of 70% of the
data and a test set consisting of the other 30%. The parameters that is trained

is ✓ such that ✓>x̄ = ✓
0

+
P n

i=1

⇣
✓
1,ixi + ✓

2,ix
2

i

⌘
. To reduce overfitting, an

L2-penalty based on the parameters is added to the loss-function.

Evaluation

In order to get get an understanding of whether the classification of liquidity
in the way as done in this paper is commercially viable or not, a small example
evaluation/simulation is made. In this evaluation, an event in which a portfolio
of bonds need to be sold (or bought) is simulated and the e↵ect of using the
classification, as previously described, compared to the actual values observed
in the market. In these kinds of events, where a position is needed to be liq-
uidized quickly, one is generally required to cross the current bid-ask spread,
which illustrates the importance of liquidity risk management. The evaluation
is performed on the out-of-sample sets, i.e. on the validation set in the SNN
case and on the test set in the logistic regression setting. The evaluation is

18

performed on every liquidity measure and every output class model. It consist
of using the models to classify the liquidity measure of all out-of-sample data
points. These bonds are then assigned the mean of the liquidity measure of
the corresponding class in the training data set. These assigned values are then
subtracted by the actual values. Finally, the mean of these values is presented.
Thus it can be summarized as;

e =
1

n

nX

i=0

�
ŝi � si

�
, (10)

where e is the evaluation factor, si is the actual value of the liquidity measure
of bond / data point i, and ŝi is the assigned measure for bond i. In the case of
using the average bid-ask spread as measure, e becomes the average additional
cost of crossing the bid-ask spread for the portfolio of bonds, from using the
model as opposed to the actual values. When using the bid-ask spread VaR

0.95

measure, this evaluation amounts to the average additional cost of holding the
VaR

0.95 based on the models classifications compared to reality. In the case
of the log-spread we change the si and ŝi in Equation (10) to exp{si} and
exp{ŝi}. From Equation (3) we see that exp{s} = exp{log(Pbid

pask
)} = Pbid

pask
, and

as such the evaluation on the log-spread measure becomes the average di↵erence
in the estimated and the actual bid-ask quotient. Finally, for the relative bid-
ask spread, which is less tangibly interpretable, the evaluation simply becomes
the average di↵erence in the estimated relative spread and the actual relative
spread.

19

Results

Self-normalizing Network

Tables (2) - (5) shows the results obtained by training and evaluating the SNN
described in the Method section.

Classes Training Accuracy Test Accuracy Validation Accuracy

2 0.99830794 0.8816568 0.8352941
3 0.9915398 0.8165681 0.67058825
4 0.9915398 0.74556214 0.64705884
5 0.98815566 0.6745562 0.5411765

Table 2: Results obtained by classifying using the SNN on average bid-ask
spread.

Classes Training Accuracy Test Accuracy Validation Accuracy

2 0.97461927 0.80473375 0.7647059
3 0.9966159 0.7928994 0.69411767
4 0.97969544 0.6449704 0.5882353
5 0.6497462 0.591716 0.5411765

Table 3: Results obtained by classifying using the SNN on bid-ask VaR
0.95.

Classes Training Accuracy Test Accuracy Validation Accuracy

2 0.99492383 0.8994083 0.8117647
3 0.99492383 0.8165681 0.63529414
4 0.99323183 0.73964494 0.63529414
5 0.98307955 0.6804743 0.5411765

Table 4: Results obtained by classifying using the SNN on the average relative
bid-ask.

Classes Training Accuracy Test Accuracy Validation Accuracy

2 0.99319726 0.875 0.85705883
3 0.99489796 0.79761904 0.7176471
4 0.99319726 0.74404764 0.7294118
5 0.9880952 0.7083333 0.63529414

Table 5: Results obtained by classifying using the SNN on average log bid-ask.

20

Logistic Regression

Tables (6) - (9) shows the results obtained by training and evaluating the logistic
regression model described in the Method section.

Classes Training Accuracy Test Accuracy

2 0.876480 0.889763
3 0.805414 0.791338
4 0.739424 0.685039
5 0.690355 0.543307

Table 6: Results obtained by classifying using the logistic regression on the
average bid-ask spread.

Classes Training Accuracy Test Accuracy

2 0.822335 0.775590
3 0.744500 0.767716
4 0.663282 0.637795
5 0.661590 0.507874

Table 7: Results obtained by classifying using the logistic regression on the
average bid-ask VaR

0.95.

