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Analyzing the Tobii Real-world-mapping tool and improv-
ing its workflow using Random Forests

Abstract

The Tobii Pro Glasses 2 are used to record gaze data that is used for market research or sci-
entific experiments. To make extraction of relevant statistics more e�cient, the gaze points in
the recorded video are mapped to a static snapshot with areas of interests (AOIs). The most
important statistics revolve around fixations. A fixation is when a person is keeping his or her
vision still for a short period of time. The method most used today is to manually map the
gaze points. However, a faster method is automated mapping using the Real World Mapping
(RWM) tool. In order to examine the reliability of RWM, the fixations from di↵erent recordings
and projects were analyzed using Decision Trees. Further, a Random Forest (RF) model was
constructed in order to predict if a gaze point was correctly or incorrectly mapped. It was shown
that fixation classification on data from RWM performed significantly worse than when the same
fixation classification on manually mapped data was run. It was shown that RWM works better
when head movement is low and AOIs are set appropriately. This can guide researchers in set-
ting up experiments, although major improvements of RWM is needed. The RF classifier showed
promising results on several test sets for mapped gaze points. It also showed promising results
for gaze points that were not mapped and were close in time to being mapped. In conclusion,
the RF should replace current methods of estimating the quality of RWM gaze points. Gaze
points that are classified as badly mapped can be manually remapped. If RWM fails to map
large segments of gaze points to a snapshot, visually classifying these to be remapped is the
preferred method.
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Analys av Tobiis Real-world-mapping-verktyg och förbättring
av dess arbetsflöde med hjälp av Random Forests

Sammanfattning

Tobii Pro Glasses 2 används för att spela in tittdata vid marknadsundersökningar och vetenskap-
liga experiment. Tittpunkterna mappas fr̊an den inspelade filmen till en bild med intresseareor
(AOI). De flesta viktiga mätvärdena handlar om fixationer, som uppkommer när en person be-
traktar samma ställe under en kort period. Metoden som främst används idag är att mappa
tittpunkter manuellt, men ett snabbare sätt är att genom automatisk mappning använda Real
World Mapping-verktyget (RWM). RWM:s tillförlitlighet undersöktes genom att analysera fixa-
tioner fr̊an flera inspelningar med hjälp av beslutsträd. En metod för att klassificera gazepunkter
som korrekt eller icke-korrekt mappade skapades med hjälp av Random Forests (RF). Resultaten
visar att RWM inte är särskilt bra p̊a att mappa fixationer, varken att finna dem eller mappa dem
till korrekt AOI. Det visade sig att RWM fungerar bättre vid begränsad rörelser och d̊a AOIerna
är korrekt utformade, vilket kan agera som riktlinjer för den som utför ett experiment. RWM
borde dock förbättras. RF-klassificeringen gav bra resultat p̊a flera test set där tittpunkterna är
mappade p̊a en bild av RWM, och p̊a tittpunkter som inte var mappade av RWM men som var
i avseende av tid nära tittpunkter som är mappade. Tittpunkter som är l̊angt ifr̊an mappade
tittpunkter hade d̊aliga testresultat. Slutsatsen var att relevanta tittpunkter borde klassificeras
med RF för att mappa om felaktigt mappade tittpunkter. Om RWM inte mappar stora segment
tittpunkter s̊a borde visuell klassificering användas.
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1 Introduction

1.1 Overview

Since the 1800’s researchers have been interested in eye tracking. At that time direct observations
of the eyes were used to draw conclusions. Since the 1970’s the field of eye tracking has increased
rapidly. Today, eye cameras and advanced algorithms are used to track eye movements [16].

Tobii started in 2001 in Stockholm and is currently the world’s leader in eye tracking with more
than 800 employees worldwide. The company consists of three business units: Dynavox, Tech,
and Pro. Tobii Dynavox specializes in assistive technology for people with reduced ability to
speak and communicate and for people with reduced motor skills. Tobii Tech specializes in eye-
tracking technology for integration into consumer electronics and other volume products. Tobii
Pro specializes in eye-tracking solutions for studying and understanding human behavior [14].
It is for the latter unit that this project is conducted. Tobii Pro o↵ers the Tobii Pro Glasses 2
which are wearable, unobtrusive glasses that track the eye movement of the user. This is useful
in market research when a company wants to determine where and what customers look at in a
store. This information can be used to strategically place and advertise products, or for scientific
experiments that examine human behaviour. Di↵erent tools map gaze points from eye tracking
videos to snapshots. After the Tobii I-VT eye movement classification filter is applied, data can
be extracted [15]. The problem is that di↵erent mapping tools produce di↵erent results. The tool
used today is Manual Mapping (MM) of raw or filtered data where the gaze points or fixations
are coded manually frame-by-frame. This is believed to be the most accurate, but also the most
time expensive method. The Real World Mapping tool (RWM) uses image processing and is up
to 30 times faster than MM. However, it is unknown to what extent the errors introduced by
RWM a↵ect the final analysis. Tobii wants this to be analyzed, and also if the RWM workflow
can be improved. This is done by classifying gaze points as correct or incorrect and manually
remapping the incorrect points. Data from projects performed by Tobii Pro Insight, a sub unit
of Tobii Pro, is used for analysis.

1.2 Motivation

Two tasks can be achieved by comparing fixations from RWM gaze points and MM gaze points.
The first is that by knowing why fixations are wrongly mapped, guidelines how to set up an eye
tracking study can be set. The second is that advice can be given to Tobii on what aspects of
the RWM tool need to be improved. By finding a method that classifies gaze points as correct or
incorrect, the time performing MM can be reduced. Even if half of the RWM gaze points have
to be remapped, the benefit is substantial due to reduced cost and time using MM.

1.3 Aim and scope of the thesis

The aim of this thesis is to:

1. Find out how MM and RWM compare to each other regarding fixations. How many
fixations does RWM map at all? How precise is RWM at mapping fixations? Which
variables a↵ect the performance of RWM?

2. Find a classification rule that predicts the quality of RWM mapped gaze points so that the
incorrect points can be remapped manually.

All analysis is performed in R [13] which is a free statistical software. The RWM tool and IV-T
filter will be discussed, but not improved. Only one of the IV-T’s default settings, the attention
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filter, will be used in this project since it is by far the most frequent method used in shopper
studies. The accuracy of the eye tracker is not to be examined either, and it is assumed that the
recorded gaze points are correct. The purpose of this project is to compare RWM to MM.

1.4 Thesis outline

In Section 2, some necessary concepts of eye tracking are explained. The eye and its movement
is explained in Section 2.1 to understand some eye tracker terminology and what eye tracker
researchers might look for. In Section 2.3, the Tobii IV-T filter is explained and its settings are
briefly discussed. Section 2.4 discusses how to map gaze points from recording to snapshot and
compares the methods. In Section 3, the Decision Tree and Random Forest are explained in
detail, along with some diagnostics for classification. In Section 4, the available data is discussed
and a brief explanation of how the data is manipulated suitable for analysis is given. An overview
of the steps of analysis is given in Section 5. The results are presented in Section 6, with a short
summary in Section 6.4. The results and the data are discussed in Section 7. Final conclusions,
implications, and further work is presented in Section 8.
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2 Background

2.1 The eye and its movement

2.1.1 Anatomy of the eye

General knowledge about the eye is necessary to understand eye tracking. The anatomy of the
eye is shown in Figure 1. When a person sees something, light first passes through the cornea
where the light is refracted. Then it passes through the pupil, which is in the middle of the iris.
The iris opens or closes to let in more or less light depending on how dark the environment is.
After that, the light goes through the lens where it is refracted once more. Then, it reaches the
retina, which is at the back of the eye. The retina contains rods, which handle peripheral vision,
and cones [2]. At the fovea, which is the center of the macula, there is a high concentration of
cones which control focused sight [1]. The fovea is not always in the center of the retina, thus the
light that hits the fovea does not always go through the center of the pupil. The size of the fovea
is approximately 0.75 degrees wide [6]. The retina converts the light into electrical impulses that
are transported to the brain, via the optic nerve, and then are transformed into the perception
of an image.

Figure 1: The eye and its components [1].

2.1.2 Movement of the eye

There are di↵erent types of eye movement. Three of the most important types are explained
below.

• A fixation is when the eye is focused on a still object. The eye cannot be precisely still,
but rather moves around its target due to involuntary eye movements. These movements
are relatively small and are typically of the same magnitude as the noise in the signal of
a wearable eye tracker. A fixation has a duration and an xyz-coordinate. A fixation’s
duration is typically more than 100 ms.