Classes Training Accuracy Test Accuracy

2 0.886632 0.846456
3 0.820642 0.759842
4 0.761421 0.669291
5 0.680203 0.535433

Table 8: Results obtained by classifying using the logistic regression on the
average relative bid-ask.

Classes Training Accuracy Test Accuracy

2 0.884907 0.826771
3 0.813874 0.779527
4 0.751269 0.673228
5 0.692047 0.539370

Table 9: Results obtained by classifying using the logistic regression on the
average log bid-ask.

21

Comparative results

For the following figures a dark blue column represents training accuracy, a blue
column represents test accuracy, and a light blue column represents validation
accuracy. Figures (2) - (5) displays bar charts over the performance of the
di↵erent measures grouped by the number of classes.

(a) (b)

Figure 2: Bar chart over results using 2 liquidity classes, using (a) SNN and (b)
logistic regression.

(a) (b)

Figure 3: Bar chart over results using 3 liquidity classes, using (a) SNN and (b)
logistic regression.

22

(a) (b)

Figure 4: Bar chart over results using 4 liquidity classes, using (a) SNN and (b)
logistic regression.

(a) (b)

Figure 5: Bar chart over results using 5 liquidity classes, using (a) SNN and (b)
logistic regression.

Figures (6) - (9) displays bar charts over the performance of the di↵erent
number of classes grouped by the liquidity measure.

23

(a) (b)

Figure 6: Bar chart over results using the average bid-ask spread as liquidity
measure for di↵erent number of classes, using (a) SNN and (b) logistic regression.

(a) (b)

Figure 7: Bar chart over results using the bid-ask VaR
0.95 spread as liquidity

measure for di↵erent number of classes, using (a) SNN and (b) logistic regression.

(a) (b)

Figure 8: Bar chart over results using the relative bid-ask spread as liquidity
measure for di↵erent number of classes, using (a) SNN and (b) logistic regression.

24

(a) (b)

Figure 9: Bar chart over results using the log bid-ask spread as liquidity measure
for di↵erent number of classes, using (a) SNN and (b) logistic regression.

Tables (10) and (11) shows the results from evaluation methods described
in the Method section.

Measure 2 classes 3 classes 4 classes 5 classes

Avg. spread 0.10952 -0.063831 0.0832397 0.075179
Spread VaR

0.95 0.109554 0.018493 0.033545 0.086480
Rel. spread 0.001394 0.015139 0.000717 0.000051
Log-spread -0.1458285 -0.0952148 0.0213707 0.1467561

Table 10: Results of the evaluation of the SNN models.

Measure 2 classes 3 classes 4 classes 5 classes

Avg. spread -0.01680 -0.09643 -0.01480 0.01072
Spread VaR

0.95 -0.07046 -0.05077 -0.64550 -0.00546
Rel. spread -0.00038 -0.00450 0.00010 -0.00082
Log-spread -0.51628 -0.50933 -0.37075 -0.28596

Table 11: Results of the evaluation of the logistic regression models.

Avg. spread Spread VaR
0.95 Rel. spread Log-spread

0.012866 0.080301 0.001110 -0.257585

Table 12: Results of the evaluation using a one-class-model.

25

Discussion

Self-normalizing neural network

Inspecting Tables (2) - (5), it is clear that there are certain patterns that span
all liquidity measures. As one would have thought, the accuracy generally de-
creases with an increasing number of output classes. The exceptions to this
rule are some of the training set results, in which the accuracy is high for all
classes and liquidity measures. Hence, small fluctuations can cause the training
set accuracy of a model with more output classes to be higher than that of a
model with fewer. It is clear that the model with best performance, in respect
of the accuracy, are the models built upon the log-spread liquidity measure. By
simple inspection, it is however di�cult to quickly order the performances of the
average bid-ask spread, the relative spread, and the spread VaR

0.95 measures.

Since the outcomes are discrete it is easy to benchmark the models. A model
with only two output classes that performs better than a 0.5 error rate would be
deemed to have found a signal. If the model achieved an accuracy rate around
0.5, it would be equal to simply guessing, and an error rate less than 0.5 would
be performing worse than a monkey throwing darts at a dartboard. Obviously,
the corresponding rates for a 3, 4, and 5 class model would be 0.33.., 0.25, and
0.2 respectively. The validation column of Tables (2) - (5) suggests that every
single class - measure combination performs at a rate significantly better than
this theoretical, no-signal, benchmark level.