• A saccade is when the eye moves quickly from one direction to another and during this
time the brain does not register any images. This occurs when a person changes fixation
from one point to another.
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• A smooth pursuit is when the eye follows a moving object. The eye moves in a con-
tinuous fashion at speeds less than 30 degrees/second for an average human (up to 100
degrees/second for elite athletes such as tennis players). If an object moves faster than
that speed, then the eye starts to saccade. It is impossible to voluntarily perform a smooth
pursuit if the eye is not following a moving object.

If the gaze direction and eye position is sampled at a set frequency, then gaze data is able to be
obtained. This data can be used to classify the eye movement as one of the three types using
filters discussed in Section 2.3 [15].

2.2 Tobii Pro glasses 2

The Tobii Pro Glasses 2 is an eye tracking tool that uses dark pupil tracking. The Tobii Pro
Glasses Controller software is used for recording and live viewing. The Tobii Pro Lab software
is used for data analysis and export [15].

2.2.1 Hardware

The Tobii Pro Glasses consist of the head unit and the recording unit shown in Figure 2. The
important components are described below. The head unit has a front camera that records the
visual field of the user in HD. It has two eye tracking cameras per eye that records the eyes. To
aid the eye tracking, the head unit has 6 near infrared (NIR) illuminators per eye, seen in Figure
2.

Figure 2: The head unit and recording unit [15].

An HDMI cable connects the head unit to the recording unit, which holds a removable SD card
that records and stores the data produced from the head unit. The Tobii Pro glasses can sample
data with a frequency of 50 or 100 Hz [15].

2.2.2 Dark pupil tracking

The glasses use dark pupil (DP) tracking where near infra red (NIR) illuminators are placed
away from the optical axis causing the pupil to appear darker than the iris. This is in contrast
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to bright pupil (BP) tracking where NIR illuminators are placed close to the optical axis of the
imaging device causing the pupil to appear lit up. This is shown in Figure 3 [15]. The idea

Figure 3: Illustration of the di↵erence between dark and bright pupil tracking [15].

behind dark pupil tracking is that the pupil will have less intensity than the iris, so the edges
of the pupil can be calculated by measuring the intensity of the eye. Also, the reflection of the
NIR light will cause reflections of light, defined as glints, on the cornea (see Figure 3). These
positions can be used to form a vector which is used to calculate the angle of the gaze. The gaze
direction and position can be found by combining the multiple cameras and the use of advanced
algorithms. These algorithms will not be discussed here [11].

2.3 Filters

A filter is needed in order to classify gaze points as fixations, saccades or smooth pursuits. An
alternative to using a filter, experts can classify the gaze points. The classification can either
be done on the gaze points in the recording or the gaze points in the snapshot. The filter
that Tobii uses is the Tobii I-VT filter which is a velocity threshold identification filter. The
filter computes the eye’s velocity in degrees per second between two gaze points sampled with
frequency 50 or 100 Hz. Depending on the velocity threshold, the filter classifies the two points
to be part of the same fixation or the saccade between two fixations. The I-VT filter cannot
classify smooth pursuits. A fixation’s coordinates is the average of the coordinates of the gaze
points that make up the fixation. There are several settings that can be changed by the user.
The velocity threshold is usually set between 20-100 deg/s. If two separate fixations are close in
both time and eye angle (usually closer than 75 ms and 0.5 degrees), then they can be merged.
Short fixations can be discarded and this threshold is usually set between 60-100 ms/fixation.
To remove noise in the gaze data, a moving average or moving median filter can be used with
window length between 3-9. The Gap fill-in setting can be used to fill in missing data points by
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linear interpolation. There are two default settings for the filter, called the fixation and attention
filter, which compared in Table 1 [15].

Filter Velocity threshold Merge Discard Noise Reduction Window Gap Fill In
Fixation 30 deg/s 75 ms, 0.5 deg 60 ms 3 75 s
Attention 100 deg/s 75 ms, 0.5 deg 60 ms 3 75 s

Table 1: Default settings for the fixation and attention filter

The only di↵erence between the filters is the velocity threshold. The fixation filter has a lower
threshold so the eye does not have to move substantially for the filter to classify it as a saccade.
This is appropriate for studies with low head movement since then there is less noise in the signal.
The attention filter has a higher threshold, therefore it will allow more eye movement within a
fixation [12]. The attention filter is the most used out of the two filters in shopper studies, thus
it is the most interesting for this project. The IV-T filter was developed for stationary trackers
where the user has little to no head movement. On the other hand, the attention filter was
developed to allow more head movement which is normal when using the Tobii Pro Glasses [8].

2.4 Mapping methods

After the gaze data is recorded on video, then it is needed to be mapped onto a snapshot of an
object of interest so that the data can be analyzed. An example of an object would be a shelf
at a store or a wall with an advertisement. The mapping from video to snapshot can be done
manually (MM) or automatically (RWM). The methods are explained below [15].

2.4.1 Manual mapping

The method of MM of raw data requires someone to manually code each gaze point in the
recorded video to the snapshot. For example, if the Tobii Pro Glasses track with a frequency of
50 Hz, then there are 3000 points to map per minute. This makes MM very time consuming,
especially for studies involving multiple people and long recordings. It is estimated that the
time to map using this method is 60 times longer than the time of the recorded video. MM
can also be done on already filtered gaze data, so that only the fixations are manually mapped
to the snapshot. In this case, all the gaze points within each fixation will then have the same
coordinates in the snapshot. It is estimated that the time to manually map already filtered data
is about half that of MM of raw data [15] [14]. Although it is believed that most of the points
will be classified correctly when using MM, the human error can make a negative impact on the
results [8].

2.4.2 Real World Mapping

The method of RWM is done by using advanced image detection algorithms to map gaze points.
The algorithm first steps through the gaze points with a set time step to find frames in the
recording where the snapshot is present. If the algorithm finds such frames, then it will go
through every gaze point that is close in time to find where it is located within the snapshot
[11]. It is estimated that by using a normal PC, the time to map using this method is 2 to 5
times longer than the time of the recorded video. This is 12 to 30 times faster than MM of raw
data. Since the computer performs the mapping, the only expense is CPU time which decreases
labor cost. The RWM tool computes the confidence of classifying each gaze point correctly by
comparing the gaze point’s surrounding area in the snapshot with the area in the video. It is
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possible to manually remap points that appear to be misclassified. RWM does not perform well
in some settings. When the snapshot contains a lot of perspective, it maps poorly. For example,
RWM is appropriate for studies of customer behaviour when the snapshot is taken in front of
a shelf, but not suitable when the snapshot is of a store isle. Also, high speed head movement
and rotation lead to motion blur in the video causing reduced mapping quality. Finally, high
repetition in the image may cause one area in the snapshot to be mistaken for another area
leading to incorrectly map gaze points [15] [11].

2.5 Metrics of interest

There are a number of metrics used to analyze visual data in order to gain understanding of
human behaviour [4]. The metrics are used to draw various conclusions and vary in usefulness
depending on the study. The most interesting metrics in the study involve fixations, Areas of
Interest (AOI), and gazes/visits. AOI is defined by the experimenter and is a fixed area in the
snapshot. For example, it could be the area around the logo on a bag of chips or the area
around the entire bag. There can be several AOI in a snapshot. These AOI may or may not be
overlapping. A visit is when consecutive fixations belong to the same area. The most common
metrics are described below.

1. Fixations on AOI are the total number of fixations on a specific AOI during a specific
time frame. This can be a measurement of interesting areas.

2. Visits on AOI are the total number of visits on a specific AOI during a specific time
frame. For example, a table related to a text could be visited multiple times while reading
the text. This can be a measurement of how well the information is attained.

3. Viewing time on AOI is the total viewing time on a specific AOI during a specific
time frame. It is calculated by adding the duration of all the fixations on a specific AOI.
Therefore it is closely related to number of fixations on AOI. It is usually measured in ms
and longer viewing time can be a measurement of the importance or content density in an
AOI.

4. Time to first fixation on AOI is the time for a user’s fixation to first enter a specific
AOI. It can be a measurement of how well an AOI is at gaining the user’s attention.

5. Coverage is the area that the fixations cover. The area is calculated by creating a heat
map and only looking at areas with a total number of fixations over some threshold. Low
coverage means that less of the image is looked at. Conversely, high coverage means that
more of the image is looked at. This can be useful to determine if the image has many or
few interesting components.