The overall best performing model is the 2 class model predicting the bid-
ask log-spread, having a validation error rate of approximately 0.86. The second
best 2 class model was the one predicting the average bid-ask spread, followed
by the relative bid-ask spread, and finally the bid-ask spread VaR

0.95 spread.
In the 3 class case, the log-spread model also performed the best, followed by
the bid-ask spread VaR

0.95, then the average bid-ask spread, and the relative
spread. The 4 class performance order is identical to the 2 class case. Lastly,
for the 5 class case, the log-spread once again has the best performance. The
other liquidity measures had the same accuracy on the validation set, meaning
they managed to correctly classify exactly the same amount of data points. This
ordering is summarized in Table (13).

2 classes 3 classes 4 classes 5 classes

1 log-spread log-spread log-spread log-spread
2 average spread spread VaR

0.95 average spread
3 relative spread average spread relative spread
4 spread VaR

0.95 relative spread spread VaR
0.95 avg. /rel. / VaR

0.95

Table 13: Results using SNN, ordered by performance.

26

By inspecting the tables, it is clear that there is a significant di↵erence in
the accuracy rate between the training accuracy and the test accuracy of all
trained models. The training accuracy for most models are at a level of 0.95
or better, whereas the test accuracy for most models are within the span of
0.6� 0.9. This indicates that the models su↵er from overfitting to the training
data, and hence does not generalize to the test data. It is also noticeable that
the same phenomenon occurs when looking at the test error in respect to the
validation error. The di↵erence between these error are, however, smaller; in
general having a di↵erence of about 0.05 � 0.15. As such there is also some
overfitting with respect to the test data. These tables also show that the test
error grows at a much higher rate than the training error as more output classes
are added, which is evidence that the higher number of output class models are
more prone to overfitting. There does not seem to be a similar pattern for the
test / validation accuracies.

Logistic regression

Tables (6) - (9) display the results gained by training and and testing the logistic
regression model on the data. By inspecting these tables one realizes that there
are some similarities to the results obtained by the SNN models. The tables
show that, much like in the case of the SNN, that the error grows with the
number of classes the model outputs, which of course is to be expected. Also as
in the case of SNN, every model manages to find a signal such that the training
error is better than randomly choosing a class as classification. These results
di↵er, however, in terms of the relative performances. The measure that has the
greatest overall performance is, unlike the SNN case, the average bid-ask spread,
which has the highest accuracy for all number of output class cases. For the 2
through 5 class models, the spread VaR

0.95 measure places fourth, third, fourth,
and fourth respectively and hence is the by far worst performing measure. The
relative spread correspondingly places second, fourth, third, and third. The log-
spread, finally, places third, second, second, and second; generally performing
better than the relative spread. These ordered results are summarized in Table
(14).

2 classes 3 classes 4 classes 5 classes

1 average spread average spread average spread average spread
2 relative spread log-spread log-spread log-spread
3 log-spread spread VaR

0.95 relative spread relative spread
4 spread VaR

0.95 relative spread spread VaR
0.95 spread VaR

0.95

Table 14: Results using logistic regression, ordered by performance.

According to the results, for most liquidity measures, the di↵erence in train-

27

ing accuracy and test accuracy is less than 0.1, with most lying in the interval of
0.04 � 0.1. The liquidity measure with the overall lowest di↵erence, and hence
lowest overfitting, seems to be the relative spread; having the models with 2
and 3 output classes obtaining a greater accuracy on the test set than on the
training set, while the model with 4 and 5 output classes performs just slightly
worse on the test set than on the training set.

Model comparison

In comparing the performance of the SNN models and the logistic regression
models, it is not entirely unambiguous as to which accuracy rates one should
compare. Since the logistic regression models are easier (in terms of finding the
minimum) to train than the SNN, there is no need for a validation set, due to
the fact that the model is not optimized for the test set in the same was as
the SNN models are. To avoid any boosted results due to comparing overfit-
ted results from the SNN models with out-of-sample results from the logistic
regression models, in this analysis we compare the test set results of the logistic
regression with the results from the SNN validation set.