If two di↵erent mapping methods map fixations identically regarding time and space, then these
metrics will also be identical. Therefore, the mapping of fixations is the only important task.
It can be noted that most of the metrics of interest take into account if a fixation landed in a
specific AOI or not. Thus, the precision of fixations is not measured in distance, but rather if
the fixation hit the AOI or not.

2.6 Manual mapping as the gold standard

As a reference, or gold standard, the manual mapped gaze points are used. The validity of
this point was examined in the 2017 study [9]. The study consisted of twelve experienced, but
untrained observers (i.e. experts in the field of eye tracking who have little previous experience
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of mapping data themselves). They manually mapped fixations from six minutes of recorded
gaze data. The article shows that the observers’ mapped fixations agreed according to Cohen’s
Kappa. This is a sample-based method which measures inter-rater agreement for categorical
terms. However, it did not agree regarding duration and number of fixations. The study con-
cluded that MM cannot be considered a gold standard of mapping gaze points. One reason for
this was that the experts had di↵erent views on what a fixations is, leading to strong bias when
classifying the fixations. The IV-T filter does not have such a bias, but is deterministic when
classifying fixations. Therefore, MM cannot be ruled out to be a gold standard. Conclusively,
it is not necessary for MM to be the gold standard because the purpose of this project is to
compare RWM to MM, which is the most used method today.
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3 Mathematical models

Decision Trees are used to analyze the behaviour of fixations. Decision Trees lack predictive
capabilities, but are capable of visualizing data and concluding which variables a↵ect the outcome
the most. To predict the quality of the RWM mapped gaze points, Random Forests (RF) are
used which are an extension of the Decision Tree. The method is not optimal for visualizing
data, but has strong predictive capabilities. These two methods are further explained below.
There are several other classification methods that can be used to predict gaze points. However,
some predictors are categorical and not nominal which RF is better at handling. Also, RF is one
of the fastest methods to train which makes it the most preferable method.

3.1 Mathematical definitions

In all of the models used in the study there is a response variable Y that will be predicted
using the predictor variables X = {X1, X2, . . . , XP

}, where P is the number of predictors. The
response variable Y can be either continuous or categorical. This is achieved by using a training
set {x

i

, y

i

} of size N where x

i

= {x
i1, . . . , xiP

}.

3.2 Bootstrap

Bootstrapping can be used for many tasks and is also used in the RF. Bootstrapping estimates
the variability of estimators by sampling with replacement from the empirical distribution. When
determining an estimate of a population mean using a data set Y of size N , it is possible to get
a two-sided confidence interval of the mean. This is done by resampling Y with replacement R
number of times to produce R number of bootstrap samples. The mean is computed for each
bootstrap sample. The 2.5th and 97.5th percentile bootstrap means make up the two-sided 5%
confidence interval of the mean.

3.3 Decision Trees

3.3.1 Classification trees

Classification trees are used to analyze how accurate RWM is at mapping MM fixations to
snapshots. They are also used to analyze how accurate RWM is at mapping MM fixations to
the correct AOI. Classification trees are well suited for this task because the response variable in
both cases are either ”Correct” or ”Not Correct”. The idea of the classification tree is to split
the predictor space X into J distinct and non-overlapping sub spaces, called regions, R1, . . . , RJ

as in Figure 4. The new observation x0 that fall in region R

j

are predicted to have response y0

as the mean of the responses of the training observations in region R

j

. The splitting of trees
is done by recursive binary splitting which has been called a ”greedy top down approach.” It
does not look more than one step down the tree, since it is not computationally feasible to look
further. The splitting is stopped when each terminal node (a node without children) contains a
minimum number of observations. At each node of the tree the predictor X

j

is found, which at
some split minimizes the Gini index described in Equation 1.

G = p̂

m1(1� p̂

m1) + p̂

m2(1� p̂

m2), (1)

where p̂

mk

is the proportion of training observations in the m

th region that belongs to class k.
Another measure for the splitting is the classification error rate described in Equation 2

E = 1�max(p̂
mk

), (2)
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Figure 4: A predictor space of two dimensions split by recursive binary splitting into five regions.

which measures the number of observations that does not belong to the most common class. The
advantage of the Gini index over the classification error rate is that the Gini index is di↵erentiable,
hence it is better for numerical optimization [7].

3.3.2 Pruning

When building full trees (trees with terminal nodes with only one observation), the Decision Tree
will be overfit since the model is too complex. Since general conclusions are preferred, terminal
nodes are not useful for analysis unless the observation is an outlier. Therefore, the tree can be
pruned by removing some branches to achieve a less complex model. The tree will then have less
variance, but slightly higher bias. If T0 is the fully grown tree, then the best pruned tree T ⇢ T0

is found by minimizing
|T |X

m=1

X

i:xi2Rm

E(R
m

) + ↵|T |, (3)

where ↵ is a non negative tuning parameter and |T | is the number of terminal nodes. For
pruning, the classification error rate E(R

m

) of region R

m

is used instead of the Gini index. The
optimal ↵ is found by using 10-fold cross validation. This is done by splitting the training set
into 10 folds. Then, for each k 2 {1, . . . , 10} a full tree is built using the other 9 folds, before
computing Equation 3 as a function of ↵. Further, Equation 3 is averaged for each ↵. The ↵

with the smallest average is chosen. Mathematically this is deemed the best subtree, but some
splits might still seem too specific so some common sense is needed to analyze the tree [7].

3.4 Random Forests

The RF is used to first predict if the gaze points that were not mapped to any snapshot should
have been, and if the ones that were mapped should not have been. Then, it is used to predict
if the gaze points that were mapped to a snapshot were mapped to the correct AOI or not. The
response variable in both cases are categorical, either ”Correct” or ”Not Correct”, which make
RF well suited for the task. The RF is created by the following algorithm:

1. For b = 1 to B, where B is the number of trees or number of trees:
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(a) Draw a bootstrap sample Z

Z

Z

b

of size N from the training data (that is to draw with
replacement N observations from the training data).

(b) Grow a full Decision Tree T

b

to Z

Z

Z

b

, but instead of using all the predictors only a
random subset of m  P predictors are used at each split.

2. Output the full RF {T
b

}B1
To predict the class of a new observation x, take the class predicted by the most tree in the
forest. Note that B should be an odd number to avoid ties. In the case where m = P , the RF
is the same as bagging [7] [3].

3.4.1 Out-Of-Bag Error

When growing tree T

b

, each of the observations z

i

= (x
i

, y

i

) in the training data that were not
used for growing T

b

are part of the Out-Of-Bag (OOB) sample for that tree. The classification
error rate from Equation 2 of the OOB sample of each tree is averaged to get the OOB error.
This is similar to N-fold cross validation. In contrast to many other learning algorithms, the
OOB-error can be computed online when training the data and when the OOB error stabilizes
the training is complete. Unfortunately, this is not implemented in R so the number of trees has
to be tuned [7] [3].

3.4.2 Tuning of variables

Since R does not implement online tuning of the number of trees B, it has to be tuned to an
appropriate value by starting at B = 101 and increasing by 100 until the OOB error stabilizes.
The number of predictors m considered at each split needs to be tuned. The default value for
classification is

p
p, but for some problems a higher or lower value is desirable. Typically, m is

tuned by minimizing the OOB error. In problems with many predictors and observations, it is
not computationally feasible to test every possible m. Therefore, the tuning starts at the default
value of m =

p
p and increases or decreases by a chosen factor if the decrease of OOB error is

large enough. When an optimal m is found, its neighborhood is examined. In all the problems,
there are less than 30 predictors so the cost of tuning is small. However, there are many training
observations, so all of the possible values of m should not be tested; see [7] [3].

3.4.3 Bias-variance trade o↵

In all classification problems there is a trade o↵ between bias and variance because as one
increases the other decreases. For RF the bias of the entire forest is the same as the bias of each
tree, so increasing B will not a↵ect bias. Since each tree has a smaller predictor space at each
node than a regular Decision Tree, the bias of RF is higher than that of Decision Trees. It is
shown that generally the bias of the RF increases as m increases. The variance of a RF is

Var({T
b

}B1 ) = ⇢�

2 +
1� ⇢

B

�

2 (4)

where ⇢ is the sampling correlation between any two trees in the forest and � is the variance of
any tree in the forest. As B increases, the second term decreases, so large forests are useful for
reducing variance. The sampling correlation ⇢ is decreased as m is decreased, since the trees will
be less similar if fewer predictors are considered at each split. Considering this, the increased
performance of RF compared to Decision Trees is solely due to the reduction of variance. The
bias-variance trade o↵ lies in choosing m, where a small m gives low variance but high bias and
a large m gives high variance but low bias. When tuning m, care should be taken to not choose
the m that produces the smallest OOB error if m is too high or low [7] [3].
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3.4.4 Importance of variables

The importance of variables can be measured in two ways. The first way is to use the mean
decrease in Gini index. For each variable, it is computed by averaging the decrease in Gini index
at all the nodes where the variable was used to split the data. The second way is the mean
decrease in accuracy. For each variable, it is computed by using the OOB samples. When the bth

tree is grown, the OOB samples are predicted and the prediction accuracy is computed. Then,
the j

th variable of the OOB samples are randomly permuted, the class is again predicted, and
the prediction accuracy is computed. The decrease in accuracy after permuting is averaged over
all trees to get the mean decrease in accuracy for each variable. This is a measurement of how
important a variable is when only that variable is changed. For classification of gaze points,
the importance of variables does not need to be examined since more predictors do not a↵ect
the prediction outcome because of the many trees. However, it can be useful when looking at
fixations. When building a single Decision Tree, one variable might dominate at the first split
and the other predictors might not seem to be important. Despite this, by creating an RF, weak
variables get a higher probability of being picked in the prediction and might be shown to be
important. If the number of noisy predictors is large relative to the total number of predictors,
then an RF does not perform very well since the probability of a relevant variable being among
the predictors at a given split is small. In that case, the model is prone to overfitting. In this
project there are less than 30 predictors for each classification and most of the variables are
hypothesized to be relevant. Thus, overfitting is not likely when predicting gaze points as long
as m is not set too low [7].

When analyzing fixation, a model only containing the important variables is desired. Variable
reduction for an RF can be done in many ways [5]. Two of the most powerful ones are the
Vita and Boruta methods. The newly created Vita method is powerful and fast, but needs
many predictors to properly work. The Boruta method is also powerful but more computer
intensive, although it works well with few predictors. The Boruta is implemented by following
steps outlined below until all remaining predictors are deemed important or a maximum number
of runs is reached.

1. Double the amount of predictors by, for each real predictor, creating a shadow predictor
that is permuted from its real predictor, so that the relationship with the outcome is
destroyed. The permutation is done by randomly selecting a value within the maximum
and minimum values of the real predictor.

2. Grow a RF using the real and shadow predictors and compute the importance of all the
predictors.

3. Compare the importance of each real predictor with all the shadow predictors. If a real pre-
dictor’s importance is significantly lower than the importance of all the shadow predictors
the real predictor is deemed to be unimportant, otherwise not.

4. Remove all the unimportant predictors and the shadow predictors.

3.5 Types of error

Three types of errors occur when performing prediction: Type 1, Type 2 error, and Total pre-
diction error.

• Type 1 errors are false positives (FP), i.e. the model predicted a badly mapped gaze point
as a correctly mapped gaze point.
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• Type 2 errors are false negatives (FN), i.e. the model predicted correctly mapped gaze
points as badly mapped gaze points.

• Total prediction error is the sum of Type 1 and Type 2 errors.

After performing prediction of gaze points, the predicted incorrect mapped points will be remapped.
If there is a large Type 2 error, then more gaze points have to be unnecessarily remapped. If
there is a large Type 1 error, then more gaze points will continue to be incorrectly mapped after
the prediction and remapping. When comparing models A and B, the prediction error might be
the same but the proportion of Type 1 and Type 2 errors might be di↵erent. It is also possible
that model A has less prediction error than model B but is still not considered better. This is
the case when looking at the models in Table 2.

Model Prediction error Type 1 error Type 2 error

A 0.2 0.2 0.0
B 0.25 0.05 0.20

Table 2: Errors of model A and B.

Model A is superior at predicting gaze points overall but has a Type 1 error of 20% which is
considered to be substantial. Model B has a low Type 1 error of 5% which is considered to be
excellent, and a Type 2 error of 20% which is considered high. Although the Type 2 error is
high, it is still considered to be an acceptable amount of time to unnecessarily remap points.
From this example, it can be inferred that all three types of error are needed to find the best
model because prediction error alone is not su�cient enough.

Another way of estimating models is looking at Reciever Operating Characteristics (ROC) curves,
which plot the True Positive Rate (TPR) against the False Positive Rate (FPR). TPR is
calculated as the ratio between true positives and condition positives (i.e. all positive values in
the test data). FPR is calculated as the ratio between false positives and condition negatives.
All points in the ROC that are above the linear line from 0 to 1 are better than random guesses
and points below the line are worse than random guesses. The best possible prediction has
TPR = 1 and FPR = 0, which means there are no errors [10].
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4 Data

4.1 Projects used in analysis

The projects used for analysis are shopper studies performed by Tobii Pro Insight, where the
MM already has been performed. A shopper study is usually conducted to find out what brands
or signs people tend to look at while shopping. Snapshots are taken of the areas to be examined,
such as shelves or signs. On these snapshots, the AOIs are chosen. Each person in the study
wears a pair of Tobii Pro Glasses which have been personally calibrated. Then, they walk around
the store as if they are doing their regular shopping, but some people might not even pass the
snapshots. Five projects, described in Table 3, are used for analysis and classification. The table
includes the number of recordings, the total number of gaze points, the number of gaze points
that hit a snapshot, and the number of MM fixations (i.e. fixations that were manually mapped
onto a snapshot). The project names describe where the study was conducted. The recording
length varies between 5-10 minutes for all of the projects.

Project name #Recordings #GP #GP on snapshots #MM fixations

Farnham 25 239666 64481 7074
Dorking 21 219662 84222 6060

Leatherhead 23 261597 82313 6543
Germany 20 457659 150139 15813
France 29 274300 64433 8872

Table 3: Description of the studies used for training and testing.

The Farnham, Dorking, and Leatherhead projects are wine shopper studies. They are similar to
each other in experiment set up where the test subjects walked around a store and were given
instructions to buy wine. The recordings contain a lot of data where the snapshot is not in
frame. The snapshots are of wine shelves and are appropriately large in size. The AOIs are of
di↵erent sizes and cover most of the snapshot. The Germany and France projects are light bulb
shopper studies and are also similar to each other in experiment set up. In these projects, the
test subjects were standing in front of a shelf with light bulbs and they did not walk around
the store. The snapshots are of shelves with light bulbs and are appropriately large in size with
AOIs of varying size. Since light bulbs are very similar in appearance, these snapshots are very
repetitive. In all of the projects, the test subjects were standing both close to and far away from
the snapshot.

4.2 Data size

The amount of data that is used when performing classification can be problematic. If not enough
data is available, then a learning curve can show how either the test error or OOB error depend
on sample size. Enough data is attained when the error stabilizes. This is not problematic in
this study since there is a great amount of data available. However, some learning curves are
drawn to show that the OOB error stabilizes. There is a limit to how much data can be used
due to restrictions in R. Therefore, the maximum number of training observations for growing
the RF in this study is around 300000. No thorough optimization of data size is performed in
this project, but instead the amount of data is chosen from a qualified guess. Another problem
with gathering data is getting samples that span as much of the predictor space as possible. If
only data with little head movement is used, then the model will probably perform poorly for
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new samples with a lot of head movement (if head movement is an important variable). Data
from several projects is used to overcome this problem. Further, the training data is examined
by analyzing the distribution of each variable and using domain knowledge in order to determine
if it is representative for all types of samples.

4.3 Independence of Data

The model will perform more consistently if the data can be assumed to be i.i.d. (independent
identically distributed). However, the data at hand is not independent. Instead, each gaze point
is dependent on what project it is from and dependent on the gaze points in its proximity due
to the image recognition of RWM. Therefore, growing an RF on data gathered from di↵erent
projects, or di↵erent parts of a project, leads to very di↵erent results. Finding a consistent
prediction error might be di�cult or impossible. To overcome this, the predictor space can be
expanded by using previous or post gaze points as predictors.

4.4 Predictors

The predictors used for classification of gaze points are listed in Table 4 with their corresponding
units (if there is no unit, then the predictor is either dimensionless or a categorical variable). A
similar table for fixations is shown in Table 5. The column ”Type” specifies if the variable is
calculated using the median, mean, variance, or max value of the gaze points in the fixation or if
the fixation’s value is used. Since the data is not independent, k previous gaze points’ variables
can also be used to predict each gaze point. For each previous gaze point used to predict the
current gaze point, the predictor space increases by the amount of original predictors. Since many
previous gaze points are not mapped to the snapshot, there will be many continuous variables
with missing values. This is overcome by setting missing values to a large negative number
outside the range of the predictor.