From inspection of Figure (2) - (9) it becomes clear that the SNN model con-
sistently, across all liquidity measures and all number of output classes, obtains
a better performance on the training set than the logistic regression models.
However, when comparing the SNN validation set performance with the logistic
regression test set performance, there is no such easy pattern; with the logistic
regression model having a greater accuracy for all numbers of output classes
using the average bid-ask spread, but only the 3 class output case for the log-
spread models. In the case of the spread VaR

0.95, the logistic regression models
outperform the SNN models in the 3 and 4 output class cases. Finally, in the
relative spread models, the logistic regression had the greater performances in
the 3, 4 and 5 output class cases. These performance results are summarized in
Table (15).

Classes bid-ask spread spread VaR
0.95 relative spread log-spread

2 V V
3 V V V V
4 V V V
5 V

Table 15: Schema over the measure - class pairs that the logistic regression
model outperformed the SNN model.

By looking at Figures (2) - (9) it is evident that the SNN models su↵er more
from overfitting than that of the logistic regression models. In fact, there is a sig-

28

nificant drop in accuracy between the SNN training and validation sets, whereas
some of the logistic regression models obtain a higher accuracy on the test set
than on the training set. These better results on the test set are as opposed to
the training set results, of course, only slightly better and an indication that
the models do not su↵er from any observable overfitting, and generalize well
to out-of-sample data. It seems that the overfitting, in the case of the SNNs,
increases as the number of output classes increases. One possibility to explain
this is that the SNNs perform well on the training set, obtaining an accuracy
of around 0.95, and as the number of output classes increases, the di�culty in
”guessing” the right class increases as well. However, since there is a similar
phenomenon happening with the logistic regression models, albeit on a smaller
scale, this could be seen as evidence that the overfitting increases as the model
complexity (in this case the number of output classes) increases.

Tables (10) and (11) shows the results from the ”simulation”/evaluation
described in the Method section. A positive value would indicate that the
model on average overestimates the true value, and a negative value indicates
an underestimation. By looking at the tables it is clear that the SNN, for
most models, overestimate the true value and that the logistic regression models
more often underestimate it. Whether an over - or underestimated value is of
preference is however unclear, and is highly depending on one’s aversion to risk
and whether one is on the buying or selling end. Of greater interest is how
far from the true value the estimates are, i.e. the absolute value of the values
in Tables (10) and (11). These, averaged over class and liquidity measure are
presented in Tables (16) and (17).

Method bid-ask spread spread VaR
0.95 relative spread log-spread

SNN 0.082942675 0.062118 0.00432525 0.102292525
Log. Reg. 0.0346875 0.1930475 0.00145 0.42058

� 0.048255175 -0.1309295 0.00287525 -0.318287475

Table 16: Absolute values from Tables (10) and (11), averaged by liquidity
measure.

Method 2 classes 3 classes 4 classes 5 classes

SNN 0.091674375 0.04816945 0.0347181 0.077116525
Log. Reg. 0.15098 0.17018 0.2577875 0.07574

� -0.059305625 -0.20961805 -0.2230694 0.001376525

Table 17: Absolute values from Tables (10) and (11), averaged by number of
classes.

In Tables (16) and (17) a positive � indicates that the SNN models had

29

a higher average error and thus that the logistic regression models performed
better. The reverse relationship follows analogously. Table (16) indicates that
the logistic regression models had a soundly better performance on the average
spread and the relative spread, whereas the SNN models performed significantly
better on the spread VaR

0.95 and on the log-spread. Table (17), on the other
hand shows that the SNN models generally had a better performance when av-
eraging by class; obtaining a better performance on the 2 class output models,
a significantly better performance on the 3 and 4 output models, and having
a just slightly worse performance than the logistic regression models on the 5
output class models.

By looking at Table (12) we can compare the evaluation models with the
situation of using a one-class model, i.e. assigning the same estimate of the
liquidity measure to all bonds. Using the relative spread, we can see how using
the model can e↵ect an investment. If we assume that the cost of a transaction
is 1

2

(pask�pbid

pmid
) per bond bought (sold), using the one-class model for a 2000000

SEK investment the additional cost in reality (compared to what the model
predicted) would then be 2000000⇥0.5⇥0.001110 = 1100 SEK. Using the 2 class
model would amount to a transaction cost of 2000000⇥ 0.5⇥ 0.001394 = 1395
SEK, analogously the 3, 4 and 5 class models would yield, 15139 SEK, 717 SEK,
and 51 SEK in cost respectively.