Predictor Unit

Recording gaze point x,y Normalized pixels
Gaze 3D pos x,y,z mm

Gaze angle velocity x,y radians/ms

Gyro x,y,z degrees/s

Accelerometer x,y,z m/s

2

Confidence -
Confidence variation -

AOI distance Normalized pixels
Snapshot gaze point x,y Normalized pixels

dist to previous,post gaze point Normalized pixels
Eye Movement -

Snapshot Eye Movement -

Table 4: All of the predictors used for classification of gaze points with their units and range. In
the first and second column, 1 means that the predictor is used in the model and 0 means that
it is not used. x,y, and z means that there are three predictors, one in each direction.
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Predictor Unit Type

Recording gaze point x,y Normalized pixels Mean
Gaze 3D pos x,y,z mm Mean

Gaze angle velocity x,y radians/ms Mean
Gyro x,y,z degrees/s Mean

Accelerometer x,y,z m/s

2 Mean
Confidence - Mean

Confidence variance - Variance
AOI distance Normalized pixels Fixation

Snapshot gaze point x,y Normalized pixels Fixation

Table 5: All of the predictors used for analysis of fixations with their units and range. In the
first and second column, 1 means that the predictor is used in the model and 0 means that it is
not used. x,y, and z means that there are three predictors, one in each direction.

4.5 Data Manipulation

For each project, two tab-separated data files containing gaze points are exported from Tobii
Pro Lab. One file is mapped with MM and the other with RWM. For each snapshot in each
project, an XML file containing the AOI edge coordinates are exported to find the closest AOI
border for each gaze point and fixation. The exported data is not in a form desirable for analysis
so extensive data manipulation is needed. The gaze points, head rotation velocity from the
gyroscope, and head acceleration from the accelerometer are sampled at di↵erent times. The
head rotation velocity and the head acceleration are linearly interpolated with respect to time in
order to get all data sampled at the same time. Data points where the Tobii Pro glasses are not
able to track the eyes are removed from analysis. All variables with dimension pixels are divided
by the snapshot or recording unit width or height to get a relative value so that snapshots and
recording units with di↵erent size can be used in the analysis. Eye angle velocity is calculated
by calculating the angle between the gaze direction from the previous and post gaze points and
then dividing by the time di↵erence. The snapshot distance to previous and post gaze points
is calculated by the euclidian distance. The AOIs are polygons and a line segment is created
between each consecutive edge coordinate. The closest AOI border distance is calculated for
each gaze point and fixation by computing the distance between the point and each line segment
and then choosing the smallest one. The fixation variables are computed by taking the mean or
variance of the gaze points within the fixations. The data manipulation has to be redone for each
project used in the analysis since there are di↵erent number of snapshots and AOIs for every
project.

4.5.1 Missing values

All of the variables describing eye movement have some missing values due to errors in the Tobii
Pro glasses. The errors occur when the test subject has a large eye angle or moves his or her
head too fast. The errors are not MAR (missing at random) so it is not wise to interpolate or
impute the missing values [7]. It is observed that this does not happen very often, so the rows
containing missing values are removed. One approach when performing the classification on new
data is to insert a manual rule that classifies all gaze points with missing values as incorrectly
mapped.
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5 Analysis overview

The following steps are taken to perform analysis.

1. Find projects with proper snapshots. Map data using both MM and RWM. Export the
variables of interest to a tsv-file. Export the AOI’s to an XML-file.

2. Read data into R and manipulate the data into desired form. Create data sets for both
gaze points and fixations. Examine data and use domain knowledge to ensure that the
predictors span enough space; if not, gather more/di↵erent data.

3. Perform analysis of fixations. Extract descriptive statistics. Grow Decision Tree for visual-
izing results, prune if necessary. Grow RF to find variable importance and use OOB error
to see if the variables generally explain the results.

4. Perform classification of gaze points. For both classification of the gaze points that hit and
did not hit the snapshot:

(a) Find benchmarks for the models.

(b) Find minimal data size by making learning curves based on the OOB error.

(c) Use all of the data to find a satisfactory number of trees B using number m =
p
P of

splits. The B where the OOB error stabilizes is used for all classifications.

(d) Use the chosen B to tune m by choosing the one that produces the smallest OOB
error. If the OOB error does not vary too much a smaller m can be chosen to minimize
covariance between trees.

(e) Use a small consecutive subset of data from one project to grow a RF and predict
the response for the rest of the data in that project. Repeat a number of times with
random consecutive subsets and average results.

(f) For each project, set aside that project for test data and the rest are used to grow a
RF.

(g) Use the Boruta algorithm to remove unimportant predictors.

(h) Grow RF using previous gaze points as predictors.

(i) Choose the model with best performance. If the best model is not better than the
benchmarks consider tweaking the model, adding variables, or gathering new data.

5. Present results.
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6 Results

6.1 Analyzing fixations

The descriptive statistics of all the projects used are showed in Table 6. The second column
displays the proportion of RWM fixations that are correctly mapped regarding AOI. The third
column displays how the correct RWM fixations compared in duration to their respective MM
fixation. The fourth column displays the proportion of how many MM fixations are mapped
to a snapshot by RWM. It is shown that for all of the projects, RWM performs poorly when
mapping fixations to snapshots with only around 50% of fixations mapped. The fixations that
are mapped to shapshots are mapped to the correct AOI around 70% of the time, with large
variations between projects. The RWM fixations that map to snapshots are less than 10% shorter
than their corresponding MM fixation which is acceptable.

Project Prop correct fixations RWM Duration ratio RWM Prop Correct fixations MM

Dorking 0.633 (0.619 , 0.646) 0.667 ( 0.655 , 0.679) 0.934 (0.927, 0.941)
Farnham 0.819 (0.806, 0.832) 0.477 (0.465, 0.488) 0.947 (0.940, 0.954)
Leather 0.828 (0.816, 0.839) 0.596 (0.584, 0.608) 0.893 (0.885, 0.901)
Germany 0.638 (0.627, 0.648) 0.434 (0.426, 0.442) 0.891 (0.885, 0.896)
France 0.807 (0.794, 0.820) 0.364 (0.354, 0.374) 0.924 (0.917, 0.931)
Total 0.723 (0.718, 0.729) 0.483 (0.478, 0.487) 0.913 (0.910, 0.916)

Table 6: Bootstrapped means with lower and upper 2.5% confidence intervals.

Figure 5a shows, for the Dorking project, the number of fixations in each AOI as a function of
AOI area for both RWM and MM fixations. The two points with an AOI area of 0.3 are fixations
that did not hit any AOI. These two points are given an AOI area just for visualization. The
lines between points are also just for visualization. Figure 5b shows the same plot zoomed in
at the lower AOI areas. It is shown that even though RWM maps a smaller total of fixations,
the two lines follow each other. There is more noise when the AOI area is small. Appendix A
contains similar plots from other projects that show the same behaviour.

6.1.1 Mapping fixations to snapshots

In Figure 6, the Decision Tree for the MM fixations is shown. The observations that belong to
the splitting rule at each node move to the left of the tree. Each node contains the predicted
class, the proportion of correctly mapped fixations, and the percentage of training observations
that fall into that node. For example, at the top node a fixation would be classified as incorrectly
mapped since there are 0.48 correctly mapped fixations in the node. Also, all the training data
obviously falls in the first node. This Decision Tree is not grown deep for easier interpretation.
It is shown that no split improves the classification so that it can be considered acceptable. If
acceleration in y-direction is higher than -0.10, then 63% of fixations are correctly mapped to
the snapshot. However, this low proportion is unacceptable. When acceleration is higher than
-0.10 and combined gaze position in z-direction is smaller than 544 mm, then the fixations are
correctly mapped in 37% of cases which is extremely low. In Table 7 the importance of variables
from the RF is shown. 301 trees are used in the RF and the number of splits at each node is
the standard of

p
P = 3. Gyro in y-direction, acceleration in y- and z-direction, and combined

gaze position in z-direction are the most important according to mean decrease accuracy. The
rest of the variables do not show much importance. No variable is deemed to be unimportant
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(a) All AOIs (b) Zoomed in plot

Figure 5: Number of fixations in each AOI as a function of AOI area for RWM and MM for the
Dorking project.

when running the Boruta. The Mean decrease Gini index is almost constant over the predictors
which indicates that the predictors are equally important.

Predictor Mean Decrease Accuracy Mean decrease Gini

Gyro.X 0.004689933 1508.181
Gyro.Y 0.008900296 1614.712
Gyro.Z 0.013432966 1713.135
Acc.X 0.007273475 1576.402
Acc.Y 0.018813844 1934.195
Acc.Z 0.013022935 1791.259

duration 0.004399119 1180.385
Gaze.3D.X 0.005007685 1392.393
Gaze.3D.Y 0.008039183 1449.407
Gaze.3D.Z 0.015893436 1852.741

Gaze.point.X 0.004638311 1414.842
Gaze.point.Y 0.007223969 1485.239

Gaze.velocity.X 0.006590760 1642.791
Gaze.velocity.Y 0.005337347 1599.955

Table 7: Importance of variables from MM RF

The OOB-error of the RF is 0.361% which shows that the model does not have strong predictive
capabilities. This supports the claim that the predictors are not very important.

6.1.2 Mapping fixations to correct AOI

In Figure 7, the pruned Decision Tree for the RWM fixations is shown. Mostly AOI distance and
Confidence average are important where fixations with the AOI distance more than 0.0081 pixels
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Figure 6: Decision Tree for MM fixations.

and the Confidence average more than 0.74 are correctly mapped in 90% of cases. If the AOI
distance is smaller than 0.007 pixels, then more than half of the fixations are incorrectly mapped.
Although high confidence increases the probability of being correctly mapped, the probability is
still low. Interestingly, when the AOI distance is more than 0.0081 and the Confidence average
is less than 0.17, then the probability of a fixation being correctly mapped is 81%. This is
compared to when the Confidence average is between 0.17 and 0.74 where only 62% of fixations
are mapped correctly. Observing the split of Combined Gaze position in z-direction reveals that
when looking closer than 550 mm, 43% of the fixations are being incorrectly mapped. Looking
further away leads to 62% of fixations being correctly mapped. In Table 8, the importance of
variables from the RF is shown. In the RF, 301 trees are used and the number of splits at each
node is the standard of 4. As expected from looking at the Decision Tree, Confidence average
and AOI distance are the most important variables. The fixation’s position in y-direction is
also important. Moreover, the fixation’s position in y-direction, combined 3D gaze position in
y- and z-direction, and acceleration in z-direction show some importance according to the Mean
decrease accuracy. No variable is deemed unimportant for the RF when the Boruta is performed.
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Figure 7: Decision Tree for RWM fixations

Predictor Mean Decrease Accuracy Mean decrease Gini

fixpos.X 0.010327222 567.8637
fixpos.Y 0.020667726 587.6048
Gyro.X 0.002207429 392.8996
Gyro.Y 0.002891450 401.7062
Gyro.Z 0.006682058 431.1998
Acc.X 0.004170007 414.8876
Acc.Y 0.005803485 431.3497
Acc.Z 0.004855841 436.6316

duration 0.005173922 386.6953
Conf.Avg 0.038889833 1078.8902
Gaze.3D.X 0.006429764 398.1394
Gaze.3D.Y 0.015776701 481.6098
Gaze.3D.Z 0.017192952 566.2437
AOIdistance 0.040870718 1278.3949
Gaze.point.X 0.005011374 393.2297
Gaze.point.Y 0.015063809 495.7233

Gaze.velocity.X 0.004628504 467.0321
Gaze.velocity.Y 0.002329754 422.1147

Table 8: Importance of variables from RWM RF
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The OOB-error of the RF is 0.209% which shows that the model has medium predictive capab-
ilities.

6.2 Classifying gaze points on snapshot

Following are the results of classifying gaze points that hit the snapshot as correctly or incorrectly
mapped regarding AOI hit.

6.2.1 Benchmarks/Null hypothesis

To examine the performance of the classifiers some benchmarks are provided. In Table 9 the
proportion of incorrectly mapped points are shown. This would be the Type 1 error rate of RWM
as is.

Project Farnham Dorking Leatherhead Germany France Total
Error rate 0.274 0.425 0.265 0.443 0.297 0.361

Table 9: Error rate of RWM as is

Figure 8 shows the errors when using the confidence as a cuto↵ value for all of the data. It is
shown that the Type 1 error approaches zero as the cuto↵ approaches 1. This is natural because
if the cuto↵ is 1, then all the points will be remapped. The Type 2 error will then be all the
correctly mapped points. At around the cuto↵ value of 0.7, the prediction error is minimized
but is still over 0.4. Similar plots for the individual projects are shown in Appendix B.

Figure 8: Test error rate depending on Confidence value cuto↵ for the entire data.
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6.2.2 Tuning variables

The OOB error as a function of data size is shown in Figure 9a. The OOB error starts to stabilize
at N = 150000, but it seems to keep going down after N = 200000. The OOB error as a function

(a) Tuning data size (b) Tuning number of trees

Figure 9: OOB error rates for RF using m = 4. In a) 401 trees are used and the data size is
varied. In b) 100000 observations are used and tree number is varied.

of B is shown in Figure 9b. The OOB error stabilizes at B = 300, which is the value chosen for
further classification. The OOB error as a function of m is shown in Figure 10. The OOB error
is minimized at a large m, but this is not chosen in order to minimize ⇢. Therefore, m = 6 is
chosen for further analysis.

6.2.3 Prediction using same project

The results from using a small portion of consecutive training data from the same project as
the test data are shown in Table 10. For each data size, the forest is grown 500 times using a
consecutive segment of the data with random starting point for training. The data sizes are 1000,
2000, 5000, and 7500 gaze points. The results from the 500 trials are averaged and a two-sided
95% CI is found by taking the 2.5% smallest and the 97.5% largest values.
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Figure 10: OOB error as a function of m for a RF with B = 301 and N = 100000.

Data size TP TN FP FN

1000 0.342 (0.036, 0.468) 0.353 (0.225, 0.494) 0.162 (0.009, 0.300) 0.141 (0.005, 0.457)
2000 0.363 (0.142, 0.456) 0.349 (0.227, 0.477) 0.166 (0.023, 0.304) 0.120 (0.009, 0.345)
5000 0.377 (0.194, 0.440) 0.346 (0.255, 0.453) 0.171 (0.029, 0.306) 0.104 (0.008, 0.322)
7500 0.391 (0.228, 0.443) 0.341 (0.287, 0.430) 0.181 (0.036, 0.269) 0.085 (0.014, 0.315)

Table 10: The average results from the 500 RF with di↵erent training data size with two-sided
5% CI in parenthesis.

6.2.4 Prediction using many projects

The results from using four projects as train data and one as test data is shown in Table 11. The
FN are low for all projects. The FP is below 10% for three of the projects, but for the Dorking
and Germany projects it is around 20%. When performing the Boruta, no variables are deemed
to be unimportant.

Test project TP TN FP FN

Dorking 0.540 0.232 0.192 0.033
Farnham 0.687 0.180 0.093 0.037

Leatherhead 0.702 0.177 0.087 0.032
Germany 0.481 0.253 0.190 0.074
France 0.650 0.212 0.085 0.052

Table 11: Error rates when using one project as test data and the other four to grow a RF.
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The test errors at di↵erent time segments for the France project are shown in Figure 11. It is
shown that the condition positives (CP) vary greatly during the projects. Sometimes almost all
gaze points are correctly mapped, but other times less than 40% are correctly mapped. It is
shown that the TP follows the CP closely and as the CP decreases, the FP increases. A ROC
curve for these errors is shown in Figure 12, where all segments are above the line. This means
that the prediction is better than randomly guessing for all segments.

Figure 11: Test errors for the France project at di↵erent time segments with intervals of 600
observations. The light blue curve is the condition positives.

6.2.5 Prediction using previous gaze points’ variables as predictors

No predictor is deemed unimportant when performing the Boruta algorithm using 10 previous
gaze points’ predictors to predict each gaze point. The results from using 0 to 10 previous gaze
points as predictors is showed in Figure 12, where half of the gaze points are used as train and
test data, respectively. It is shown that the FP goes down from 17.78% to around 17.5% when
one to three previous gaze points are used as predictors. The FN increases slightly, but the total
error rate decreases. After 4 previous gaze points, the FP starts to increase again, but the FN
appears to decrease. Similar results to Table 11 are shown in Appendix B, where one and two
previous gaze points are used as predictors. The di↵erences between the models are slight.
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Figure 12: ROC curve for di↵erent segments of the France project.