30

Conclusion

By taking the content of the Results and Discussion section into account, there
are a few conclusions to be made. When using the SNN to model liquidity
measure, the most accurate measure seems to be the log-spread measure. It is
however di�cult to determine the order of the remaining liquidity measures in
terms of accuracy; it could be argued that the spread VaR

0.95 has the poorest
performance, but this is not definitive. It is however quite clear that running
the SNN algorithm to train a model on this particular data set results in over-
fitting to the training data. There also seems to be a somewhat overfitting to
the test data in respect to the validation data, albeit on a relatively small scale
compared to the training data / test data relationship.

Similarly as in the case of the SNN models, there is a best performing liquid-
ity measure for the logistic regression models as well. It is, however, the average
bid-ask spread, obtaining the greatest accuracy on all number of output classes.
It could once again be argued that the spread VaR

0.95 is the worst performing
measure, and that the log-spread is better performing than the relative spread.
This is however, not obvious. The logistic regression models also, in general,
su↵er from overfitting to the training data, although this overfitting is signifi-
cantly less than in the case of the SNN. As such we can draw the conclusion
that an SNN model of the depth and breadth used in this paper is much more
prone to overfitting to the training data than the logistic regression.

Even though analyzing overfitting is interesting, what is more important
form a practical point of view is the performance of the algorithms. Here again,
some conclusions can be drawn. The logistic regression models outperform the
SNN models for the average bid-ask spread measure. In the case spread VaR

0.95

it is unclear which, or if any, of the two models performs better. It could be
argued that logistic regression outperforms SNN on the relative spread mea-
sure, and that SNN outperforms logistic regression on the log-spread measure.
However, when analyzing the performance we are not just interested in the
accuracy on the out-of-sample sets, but also the ”simulation” of a selling o↵
bonds. Interestingly, when averaging over the number of output classes, the
logistic regression models generally obtain a better performance on the simu-
lation, but when averaging over the liquidity measures it is not as clear. The
logistic regression models obtain a better performance than the SNN models for
the average bid-ask and relative spread, and the reverse is true for the spread
VaR

0.95.and log-spread.

The evaluation in the relative spread case shows that there could be some
value added by using machine learning approaches to model liquidity. Although
the 2 and 3 class models performed worse than the one-class model, the 4 and
5 class models had a significant improvement in minimizing the costs.

Having these reflections and conclusions in mind the remaining question is

31

whether it is worth using the complex SNN over the simpler logistic regression
when modelling bond liquidity. In the exact setup used in this paper, the time
and computational resources needed to train the SNN, combined with the similar
or even lesser performance compared to the logistic regression, it clearly is not.
With this being said, there are several aspects and parameters that have been
left outside the scope of this paper that could e↵ect the results. As such, the
final conclusion is that when modelling bond liquidity and a decently working
model is su�cient, the SNN is most likely not the best choice. However, if time
and resources are available and a highly competitive model is needed, placing
e↵ort into optimizing the neural network could be a fruitful approach.

32

Extensions

As mentioned, there are certain aspects that this paper only partly touches upon
or discards entirely. These are things that could be investigated if one were to
try to create a model that models bond liquidity as well as possible, or in other
words, things that could lead to an improvement in the accuracy of the model.
The most obvious thing to try is to change the model. The idea behind the self-
normalizing neural network is that it should self-normalize, i.e. keep all weights
in the network to a small value in order to act as a form of regularization. By
looking at the results from the SNN it is clear that the models overfitted to
the training data. Thus in further research one could try to add other types
of regularization in order to bring down the level of overfitting. This could, for
example, be to add dropout to the training or adding a penalty to the weights.

Another likely reason as to why the model overfitted is the relatively small
dataset used to train the model. Since all of the Swedish bond market was used
in the training, there are no more real data points to be added. One way to han-
dle this could be to add data points that are not exactly from the same dataset
but ones that we expect to have similar behavior, for example one could use
the entire Scandinavian/Nordic bond market in the training process. Another
approach to extending the training data is to use data augmentation/boot-
strapping. As an example, one could randomly copy N data points from the
training set, add a small random noise to the continuous features and then add
this newly created data point to the training data in order to synthetically ex-
pand the training data.