Steps TP TN FP FN

0 0.542 0.219 0.177 0.060
1 0.541 0.222 0.175 0.061
2 0.541 0.222 0.175 0.060
3 0.540 0.222 0.175 0.061
4 0.540 0.222 0.175 0.061
5 0.542 0.222 0.175 0.059
6 0.541 0.221 0.175 0.060
7 0.541 0.221 0.176 0.060
8 0.542 0.220 0.176 0.059
9 0.543 0.220 0.177 0.058
10 0.544 0.219 0.178 0.057

Table 12: Using previous observations for classification, using half the data as training and test
data. For each RF 301 trees are used and m =

p
P

6.3 Classifying gaze points not on snapshot

It is noted that all gaze points mapped by RWM to the snapshot are also mapped by MM. Only
gaze points that did not hit a snapshot, according to RWM, are used to classify whether or not
gaze points should be on the snapshot. Since the results from this section are similar to those of
Section 6.2, most of the results are shown in Appendix C.
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6.3.1 Tuning variables

The plots show that the OOB error starts to stabilize when N = 250000, but it does continue
to decrease after. The optimal number of trees is B = 401. Yet again, the OOB error is smaller
for a high m, but m = 6 is chosen to minimize covariance.

6.3.2 Prediction using many projects

The results from using a small portion of data from one project as training data and testing on the
remainder of the same project showed similar variation as in Table 10. Therefore, these results are
not presented. When performing the Boruta, no variables are deemed to be unimportant. Table
13 shows the results from using 401 trees and m = 6 to grow an RF. For this RF, four projects
are used as training data and the fifth as test data. The Dorking, Farnham, and Leatherhead
projects have very low test errors, but both the Germany and France projects have high errors.

Test project TP TN FP FN

Dorking 0.719 0.143 0.025 0.111
Farnham 0.669 0.186 0.037 0.106

Leatherhead 0.630 0.222 0.061 0.085
Germany 0.367 0.295 0.240 0.096
France 0.457 0.353 0.109 0.080

Table 13: Error rates when using one project as test data and the other four to grow a RF for
all gaze points that did not hit a snapshot.

Table 14 shows the results from performing the same RF as in Table 13, but only for gaze points
that are 500 ms or less from being mapped. The test errors for all projects drastically decrease,
especially for the FP. The FN slightly increases for some projects, but decreases for others.

Test project TP TN FP FN

Dorking 0.277 0.583 0.024 0.114
Farnham 0.283 0.602 0.027 0.086

Leatherhead 0.281 0.608 0.010 0.099
Germany 0.282 0.573 0.017 0.125
France 0.313 0.609 0.027 0.050

Table 14: Error rates when using one project as test data and the other four to grow a RF for
gaze points that had less than 500 ms to map to a snapshot.

6.4 Summary of results

• 50% of fixations are mapped to a snapshot by RWM compared to MM. Having a high
negative head acceleration in y-direction gives more unfavorable results than this percentage
of fixations. Looking at an object closer than 500 mm also leads to unfavorable results.
Only 65% of fixations are mapped to a snapshot by the best split of the Decision Tree.

• 72% of fixations that hit a snapshot are mapped to the correct AOI. When the fixations’
distance to an AOI border is larger than 0.0081, the proportion increases to 79%. Oth-
erwise, it decreases to 49%. Fixations perform favorably when having a high (more than
0.75) or low (less than 0.17) confidence average.
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• The prediction errors of gaze points that hit a snapshot according to RWM are less than
27% for all test sets. The test errors are less than 14% for three of the five projects. The
false positives range from 8.5% to 19.2%.

• The prediction errors of all gaze points that did not hit a snapshot are less than 19% for four
of the projects. For the Germany project, the prediction error is 36.6% which is considered
to be inadequate. When performing the classification on the data that is less than 500 ms
from being mapped, the prediction errors decreases significantly. The maximum prediction
error is 14.2%. The false positives for all the test projects are less than 3% and this is
considered to be excellent.
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7 Discussion

7.1 Data

Gathering an immense amount of data was a simple task since each project contained many
recordings and each recording contained many gaze points. However, the data gathering process
was problematic for a number of reasons. Some available projects were poorly designed for RWM,
because snapshots had a lot of hidden objects or too much perspective. Also, some projects were
designed so that the test subjects looked at a screen instead of walking around a store. Due to
this, these projects had little head movement which was not representative of the predictor space
of interest. Some projects had snapshots that were not images of the scenery, but were instead
computer drawn images. RWM cannot map these snapshots. MM is missing or only performed
on parts of the many projects. As a result, only five projects were used in the analysis which
may be too few to create a general model. Therefore, more testing is needed in order to find out
if the RF is general.

As aforementioned, the observations with missing values in predictors regarding eye movement
were removed instead of interpolated. This was decided because the missing values were not
MAR. The proportion of such observations was close to zero, so removing missing values should
have little to no impact on the results. This is valid reasoning since the proportion of observations
from each class is large. For example, the best initially mapped project, the Leatherhead project,
had over 25% of gaze points incorrectly mapped. If a project would have had only 1% of gaze
points incorrectly mapped, the e↵ect of removing a few observations would be much greater.

7.2 Fixations

The decision of using Decision Trees for analyzing fixations instead of using Logistic Regression,
Support Vector Machines, or similar methods was made for the following two reasons. First,
Decision Trees are most suitable for interpreting and visualizing results in high dimensional
predictor space. Logistic Regression only has some interpreting capabilities while Support Vector
Machines do not have any. The purpose of the study was to show which predictors impact the
results of RWM fixations the most so results needed to be presented clearly. Second, Decision
Trees work well with non-linear decision boundaries. They vastly outperform Logistic Regression
(which has a linear decision boundary) but do not work as well as Support Vector Machines. No
predictors explain the response clearly when observing scatter plots so the decision boundary
is sure to be non-linear. The Logistic Regression could be used if the predictor space was
transformed, but this is not a trivial task. In conclusion, the Decision Trees are used for their
superior interpretation and non-linear decision boundaries.

In general, RWM is not an appropriate tool when mapping fixations. The greatest drawback
is that most fixations do not get mapped to a snapshot when they should. In this project, no
variables seemed to have explanatory power when running the Decision Tree since the success
rate did not change much after most splits. The Boruta algorithm deemed no predictor variable
to be unimportant. This meant that each predictor had some predictive power, but it was not
necessarily true that each predictor had enough predictive power to draw valid conclusions. It
was observed from the importance of RF that the predictors had almost constant Mean decrease
Gini. This meant that the variables were equally important, but it could also have been possible
that the variables are equally unimportant. This was evident when examining OOB error from
the RF, which was over 35%. Thus, the RF performed poorly when predicting unseen data and
no variable explained why RWM does not map fixations.
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The fixations that did get mapped to a snapshot had varying success at mapping to the correct
AOI. 79% of fixations were mapped to the correct AOI when fixations were far away from AOI
borders, which is an acceptable proportion. A 90% success rate was achieved when the AOI
distance was large and the confidence average was above 0.75. This is considered to be beyond
satisfactory for most shopper studies. The success rate was 80% when the AOI distance was
large and the confidence average was less than 0.17. However, the success rate was around 0.62
when the confidence average was between 0.17 and 0.75. This trend was similar when the AOI
distance was small. Both large or small confidence averages gave better mapped fixations than
a confidence average of around 0.5 gave. It was observed that the success rate rapidly dropped
when AOI distance was less than 0.0081. In this case, the success rate was never above 70%,
no matter the values of the other predictors. It was observed that only two predictors, other
than AOI distance and confidence average, had an impact on the Decision Tree. One predictor,
the split of combined 3D gaze position in z-direction (i.e. how far away someone is looking),
revealed that looking closer than 550 mm made the mapping worse than looking further away.
This was not surprising since the image recognition algorithm had less features to compare with
when someone was standing close to the snapshot. If the snapshot had two areas with similar
patterns, the image detection did not know which one to map to. The other predictor, the
fixation’s position in y-direction in the snapshot (the variable fixpos.Y), was once used as the
best split. It was observed that the success rate decreased when the test subject looked up and
the reason for this is unknown. The Boruta algorithm deemed all variables to be not unimportant
when performing the RF on mapped fixations. Again, this only informs that all predictors had
some predictive power. AOI distance and confidence average clearly had the most predictive
power when observing variable importance from the RF. This result was expected when looking
at the Decision Tree. Also, how far away and how far up or down a person was looking showed
slight importance according to the mean decrease accuracy. This result was not unexpected since
those variables were present in the Decision Tree. The OOB error of the RF was 22%. Therefore,
the predictors were able to successfully explain why a fixation was mapped to the correct AOI
or not.

Although RWM was not performing well when mapping fixations, it was able to map similar
proportions of fixations to AOI as MM when the AOI had a su�ciently large area. Thus, RWM
could be used in experiments with su�ciently large AOI in order to understand which of the
AOI was fixated on the most. However, RWM should not be used if exact results are desirable.

7.3 Classifying gaze points on snapshot

The classification of gaze points that were mapped to a snapshot showed promising results. The
test errors from growing a large RF and testing on an unseen project were all lower than when
using confidence as a classifier. The false negatives were all less than 5% of the entire data, which
meant that little unnecessary remapping was needed. The false positives were slightly higher and
were more dependent on how well the RWM performed at the beginning. The false positives were
around 20% when the Dorking project was used as test data (where almost 50% of the points were
incorrectly mapped). However, the false positives were around 7% when the Farnham project
was used (around 20% incorrectly mapped points). The false positives decreased by at least a
factor of 2 for each project, but no precise error rate was achieved. This was unfortunate since
the users of RWM would like to have an exact value of the error. One possible solution was to
manually map a small portion of the data and then run the classifier to get an error rate that
shows the validity of using the RWM combined with the classifier. Unfortunately, the gaze data
is not only project-dependent, but also recording- and time-dependent. This is shown in Figure
11 where the test errors were computed for small parts of the France test project. It is observed
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that the condition positives varied greatly within a project. The false positives showed a negative
correlation with the condition positives. Therefore, it would not be wise to assume that the error
from a small part of a project is the same as the error of the entire project. For similar reasons,
it is not feasible to grow an RF from a small part of a project. The results would greatly vary
depending on where the data is sampled, as shown in Table 10, so no reliable results could be
achieved. As discussed earlier, the ratio of important to noisy predictors is large enough that
predictors do not need to be removed. This claim is supported by the Boruta algorithm which
did not deem any predictor to be unimportant. Although the results seem to slightly improve
when using previous gaze points as predictors, the decrease in error rate is not large enough to
be deemed significant. Thus, it is preferred to not use these models for simplicity.

There were two reasons why RF was preferred over SVM or Neural Networks (NN). First, the RF
is faster with large amounts of data. Even though not more than 300000 observations were used,
it would still have taken an extensive amount of time for SVM and NN to compute. Also, both
SVM and NN have more tuning parameters and take longer to tune. Second, some variables were
categorical which is not explicitly supported by SVM or NN, but there are ways to overcome this
problem. The categories were not nominal so ordering the variable numerically was not optimal
since the decision boundary could have been too complex. Another option was to create new
variables for each category in the categorical variable and coding the new variables as one if
the observation included that category and zero if it did not. In conclusion, it would have been
possible to use SVM or NN, but only RF is used because it is the most e�cient.

7.4 Classifying gaze points not on snapshot

One di�culty with RWM was that it did not map gaze points when it should have. The probab-
ility of this happening was not random, but rather depended on surrounding data. The results
were overall not satisfactory when using all gaze points as train and test data. Despite this,
training and testing the model produced favorable results when using only data that was close
in time to being mapped. These results can be attributed to the time dependence of the data.
There were three types of data. The first type of data was gaze points that did not hit the snap-
shot because the test subject was not close to the snapshot. The second type was gaze points
that were close to being mapped and did not hit the snapshot but should have. The third type
was gaze points that were far away from being mapped and did not hit the snapshot but should
have. If the third type of gaze points did not exist, then there should have been no di↵erence
between using all the gaze points that were not mapped and using the gaze points that were
close to being mapped. This is because the predictor describing ”time to map” would classify
all of the gaze points that were far away in time from being mapped as correct. The di�culty
with having the third type of gaze points is that ”time to map” loses a lot of predictive power
since some gaze points with a long ”time to map” are incorrectly mapped. The third type of
gaze points can be classified as outliers which were removed from analysis. This was valid since
gaze points far away from being mapped can be visually classified as correct or incorrect. It is
not di�cult to scan the recording and find large segments of unmapped gaze points that should
have been mapped. For this reason, the RF classification is redundant for this task. Still, the
RF classifier is needed because it is di�cult to find incorrectly unmapped gaze points among
mapped gaze points.
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8 Closure

8.1 Conclusions

It was shown that by using Decision Trees, RWM was not capable of mapping gaze points and
fixations from recorded video to snapshots with MM as reference. Its biggest flaw was that it
did not find the snapshot during its image recognition. For some projects more than 50% of
fixations were not mapped at all. It was found that RWM should not be used in its current
form and extensive improvements are needed. It could possibly be utilized if only large AOI
are used, the statistic of interest is the AOI that were most observed, and approximate results
are acceptable. Results with varying accuracy were obtained when using the RF classifier. In
general, this model worked well and was clearly the best option when estimating if RWM was
correct or not. The accuracy depended on how well RWM mapped the gaze points. Future
projects with many incorrectly mapped gaze points will have more prediction error after the RF
is used than projects with fewer incorrectly mapped gaze points. In conclusion, MM should be
used if absolute accuracy is needed. However, RWM in combination with the RF classifier should
be used if small errors are acceptable which would greatly reduce the time to manually map.

8.2 Implications

Since it was shown that RWM poorly maps fixations, it would be most appropriate that Tobii
improves this tool. The results of RWM can be reliable when the RF classifier is used. If the
classifier is implemented, then the time to map is cut by at least half. This would greatly speed
up the process of doing eye tracking studies and also decrease the cost. The RF classifier is a
more accurate method of classifying gaze points than the confidence value and should replace it
in Tobii Pro Lab.

8.3 Further work

In this thesis only shopper studies were analyzed, but the same analysis should be performed on
other studies. This thesis used data from five projects and as more data becomes available, more
extensive analysis should be performed.

It is hypothesized that images with repetitive patterns are harder to map to since the image
detection deems di↵erent areas in the image as the same. A variable measuring repetitiveness
can be determined by using saliency mapping to possibly achieve better results using the classifier.
Since it is beyond the scope of this thesis, it is not used as a predictor.

In this thesis, RWM was compared to MM as the gold standard. In a future project, RWM
and MM could be compared to a real gold standard, representing the true mapping, in order to
determine which of these is the best method. However, the true gold standard would need to
be developed. Fortunately, by using the procedure described in this thesis the comparison of a
mapping method to the true gold standard is not di�cult.

The correct gaze points could be used to automatically remap the incorrect points after using the
RF classifier. The correct points could be used as outposts and the incorrect points in between
could be remapped. For example, this could performed by a Kalman filter.
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9 Appendix

9.1 A-Fixation Results

(a) All AOIs (b) Zoomed in plot

Figure 13: Number of fixations in each AOI as a function of AOI area for RWM and MM for the
Farnham project.

Figure 14: Number of fixations in each AOI as a function of AOI area for RWM and MM for the
Leatherhead prodject.
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9.2 B-Results of classifying gaze points on snapshot

Test project TP TN FP FN
Dorking 0.5417349 0.2278383 0.19795303 0.03247370
Farnham 0.6880476 0.1800375 0.09466354 0.03725128
Leather 0.7026594 0.1780521 0.08704579 0.03224278
Germany 0.4782968 0.2548039 0.18910476 0.07779458
France 0.6499309 0.2129499 0.08444431 0.05267487

Table 15: Error rates when using one project as test data and the other four to grow a RF For
step=1 and m=10.

Test project TP TN FP FN
Dorking 0.5395265 0.2298806 0.19591081 0.03468215
Farnham 0.6857834 0.1809680 0.09373304 0.03951552
Leather 0.7009342 0.1785988 0.08649909 0.03396790
Germany 0.4764518 0.2558562 0.18805240 0.07963953
France 0.6475874 0.2135707 0.08382351 0.05501839

Table 16: Error rates when using one project as test data and the other four to grow a RF For
step=2 and m=10.

(a) Dorking (b) Farnham

Figure 15: Test error rate depending on Confidence value cuto↵ for two di↵erent projects.
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9.3 C-Results of classifying gaze points not on snapshot

(a) Tuning data size (b) Tuning number of trees

Figure 16: OOB error rates for RF using m = 4. In a) 401 trees are used and the data size is
varied. In b) 86042 observations are used and tree number is varied.

step TP TN FP FN
0 0.5236449 0.2365732 0.1611088 0.07867314
1 0.5301960 0.2324245 0.1652575 0.07212201
2 0.5326812 0.2311240 0.1665580 0.06963679
3 0.5361989 0.2282053 0.1694767 0.06611910
4 0.5379715 0.2270239 0.1706581 0.06434647
5 0.5406023 0.2248332 0.1728488 0.06171565

Table 17: Error rates when using 100000 obs for train, For step=1 to 5 and m=
p
P . No im-

provement.
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Figure 17: OOB error as a function of m.
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