Furthermore, to increase the accuracy one could try to actually optimize the
structure in the neural network in terms of the accuracy on the validation set.
In this paper the number of hidden layers, and the number of nodes in each
hidden layer, was set to be the same for all models. In reality it is most likely
that these hyperparameters have an impact on the performance of the models;
what works well for one model might not work well for some other model and
vice versa. Another aspect that most probably influences the performance of
all models is the way one creates the di↵erent classes. In this paper the data
set was ordered with respect to the value of the liquidity measure and then
partitioned into subsets of equal cardinality. It is not obvious that this is the
optimal approach, in fact by looking at Figures (10) - (13) from Appendix A,
one would expect this partition to create ”unnatural” classes. This unreason-
able expectation that the ordered measures would grow linearly, might lead to
a situation where data points that are very close in measure may end up in
di↵erent classes. One way to improve this partitioning would be to instead look
at the range of the measure and divide this into an equally sized partition, and
place the data points whose measures’ fall within the same subset belong to the
same class. Alternatively, one could use a clustering algorithm on the measures
in order to form more ”natural” classes.

33

Finally, an interesting extension to this project would be to, instead of using
a classifier, use a regression approach. This, can of course also be done using a
neural network. An issue is how one would determine the accuracy of the model,
but the overall performance could be analyzed using the ”simulation” used in
this project (which in fact would be better suited for the regression case). In
fact this paper has served as a kind of pre-study of whether neural networks
can be applied to predicting liquidity and if one were to find a way to eliminate
the overfit, the natural next step would be to use the same methods for the
regression case, which would be better suited for use in industry.

34

References

[1] European Banking Authority, Report on appropriate uniform definitions of
extremely high quality liquid assets (extremely HQLA) and high quality liq-
uid assets (HQLA) and on operational requirements for liquid assets under
Article 509(3) and (5) CRR, 2013.

[2] Somer, P., Pasquali, S., Liquidity - How to capture a multidimensional beast,
Journal of Trading, Volume 11, Number 2, 2016.

[3] Demsetz, H., The Cost of Transaction, The Quarterly Journal of Economics,
Massachusetts, Volume 82, issue 1, 1968.

[4] Black, F., Fundamentals of Liquidity , Journal of Financial Economics, 1970

[5] Grossman, S.J., Miller, M.H., Liquidity and Market Structure, Journal of
Finance, Volume 43, Number 3, 1988

[6] Harris, L.E, Liquidity, Trading Rules, and Electronic Trading Systems, New
York University Salomon Center Monograph Series in Finance, New York,
1990

[7] Mehrling, P., The New Lombard Street: How the Fed Became the Dealer of
Last Resort, Princeton University Press, Princeton, NJ, 2010

[8] European Banking Authority, Discussion Paper: On Defining Liquid Assets
in the LCR under the draft CRR, 2013.

[9] Basel Comittee on Banking Supervision, Basel III: The Liquidity Cover-
age Ratio and liquidity risk monitoring tools, Bank For International Settle-
ments, 2013.

[10] Friewald, N., Jankowitch, R., Subramanyam, M.G., Illiquidity or Credit
Deterioration: A study in the US corporate bond market during financial
crises, Journal of Financial Economcis, Volume 105, 2012.

[11] Hult, H., Lindskog, F., Hammarlind, O. Rehn, C.J., Risk and Portfolio
Anlysis: Principles and Methods, Springer, 2012.

[12] LeCun, Y., A Theoretical Framework for Back-Propagation, Proceedings of
the 1988 Connectionist Summer School, Pittsburgh, PA, 1988.

[13] Kingma, D., P., Ba, J., Adam: A Method for Stochastic Optimization,
Conference Paper at the 3rd International Conference for Learning Repre-
sentations, 2015.

[14] Klambauer, G., Unterthiner, T., Mayr, A. Hochreiter, S., Self-Normalizing
Neural Networks, Advances in Neural Information Processing Systems
(NIPS), 2017.

35

Appendix A

Figures (10) - (13) show histograms over the di↵erent liquidity measures.

Figure 10: Histogram over the average spread for all data points.

Figure 11: Histogram over the average spread VaR
0.95 for all data points.

36

Figure 12: Histogram over the mid spread for all data points.

Figure 13: Histogram over the log spread for all data points.

37

TRITA -SCI-GRU 2018:231

www.kth.se

	omslag kihlström g
	Inlägg - framsida Kihlström g
	Inlägg backsida G Kihlström
	Exjobb_rapport_final
	omslag kihlström g
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

